NIKè. JURNAL ILMIAH PERIKANAN DAN KELAUTAN

Pelindung : Rektor Universitas Negeri Gorontalo
Penanggungjawab : Dekan Fakultas Perikanan dan Ilmu Kelautan Universitas Negeri Gorontalo
Dewan Penyunting
Ketua : Aziz Salam, ST., M.Ag., Ph.D
Dr. Hafidz Olli, S.Pi., M.Si
Dr. Ir. Hasim, M.Si
Dr. Rieny Soelistiowati, S.Pi., M.Si
Dr. Alfi S. Baruadi, S.Pi., M.Si
Dr. Syamsuddin, S.Pi., M.Si
Dr. Ade Muharam, S.Pi., M.Si, Ph.D
Ir. Yuniarti Koniyo, MP
Ir. H. Rully Tuiyo, MP

Mitra Bestari pada edisi ini adalah Prof. Dr. Ir. Musbir, M.Si (Fakultas Perikanan UNHAS)
Penyunting Pelaksana : Z.C. Fachruressyah, S.St.Pi., M.Si.
Sekretaris : Dewi Nuryanti Fazrin, S.Pi
Bendahara : Sri Rahayu Kalaka, A.Md.
Alamat Redaksi : Fakultas Perikanan dan Ilmu Kelautan – Universitas Negeri Gorontalo
Jl. Jenderal Sudirman No. 6
Kota Gorontalo, 96128
Provinsi Gorontalo

e-mail : jurnal_nike@ung.ac.id

Penerbit:
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
UNIVERSITAS NEGERI GORONTALO
KATA PENGANTAR

Dewan Penyunting
DAFTAR ISI

Mutu Organoleptik dan Mikrobiologis Ikan Tongkol yang Diawetkan dengan Bawang Putih Selama Penyimpanan Suhu Ruang. Veronita T. Sidiki, Asri Silvana Naiu, dan Faiza A. Dali ... 094-099

Analisis Kandungan Merkuri Pada Ikan Nike di Kota Gorontalo. Nur Wahyuni Mohamad, Femy M. Sahami, dan Citra Panigoro .. 100-102

Pendugaan Umur Simpan Abon Ikan Tongkol Asap. Tri Sugiarto I. Nusi, Asri Silvana Naiu, dan Faiza A. Dali ... 103-105

Pengaruh Perbedaan Tingkat Pemberian Pakan Jentik Nyamuk terhadap Pertumbuhan Benih Ikan Cupang. Andriyanto Yusuf, Yuniarti Koniyo dan Ade Muharram ... 106-110

Kitosan Kulit Udang Vaname Sebagai Edible Coating Pada Bakso Ikan Tuna. Kartika Wulandari, Rieny Sulistijowati, dan Lukman Mile 118-121

Mutu Organoleptik Sosis Ikan Lele yang Disubtitusi dengan Rumput Laut. Nur Hidayat Rauf, Rieny S. Sulistijowati, Rita M. Harmain 125-129
Kitosan Kulit Udang Vaname Sebagai Edible Coating Pada Bakso Ikan Tuna

1 Kartika Wulandari, 2 Riency Sulistijowati, 3 Lukman Mile
1 kartika.fishery@gmail.com
2 Jurusan Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelaunat, Universitas Negeri Gorontalo

Abstract
Penelitian ini bertujuan untuk mengetahui pengaruh edible coating kitosan kulit udang vaname terhadap jumlah TPC bakso ikan tuna yang disimpan selama 3 hari pada suhu ruang. Penelitian dilaksanakan di Balai Pengendalian dan Pengujian Mutu Hasil Perikanan (BPPMH) Provinsi Gorontalo mulai bulan April-Mei 2014. Penelitian ini dibagi atas dua tahap, yaitu tahap pertama pembuatan kitosan kulit udang vaname mengacu pada Simpen dan Puspawati (2010) dan tahap kedua adalah aplikasi kitosan pada bakso ikan tuna dengan cara merendam bakso ikan pada larutan kitosan. Periaksian yang digunakan adalah bakso ikan tuna tanpa coating dan dengan coating kitosan yang disimpan selama 0, 1, 2 dan 3 hari kemudian dilakukan pengujian TPC bakteri. Tujuan pengujian TPC bakteri yaitu untuk mengetahui pengaruh edible coating kitosan terhadap jumlah bakteri bakso ikan tuna. Hasil pengujian TPC bakteri bakso ikan tuna penyimpanan 0, 1, 2 dan 3 hari tanpa coating kitosan hanya bertahan 1 hari memiliki total bakteri log 5,267 CFU/g, sedangkan bakso ikan tuna coating kitosan mampu bertahan sampai 2 hari memiliki total bakteri log 5,0837 CFU/g.

Kata kunci: kitosan, udang vaname, edible coating, ikan tuna, Thunnus sp.

I. PENDAHULUAN
Bakso ikan merupakan jenis makanan yang banyak disukai masyarakat. Produk ini dibuat dari bahan baku ikan ditambah dengan bahan tambahan seperti tepung tapioka, bawang merah, bawang putih, dan ditambahkan bahan perasa lainnya seperti garam dan gula. Bakso merupakan produk makanan yang mengandung protein 17.25 % dan memiliki kadar air yakni 67.36 yang tergolong tinggi sehingga memiliki daya awet atau masa simpan bakso maksimal hanya satu hari pada suhu kamar. Agar mendapatkan bakso yang memiliki masa simpan lebih lama serta mutu yang dapat dipertahankan dan aman untuk dikonsumsi, dianjurkan untuk menggunakan bahan pengawet yang tidak berbahaya salah satunya dengan penggunaan kitosan kulit udang vaname.

Udang merupakan salah satu komoditas perikanan Indonesia yang diminati oleh dunia. Salah satu produksi udang yang diminati adalah udang vaname dalam bentuk olahan udang beku. Produk olahan yang dihasilkan pada industri pembekuan udang, diantaranya dalam bentuk head on (udang utuh), head less (udang tanpa kepala) dan peeled (udang tanpa kepala dan kulit). Khusus produk head less (udang tanpa kepala) dan peeled (udang tanpa kepala dan kulit) dihasilkan limbah industri potensial berupa kepala dan kulit udang yang cukup besar, yakni sebesar 30-50 % dari keseluruhan berat badan (Manjang, 2013).

Manfaat kitin dan kitosan diberbagai bidang industri modern cukup banyak, diantaranya dalam industri farmasi, pangan seperti pengemas makanan
berupa edible coating, kertas dan tekstil sebagai aditif, kosmetik, dan kesehatan (Marganov, 2003). Salah satu pemanfaatan kitosan kulit udang yaitu sebagai pengemas makanan alami berupa edible coating.

Edible coating merupakan lapisan tipis yang dibuat dari bahan yang dapat dimakan. Edible coating dapat dibuat dari berbagai bahan termasuk polisakarida, protein dan lipid. Coating dapat diterapkan secara langsung untuk bahan makanan atau dibuat menjadi edible film yang kemudian digunakan untuk melapis permukaan makanan. Mekanisme utama penggunaan edible coating pada makanan yaitu meningkatkan kualitas dan memperpanjang umur simpan yang berpotensi sebagai penghalang terhadap oksigen dan air, sehingga memperlambat pertumbuhan bakteri (Ouattara et al., 2007). Tujuan penelitian ini adalah untuk mengetahui pengaruh kitosan sebagai edible coating terhadap TPC bakteri bakso ikana tuna.

II. METODE PENELITIAN

Penelitian dibagi dalam dua tahap. Tahap pertama adalah pembuatan kitosan dari kulit udang vanname, dimana proses pembuatan kiosan mengacu pada Puspawati dan Simpen (2010). Tahap kedua adalah aplikasi kitosan pada bakso ikan tuna dengan cara merendam bakso ikan pada larutan kitosan. Perlakuan yang digunakan adalah bakso ikan tuna tanpa coating dan dengan coating kitosan yang disimpan selama 0, 1, 2 dan 3 hari kemudian dilakukan pengujian TPC bakteri. Tujuan pengujian TPC bakteri yaitu untuk mengetahui pengaruh edible coating kitosan terhadap jumlah bakteri bakso ikan tuna. Adapun konsentrasi coating kitosan yaitu 20 %, konsentrasi ini diperoleh dari penelitian sebelumnya oleh Wulandari (2015) tentang aktivitas antibakteri kitosan metode difusi agar, konsentrasi yang digunakan adalah 0, 20, 35 dan 50 %. Berdasarkan hasil penelitian, konsentrasi 20, 35 dan 50 % merupakan kategori zona hambat kuat, sehingga konsentrasi yang digunakan untuk edible coating diambil dari konsentrasi terendah yaitu 20 %.

Proses pembuatan edible coating dan proses coating pada bakso ikan tuna mengacu pada Wardaniati dan Setyaningsih (2009), yaitu sebagai berikut:

Edible coating dari kitosan dibuat dengan cara melarutkan 20 g kitosan dalam 100 ml asam asetat 1%, diaduk agar sebagian serbuk kitosan larut. Sehingga didapatkan konsentrasi 20 %. Konsentrasi tersebut diperoleh dari hasil pengujian aktivitas antibakteri kitosan metode difusi agar, dapat diketahui bahwa konsentrasi 20 % merupakan zona hambat dalam kategori kuat, sehingga 20 % digunakan sebagai konsentrasi edible coating kitosan.

Pada prosedur penelitian ini terdiri dari dua perlakuan, yaitu bakso ikan tuna tanpa coating dan bakso ikan tuna coating kitosan. Proses coating bakso ikan tuna dilakukan dengan cara bakso direndam dalam larutan kitosan yang telah disediakan, perendaman dilakukan selama satu jam, lalu diangin-anginkan. Bakso ikan tuna tanpa coating dan coating kitosan disimpan pada suhu ruang selama 0, 1, 2 dan 3 hari, kemudian diuji TPC bakteri sesuai SNI 01-2332-3-2006.
III. HASIL DAN PEMBAHASAN

3.1 Karakteristik kitosan kulit udang vaname

Pembuatan kitosan terdiri dari tiga tahap, yaitu deproteinaiasi, demineralisasi dan deasetilasi. Kitosan yang dihasilkan dikarakterisasi dengan beberapa parameter, yaitu kadar air, kadar abu, derajat deasetilasi, nitrogen dan viskoitas. Nilai karakteristik kitosan dibandingkan dengan standar berdasarkan Proton Laboratories, hal ini dilakukan untuk mengetahui apakah kitosan tersebut sesuai dengan standar yang telah ditetapkan oleh Proton Laboratories. Hasil pengujian karakteristik kitin dan kitosan kulit udang vaname dapat dilihat pada Tabel 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Karakteristik kitin dan kitosan (Proton Laboratories, 1987)</th>
<th>Hasil penelitian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kitin</td>
<td>Kitosan</td>
</tr>
<tr>
<td>Kadar air</td>
<td>2 - 10 %</td>
<td>< 10 %</td>
</tr>
<tr>
<td>Kadar abu</td>
<td>< 2 %</td>
<td>< 1 %</td>
</tr>
<tr>
<td>Derajat deasetilasi</td>
<td>15 - 70 %</td>
<td>> 70 %</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>6 - 8 %</td>
<td>7 - 8 %</td>
</tr>
<tr>
<td>Viskoitas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendah</td>
<td>< 200</td>
<td>< 200</td>
</tr>
<tr>
<td>Sedang</td>
<td>200 - 799</td>
<td>200 - 799</td>
</tr>
<tr>
<td>Tinggi</td>
<td>800 - 2000</td>
<td>800 - 2000</td>
</tr>
<tr>
<td>Paling tinggi</td>
<td>> 2000</td>
<td>> 2000</td>
</tr>
<tr>
<td>Warna</td>
<td>Putih sampai kuning pucat</td>
<td>Putih sampai kuning pucat</td>
</tr>
</tbody>
</table>

Agar mendapatkan bakso yang memiliki masa simpan lebih lama serta mutu yang dapat dipertahankan dan aman untuk dikonsumsi, dijamin untuk menggunakan jenis kemasan yang tidak berbahaya salah satunya dengan penggunaan kitosan sebagai edible coating. Hasil uji nilai log TPC bakteri bakso ikan tuna tanpa coating kitosan dan dengan coating kitosan selama penyimpanan suhu ruang (30℃) dapat dilihat pada Gambar 1.

![Gambar 1 Histogram TPC (log) bakteri bakso ikan tuna tanpa coating dan coating kitosan](image)

3.2 TPC bakteri bakso ikan tuna coating kitosan

Bakso ikan tuna dilakukan pengujian TPC dengan perlakuan bakso ikan tuna tanpa coating dan dengan coating kitosan (konsentrasi 20 %) yang disimpan pada suhu ruang, masing-masing perlakuan dilakukan penyimpanan 0, 1, 2 dan 3 hari. Kemudian diuji secara mikrobiologis dengan analisis Total Plate Count (TPC) bakteri. Analisis TPC bakteri bertujuan untuk mengetahui pengaruh coating kitosan terhadap jumlah koloni bakteri selama penyimpanan sesuai persyaratan mutu mikrobiologi bakso ikan (SNI 01-2246-2006).

Nilai TPC bakteri bakso ikan tuna dari tiap jenis kemasan (tanpa coating dan coating kitosan) memperlihatkan pengaruh yang berbeda terhadap pertumbuhan bakteri. Bakso ikan tuna tanpa coating kitosan lebih cepat pertumbuhan bakteri dibanding dengan bakso ikan tuna coating kitosan. Dapat diketahui nilai TPC bakteri bakso ikan tuna tanpa coating kitosan (TK) memiliki nilai rata-rata log 5,267 CFU/g, sedangkan nilai TPC bakteri bakso ikan tuna coating kitosan (TKC) memiliki nilai rata-rata log 5,67 CFU/g.
coating kitosan (DK) yaitu log 5,0837 CFU/g. Pada lama penyimpanan bakso ikan tuna tanpa coating kitosan (TK), penyimpanan H0 memiliki nilai rata-rata log 4,398 CFU/g, H1 log 5,34 CFU/g, H2 dan H3 TBUD (terlalu banyak untuk dihitung) atau dinyatakan dengan nilai log 7 CFU/g. Sedangkan lama penyimpanan bakso ikan tuna coating kitosan (DK) penyimpanan H0 memiliki nilai rata-rata log 4,21 CFU/g, H1 log 4,23 CFU/g, H2 4,895 CFU/g dan H3 TBUD.

Jadi, dapat diketahui bahwa bakso ikan tuna coating kitosan mampu bertahan sampai 2 hari dibanding dengan bakso ikan tuna tanpa coating kitosan hanya mampu bertahan 1 hari saja. Hal ini menunjukkan bahwa coating kitosan memberi peningkatan kemampuan penghambatan terhadap pertumbuhan bakteri. Selain itu, bakso ikan tuna coating kitosan dapat menekan laju pertumbuhan bakteri dibandingkan dengan bakso ikan tuna tanpa coating kitosan, diketahui bahwa TPC bakteri tanpa coating kitosan pertumbuhan bakteri lebih pesat dibandingkan dengan bakso ikan tuna coating kitosan. Hal ini bahwa kitosan memiliki zat antibakteri yang disebut dengan enzim lysosim dan gugus aminopolysacharida yang mampu menghambat pertumbuhan bakteri dan membuktikan bahwa kitosan mampu melindungi bakso.

Kemampuan dalam menekan pertumbuhan bakteri disebabkan kitosan memiliki polikation bermuatan positif yang mampu menghambat pertumbuhan bakteri. Mekanisme yang terjadi yaitu molekul kitosan memiliki kemampuan untuk berinteraksi dengan senyawa penyusun sel bakteri seperti protein, asam amino dan glukosa kemudian teradsorpsi membentuk semacam layer (lapisan) sehingga sel mengalami kekurangan substansi untuk berkembang dan akan menghambat metabolisme bakteri dan akhirnya mengakibatkan kematiannya.

IV. KESIMPULAN

Coating kitosan dapat memberi peningkatan kemampuan penghambatan terhadap pertumbuhan bakteri pada bakso ikan tuna sehingga mampu bertahan sampai 2 hari. Selain itu, bakso ikan tuna coating kitosan dapat menekan laju pertumbuhan bakteri dibandingkan dengan bakso ikan tuna tanpa coating kitosan.

Daftar Pustaka

