Asian Journal of Microbiology, Biotechnology and Environmental Sciences

<table>
<thead>
<tr>
<th>Country</th>
<th>India</th>
</tr>
</thead>
</table>
| Subject Area and Category | Biochemistry, Genetics and Molecular Biology
 Biotechnology
 Environmental Science
 Environmental Science (miscellaneous)
 Immunology and Microbiology
 Applied Microbiology and Biotechnology
 Microbiology |
| Publisher | Scientific Publishers |
| Publication type | Journals |
| ISSN | 09723005 |
| Coverage | 2001-ongoing |

Quartiles

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Microbiology and Biotechnology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biotechnology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science (miscellaneous)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SJR

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Citations per document

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Asian Journal of Microbiology Biotechnology & Environmental Sciences Editorial Advisory Board

Chief Editors

Dr. P.K. Wong : Professor, Deptt. of Biology, Chinese University of Hong Kong, Hong Kong
and Dr. R.K. Trivedy, Ex. Prof. & Head, Deptt. of Environmental Sciences, University of Pune, Pune, India

Associate Editors

Dr. Sadhana Sharma, Prof. & Head, Deptt. of Biochemistry, AIIMS, Patna, India,
Dr. Namrata Sharma, AIIMS, New Delhi, Dr. Theeshan Bahourn, Univ. of Mauritius, Mauritius,
Dr. C. Visvanathan, AIT, Thailand and Dr. Azni H. Idriis University of Putra Malaysia, Malaysia

<table>
<thead>
<tr>
<th>1. Dr. Hiroshi Tanoue, Japan</th>
<th>25. Dr. V. Jirku, Czech Republic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Dr. Jiho Koyama, Japan</td>
<td>26. Dr. Mark L.D. Lopez, Philippines</td>
</tr>
<tr>
<td>3. Dr. Clem Adopay, Nigeria</td>
<td>27. Dr. G. Suresha, Saudi Arabia</td>
</tr>
<tr>
<td>4. Dr. C.D. Nwani, Nigeria</td>
<td>28. Dr. Mohd, Nural Anwar, Bangladesh</td>
</tr>
<tr>
<td>5. Dr. D.J. Lee, Taiwan</td>
<td>29. Dr. Margaret Greenway, Australia</td>
</tr>
<tr>
<td>6. Dr. Zidan Abdulbodium Bashir, Malaysia</td>
<td>30. Dr. A.R. Ghosh, Bhubneshwar, India</td>
</tr>
<tr>
<td>7. Dr. S.M. Talebi, Iran</td>
<td>31. Dr. Anju Singh, Mumbai, India</td>
</tr>
<tr>
<td>8. Dr. G. Knittou, Mauritius</td>
<td>32. Dr. Rashid Noor, Dhaka, Bangladesh</td>
</tr>
<tr>
<td>9. Dr. Rao Bhamidimari, New Zealand</td>
<td>33. Dr. B.B. Ayade, Nigeria</td>
</tr>
<tr>
<td>10. Dr. Chee Kong Yap, Malaysia</td>
<td>34. Dr. Reda, Elabeyoumi, Egypt</td>
</tr>
<tr>
<td>11. Dr. Y. Arjaniyelu, U.S.A</td>
<td>35. Dr. T. Kolopoulous, Greece</td>
</tr>
<tr>
<td>12. Dr. A.H. Subratty, Mauritius</td>
<td>36. Dr. A.K. Kumaraguru, Madurai, India</td>
</tr>
<tr>
<td>13. Dr. Sani Mashi, Nigeria</td>
<td>37. Dr. Sesh Shrinivas Vutukuru, Hyderabad, India</td>
</tr>
<tr>
<td>14. Dr. B. Leenanon, Thailand</td>
<td>38. Dr. A.K. Dixit, Mumbai, India</td>
</tr>
<tr>
<td>15. Dr. Kaswar Ahmed, Bangladesh</td>
<td>39. Prof. (Dr.) D.P. Singh, Lucknow, India</td>
</tr>
<tr>
<td>16. Dr. (Ms.) Liqa Raschid, Sri Lanka</td>
<td>40. Dr. Hassan Moffadel, Sudan</td>
</tr>
<tr>
<td>17. Dr. Jonas Contiero, Brazil</td>
<td>41. Dr. U.S. Bagade, Mumbai, India</td>
</tr>
<tr>
<td>18. Dr. Shyam Bhagwant, Mauritius</td>
<td>42. Dr. Okenie LA, Roura, U.K.</td>
</tr>
<tr>
<td>19. Dr. K.P. Chong, Malaysia</td>
<td>43. Dr. Maulinshah, Ankleshwar</td>
</tr>
<tr>
<td>20. Dr. J. Rotimi, Nigeria</td>
<td>44. Mr. Pavan Kumar Pindi, Mahabubnagar</td>
</tr>
<tr>
<td>21. Dr. Duangrat Inthorn, Thailand</td>
<td>45. Dr. Mohd. Adnan University of Ha'il, Saudi Arabia</td>
</tr>
<tr>
<td>22. Dr. Asgar Ali, Malaysia</td>
<td>46. Dr. M.H. Sayadi, Iran</td>
</tr>
<tr>
<td>23. Dr. S.A. Abbasi, Puducherry, India</td>
<td>47. Prof. Christian Paul P. Dela Cruz, Philippines</td>
</tr>
<tr>
<td>24. Dr. W. Fuchs, Austria</td>
<td>48. Dr. Ristika Putri Istani, Indonesia</td>
</tr>
</tbody>
</table>

Back to AJMBES Journal Details
CONTENTS

487–492 INVESTIGATION OF B. BASSIANA PERSISTENCE AND VIRULENCE FACTOR AGAINST P. XYLOSTELLA OF PEATLAND IN CENTRAL KALIMANTAN
—ICHI IKE KULU, ABDEL LATIF ABAD, AMINUDIN AFANDI, AND NOORADIMAN

493–500 PRODUCTION OF CELLULOASE FROM PALM OIL INDUSTRIAL SOLID WASTE BY ACTINOMYCETES ISOLATE 12.3.A
—HAMZA NURKAYA, O. WATHANACHAIYANGONG, MBANUI, S. CHAIYANAN, AND S. CHAIYANAN

491–495 MYCOBACTERIUM TUBERCULOSIS DETECTION FROM DUST AND WATER SAMPLE IN HOUSE OF BTA (+) LUNG TUBERCULOSIS PATIENT THROUGH POLYMERASE CHAIN REACTION METHOD IN MALANG
—DH IN YUNI NUR HIDAYATI, NGKARAN PUTU PUSPANA PUTRA, HARIAN AI RASYID, FATIMA K. MEGAWATI, AND WIRA NISWANA

496–508 IDENTIFICATION AND CHARACTERIZATION OF THERMOPIELIC AND PECTINOFLYTIC BACTERIA ISOLATED FROM GUNUNG PANCA HOT SPRING BOGOR INDONESIA
—GAHIB AHULSTA LABAS, MENDIN NUR HANDAYANI, LAURA NAVIKA YAMANI, PURBAN, AND NI NYOMAN TRI PUSPANINGSHI

509–520 ISOLATION AND IDENTIFICATION OF HIGH POTENTIAL ANTIMICROBIAL PRODUCING LACTIC ACID BACTERIA FROM TRADITIONAL THAI FERMENTED MINCED FISH (SOM-FAK) PRODUCTS
—SUWANTH PAPAYUH, RANDY W. WONOBO, AND BORDOMOKK LIEKANON

521–525 ISOLATION AND CHARACTERIZATION OF CHITOSAN FROM LOCAL MUSSELS’ SHELL (PILSBRYOCONCHA SP).
—FAZA A. DALI

526–530 POTENTIAL OF BACTERIOPHAGES IN CONTROLLING DRUG RESISTANT SHIGELLA SONNEI
—WORALUK RATTANABOYORN, PARICHAT PHUMKACHORN, AND PONGSAK RATTANACHAKUNSONPON

531–539 AN EXTRACELLULAR a-L-ARABINO FURANO SOSIDASE IN ESCHERICHIA COLI USING SECRETORY EXPRESSION SYSTEM
—LAURA NAVIKA YAMANI, MOHID. ANUAR JONE, ARIF BAKTIR, ROSLI MD. ILLAS, AND NI NYOMAN TRI PUSPANINGSHI

540–544 STUDY OF THE EFFECT OF DIFFERENT FACTORS ON GROWTH OF ASPERGILLUS TERREUS AND PENICILLIUM FUNGI THAT ISOLATED FROM APPLE FRUITS
—HASSAN A. RADAA

545–550 BIOLOGICAL PARAMETERS OF BAMBOO SPINY LOBSTER (PANULIRUS VERSICOLOR, Latrielle, 1804) IN THE WATERS OF THE SPERMONDE ISLANDS OF SOUTH SULAWESI, INDONESIA
—HASRUN, ENDANG YULI, DANDU SETYOHADJ, AND GATUR BITORO

551–559 EXPLORING LEVAN-PRODUCING BACTERIA CHROMOHALOBACTER JAPONICUS BK-AB 18 FOR BIO-BENEFICIATION OF BAXITE THROUGH THE INVESTIGATION OF ITS LEVANSUCRASE PROPERTIES
—RUKMAN HERTIADI, DARIS QODIRISMAN NASIR, AND NANDANG MUFTI

560–564 GENETIC VARIATION OF GYRINOPS VERSTEGII ORIGINATED FROM PAPUA BASED ON RAPD
—RIMA HERLIN S. SIBURIAN, ULIAH J. SIREGAR, AND ISKANDAR SIREGAR

565–572 COMBINING SATELLITE IMAGE ANALYSIS AND IN-SITU MEASUREMENT TO DETERMINE THE CONDITION OF CORAL REEF ECOSYSTEM OF MANDANGIN ISLAND EAST JAVA INDONESIA
—ZAINUD HIDAHAH AND DHIN BUDI WIYANTO

573–576 PREDICTION OF ALCOHOL-INDUCED HEPATIC INJURY USING AST/ALT RATIO AND EVALUATION OF THE CHANGES IN LIVER ENZYMES LEVELS AFTER ALCOHOL WITHDRAWAL DURING A DEFINED PERIOD
—SAEED ALEINJAD MOALLEM, AZAM GHORBANIA DELVAR, SEYED MOHAMMAD HOSEIN IBRAHIMNEJAD, AND OMID KHAMOMHAMMADI OTAGHSAZ

577–587 ANTIBIOTIC RESISTANCE AND ANTIMICROBIAL ACTIVITY OF DADIH ORIGINATED LACTOBACILLUS CASEI SUBSP. CASEI R-68 AGAINST FOOD BORNE PATHOGENS
—USMAN PATO, VONYP SETIARIS DHANAN, FEBRI KHAIRUN NISA, AND RAJA DOLI H. HASIBUAN

588–593 EXPLORATION OF MARINE SPONGES-ASSOCIATED FUNGI PRODUCING ANTIFUNGAL COMPOUNDS
—AGUS TRIANTO, AGUS SARDONO, BASKORO ROCHADDA, AND DEY WIJAN TENINGHIS

594–597 MODELLING OF MASTICATION
—ANDRIANO AL.I., SHATSKY V.P., ANDANDANO A.A. AND BORODIN S.A.

598–609 ISOLATION, IDENTIFICATION AND CHARACTERIZATION OF A BACILLUS SPECIES ISOLATED FROM A COMMON FERMENTED FISH PRODUCT (TAREE) OF WHITE SARDINELLA (SARDINELLA ALBELLA) IN THE MIDDLE EAST IN RELATION TO FATTY ACIDS PROFILE: ELONGASE AND DESATURASE ACTIVITIES
—SALSIA AL-THWADI, KAREEMA SILEI, AHMAD FREEB, ALI BIN THANI, AND ABRAHAIKA A

610–618 STRUCTURE-FUNCTION ANALYSIS OF THE MULTI-DOMAIN BETA-KETOACYL SYNTHASE INVOLVED IN THE PRODUCTION OF EICOSAPENTAENOIC ACID, DOCOSAHExAOIC ACID AND ANTIMICROBIALS BY IN-SILICO COMPARATIVE APPROACHES AND PHYLLOGENETIC ANALYSIS
—ALI BIN THANI, SALSIA AL-THWADI, AND AHMAD FREEB

619–624 PRESENCE OF MRSA ON FOOD CONTACT ARTICLES AND FOOD HANDLERS IN RESTAURANTS IN THAILAND
—KANNAPA TASAANPAK, SERDING KUCHARDENPHAIBUL, JINTANA WONGWICHAR, RAPEE THUMMEEPAK, RATHANIN SENG, KUNSUDEH NIMMANNOBERSKUL AND SUTTHIRAT SITHIUSAK

625–630 REMOVAL OF ZINC FROM WASTEWATER BY USING JORDANIAN NATURAL ZEOLITE
—ABDUL KAREEM M.A. DAHAGH

631–638 BIOSYNTHESIS OF GOLD NANO PARTICLES BY LEAF EXTRACT OF MORINDA COREJA: A NOVEL APPROACH TOWARDS GREEN SYNTHESIS
—SOUMYA CHAKRABORITY AND A. YOGAMOORTHI

(Continued on Inside Back Cover)
639–642 ASSESSING THE EFFECT OF ANTIBACTERIAL ACTIVITY OF COLEUS AMBONICUS LEACHATE INFUSED TWILL TAPE AGAINST BACTERIAL ISOLATES
 — G.K. BALAMURUGAN and S. BABUSKIN

643–647 ASSESSMENT OF BACTERIOLOGICAL CONTAMINATION IN FOOD OUTLETS, NOIDA, INDIA
 — Vandana Chauhan, Maansi Verma and Aanchal Gupta

648–653 DETERMINATION OF SOIL AGGREGATING EFFICACY OF EXOPOLYSACCHARIDES PRODUCING BACTERIA ISOLATED FROM PESTICIDE SOILS OF SIRUVANI FORESTS
 — Gilbert Ross R RIX K. and David PAUL Raj R.R.

654–656 EFFECT OF CULTURE MEDIA ON SCLEROTINIA SCLEROTIORUM FOR MOST SUITABLE MYCELIA GROWTH UNDER IN-VITRO CONDITIONS
 — Pramod Kumar Fatrephara, Rajni Singh Saodhe, Devashish R. Chobe and Virendra Gupta

657–661 ISOLATION AND MOLECULAR IDENTIFICATION OF OIL DEGRADING BACTERIA FROM WORKSHOP YARD SOIL IN KOLLAM DISTRICT, INDIA
 — D.S. Saji, Saranya Syaman and K. Vinod Kumar

662–666 BACILLUS AMYLOLIQUEFACIENS-B1 AND BREVUNDIMONAS DIMINUTA-B2: THE POTENT HYDROLYTIC BACTERIAL ISOLATES FROM BIOMAS DIGESTER RUN ON VEGETABLE WASTE
 — V. S. Patel and H. V. Deshmukh

667–670 ASSESSMENT OF BACTERIOLOGICAL CONTAMINATION IN FOOD OUTLETS, NOIDA, INDIA
 — A. M. P. Sandeep and S. V. Pradeep

671–675 VALIDATION OF ASCALINES FAECALIS BBL1 EFFICACY ON ZINC SOLUBILIZATION IN SORGHUM BICOLOR RHIZOSPHERE SOILS
 — Robert Antony A., Nivas D., Chandru S., Sangeetha Devi R., Kannan K. and Rajesh Kannan V.

676–680 IN VITRO CYTOTOXICITY AND ANTIOXIDANT ACTIVITY OF A CRUDE PIGMENT FROM ASPERGILLUS TERREUS
 — R. Shridevi and B.V. Pradeep

681–691 A STUDY ON CHARACTERISTICS OF FENUGREEK (TRIGONELLA FOENUM-GRAECUM) — K. Muruhalini, S. Ivo Rombald and P. Bredale Devi

703–714 ALKALIPHILIC AND HALOALKALIPHILIC PHOSPHATE SOLUBILIZING BACTERIA FROM COASTAL ECOSYSTEMS OF GOA
 — Neha Prabhu, Sunita Borkar and Sandeep Gabg

715–718 TRICHOSTEROMA VIRIDE AS BIOCONTROL AGENT AGAINST FISH PATHOGENIC WATERMOULDS
 — Gaurav K. Srivastava, Aisaf Ahmad and Shakil K. Prabhihu

719–723 STANDARDIZATION OF A METHOD FOR PREPARATION OF PROBIOTIC CURD
 — A.M. Patel, C.D. Khedkar S.D. Kelkar, R.B. Yadavkar and D.N. Bajaj

722–730 EVALUATION OF SITE CHARACTERISTICS AROUND COAL–BURNT THERMAL POWER PLANT FOR ENVIRONMENTAL AND AGRICULTURAL SUSTAINABILITY
 — Subhas Adak, Kalyan Adhikari and Koushik Brahmachari

731–733 METHOD OF THE METABOLISM OPTIMIZATION IN COWS AND EFFECTS ON THE CONSUMER PROPERTIES OF MILK DURING DENITRIFICATION
 — Marina G. Kokaeva, Oleg K. Gogay, Boris G. Cezhiev, Fatima F. Kokaeva and Marita S. Galicheva

739–742 AN ONTOLOGICAL REPRESENTATION FOR ASSESSMENT USING ANCHOR NODES FOR THE OCCURRENCE OF THE DRUG RESISTANT VIRUS IN HIV/AIDS TREATMENT
 — R. Geetha and S. Sivashubramanian

743–750 NUTRIENT PROFILE OF SCENEDESUMS ABUNDANS INDICATES IT’S POTENTIAL AS FOOD SUPPLEMENT
 — Onwurah Christian and Shrihanna Majunder

751–755 INVESTIGATION OF B. BASSIANA PERSISTENCE AND VIRULENCE FACTOR AGAINST P. XYLOSTELLA OF PEATLAND IN CENTRAL KALIMANTAN
 — Iciy Peter Kulu, Abdul Latief Aabadi, Aminuddin Aaji and Noobaidasheki

756–761 ADSORPTION STUDIES OF VAT DYE (BROWN G) FROM AQUEOUS SOLUTION USING CHEMICALLY MODIFIED TREE LEAVES
 — A. Moly and A. Sharijum Hamed

762–764 BIOREMEDIATION POTENTIAL OF BRASSICA JUNCEA IN FISH AND SHRIMP DISPOSAL
 — I. Jeewan Madhukar and C.V. Narasimha Murthy

765–770 CHARACTERIZATION OF AMYLASE PRODUCING BY BACILLUS SPECIES ISOLATED FROM RHIZOSPHERE SOIL OF POMEGRANATE PLANT
 — Rajendra Bhai D. Vasai

771–775 PREVALENCE OF DENTAL FLUOROSIS IN RELATION WITH DIFFERENT FLUORIDE LEVELS IN DRINKING WATER AMONG CHILDREN OF JODHPUR DISTRICT, RAJASTHAN, INDIA
 — Suman Rathore, Chetan Meena, Supriya Dhivedi, G.S. Tojeja, Kumel Bala and S.S. Mohanty

776–781 ISOLATION AND CHARACTERIZATION OF BACTERIA ISOLATED FROM MUNICIPAL SEWAGE WATER OF NANDYAL, KURNOOL, A.P.
 — S. Mahesh, P. Alem Basha and B. Kayitha

The views expressed in various articles are those of the authors and not of the Editors of the Journal. Printed at Cambridge Printing Works, New Delhi-110 028. Phone: 9811860113
ISOLATION AND CHARACTERIZATION OF CHITOSAN FROM LOCAL MUSSELS’ SHELL (PILSBYROCONCHA SP.)

FAIZA A. DALI

Department of Fisheries Product Technology, Faculty of Agricultural, Universitas Negeri Gorontalo, Indonesia

(Received 6 February, 2016; accepted 15 April, 2017)

Key words: Isolation, Characterization, chitosan, Shell, local mussels (Pilsbryoconcha sp.)

Abstract - This research is aimed to utilize local mussels’ shells in order to have economic value and to minimize the environmental pollutant through isolating and characterizing the chitosan of local shells (Pilsbryoconcha sp.) from Gorontalo, Indonesia. This exercise was conducted through preparing the sample, deproteinization process, demineralization, depigmentation, deacetylation and characterization of chitosan chitin. The isolation stage of 390 g of local mussels’ shells produced 70.78 g of chitosan. The characteristics of chitosan from this process were white, powdery with 1% of moisture, ash content 0.09%, deacetylation degree 99%, soluble in CH$_3$COOH 2%, insoluble in water, slightly soluble in condensed HCl and HNO$_3$, insoluble in condensed NH$_3$ and insoluble in Na$_2$SO$_4$ 2%.

INTRODUCTION

Indonesian waters have various types of mussels, one of them is in Lake Teratai, Boalemo, Gorontalo province. This local mussel (Pilsbryoconcha sp.) is categorized as mollusk, with bilateral symmetrical shape that consists of two shells. This local mussel has not been optimally utilized. The utilization process currently limited to its meat, meanwhile the shells are thrown away as waste. The waste from these mussels has become an environmental problem, therefore, it is expected that the waste can be recycled to become something useful.

Various research on shells of the arthropods, annelids, mollusks, coelenterates, and nematodes for their potentials to produce the chitin (Lesbani et al., 2011). Chitin is a biopolymer with varied characteristics or chemical composition based on the source and the isolation process. More than 80% distillated chitin is called chitosan. Chitin and chitosan have high economic values. Chitosan is widely used in food inashry, medical application, cosmetics, water processing, detergent, paper, textile, antimicrobial agent, antioxidant, edible film inashry, and other biotechnology application (Ahmed et al., 2010; Lee et al., 2010; Bourbon et al., 2011; Ahmed et al., 2014; Trung and Bao, 2015). Chitin isolation can be done through demineralization process, deproteination, and depigmentation, meanwhile chitin transformation into chitosan can be conducted through deacetylation (No et al., 1989; Sofia et al., 2010; Sarwar et al., 2014). Characteristics of the chitosan product highly depend on the source of the animal and its production method. This research aims to utilize the local mussels’ shells into chitosan hence it has economic values and it would no longer be environmental pollutant, isolating and finding out the characteristics of chitosan of the local mussels’ shells (Pilsbryoconcha sp.) from Gorontalo waters.

METHODS

The tools used in this research are oven, grinder, 100 mesh sieve, mixer, biker, thermometer, pH meter, analytical balance, sieve, heater, FTIR (Fourier Transform Infrared). The ingredients used in this research are the shells of the local mussels obtained from the lake Teratai at Pontolo village of Boalemo district, Gorontalo), acetate acid (Merck), NaOH (Merck), HCl (Merck), HNO$_3$, NH$_3$, Na$_2$SO$_4$, aquades, H$_2$O$_2$ 2%.

*Corresponding author’s email: faizaadali543@gmail.com
Sample Preparation

The mussels’ shells taken from the lake Teratai of Pontolo village, Boalemo, Gorontalo washed with water (scrubbed when needed in order to get rid of the remaining dirt. Further, the shells were dried in an oven with 60 °C temperature for 6 hours. When the shells were dried, they were grinded and sieved to produce shells’ powder with the diameter of 0.25 mm. This product is then used for extraction process.

Deproteinization

Sieved sample of the local mussels’ shell were taken 390 g then put into the beaker with stirrer and thermometer. Next, 3.5% (w/v) of NaOH with 1:10 ratio was put into the beaker. Then, the mixture was heated in 90 °C temperature while stirred for 4 hours. A sieving process followed this stage. The product of this process then washed using aquades up to a neutral pH was reached. The residue from this process then dried in an oven with 60 °C temperature for 24 hours.

Demineralization

The result from deproteinization process was put into a beaker and added with HCl 1 N solution with the ratio of 1:7. Further, a room temperature heating was done while stirring it for 1 hour. The mixture then is sieved, the sediment then is washed using aquades. The residue (chitin) produced from this process then dried in an oven with 60 °C temperature for 24 hours.

Depigmentation

The mineral-free residue (chitin) was then added with the 2% of H₂O₂ solution with the ratio of 1:10. This mixture then sieved. The sediment then washed with aquades to produce a neutral pH. The residue from this process then dried in an oven with 60 °C temperature for 24 hours.

Deacetylation

The residue powder was put into beaker with stirrer and thermometer, then 50% NaOH solution with 1:10 ratio was added into the beaker and stirred for 1 hour in 120 °C temperature, then, sieved. The residue from this process then washed with aquades until a neutral pH was obtained. The product of this process then heated in an oven with 60 °C temperature for 24 hours.

These deproteinization, demineralization, depigmentation, and deacetylation process referred to the result of Lukum’s (2010) research.

Characterization of chitin-chitosan

Characterization used to differentiate chitin and chitosan stoichiometrically are the moisture level, ash level, and deacetylation degree using the spectrophotometric infrared. Moisture level testing (AOAC 2007), ash level testing (Sudarmadji et al 1994; AOAC 2007), chitosan solubility test. Several solvents used in chitosan solubility test are 2% of CH₃COOH, water, HCl, HNO₃, NH₃, and 2% Na₂SO₄ (modified of Lukum, 2010). Further, deacetylation degree was determined using the FTIR method (Puspawati and Simpen, 2010).

RESULTS AND DISCUSSION

Isolation and characterization process of chitosan from local mussels’ shells (Pilsbryoconcha sp.) from Gorontalo water was conducted several steps of deproteinization, demineralization, depigmentation, deacetylation, followed by moisture level test, ash level test, and determination of deacetylation degree and solubility level (by means of 2% of CH₃COOH, water, condensed HCl, condensed HNO₃, condensed NH₃, and 2% of Na₂SO₄). Isolation process of 390 g of samples of local mussels’ shells produced 70.78 g of white colored chitosan. The deproteinization process and demineralization process were conducted to lower the yield produced, and after the depigmentation process a whiter color was obtained.

Deproteinization is aimed to eliminate the protein in the sample by means of sodium hydroxide. Efficacy of protein elimination from chitin is influenced by alkaline level and temperature used. According to Martati et al., (2002) that the level of nitrogen residue in chitin significantly lowered when the temperature and deproteinization time are increased.

Demineralization process is intended to eliminate the minerals content in the chitin such as, CaCO₃ and CaPO₄. On the other hand, depigmentation by using the H₂O₂ is intended to get rid of any color substance using the solvent. The solvents used in this process are mixture of ethanol-ether, sodium hypochlorite, chloroform, H₂O₂, ethyl acetate, and acetone.

Deacetylation is a process of chitosan formulation from chitin by using NaOH to substitute the acetamide structure with amine structure. The
elimination of acetyl structure using the 50% NaOH will influence the level of deacetylation process of chitosan. The success rate of chitin-chitosan deacetylation process is influenced by various factors, such as, NaOH concentrate, temperature, time, stirring in deacetylation process and the origin of sample. Hargono et al., (2008) said that deacetylation process using the 50% of NaOH yields best quality chitosan. Within the solution, NaOH decomposed into Na⁺ and OH⁻. Hydroxyl ion invades the electropositive carbon carbonyl. The final products are chitosan and sodium acetate (shown in Figure). In Each steps from deproteinization to deacetylation, the residue were washed using the aquades in order to neutralize its pH.

The characterization result of chitosan from local mussels' (Pilsbryoconcha sp.) shells can be seen in the following Table.

Moisture level

Moisture level is one of the important parameter within the standard of qualified chitosan and will influence the storage time of the chitosan itself. The analysis result showed a relatively low moisture level (1%). Standard quality of chitosan dictates that the moisture level is no more than 10%, due to the higher the moisture level, the faster the damage process happened to the product. According to Sofia et al., (2010) commercial chitosan produced by Sigma has 3.5% level of moisture. The usage of NaOH in deproteinization process caused the softening of the cell’s wall that will increase

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chitosan sample</th>
<th>Chitosan standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size</td>
<td>Powder</td>
<td>-Bubuk</td>
</tr>
<tr>
<td>Moisture level (% w/w)</td>
<td>1 < 10</td>
<td>0,09 < 2</td>
</tr>
<tr>
<td>Ash level (% w/w)</td>
<td>0,09 < 2</td>
<td>0,09 < 2</td>
</tr>
<tr>
<td>Deacetylation degree (%)</td>
<td>99 > 70</td>
<td>99 > 70</td>
</tr>
</tbody>
</table>

Solubility:

- 2% CH₃COOH: Soluble
- Water: Insoluble
- Condensed HCl: Slightly soluble
- Condensed HNO₃: Slightly soluble
- Condensed NH₃: Insoluble
- 2% Na₂SO₄: Insoluble

![Figure 1: Chitin transformation to Chitosan](image-url)
permeability of the cell’s wall, hence, it enables moisture to be released from the cell’s wall and help the drying process. Appropriate packaging and storage will maintain the low moisture level of chitosan (Martati et al., 2002).

Ash Level

The ash level in this research was lower (0.09%) than the ash level in chitosan from the shells of Javanese crabs (8.01%) (Saputro et al., 2011), and has met the standard of chitosan. Setting up the ash level aims to find out the extent of minerals content that have not been eliminated during the demineralization process. The usage of HCl was effective in eliminating inorganic minerals like CaCO$_3$ and CaPO$_4$. No and Meyers (1995) said that the standard requirement for high quality chitosan has to have less than 1% of ash level. According to Martati et al., (2002) numerous dirt and residual mineral causing the ash level to be low is due to the temperature and length of deproteinization time.

Deacetylation degree

Deacetylation degree of chitosan from the samples of local mussels’ (Pilsbryoconcha sp.) shell was 99%. Deacetylation degree in this research is higher than deasitilation degree (DD) of shrimp waste in Camacho et al., (2010). The high level of deacetylation degree shows that the chitosan produced from this research are pure chitosan. Deacetylation degree is one of the quality parameter of chitosan product that shows the percentage of acetyl structure that can be rid of both from the chitin and chitosan. The higher the deacetylation degree of a chitosan, the lower the acetyl structure of that chitosan, hence, the interaction among ion and hydrogen chain will be stronger. Deacetylation degree of chitosan is influenced by the concentration of sodium hydroxide (NaOH) and the temperature during the processing. The bigger the concentration of NaOH solution, the higher the value of deacetylation degree (Apriani et al., 2012; Hossain and Iqbal, 2014).

Solubility test

The parameter that can also be used as standard in measuring the quality of chitosan is the solubility of that chitosan. The result of solubility test on 2% CH$_3$COOH, water, condensed HCl, condensed HNO$_3$, condensed NH$_3$, 2% Na$_2$SO$_4$ are matched with the chitosan standard. Chitosan is soluble in acetate acid solution (2% CH$_3$COOH), insoluble in water, condensed NH$_3$ and 2% Na$_2$SO$_4$, slightly soluble in HCl and condensed HNO$_3$. Chitosan solubility in CH$_3$COOH is due to the high temperature during the deacetylation process. Savitri et al., (2010) stated that the higher the concentration of NaOH and the temperature during deacetylation process, the higher the solubility of chitosan within the CH$_3$COOH and the more the acetyl structure being replaced, hence the value of deacetylation degree increased. Chitosan is insoluble in water, strong alkaline solution, and slightly soluble in HCl and HNO$_3$ and soluble in acetate acid and formiate (Apriani et al., 2012).

CONCLUSION

Based on the findings of this research on the isolation and characterization of chitosan from local mussels’ shells (Pilsbryoconcha sp.) of the Gorontalo lake it is concluded that the local mussels’ shells can be utilized as chitosan. 70.78 grams of white colored powder chitosan was produced from deproteinization stage, demineralization, depigmentation, and deacetylation stage. This chitosan has 1% of moisture level, ash level of 0.09%, deacetylation degree 99%, soluble in 2% of CH$_3$COOH, insoluble in water, condensed NH$_3$ and 2% of Na$_2$SO$_4$, slightly soluble in condensed HCl and condensed HNO$_3$.

REFERENCES

Bourbon, A.I., Pinheiro, A.C., Cerquira, M.A., Rocha, C.M.R., Avides, M.C., Quintas, M.A.C. and Vicente, A.A. 2011. Physico-Chemical characterization of
chitosan-based edible films incorporating bioactive compound of different molecular weight.

