After re-submission we check whether their re-submission fulfills reviewer’s satisfaction.

- If all these steps are successfully completed then we send it for publication.
- We have additional statistical reviewers. We use their expertise if the manuscript deserves their review.
- At least two reviewers per article is assigned by the journal authority.
- Duration of review process: Review process takes around two weeks to three months time.
- All the process is double blind author never knows the reviewers and vice versa.

Publication Frequency

BJMS is published quarterly in a year (January, March, June and October)

Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. We do not impose any publication fees to the authors.

Editorial Board

Editor in Chief:
Prof. ANM Zia-Ur-Rahman FCPS, FICS
Principal & Professor of Surgery,
Ibn Sina Medical College
Ex-Dean, Faculty of Medicine,
DHU University, Dhaka
Bangladesh
Email: ismcdhaka@yahoo.com

Editor:
Prof. Mahfuzur Rahman Khan Choudhury, PhD
Vice-Principal & Professor of Physiology,
Ibn Sina Medical College
DHU University, Dhaka
Bangladesh
Email: ashfaq.1967@yahoo.com, mahfuzchowdhury1961@gmail.com

Executive Editor:
Prof. Abu Kholdun Al-Mahmood, M Phil, PhD
Professor & Head, Deptt. of Biochemistry,
Ibn Sina Medical College
DHU University, Dhaka
Bangladesh
Email: kholdun@hotmail.com

Assistant editor:
Dr. Syeda Fahmida Afrin MPhil (Medical Biochemistry)
Asstt. Professor, Deptt. of Biochemistry,
Ibn Sina Medical College
DHU University, Dhaka
Bangladesh
Email: drfahmida77@gmail.com
Dr. Ahammad Shafiq Sikder MPH (Epidemiology)
Scientific Officer,
ICDDR,B (International Centre for Diarrhoeal Disease Research,
Bangladesh),
Dhaka, Bangladesh
Email: adelbd@live.com, adel@icddrb.org

Editorial Board Members:

Prof. MAK Azad Choudhury FRCP
Academic Director, Bangladesh Institute of Child Health (BICH)
Dhaka, Bangladesh
Email: childcare1952@gmail.com

Prof. Naima Muazzam M Phil, M Med
Professor of Microbiology,
National Institute of Preventive and Social Medicine (NIPSOM),
Bangladesh
Email:

Prof. Md. Nazrul Islam MPhil, MSc, DMed
Principal & Professor of Anatomy,
Islami Bank Medical College,
Bangladesh
Email: mnislam54@yahoo.com

Prof. KMHS Sirajul Haque FCPS, FRCP, FACC
Ex-Director, National Institute of Cardiovascular Disease (NICVD),
Bangladesh
Email:

Dr. Md. Idris Ali MCPS, MS
Professor of Spinal Surgery,
Bangabandhu Sheikh Mujib Medical University (BSMMU),
Bangladesh
Email: draalmahmood@gmail.com

Prof. Choudhury Mahmood Hassan PhD
Chairman, Bangladesh Pharmacy Council,
Ex-Dean, Faculty of Pharmaceutical Science,
Dhaka University
Bangladesh
Email: cmhasan@yahoo.com, cmhasan@gmail.com

Prof. AKM Sadrul Islam PhD
Dean, Islamic University of Technology,
Ex-Dean, BUET (Bangladesh University of Engineering and Technology),
Bangladesh
Email: sadrul05@gmail.com

Prof. M Mohibul Aziz, FCPS, FRCS
Professor & Head, Dept. of Surgery,
Ibn Sina Medical College,
Dhaka University, Dhaka
Bangladesh
Email: mohibul.aziz@hotmail.com

Prof. Khondaker Bulbul Sarwar, MPH, DID, PhD
Professor & Head, Dept of Community Medical College,
Gonoshastho Shomajvittik Medical College,
Bangladesh
Email: kbsarwar@gmail.com, kbsarwar@yahoo.com

Saiful Alam Khan
Ex- Executive Director,
Ibn Sina Trust,
Dhaka University, Dhaka
Bangladesh
Email: saifulalamkhan@yahoo.com, sakhanait@gmail.com

International Advisors

Dr. Musa Mohd. Nordin FRCP, Malaysia
Consultant, Damansara Specialist Hospital,
Kuala Lumpur, Malaysia
Email: musamn@gmail.com

Prof. Iqbal Khan FCPS, FICS, MHPE, Pakistan
Vice Chancellor,
Shif-Tameer-E-Millat University,
Pakistan,
Email: mikaraman@hotmail.com,
vce@stmu.edu.pk, mikhandr@gmail.com

Prof. Omar Hasan Kasule MPH, PhD
Professor, King Feisal University, KSA
Ex-Deputy Dean, International Islamic University, Malaysia
Visiting Professor, University of Malaya, Malaysia
Email: omarkasule@yahoo.com

Prof. Hiroshi Kinoshita MD, PhD, Japan
Professor, Dept. of Forensic Medicine, Faculty of Medicine
Kagawa University, Japan,
Email: jamal@kms.ac.jp,

Prof. Etienne Quertemont, PhD, Belgium
Dept. of Cognitive Sciences, Quantitative Psychology
University of Liege, Belgium,
Email: equertemont@ulg.ac.be

Prof. Aly A. Misha’l FRCP, Jordan
Chief Consultant, Islamic Hospital,
Amman, Jordan,
Email: fimainfo@islamic-hospital.org,

Prof. Hassam E. Fadel FICS, USA
Editor, Journal of Islamic Medical Association,
North America
Email: hefadel@gmail.com

Dr. Mohd. Khorsheed Alam, BDS, PhD
Asstt. Professor, College of Dentistry
Al Jouf University, KSA. Kingdom of Saudi Arabia.
Email: dralam@gmail.com

Prof. Syed Ziaur Rahman, PhD
Professor of Pharmacology,
Aligarh Muslim University, India
Email: rahmansz@yahoo.com, ibnsinaacademy@gmail.com

Bangladesh Journal of Medical Science ISSN 2223-4721 (Print) 2076-0299 (Electronic)
Contact journal editor
Vol 15, No 2 (2016)

Table of Contents

Editorial

Immunisation from the perspective of Magasid Shariah
Musa Mohd Nordin

Original Articles

Usage of Silver-Stained Polyacrylamide Gels
Electrophoresis (PAGE) for Detection of Rotavirus

Infection by Direct Identification of Viral Nucleic Acid
Md Rashedul Kabir, Rafika Afrose, ASM Shahidullah,
Md Akram Hossain, Shyamal Kumar Paul, Mahamudur Rahman, Nobumichi Kobayashi

Estimation of salivary biomarkers in passive smoking children - a comparative study
Srikala Bhandary, Shruthi Rao, Suchetha Shetty,
Audrey Madonna D’Cruz

Is diagnostic accuracy of Alvarado scoring feasible in acute surgery for management of acute appendicitis?
Mohinder Kumar Malhotra, Ram Gopal Sharma,
Subhash Goyal, Udit Panwar, Kiran Kumar Singal,
Sankalp Dwivedi

In Vitro comparison in the antimicrobial effect between Ciprofloxacin and Neem leaf extract (Azadirachta indica) on Escherichia coli Growth
Quazi Rubyath Banna, Badar Uddin Umar, S M Niazur Rahman, Tanbira Alam, Kazi Selim Anwar, Lubna Shirin

Effectiveness of combined chain exercises on pain and function in patients with knee osteoarthritis
Oladapo Michael Olagbegi, Babatunde Olusua Adeleke Adegoke, Adesola C Odole

Assessment of Malnutrition in Cirrhotic Patients
Mushtaque Ahmad Rana, Mohammad Abu Faisal,
Mohammad Enamul Karim, Abu Raihan Siddique,
Dewan Saifuddin Ahmed, ASMA Raihan

Tutors Perception on a Training Workshop on Simulation Based Medical Education

PDF
151-153

PDF
154-159

PDF
160-165

PDF
166-171

PDF
172-188

PDF
189-194

PDF
195-200
Symptom Experience and Quality of Life of Patients with Breast Cancer Receiving Chemotherapy in Bangladesh
Kiran Kumar Singal, Neerja Singal, Parveen Gupta, Jagdish Chander, Pankaj Relan

Cardiac status in patients of chronic kidney disease: an assessment by non-invasive tools
Kiran Kumar Singal, Neerja Singal, Parveen Gupta, Jagdish Chander, Pankaj Relan

Comparison between Effectiveness of Pomegranate Juice (Punica granatum) and Simvastatin for Lowering Blood LDL Level in Hypercholesterolemic Male Rats (Rattus norvegicus)
Ariani Ariani, Putrya Hawa, Syaefudin Ali Akhmad

A 38-year demographic study of central and peripheral giant cell granulomas of the jaws
Shadi Saghafi, Reza Zare-Mahmoodabadi, Narges Ghazi, Mohammad Zargari

An Experimental Study of Ethanolic Extract of Myristica fragrans in Morphine Dependence
Imran Zaheer, Syed Ziaur Rahman, Rahat Ali Khan, Mehtab Parveen

Estimation of serum Alpha fetoprotein (AFP), Interferon-6 and Des-? -carboxyprothrombin (DCP) in case of hepatocellular carcinoma
Syed Shahzadul Haque, Rekha Kumari, Ali Muzaffar, Uday Kumar, Anand Sharan, Bandana Kumari

Students perception of learning environment: A Base Line Study for identifying areas of concern at a Private Medical College, Bangladesh
Hafiza Arzuman, Abu Kholdun Al-Mahmood, Sharmin Islam, Syeda Fahmida Afrin, Saquib Ahmad Khan, Susie J Schofield

Factors associated with adolescent malnutrition among Nigerian students
Aishatu Ahmed Abdulkarim, Adekunle T Otuneye, Patience Ahmed, Dennis R Shattima

Cortical visual impairment in children with acute encephalitis syndrome
Prastiya Indra Gunawan, Desi Primayani, Darto Saharso

Comparison of ST-segment resolution influencing in hospital outcome after primary percutaneous coronary intervention and fibrinolysis (with streptokinase) in patients with acute ST-segment elevation myocardial infarction

Detection of CTX-M-type ESBLs Escherichia coli at Universiti Kebangsaan Malaysia Medical Centre
257-261
Siti Norlia Othman, Salasawati Hussin, Ramliza Ramli, MM Rahman

Type of psychosocial stressor as risk factor of depressive symptom in metabolic syndrome PDF
Ana Fauziyati, Agus Siswanto, Luthfan Budi Purnomo, Hemi Sinorita

Infarction Stroke Risk Prediction Model for Indonesian Population: A Case-Control Study PDF
Muhammad Isman Jusuf, Mohammad Hasan Machfoed, Soedjadjadi Keman

Case Reports

A case of bilateral absence of carotid canals in human skull PDF
Aajjaz Ahmed Khan, Mohd. Asnizam Asari, Meboob Alam Pasha

Bilateral anatomical variations of the hand extensors PDF
Humberto Ferreira Arquez 278-282

BCG lymphadenitis of a healthy infant PDF
Nurul Azmawati Mohamed, Adilahtul Bushro Zaini, M M Rahman

Pleural fluid smear AFB positivity: To search for underlying immunosuppression PDF
Avradip Santra, Saumen Nandi, Soumya Kundu, Arya Sen

Clinico-anatomical correlations in asphyxiated babies PDF
Hepatoblastoma
Anatolii Romaniuk, Artem Piddubnyi, Vladyslav Sikora

Unusual primary sphenoid adenoid cystic carcinoma: the importance of combined CT and MR evaluation PDF
Mohd Syafwan Mohd Soffian, Rohaizam Jaafar, Norhafiza Mat Lazim, Norlana Dalila Mohamad Ali

Insulin Neuropathy: Rare Adverse Effect of Insulin Therapy PDF
Bulent Ergun

Brief Communications

Dont Dismiss Snoring as Natural PDF
Irfan Ashraf, Mohammad Khursheed Alam, Saima Ashraf, Nasir Mohamad

Bangladesh Journal of Medical Science ISSN 2223-4721 (Print) 2076-0299 (Electronic)
Contact journal editor
Infarction Stroke Risk Prediction Model for Indonesian Population: A Case-Control Study

Jusuf MI1, Machfoed MH2, Keman S3

Abstract:
Background: Stroke is the main cause of death and disabilities in Indonesia and the world. Various prediction model for stroke have been developed. This study attempts to develop a model used to predict infarction stroke in Indonesia. Objective: This study aims to develop a model to predict infarction stroke risks. Method: This study is an observational research applying case-control research design. The number of samples used in this study were 310 individuals, consisting of 155 members of case group and 155 members of control groups. The writers used discriminant analysis to conduct statistical analysis on the data. Results: Valid and reliable risk factors of stroke used to develop prediction model for infarction stroke in this study are systolic blood pressure, diastolic blood pressure, triglyceride levels, stroke history, hypertension history, dyslipidemia history, vegetable consumption, sleep duration, snoring, exercises, and emotional stresses. Conclusion: This study comes up with a prediction model for infarction stroke risks. The prediction model is expressed by following formula: Infarction stroke risk = 0.929 x Systolic Blood Pressure + 0.886 Diastolic Blood Pressure + 0.160 x Triglyceride Levels + 0.850 x Hypertension History + 0.332 x Stroke History + 0.084 x Dyslipidemia History + 0.124 x Vegetable Consumption + 0.245 x Emotional Stresses + 0.346 x Snoring Habit – 0.193 x Exercise Habit – 0.190 x Sleep Duration

Keywords: infarction stroke; prediction model; index; risk factors

Introduction
Stroke has become the main cause of death and disabilities in Indonesia and the world. The proportion of stroke cases is increasing. Recently, stroke mostly occurs at productive age1. Productive individuals can be saved from stroke through promotive actions and primary preventions2. One of primary preventions is by predicting the risk of stroke based on stroke risk factors. Various prediction models have been developed but these models were applied on populations outside Indonesia and conducted based on limited risk factors as its variables 3,4,5,6,7. Previous stroke prediction models developed in Indonesia are based on clinical and laboratory indicators8. The development of a new stroke prediction model that is able to predict risks of infarction stroke by adding demographic indicators, behavioral indicators, and psycho-spiritual indicators becomes urgent.

Methods
Research Design
This study applied case-control research design. The case group consists of stroke patients at Prof. Dr. Aloei Saboe Hospital, Gorontalo (both infarction stroke and hemorrhagic stroke). The control group of this study consists of healthy patients or patients with non-stroke diagnosis. The case and control groups were matched based on their age and sex. This study was conducted for two years, starting from December 2012 to December 2014.

Research Subject
The samples of this study were all patients diagnosed with stroke at Prof. Dr. dr. Aloei Saboe Hospital, Gorontalo. The samples were chosen

1. Muhammad Isman Jusuf, Faculty of Health and Sports, Gorontalo State University, Gorontalo, Indonesia
2. Mohammad Hasan Machfoed, mFaculty of Medicine, Airlangga University, Surabaya
3. Soedjadjadi Keman, Faculty of Public Health, Airlangga University, Surabaya, Indonesia

Corresponds to: Muhammad Isman Jusuf, Faculty of Health and Sports, Gorontalo State University, Gorontalo, Indonesia
Infarction Stroke Risk Prediction Model for Indonesian Population: A Case-Control Study

The inclusion criteria of this sampling method were willingness of the subjects to participate in this research, the subjects were in compos mentis consciousness state, and the subjects came from Malay Sub-races. Compos mentis condition becomes one of inclusion criteria because this condition enables the writers to collect research data easily through interviews and laboratory examinations. Since all the subjects were Indonesian, they were members of Malay sub-race. Meanwhile, the exclusion criteria of this sampling method were aphasia and loss of consciousness. Aphasia and loss of consciousness were the exclusion criteria of this study because these conditions can make communication with the subject more difficult. Based on these criteria, the number of the subjects participated in this study were 310 respondents divided into two groups: case group and control group, consisting of 155 respondents on each group.

Data Collection

Physical examinations on the subjects consisted of different types of examination. Head CT Scan examination was conducted to obtain stroke diagnosis. This examination were conducted using Siemens Sensation 64 model Multi Slice Head CT Scanner with mAs 300 Slice, 3.0 mm, KV: 120, rotation time 1 second. Blood pressure examination was conducted using mercury sphygmomanometer. The examination was conducted while patient in lie down position; cuff was installed around patient’s upper arm, 2.5 cm above cubital fossa; the process was repeated twice. Blood sugar examination were conducted based on hexokinase method and cholesterol level examination were conducted based on colorimetric enzymatic method. These examinations were carried out using Hitachi 912 autoanalyzer. Uric acid examination were conducted based on uricase method using Hitachi 912 autoanalyzer. The writers carried out interviews on the patients by using validated questionnaire to obtain data related to the patients and his/her behaviors, such as age, sex, medical history, smoking habit, dietary habit, exercise habit, and religious activities. The writers used Analog Anxiety Scale (AAS) to obtain data related to emotional stresses experienced by the patients and validated patience level proposed by Prasetyono (2014) to measure patience level of the patients.

Table 1: Overview of Research Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Systolic Blood Pressure (≥ 160 mmHg)</td>
<td>Case</td>
<td>58.6</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>6.4</td>
</tr>
<tr>
<td>High Diastolic Blood Pressure (≥ 100 mmHg)</td>
<td>Case</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>9.5</td>
</tr>
<tr>
<td>High Cholesterol level (≥ 240 mg/dl)</td>
<td>Case</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>10.0</td>
</tr>
<tr>
<td>HDL level < 40 mg/dl</td>
<td>Case</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>13.0</td>
</tr>
<tr>
<td>LDL Level ≥ 160 mg/dl</td>
<td>Case</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>14.2</td>
</tr>
<tr>
<td>Triglyceride level ≥ 200 mg/dl</td>
<td>Case</td>
<td>64.8</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>3.9</td>
</tr>
<tr>
<td>Blood Sugar level ≥ 126 mg/dl</td>
<td>Case</td>
<td>38.0</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>20.0</td>
</tr>
<tr>
<td>Uric Acid level >6 (female), > 7 (male)</td>
<td>Case</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>25.2</td>
</tr>
<tr>
<td>Stroke History</td>
<td>Case</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.0</td>
</tr>
<tr>
<td>Hypertension History</td>
<td>Case</td>
<td>73.0</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>12.3</td>
</tr>
<tr>
<td>Cardiovascular Disorder History</td>
<td>Case</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>5.8</td>
</tr>
<tr>
<td>Diabetes Mellitus History</td>
<td>Case</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>14.8</td>
</tr>
<tr>
<td>Dyslipidemia History</td>
<td>Case</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>31.6</td>
</tr>
<tr>
<td>Hyperuricemia History</td>
<td>Case</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.0</td>
</tr>
<tr>
<td>Excessive Consumption of Salty Food</td>
<td>Case</td>
<td>67.6</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>66.4</td>
</tr>
<tr>
<td>Excessive Consumption of Fatty Diets</td>
<td>Case</td>
<td>70.3</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>82.5</td>
</tr>
<tr>
<td>Low Consumption of Fruits</td>
<td>Case</td>
<td>44.2</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>43.9</td>
</tr>
<tr>
<td>Low Consumption of Vegetables</td>
<td>Case</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>67.7</td>
</tr>
<tr>
<td>Exercise Activities < 3 times/week</td>
<td>Case</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>49.0</td>
</tr>
<tr>
<td>Sleep Duration < 6 hours/day</td>
<td>Case</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>18.8</td>
</tr>
<tr>
<td>Snoring</td>
<td>Case</td>
<td>65.8</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>33.6</td>
</tr>
<tr>
<td>Smoking (more than 1 pack/day)</td>
<td>Case</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>2.6</td>
</tr>
<tr>
<td>Seldom (low) Involvement on Religious Activities</td>
<td>Case</td>
<td>70.3</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>47.7</td>
</tr>
<tr>
<td>Impatience</td>
<td>Case</td>
<td>46.8</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>35.5</td>
</tr>
<tr>
<td>High Stress Level</td>
<td>Case</td>
<td>51.4</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>29.0</td>
</tr>
</tbody>
</table>
The writer conducted statistical analyses on the collected data. The statistical analyses consisted on measuring each variable, discriminant analysis, and analyzing each variable factors composing stroke index.

Results

Based on the obtained data, 152 respondents were male (49%) and 158 respondents were female (51%). Based on age categories, 31% respondents aged 50-59 years old; 29% were aged 60-69 years old; 27% were aged 40-49 years old. Based on their residence, 45.8% of the respondents lived in urban areas while 54.2% lived in rural areas.

The writers conducted further analysis on the 27 variables of stroke risk factors based on Stepwise Discriminant Analysis. The results of this analysis indicated that only 11 of these risk factors with the highest lambda (λ) value representing five main indicators. As presented on Table 2 below:

The writers conducted factor analysis and found 11 variables, including systolic blood pressure, diastolic blood pressure, triglyceride levels, hypertension history, stroke history, dyslipidemia history, low vegetable consumption, emotional stresses, sleep durations, snoring, and low exercise activities.

The next step taken by the writers is measuring factor score. The formula used to find out stroke predictor index (A) is 0.929 (Systolic Blood Pressure) + 0.886 (Diastolic Blood Pressure) + 0.332 (Stroke History) + 0.346 (Snoring) – 0.193 (Exercise Activities) – 0.190 (Sleep Durations).

After measuring the score of score risk factors based on the formula above, the writers classify the score of stroke predictor index into three categories, namely:

1. Low Risk, if the score of Stroke Predictor Index is lower than X-SD
2. Moderate Risk, if the score of Stroke Predictor Index is ranged between X-SD and X+SD
3. High Risk, if the score of Stroke Predictor Index is higher than X+ SD

Mean value (X) of infarction stroke predictor model is 0.613 and its Standard Deviation (SD) is 0.762. Therefore, Low Risk category is defined when the index score is lower than 0.877; Moderate Risk is defined when the index score is ranged between 0.877 and 2.103; and High Risk is when the index score is higher than 2.103.

Discussion

This study conducted on 24 variables of stroke risk factors reveals 11 risk factors with the highest scores. The 11 variables represent five main indicators of stroke prediction model. Systolic Blood Pressure, Diastolic Blood Pressure, and Triglyceride Levels represent Clinical/Laboratory Indicators. Stroke History and Hypertension History represent Medical History Indicators. Vegetables Consumption represents Dietary Habit Indicators. Sleep Duration, Snoring, and Exercises represent Demographical and Lifestyle Indicators and Emotional Stresses represents Psychological and Spiritual Indicators.

The highest scores of stroke risk factors are found on systolic blood pressure, diastolic blood pressure, and hypertension history, as indicated by the scores of these factors 0.929, 0.886, and 0.850 respectively. Previous stroke prediction model in

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Variables</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical/Laboratory</td>
<td>Systolic Blood Pressure 0.957*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diastolic Blood Pressure 0.859*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triglyceride Levels 0.625*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uric Acid Levels 0.128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholesterol Levels 0.068</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blood Sugar Levels 0.060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HDL Levels 0.044</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LDL Levels 0.038</td>
<td></td>
</tr>
<tr>
<td>Medical History</td>
<td>Hypertension 0.946*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stroke 0.652*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dyslipidemia 0.628*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiovascular Disorders 0.164</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diabetes Mellitus 0.090</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyperuricemia -</td>
<td></td>
</tr>
<tr>
<td>Dietary Habits</td>
<td>Less Vegetables 1*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excessive Fats 0.167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excessive Salt 0.026</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less Fruits 0.014</td>
<td></td>
</tr>
<tr>
<td>Demographical and Lifestyle</td>
<td>Sleep Duration 0.849*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snoring 0.741*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exercises 0.425*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoking -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age -0.042</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sex -0.038</td>
<td></td>
</tr>
<tr>
<td>Psychological and Spiritual</td>
<td>Emotional stresses 1*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impatience 0.738</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Religious Activities -0.39</td>
<td></td>
</tr>
</tbody>
</table>
Indonesia also acknowledged these variables as the composite indicators\(^8\). A study in Chinese population acknowledged systolic blood pressure (indicated by score of 3) and diastolic blood pressure (indicated by score of 2)\(^8\). EUROSTROKE model included hypertension history and diastolic blood pressure (as indicated by score of 3 and 0.2 respectively)\(^6\), while INTERSTROKE model only included hypertension history\(^5\). These findings of previous studies indicate that patient systolic blood pressure, diastolic blood pressure, and hypertension history may affect the occurrence of infarction stroke. Hypertension is the main risk factors of all types of stroke either it is infarction stroke or hemorrhagic stroke\(^6\). The increasing of systolic blood pressure by 10 mmHg improves the risk of stroke by 1.2 and increasing of diastolic blood pressure by 1 mmHg improves the risk of stroke by 1.3. Meanwhile, hypertension history improves the risk of stroke by 2.37\(^7\).

Another variable composing stroke predictor model in this study is stroke history (as indicated by factor score 0.332). EUROSTROKE model finds that stroke history contributes stroke prediction by the score of 19\(^6\). In Chinese population study, includes stroke history within family as one of the risks of stroke\(^4\). This finding is consistent with previous study that 19.9\% of patients in the 28 hospitals in Indonesia have ever experienced stroke attack before\(^9\). Stroke attack might reoccur with higher risk of death for the patients who experienced stroke attack before\(^10\).

Snoring also contributes as stroke risk factor with risk factor score +0.346. This finding is coherent with previous studies. In proving anamnesis that snoring is one of infarction stroke risks. The study conducted by Palomaki on 177 stroke patients proves that snoring is one of infarction stroke risk factors. The study found that ratio of snoring and infarction stroke odd ratio was 2.13. Through McNemar test, he found strong correlation between snoring and infarction stroke on patients with sleep apnea anamnesis, daytime sleepiness, and obesity\(^11\). Snoring also correlates with vascular disorders, such as arterial hypertension and coronary diseases. Snoring mostly correlates with obstructive sleep apnea syndrome\(^11\). Breathing stoppage increases Carbon dioxide (CO\(_2\)) levels on blood. Chemoreceptors on blood vessel responds this condition and triggers the patient’s awakening to breathe. Normal breathing may improve oxygen levels in blood and the patient may sleep\(^12\). However, continuous sleep apnea may drastically reduce oxygen level on brain and triggers infarction stroke\(^11\). Diagnosis on snoring may be conducted by an instrument named polysomnogram\(^12\). However, due to lack of facilities, polysomnogram examination cannot be conducted.

Sleep duration is also one of stroke risk factors as indicated by risk factor score -0.190. A previous found that prevalence of stroke is higher on individuals who sleep for less than 6 hours/day or more than 9 hours/day compared to individuals who sleep for 7-8 hours/day\(^13\). Obstructive Sleep Apnea (OSA) also increases mortality of stroke\(^14\). OSA also correlates with worse functional impairment and affects the length of rehabilitation period\(^15\). OSA is found on 44-72\% of post-stroke patients. OSA can cause functional damage through intermittent nocturnal hypoxia, reduced cerebral perfusion, and fragmented sleep\(^16\). Although the data showed there is no significant changes of sleep duration, previous researches indicated that changes on sleeping pattern may affect the occurrence of stroke. However, the writers could not analyze the effects of sleeping pattern change due to lack of polysomnogram facility used to conduct the analysis.

Emotional stresses are also one of stroke risk factors (as indicated by score of this factor as much as +0.245). The group exposed to emotional stresses has the highest because the stresses may affect cerebral hemodynamic functions\(^17\). A study conducted by Hacinski found that emotional stress might improve the risk of stroke by 1.5 – 2 times\(^18\). Empirical findings has proven the effect of psychological factors (including psychological stresses) on cardiovascular disorders. The results of INTERHEART study, a semi-quantitative research on subjective perception of psychological stresses involving participants from 52 countries, indicated strong correlation among the aspects of stress, including financial stress, and life-related stress\(^19\). Previous prospective and case-control studies reported that severe self-perceived psychological stress, life-related stresses, and failures in overcoming stresses individually correlated with stroke risk\(^20\). Through sub-group analysis, several studies showed significant correlation between self-perceived psychological stresses with fatal stroke\(^21\). A study conducted by Iso in Japan proves that severe self-perceived psychological stress correlates with stroke mortality\(^22\).

This study reveals that Triglyceride levels is one of risk factors of stroke (as indicated by the score +0.160). A longitudinal study conducted for 7.2
years by Berger found that 68.1% patients with triglyceride level higher than 200 mg/dl are most likely experiencing stroke23. Different studies show that the increasing of triglyceride levels by 90 mg/dl improves the risk of stroke by 70\% for female patients and by 30\% for male patients24. Every increasing triglyceride levels by 1 mmol/L independently correlates with increasing stroke cases by 14-37\%. Triglyceride metabolism abnormalities trigger atherogenesis by increasing CAMs expression on vascular system25.

Dyslipidemia history is one of the risk factors of stroke (indicated by score + 0.084). A meta-analysis of 45 cohort observational prospective involving 45000 individuals found that there was no correlation between total cholesterol levels and infarction stroke26. Data of previous studies indicating the effect of hypercholesterolemia on stroke were not consistent. Surprisingly, there are consistent findings indicating correlation between low total cholesterol level and high incidents of intra-cerebral hemorrhagic stroke and sub-arachnoid hemorrhagic stroke on oriental populations. Related to these findings, some experts opine that low total cholesterol serum may weaken intra-cerebral arterial endothelium that causes bleeding during hypertension27.

Low vegetable consumption and low exercise activity also contribute as two of stroke risk factors (as indicated by risk factor scores + 0.124 and – 0.193 respectively). This finding confirms the result of previous study conducted by Prawirohardjo on 52 subjects, which consists of 24 cases and 28 controls. The study found that low ischemic stroke repetition might be related with high consumption of vegetables (more than 10 portions/week), indicated by OR 0.16895\% and CI 10.04-0.714 and habit of aerobic exercises (for 30 minutes/session repeated 3 times a week), indicated by OR 0.21695\% and CI 0.065-0.713 28.

Conclusion

This study comes up with a prediction model for infarction stroke risks. The prediction model is expressed by following formula: Infarction stroke risk = 0.929 x Systolic Blood Pressure + 0.886 Diastolic Blood Pressure + 0.160 x Triglyceride Levels + 0.850 x Hypertension History + 0.332 x Stroke History + 0.084 x Dyslipidemia History + 0.124 x Vegetable Consumption + 0.245 x Emotional Stresses + 0.346 x Snoring Habit – 0.193 x Exercise Habit – 0.190 x Sleep Duration

Recommendation

The model to predict infarction stroke risks should be socialized to medics and paramedics. The model serves as screening instrument to predict the risks of stroke in the community. The result of screening will help mapping stroke risks of the community. Individuals categorized into low risk and moderate risks shall receive promotive treatments while for individuals categorized as high risk shall receive primary preventive treatments.

References:

8. Martini S, 2010. Indeks risiko stroke infark berdasarkan faktor risiko yang bisa diubah,
Infarction Stroke Risk Prediction Model for Indonesian Population: A Case-Control Study

