International Research Journal of Pharmacy

Country: India - SJR Ranking of India

Subject Area and Category: Pharmacology, Toxicology and Pharmaceutics, Pharmaceutical Science

Publisher: Moksha Publishing House

Publication type: Journals

ISSN: 23308407

Coverage: 2012, 2014-ongoing

Quartiles:

Pharmaceutical Science

2013 2014 2015 2016 2017

SJR:

0.14
0.12
0.1

2013 2014 2015 2016 2017

Total Cites
Self-Cites

0 2 4

Citations per document:

2012 2013 2014 2015 2016 2017

Cites / Doc. (4 years)
Cites / Doc. (3 years)
Jaipur, Rajasthan India

Dr. Sukhen Soni M. Pharm, Ph.D.
Department of Pharmaceutical Chemistry
M.M.U College of Pharmacy, K.K. Doddi, Ramanagara- 562159 Karnataka, India

Prof. R. Sundaraganapathy M. Pharm.
Dept. Pharma. Chemistry, Swamy Vivekanandha College of Pharmacy Elayampalayam,
Tiruchengode, Namakkal (Dt), Tamil Nadu, India

Dr. Nitish Kumar M.V.Sc., Ph.D.
Associate Professor, Department of Veterinary Pharmacology and Toxicology,
College of Veterinary Science & A.H., Kudal, Kolhapur, MP, India

Dr. Anurag Mishra M. Pharm., Ph.D.
Associate Professor, Department of Pharmacognosy, School of Pharmacy
BDO University, Lucknow, U.P., India

Dr. Santosh M Biradar
Assistant Professor
Dept of Community Medicine, BLDE University Shree BM Patil Medical College Bijapur, Karnataka, India

Dr. Suresh J. N. Jangle Ph.D.
Department of Biochemistry, Rural Medical College, Pravara Institute of Medical Sciences
Lon, Maharashtra, India

Dr. Mrs. Padmani Mrudulshandari Shyam M Pharma, Ph.D
Padma, Dr. D. Y. Patil College of Pharmacy, D.Y. Patil Educational Complex,
Sec.Ne3, Akurdi, Pune 411037 Maharashtra, India

Dr. Pankaj Kalara BAMS, MD
Ch. Brahma Prakash Ayurved Charak sansthan
Khela Darbar Govt. of NCT Delhi, India

Dr. K. Madhava Chetty M.Sc., M.Ed., M.PH., Ph.D., PG.D.P., FRAT
Department of Botany, Sri Venkateswara University
Tirupati, Andhra Pradesh, India

Dr. Shrikant Kulkarni M.Sc., M.PH., Ph.D., M.B.A.(HR)
Dept. of Chemical Engg., Vishwakarma Institute of Technology
Pune – 411037 Maharashtra, India

Dr. Sankalp Yadav MBBS, PGDEM
General Duty Medical Officer-II, Chest Clinic Moti Nagar, North Delhi Municipal Corporation,
New Delhi, India

Dr. Riju Agarwal MS (Shalakya)
Associate Professor, Ch. Brahma Prakash Ayurved Charak Sansthan
Oxby Road, Mysuru, Karnataka, India

Dr. Ajay Bhidani
Department of Pharmaceutics, Seth G. L. Bhani S. D. College of Technical Education (Pharmacy),Institute of
Pharmaceutical Sciences & Drug Research,
Sri Ganganagar, Rajasthan, India

Dr. Rajesh N
Department of Biochemistry, JSS College of Arts, Commerce & Science
New Delhi, India

Dr. N Rajan
Manager, Analytical Research and Development, Dr. Reddy’s Laboratories Limited
Hyderabad, India

Dr. Manodeep Chakraborty
Department of Pharmacology, Shree Devi College of Pharmacy, Airport road, Mangalore
Karnataka, India

Dr. Gyanshe Singh
School of Bioengineering and Biosciences, Faculty of Technology and Sciences, Lovely Professional University
Editorial boards at International Research Journal of Pharmacy

Mr. Atul R Bendale
Pharmaceutical Chemistry, Smt. B.N.B Swaminarayan Pharmacy College
Salvav, Vapi, Gujarat, India

Ms. MayankKulshreshtha
Department of Pharmacology, BabuBanarsiDas University
Lucknow, India

Mr. Achilesh Dubey
Department of Pharmaceutics, Shree Devi college of Pharmacy
Mangalore, Karnataka, India

Ms. PriyamaniVijayasingPowar
Padm. Dr. D. Y. Patil College of Pharmacy, D.Y. Patil Educational Complex, Akurdi
Pune 44 Maharashtra, India

Mr. Surya Prakash Gupta
Department of Pharmaceutical Science & Technology, AIMS University
Sattr, MP, India

Mr. Ashara Kalpesh Chhotalal
Registered Pharmacist N.M.Virani Wockhardt Hospital, Kalavadroad
Rajkot, India

Mr. Vinay Kumar Yadav
Registered Pharmacist N.M.Virani Wockhardt Hospital, Kalavadroad
Rajkot, India

Mr. Himarshu Joshi
Inventis Institute of Pharmacy, Inventis University
Bareilly, India

Ms. Ruchi Verma
Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal University
Manipur, India

Mr. Kripamoy Chakraborty
Microbiology Laboratory, Department of Botany, Tripura University
India

International Editorial Board Members

Dr. Prof. Mukhomenov Vladimir K.
Agrophysical Institution, 14 Grassdanski Ave.,
St-Petersbourg, 195220, Russia

Dr. Manish K. Paul M.Sc., Ph.D.
Postdoctoral Research Scientist, Molecular Cell and Developmental Biology,
University of California Los Angeles, Los Angeles, USA, 90095

Prof. Dr. Hasim Jabbar Al-Darejji, M Sc., Ph. D.
University of Baghdad, College of Agriculture,
Baghdad, Iraq

Dr. Abdul Wathab B. Pharm, RPh, M Ph.D., Ph.D.
Assistant Professor, Kohat University of Science and Technology,
Kohat, KPK, Pakistan

Dr. Vivek K. Bagai Ph.D
Foreign/Assistant Professor, 316 - Laboratory of Plant Molecular Physiology
School of Biotechnology, Yeungnam University, 241-1 Dae-dong
Gyeongsan City, Gyeongbuk 712-749 Republic of Korea

Dr. Chandeshwari Chilambrini, Ph.D.
Formulation Scientist, INSYS Therapeutics, Phoenix, AZ 85044 USA

Dr. Vivek S. Dave B. Pharm., Ph.D.
St. John Fisher College, Weggans School of Pharmacy, Rochester, New York

Dr. Idress Hamad Al Attaillia, Professor, PhD in Molecular Evolution (Uppsala University, Sweden), Department of Microbiology (Head), Faculty of Science, Omar Al-Mukhtar University, Box 915, Al-Bayda, Libya, Director of Research and Study at Agriculture Research Centre, Al-Bayda, Libya

Dr. Khaled Nabhi Zaie Rashid National Research Centre (NRC). Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, Dokki, Giza, Egypt

Dr. Rashad Alnamer Faculty of Medicine and Pharmacy, University of Thammar, Yemen

Dr. Sameer Dinhira B.H.Pharm., M.Pharm., Ph.D., R.Ph. Assistant Professor, School of Pharmacy, Faculty of Medical Sciences, Mount Hope Campus The University of the West Indies, St. Augustine, Trinidad, WI

Dr. Ayru Yundasiper Ege University, Faculty of Pharmacy Dept. of Pharmaceutical Technology Izmir Turkey

Dr. Milind Sedashiv Aile, M. Pharm.MPh Dr. Postdoctoral Researcher, National Yang Ming University Taipei, Taiwan

Dr. Bijay Aryal Assoc. Professor, Department of Clinical Pharmacology, Chitwan Medical College Teaching Hospital Bharatpur-10, Chitwan, Nepal

Prof. Dr. Heyam saad Ali Head Department of Pharmaceutics, Dubai Pharmacy College, Dubai, UAE

Dr. Saad Touqeer Pharm D, M. Phil (Pharmaceutical Chemistry), R. Ph Department of Pharmaceutical Chemistry, University of Lahore Lahore, Pakistan and ABMS Institute, 100 B Johar Town, Lahore, Pakistan

Dr. Kiran Kumar Vangara Ph.D. Formulations Scientist, R & D, INSYS Therapeutics, Inc. 444 S Ellis St, Chandler, AZ, USA

Dr. Golshin Zangia Ph.D. Department of Biology, Faculty of Science, Selcuk University 42075, Campus, Konya, Turkey

Dr. Sitansu Sekhar Nanda Myongji University Yongin, South Korea

Dr. Murali Krishna Matta Fellow at US Food and Drug Administration, Silver Spring, MD USA 20901

Dr. SundarChodavarapu Department of Biochemistry and Molecular Biology, Michigan State University East Lansing, MI 48824 USA

Dr. Sripal Reddy Palavai Manager – Analytical R&D (Inhalation & Dermatology), Aurobindo Pharma USA

Dr. Sai PrachetanBalguri CRSIE Fellow at U.S. FDA, 10903 New Hampshire Avenue, Silver spring MD 20993 USA

Mr. Syed Masudur Rahman Dewan Department of Pharmacy, Nodal Science and Technology University
Sonapur, Noakhali- 3814, Bangladesh

Mr. Akhtar Rasikul Ahamad
Faculty of pharmacy, University of Indonesia
Makassar, Indonesia

Mr. Amit Parekh
Biologist, Hurel Corporation
599 Taylor road, Piscataway, NJ 08854, USA

Mr. Hassan Rammal
Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Lebanese University
Lebanon

Mr. Houcine Bennmehdi
Faculty of Sciences and Technology, Department of Technology
University of Bechar 06000 Algieria

Mr. M. N. Edlibghi
Mahidol University, Faculty of Engineering, 2525 Puthamonthon Sai 4 Salaya, Nakhon Pathom
73170 Thailand

Mr. Fuad Mohammed Farhad
Viole Vitalis, A research based Multinational Neutraceticals Company
Dhaka, Bangladesh

Mr. Manish Gurjan
Faculty of Medicine, AMU, Johor Bahru, Malaysia

© 2013-2015 IJJP. All rights reserved. Specialized online journals by pubjournal. Website by Ubitech Solutions
Archives

International Research Journal Of Pharmacy
Volume 9, Issue 3, Mar 2018

Review Articles

A REVIEW ON TEXTILE IMPLANTABLE AND EXTRA CORPOREAL DEVICES IN MEDICAL APPLICATIONS
Sri Sandakkathira, V.Ramesh Babu * and V.Anutha
DOI: 10.7897/2230-8407.09335

CURRENT TRENDS IN TREATMENT AND MANAGEMENT OF PSORIASIS: AN UPDATED REVIEW
Cherukuri Sowmya, Vippalapudi Lavukumar *, Narayanan Venkatesan, Paramasivakumar Anisha, Balaraman Senthilnathan
DOI: 10.7897/2230-8407.09336

Research Articles

EFFECT OF PINEAPPLE (ANANAS COMOSUS) AND UZIZA (PIPER GUINEENSE) EXTRACTS ON FEXOFENADINE BIODAVALABILITY: POSSIBLE ROLE OF P-GLYCOPROTEIN (P-GP) AND ORGANIC ANION TRANSPORTING POLYPEPTIDES (OATPS)
Cecilia Nwadiobo Amadi * and Lemon Kadule Barileela
DOI: 10.7897/2230-8407.09337

SYNTHESIS AND CHARACTERIZATION OF COUMARIN ANALOGS: EVALUATION OF ANTIMICROBIAL AND ANTIOXIDANT ACTIVITIES
Prashant H, Bushra Begum A, Noor Fatima Khanum and Shaukat Ara Khanum *
DOI: 10.7897/2230-8407.09338

DEVELOPMENT AND EVALUATION OF SBA-15 MesoPOROUS SILICA NANOSENSORS FOR BIODIVALABILITY ENHANCEMENT OF RITONAVIR
Mohi Mahajans, Sadhana Rajput *
DOI: 10.7897/2230-8407.09339

ANALYSIS OF VOLATILE COMPOUNDS IN THE SAP OF AZADIRACHTA INDICA (NEEM) USING GAS CHROMATOGRAPHY MASS SPECTROMETRY
Praveen Kumar P, Nandini A R, Subhashriya P and Gowri Shankar B A *
DOI: 10.7897/2230-8407.09340

EFFECT OF SOLID DISPERSIONS, HP-β-CD ETA: 8 & GAMMA: CYCLODEXTRIN inclusion COMPLEXES ON THE DISSOLUTION RATE OF SIMVASTATIN AND FORMULATION DEVELOPMENT & EVALUATION OF SIMVASTATIN ODDS
Sr. Nirmala Jyothi. G *, A Rajendra prasad, S. Swati, Pratyusha Gandrapu
DOI: 10.7897/2230-8407.09341

ESTIMATION OF WOUND HEALING POTENTIAL OF GYNAPCALUM HYPOLEUCUM DC.
Neeraj Kumar *, Anita Singh, D K Sharma and Ramal Khobar
DOI: 10.7897/2230-8407.09342

ANTI-OXIDANT STUDY OF CITRULLUS COLOCYNTHUS ROOTS IN STREPTOZOTOCIN INDUCED DIABETIC RATS
Sree Bh. Kalva *, Ragunathand N
DOI: 10.7897/2230-8407.09343

FORMULATION AND EVALUATION OF ALGINATE-COLLOID FLOATING MICROSPHERES OF CEFIXIME TRHYDRATE
Sindhumol P.G *, Sudhakar Kair C R., Jyoti Hari Krishna
DOI: 10.7897/2230-8407.09344

SUB CHRONIC AND SUB ACUTE TOXICITY STUDIES OF CARBOPURIN IN Wistar RAT: APPLICATION TO NEUROBEHAVIOURAL EVALUATION
Nikita Suresh *, Praneet Vai
DOI: 10.7897/2230-8407.09345
EFFECT OF JATI (JASMUNUM GRANDIFLORUM) MOUTHWASH IN RAS: A CASE REPORT
Geethu Balkrishnan *, Vineeth P.K, Arun Mohanan, Ramesh N V
DOI: 10.7897/2230-8407.09346

ISOLATION AND CHARACTERIZATION TRITERPENOID COMPOUND FROM LEAVES MANGROVE PLANT (SAMNERATIA ALBA) AND ANTIBACTERIAL ACTIVITY TEST
Weny JA. Musa *, Sulaiman Duengo and Boima Siloneang
DOI: 10.7897/2230-8407.09347

A VALIDATED RP-HPLC METHOD FOR THE DETERMINATION OF MELATONIN AND ZOLPIDEM TARTRATE IN BULK AND PHARMACEUTICAL DOSAGE FORMS
Md Abdul Sattar *, A Suneetha
DOI: 10.7897/2230-8407.09348

STEAM DISTILLATE OF NURRAYA KOENGII AS A TYROSINASE ACTIVATOR
Sunanda R. Dhondaga & Varsha A. Ghadyale *
DOI: 10.7897/2230-8407.09349

THE TOXICITY OF MANGOSTEEN RIND EXTRACTS ON DAPHNIA
Vivek Rakhit Suvarane and Indu Anna George *
DOI: 10.7897/2230-8407.09350

TRIGGERING NON-SPECIFIC IMMUNITY OF HETEROPNEUSTES FOSSILIS AGAINST AEROMONAS HYDROPHILA USING HERBAL IMMUNIZATION
K. Kavitha *, M.A. Hennifa, D. Radhika
DOI: 10.7897/2230-8407.09351

© 2013-2015 IJP. All rights reserved. Specialized online journals by abjournal. Website by Wtech Solutions
Research Article

ISOLATION AND CHARACTERIZATION TRITERPENOID COMPOUND FROM LEAVES MANGROVE PLANT (Sonneratia Alba) AND ANTIBACTERIAL ACTIVITY TEST

Weny JA. Musa 1, Suleman Duengo 2 and Boima Situmeang 3
1Department of Chemistry, Faculty of Mathematical and Natural Sains, Gorontalo State University, Indonesia
2Department of Chemistry, Sekolah Tinggi Analis Kimia Cilegon, Banten, Indonesia
*Corresponding Author Email: boimatsitumeang@stakc.ac.id

Article Received on: 22/02/18 Approved for publication: 22/03/18

DOI: 10.7897/2230-8407.09347

ABSTRACT

Mangrove plant (Sonneratia alba) is easily found in Indonesia and has the potential of being a herb medicine. General phytochemical screening revealed the presence of flavonoid, steroid, triterpenoid, and tannin compounds. Mangrove plant variously used in ethnomedicine to treat wounds, diarrhea, and fever disease. Lup-20(29)-en-3β-ol (lupeol) compound is pentacyclic triterpenoid group. Lupeol was isolated from the methanol extract of the leaves of mangrove (S. alba). Extraction was done by maceration method using methanol 96% as solvent. Its isolation was carried out by a combination of column chromatography and combination of n-hexana, ethyl acetate, and methanol solvent. The structure was determined by analysis of IR, 1H-NMR, 13C-NMR, 2D NMR and MS spectroscopies data, as well as comparison with various reference. The result of antibacterial activity test showed that isolated compound effectively inhibited the growth of these bacterial pathogens with inhibition zone 18 mm for Staphylococcus aureus, 14 mm for Pseudomonas aeruginosa, and 13 mm for Escherichia coli. This is the first report of isolation lupeol compound from the leaves of Sonneratia alba of this species and antibacterial activity test against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli pathogen bacterial.

Keywords: Sonneratia alba, antibacterial, triterpenoid, and mangrove.

INTRODUCTION

Mangroves are a group of plants high or shrubs that grow in coastal areas tropical and subtropical. This plant has a distinctive morphological features and can survive in environments with high salinity2,3. Mangroves grow in coastal areas and have a unique adaptation to cope with environmental stresses such as high salinity, high temperature and strong sunlight radiation, as well as the abundance of microorganisms and insects4. Some mangroves have been used as herbs and extracts have biological activity in humans, animals and harmful bacteria but a study of the womb secondary metabolites responsible the biological activity is still limited4,6.

Sonneratia alba is one of mangrove plants in the family of lythraceae. Sonneratia alba widely known in Indonesia with the name coastal Pidara white and widely distributed in the coastal regions of Southeast Asia and the Indian Ocean7. This plant has been used traditionally in coastal communities of Indonesia to the treatment of wounds, diarrhea, and fever8. In previous study phytochemical investigation Sonneratia has been reported contained triterpenoid, steroid, and flavonoid compounds.

Infectious disease and parasites are one of the major disease in the world. According to World Health Organization (WHO) data in 2011, infectious diseases and parasites are the third leading cause of death in the world9. In Indonesia, infection diseases is one of the major caused of death especially in north Indonesia and still a health problem in all levels of society from low to high socioeconomic levels. Infectious disease of the skin tissue that commonly affects the public caused by various microbes. Bacteria cause the most common skin disease and infection is Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli10,11. Based on reports of various studies have not revealed the active compounds antibacterial, diarrhea and in skin disease derived from the leaves of plants Sonneratia alba. Therefore in this study, isolation of antibacterial compounds from plant leaf parts and antibacterial activity test against bacterial pathogen causing skin diseases are needed.

MATERIAL AND METHODS

Material

The research specimen is S. alba collected from Dulupi village, Boalemo district, Gorontalo province, Indonesia in july 2016. The chemicals used in this research were ethyl acetate, n-hexane, methanol, distilled water, silica gel G60 (70-320 mesh), thin layer chromatography (TLC), silica plate, octadeysilane (ODS) RP-18, 10% H2SO4 in ethanol, alcohol 70%, ciprofloxacain 100 ppm, amoxylin 100 ppm, bacto agar, and Mueller-Hinton agar.

Instrumentation

Spectrum measurements were performed using a variety of spectroscopy tools. Infrared (IR) spectra were measured with Shimadzu FTIR, 1H and 13C-NMR spectra were measured using JEOL JNM A-500 which works at 500 MHz (for 1H-NMR spectrum) and at 125 MHz (for 13C-NMR spectrum) with TMS as an internal standard, E8-MS spectrometry (UPLC MS/MS TQD type Waters) and laminar air flow.

Extraction and Purification

Dried leaves of S. alba (240 g) was extracted successively with methanol 96% (3 x 24 hours), followed by filtration. The filtrates
were combined and evaporated by rotary evaporator at a temperature of 45°C using a buchi rotary evaporator to give a residu. Concentrate of methanol extract obtained as much 13 g of a gummy concentrate of the crude extract.

The methanol extract (10 g) was subjected to liquid chromatography over silica gel using a gradient elution mixture of n-hexane-EtOAc (10:0-0:10) as an eluting solvent, yielding 37 fractions (A–G). Fraction C (0.15 g) was subjected to column chromatography over silica gel using a mixture of n-hexane : EtOAc (9:1) as an eluting solvent, affording 30 fractions (E01–E30) and give pure isolated. The purification results of these compounds were determined by TLC on silica gel and ODS with several solvent systems and showed a single spot.

Chromatographic Separation

The column was packed with fine TLC grade siliga gel G60 was used as the packing material. A column having 50 cm length and 5 cm in diameter was packed with the silica gel G60 under reduced pressure. The column was washed with methanol and then with n-hexane to facilitate compact packing. The methanol extract was subjected to column chromatography. The column was then eluted using n-hexane (150 mL) followed by mixture of n-hexane-ethyl aceata (10:0-0:10). A total of 10 fractions (A-J) were collected each in 250 mL beakers.

The fraction C (0.15 g) was subjected to column chromatography over silica gel (Kieselgel G60, mesh 70-230) using a mixture of n-hexane :EtOH acetate (9:1) as an eluting solvent, affording 30 fractions (C01–C30). Fraction C19 was found to yield crystal on the wall of the beakers. The crystals were washed with n-hexane carefully. As a result mother solution was obtained leaving back the needle shape crystals which were isolate as compound. The purification results of compound were determined by TLC on silica gel and ODS with several solvent systems and showed a single spot (>95% pure).

Test for Triterpenoid with Liebermann-Burchard Reaction

A few crystals of compound 1 and 2 were dissolve in chloroform and a few drops of concentrated sulfuric acid were added to it followed by the addition of 2-3 drops of anhydride acetid. In this case isolated compound turned to violet blue and finally formed green color which indicates the presence of triterpenoid16.

Characterization compound

Different spectroscopic methods were used to eludicate the structure of isolated compound. Among the spectroscopic techniques IR, 1H and 13C-NMR, HMBC, HMB and H-H COSY were carried out. The infrared spectrum was recorded on Shimadzu affinity-1, H and 13C-NMR spectra were recorded using CDC13 as solvent on JEOL NMR 500 MHz spectrometer.

Isolated compound : white needles. IR (KBr) Vmax/cm⁻¹: 3590, 2935, 1687, 1462, 1385, 1236, and 897. 1H NMR (500 MHz, CDCl3) δ: 2.22 (2H, m, H1), 1.65 (2H, m, H2), 3.15 (1H, dd, J 15.0, 8.4 Hz, H3), 0.70 (1H, d, H5), 1.42 (2H, m, H6), 1.44 (2H, m, H7), 1.07 (1H, H9), 140 (2H, m, H11), 1.41 (2H, m, H12), 0.75 (1H, s, H3), 1.20 (2H, m, H5), 1.39 (2H, m, H6), 0.96 (1H, d, H8), 2.23 (1H, d, H9), 2.25 (2H, m, H21), 2.22 (2H, m, H22), 0.94 (3H, s, H23), 0.96 (3H, s, H24), 0.85 (3H, s, H25), 0.75 (3H, s, H26), 1.00 (3H, s, H27), 1.59 (3H, s, H28), 4.58 & 4.60 (2H, s, H29), 1.69 (3H, s, H30). 13C-NMR (125 MHz, CDCl3) δ: 39.7 (C1, C2), 28.1 (CH, C2C), 79.7 (CH, C3), 40.1 (Cp, C4), (CH, C5), 19.6 (CH2, C6), 35.7 (CH2, C7), 43.3 (Cp, C8), 56.9 (CH, C9), 38.4 (Cq, C10), 26.9 (CH2, C11), 28.8 (CH2, C12), 40.2 (CH, C13), 48.6 (Cp, C14), 30.9 (CH2, C15), 38.3 (CH2, C16), 49.2 (Cp, C17), 52.1 (CH, C18), 50.5 (CH, C19), 152.2 (Cq, C20), 35.5 (CH2, C21), 42.2 (CH2, C22), 31.8 (CH3, C23), 16.2 (CH3, C24), 16.9 (CH3, C25), 16.7 (CH3, C26), 15.2 (CH3, C27), 19.5 (CH3, C28), 110.2 (CH2, C29), 22.9 (CH3, C30).

Antibacterial Activity Test

The antibacterial activity test was conducted using the Kirby-Bauer method, where in the bacterial growth inhibition zone was used as a parameter to determine the antibacterial activity. Bacteria that have grown on solid media were given a test compound solution on a paper disk with concentration: 100 µg/mL. Ciprofloxacin was used as a positive control at a concentration of 100 µg/mL for P. aeruginosa and amoxilin 100 µg/mL for E. coli and S. aureus in the solvent water, and methanol/water are used as negative controls (3 : 1). After the incubation for 24 hours at a temperature of 35-37 °C in aerobic and anaerobic, clear zone around the paper disk which has been given a test solution (test compound, positive control and negative control), was observed and measured using calipers. This clear zone indicates the bacterial growth inhibition zone produced by the test compound11,12.

RESULT AND DISCUSSION

The leaves of S. alba was dried and successively extracted with methanol 96%. Therefore, the subsequent phytochemical analysis was focused on the methanol extract, which was chromatographed over a column packed with silica gel G60 with gradient elution. The fraction were repeatedly subjected to normal-phase and reverse-phase column chromatography, yielding one triterpenoid pentacyclic (Figure 1). The compound (20 mg), appeared as white needles.

Spectral data

The IR spectrum (KBr) of isolated showed characteristic absorption frequencies at 3590 and 1236 cm⁻¹ typical of the O-H stretching and C-O bond vibrations respectively; The C-C vibrations was at 1687 cm⁻¹. The absorption observed at 897 cm⁻¹ was due to an unsaturated out of plane C-H vibration; stretching and bending vibrations due to methyl groups were represented by the bands at 2935 cm⁻¹ and 1462 cm⁻¹ and the signal at 1385 cm⁻¹ was due to methylenic vibration (cycloalkane)13,14.

The 1H-NMR spectrum of compound showed the presence of seven singlet methyl protons at δ 0.75, 0.85, 0.94, 0.96, 1.00, 1.59 and 1.69 ppm. Isolated compound also showed protons at δ 2.23 ppm ascribable to 19p-H is indicated of lupeol. The H-3 proton showed a multiplet at δ 3.15 ppm while a pair of broad singlets at δ 4.58 and δ 4.60 (1H, each) was indicative of olefinic protons at (H-29). The methylene proton Sp3 showed at δ1 0.20, 1.39, 1.40, 1.41, 1.42, 1.44, 1.65, 2.22, and 2.25 ppm. These assignments are in good agreement belonging the structure of lupeol14-16.

The 13C-NMR spectrum showed seven methyl groups at δ: 31.8 (C-23), 19.5 (C-28), 16.8 (C-25), 16.7 (C-26), 16.2 (C-24), 15.2 (C-27) and 22.2 (C-30); the signals due to an exomethylene group at δ: 110.2 (C-29) and 152.0 (C-20). The DEPT 135° indicated and belonging to ten methylene, five methine and five quaternary carbons were assigned with the aid of DEPT 135° spectrum15,16. The deshielded signal at δ 79.0 was due to C-3 with a hydroxyl group attached to it. The confirmation of the structure of isolated was accomplished through the 2D-NMR experiments (COSY and HMBC).
Table 1. NMR data (500 MHz for ¹H and 125 MHz for ¹³C, in CDCl₃) for isolated compound and Compared with references

<table>
<thead>
<tr>
<th>Position</th>
<th>¹³C-NMR δC (ppm)</th>
<th>DEPT 135°</th>
<th>¹H -NMR δH (Int., mult)</th>
<th>¹³C-NMR δC (ppm) ref.</th>
<th>¹H -NMR δH (Int., mult) ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39.7</td>
<td>CH₂</td>
<td>2.22 (2H, m)</td>
<td>38.0</td>
<td>2.37 (2H, m)</td>
</tr>
<tr>
<td>2</td>
<td>28.1</td>
<td>CH₂</td>
<td>1.65 (2H, m)</td>
<td>25.3</td>
<td>1.65 (2H, m)</td>
</tr>
<tr>
<td>3</td>
<td>79.7</td>
<td>CH</td>
<td>3.15 (1H, d/d)</td>
<td>78.4</td>
<td>3.20 (1H, d/d)</td>
</tr>
<tr>
<td>4</td>
<td>40.1</td>
<td>Cq</td>
<td>-</td>
<td>38.6</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>57.7</td>
<td>CH</td>
<td>0.70 (1H, d)</td>
<td>55.1</td>
<td>0.69 (1H, d)</td>
</tr>
<tr>
<td>6</td>
<td>19.6</td>
<td>CH₂</td>
<td>1.42 (2H, m)</td>
<td>18.1</td>
<td>1.42 (2H, m)</td>
</tr>
<tr>
<td>7</td>
<td>35.7</td>
<td>CH₂</td>
<td>1.44 (2H, m)</td>
<td>34.1</td>
<td>1.43 (2H, m)</td>
</tr>
<tr>
<td>8</td>
<td>43.7</td>
<td>Cq</td>
<td>-</td>
<td>41.2</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>56.9</td>
<td>CH</td>
<td>1.07 (1H, d)</td>
<td>49.7</td>
<td>1.06 (1H, d)</td>
</tr>
<tr>
<td>10</td>
<td>38.4</td>
<td>Cq</td>
<td>-</td>
<td>37.3</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>26.9</td>
<td>CH₂</td>
<td>1.40 (2H, m)</td>
<td>21.1</td>
<td>1.40 (2H, m)</td>
</tr>
<tr>
<td>12</td>
<td>28.7</td>
<td>CH₂</td>
<td>1.41 (2H, m)</td>
<td>27.5</td>
<td>1.41 (2H, m)</td>
</tr>
<tr>
<td>13</td>
<td>40.2</td>
<td>CH</td>
<td>0.75 (1H, s)</td>
<td>39.2</td>
<td>0.76 (1H, s)</td>
</tr>
<tr>
<td>14</td>
<td>48.6</td>
<td>Cq</td>
<td>-</td>
<td>42.6</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>30.9</td>
<td>CH₂</td>
<td>1.20 (2H, m)</td>
<td>27.6</td>
<td>1.22 (2H, m)</td>
</tr>
<tr>
<td>16</td>
<td>38.3</td>
<td>CH₂</td>
<td>1.39 (2H, m)</td>
<td>35.6</td>
<td>1.38 (2H, m)</td>
</tr>
<tr>
<td>17</td>
<td>49.2</td>
<td>Cq</td>
<td>-</td>
<td>43.2</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>52.1</td>
<td>CH</td>
<td>0.96 (1H, d)</td>
<td>48.2</td>
<td>0.97 (1H, d)</td>
</tr>
<tr>
<td>19</td>
<td>50.5</td>
<td>CH</td>
<td>2.23 (1H, d)</td>
<td>47.8</td>
<td>2.38 (1H, d)</td>
</tr>
<tr>
<td>20</td>
<td>152.2</td>
<td>Cq</td>
<td>-</td>
<td>151.6</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>35.5</td>
<td>CH₂</td>
<td>2.25 (2H, m)</td>
<td>30.2</td>
<td>2.40 (2H, m)</td>
</tr>
<tr>
<td>22</td>
<td>42.2</td>
<td>CH₂</td>
<td>2.22 (2H, m)</td>
<td>40.2</td>
<td>2.39 (2H, m)</td>
</tr>
<tr>
<td>23</td>
<td>31.8</td>
<td>CH₃</td>
<td>0.94 (3H, s)</td>
<td>28.2</td>
<td>0.91 (3H, s)</td>
</tr>
<tr>
<td>24</td>
<td>16.2</td>
<td>CH₃</td>
<td>0.96 (3H, s)</td>
<td>16.0</td>
<td>0.94 (3H, s)</td>
</tr>
<tr>
<td>25</td>
<td>16.8</td>
<td>CH₃</td>
<td>0.85 (3H, s)</td>
<td>16.8</td>
<td>0.74 (3H, s)</td>
</tr>
<tr>
<td>26</td>
<td>16.7</td>
<td>CH₃</td>
<td>0.75 (3H, s)</td>
<td>16.4</td>
<td>0.78 (3H, s)</td>
</tr>
<tr>
<td>27</td>
<td>15.2</td>
<td>CH₃</td>
<td>1.00 (3H, s)</td>
<td>15.1</td>
<td>1.06 (3H, s)</td>
</tr>
<tr>
<td>28</td>
<td>19.5</td>
<td>CH₃</td>
<td>1.59 (3H, s)</td>
<td>18.0</td>
<td>1.59 (3H, s)</td>
</tr>
<tr>
<td>29</td>
<td>110.2</td>
<td>CH₂</td>
<td>4.58 & 4.60 (2H, s)</td>
<td>108.6</td>
<td>4.56 & 4.70 (2H, s)</td>
</tr>
<tr>
<td>30</td>
<td>22.2</td>
<td>CH₃</td>
<td>1.69 (3H, s)</td>
<td>19.5</td>
<td>1.72 (3H, s)</td>
</tr>
</tbody>
</table>
Table 2. Antibacterial activity test result

<table>
<thead>
<tr>
<th>Bakteri</th>
<th>lupeol compound (mm)</th>
<th>Positive control (mm)</th>
<th>Negative control (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>14</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>14</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>E. coli</td>
<td>13</td>
<td>22</td>
<td>0</td>
</tr>
</tbody>
</table>

The 1H-1H COSY spectrum is used to identify protons that are correlated with three bond spacing. COSY spectrum of isolated compound indicates peaks such as those between δ 2.23, H-19 and one Sp3 methylene proton signal (δ 2.25, H-21) and another Sp3 methylene proton signal (δ 0.96, H-18); and oxygenated methine proton signal belonging to (δ 1.69, H-30 and Sp3 methylene signal (δ 1.65, H-2)16-19.

The HMBC spectrum used to determine the correlation between proton and carbon from two to three bonds (2J and 3J). From the spectrum it can be observed that H-13 (δH = 0.75 ppm) correlates with C-12 (δC = 28.7 ppm), H-26 (δH = 0.75 ppm) has a correlation with C-10 (δC = 38.4 ppm), H-23 (δH = 0.95 ppm) has a correlation with C-24 (δC = 16.2 ppm), and H-28 (δH = 1.0 ppm) has correlation with C-15 (δC = 30.9 ppm). The pair of broad singlets of olefinic proton at 6H 4.58 and 4.60 showed cross peaks with a methylene carbon signal [δC 50.5 (C-19) and δ 22.2 (C-30)] by J3 correlation. The forgoing spectral analysis and comparison with reported data (table 1), led us to propose the structure of isolated compound as lupeol, a pentacyclic triterpenoid, (figure 1) below.

Antibacterial Test Result

The results of antibacterial activity testing of isolated compound based on the inhibition zone of isolated compounds on bacterial growth of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli is shown in Table 2.

Different responses from three classes of bacteria to isolated compounds is caused by differences in sensitivity in Gram positive bacteria (S. aureus and E. coli) and Gram negative bacteria (P. aeruginosa) against isolated compound. Gram-positive bacteria tend to be more sensitive to antibacterial components. This is caused by the Gram positive cell wall structure is simple making it easier for the antibacterial compounds to enter the cells and to find goals for work.

Lupeol compound were successfully isolated is a compound of the triterpenoid group. Triterpenoids are compounds that the carbon framework is derived from six isoprene units and synthesized derived from C hydrocarbons 30 acyclic, which is skualena. Based on literature review, triterpenoid group compounds and steroids has antibacterial activity with the mechanism of action inhibiting synthesis protein20-21.

CONCLUSION

In this research we successfully isolated pentacyclic triterpenoid compound Lup-(20(29)-en-3β-ol) from methanol extract of leaves Sonneratia alba. The result of antibacterial activity test showed that isolated compound effectively inhibited the growth of these bacterial pathogens with inhibition zone 18 mm for Staphylococcus aureus, 14 mm for Pseudomonas aeruginosa, and 13 mm for Escherichia coli. This is the first report of isolation lupeol compound from the leaves of Sonneratia alba and test antibacterial activity against pathogens bacteria of this species.

ACKNOWLEDGEMENTS

The author thank the ministry of research and higher education of the Indonesia Republic for funding this collaboration (RISTEKDIKTI) and Mrs. Fajriah, M.Si as well as Dr. Achmad, M.Si for their help in conducting the NMR spectrum measurement.

REFERENCES

15. Ayottollahi AM, Ghanadian M, Afsaridove S, Abdella OM, Murzai M, Aisikan G. Pentacyclic triterpenes in Euphorbia
microsciadia with their T-Cell proliferation activity. Irian
16. Abdullah SM, Musa AM, Abdullah MI, Sule M, Sany YM.
Isolation of lupeol from the steam bark of Lonchocarpus
17. Prakash CV & Prakash I. Isolation and structural
characterization of lupane triterpenes from Polypodium
18. Saha S, Subrahmanyan EVS, Kodangala C, Shastry S.
Isolation and characterization of triterpenoids and fatty acid
ester of triterpenoid from leaves of Bauhinia variegata. Der
20. Babalola IT, Shode FO. A potential pentaciclic triterpene

Cite this article as:
Weny JA. Musa et al. Isolation and characterization triterpenoid
compound from leaves mangrove plant (Sonneratia Alba) and
http://dx.doi.org/10.7897/2230-8407.09347

Source of support: Ministry of Research and Higher education of the Indonesia Republic, Conflict of interest: None Declared

Disclaimer: IRJP is solely owned by Moksha Publishing House - A non-profit publishing house, dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our Journal. IRJP cannot accept any responsibility or liability for the site content and articles published. The views expressed in articles by our contributing authors are not necessarily those of IRJP editor or editorial board members.
International Research Journal of Pharmacy

<table>
<thead>
<tr>
<th>Country</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Area and Category</td>
<td>Pharmacology, Toxicology and Pharmaceutics, Pharmaceutical Science</td>
</tr>
<tr>
<td>Publisher</td>
<td>Moksha Publishing House</td>
</tr>
<tr>
<td>Publication type</td>
<td>Journals</td>
</tr>
<tr>
<td>ISSN</td>
<td>22308407</td>
</tr>
<tr>
<td>Coverage</td>
<td>2012, 2014-ongoing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quartiles</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SJR</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.10</td>
<td></td>
<td></td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citations per document</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-Cites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>