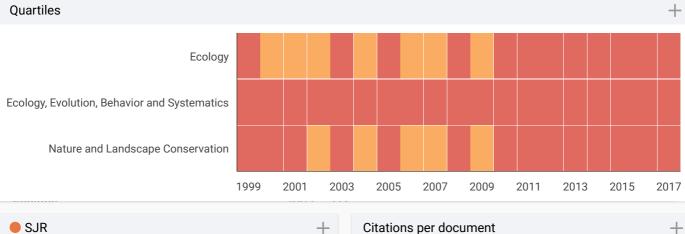
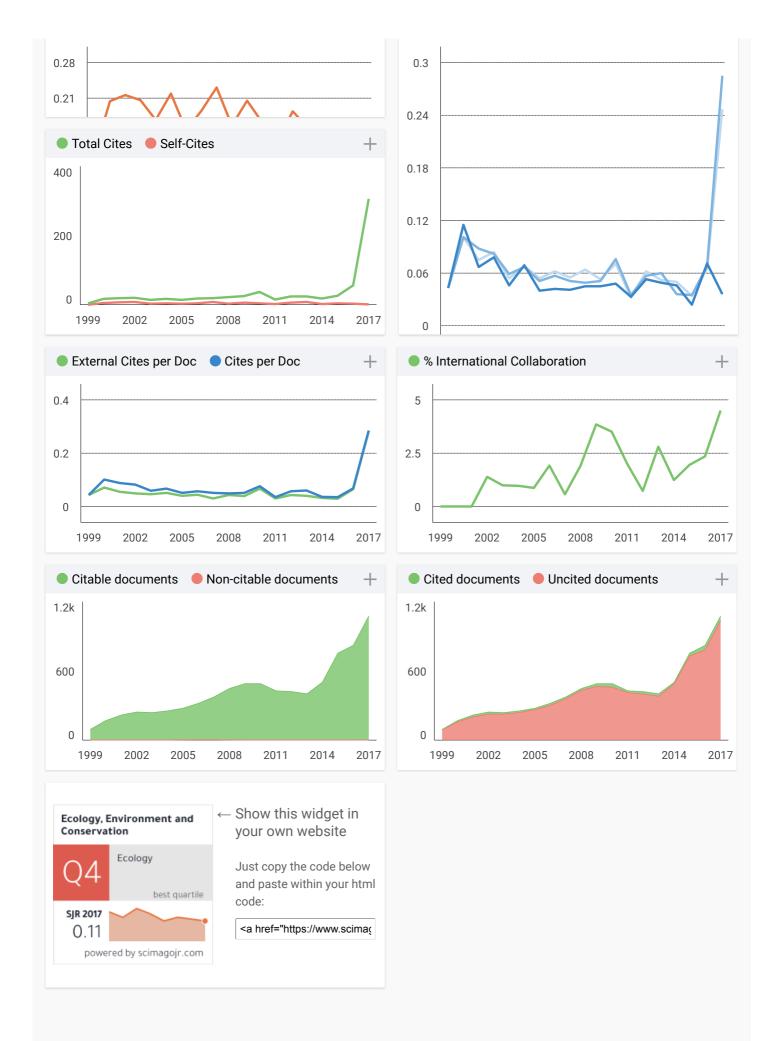
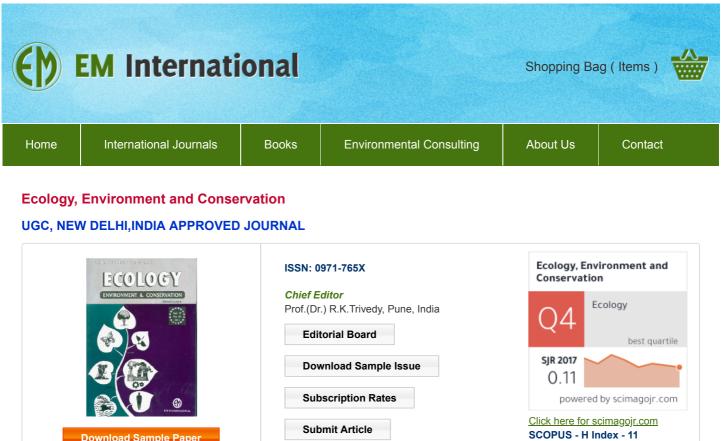

QUARTERLY INTERNATIONAL JOURNAL

ENVIRONMENT & CONSERVATION


ISSN 0971-765 X


		6	also developed	l by scima	igo: <u>IIII</u>	SCIMAGO	INSTITUTIONS F	RANKINGS
SJR	Sc	imago Journal & Co	untry Rank	Enter Jo	urnal Title, ISSN	l or Publish	ner Name	Q
Но	me	Journal Rankings	Country Ran	ikings	Viz Tools	Help	About Us	


Ecology, Environment and Conservation

Country	India - IIII SIR Ranking of India
Subject Area and Category	Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
	Environmental Science H Index Ecology Nature and Landscape Conservation
Publisher	EM International
Publication type	Journals
ISSN	0971765X
Coverage	1997-ongoing
Scope	ECOLOGY, ENVIRONMENT AND CONSERVATION is one of the leading International environmental journal. It is widely subsribed in India and abroad by Institutions and Individuals in education and research as well as by Industries, Govt. Departments and Research Institutes.
?	Homepage
	Contact
	igodot Join the conversation about this journal

SJR

Download Sample Paper

Brief About Ecology, Environment and Conservation

Published Quarterly Since 1995. Ecology, Environment and Conservation is published in March, June, September and December every year.

ECOLOGY, ENVIRONMENT AND CONSERVATION is one of the leading International environmental journal. It is widely subsribed in India and abroad by Institutions and Individuals in education and research as well as by Industries, Govt. Departments and Research Institutes.

Ecology, Environment and Conservation is in Master Journal List of ISI (Thomson Reuters, U.S.A.).

Ecology, Environment and Conservation is abstracted/covered in:

- Chemical Abstracts, U.S.A.
- SCOPUS
- EBSCO Publishing, U.S.A.
- Cambridge Science Abstracts
- Ecology Abstracts •
- Pollution Abstracts
- Eco-Disc CD Rom
- Geological Abstracts •
- International Development Abstracts ٠
- Oceanographic Literature Review
- Zoological Records
- Indian Science Abstracts, Niscair, India •
- Elsevier's Compendex
- Elsevier's Current Awareness in Biological Sciences •
- Elsevier's Encompass
- Elsevier's Geobase

Ecology, Environment and Conservation journal is accredited with National Academy of Agricultural sciences, NAAS. India

Ecology, Environment and Conservation journal is covered by SCOPUS.

Journal Issues

NAAS Rating - 4.89

Vol 24, Issue 3 2018 Vol 24, Issue 2 2018 Vol 24, Issue 1 2018 Vol 24, March Suppl. Issue 2018 Vol 24, Feb. Suppl. Issue 2018 Vol 23, Issue 4, 2017 Vol 23, Nov. Suppl. Issue 2017 Vol 23, Sept. Suppl. Issue 2017 Vol 23, Issue 3, 2017 Vol 23, Issue 2, 2017 Vol 23, Issue 1, 2017 Vol 23, Feb 2017 Suppl. Issue Vol 22, Dec 2016 Suppl. Issue Vol 22, Issue 4, 2016 Vol 22, Sept. Suppl. Issue, <u>2016</u> Vol 22, Issue 3, 2016 Vol. 22, June Suppl. Issue 2016 Vol 22, Issue 2, 2016 Vol. 22, April Suppl. Issue 2016 Vol 22, Issue 1, 2016 Vol 21, Issue 4, 2015 Vol. 21 Dec. 2015 Suppl. Issue Vol. 21 Nov. 2015 Suppl. Issue Vol 21, Issue 3, 2015 Vol. 21 Suppl.Issue August 2015 Vol 21, Issue 2, 2015 Vol 21.Suppl.Issue June 2015 Vol 21, Issue 1, 2015 Supplement Issue, Dec. 2014 Special Issue-2014 Vol 20, Issue 4, 2014 Vol 20, Issue 3, 2014

Ecology, Environment and Conservation Editorial Advisory Board

Chief Editor

Prof.(Dr.) R.K.Trivedy, Pune, India

EDITORIAL ADVISORY BOARD				
1. Dr. Teresa Ferreira, Portugal	19. Dr. A. Olawale, Nigeria			
2. Dr. Michael Ukwuru, Nigeria	20. Dr. Ing. Agr. Mario Ridardo Sabbatini, Argentina			
3. Dr. Moses Inbaraj, Chennai	21. Dr. Philip C. Reid, U.K.			
4. Dr. D.J. Lee, Taiwan	22. Dr. Bajcinovci, B. Kosovar, Bosnia			
5. Dr. Christial Paul P.delacruz, Phillipnes	23. Dr. Mohd. Yusuf, Malaysia			
6. Dr. T. Bahorun, Mauritius	24. Dr. Oswaldo A. Feernandez, Argentina			
7. Dr. Linda Blackwell, Australia	25. Dr. Ms. Mirela Tulik, Warsaw, Poland			
8. Dr. G. Zellner, Netherlands	26. Dr. L.L. Chukwu, Nigeria			
9. Dr. Wilson S. Tisera, Kupang, Indonesia	27. Dr. Azni Idris, UPM, Malaysia			
10. Dr. M.F. Hamoda, Kuwait	28. Dr. G. Suresha, Saudi Arabia			
11. Dr. H.A.Abrahamse, South Africa	29. Dr. Amresh Chandra Pandey, Jharkhand, India			
12. Dr. Arulmozhiyal R., Salem	30. Dr. Shambhu Sharan Kumar, Ranchi, India			
13. Dr. Hassan Ibrahim Ali, Sudan	31. Dr. A.K. Panigrahi, Berhampur, India			
14. Dr. A.R.Ghosh, Burdwan, India	32. Dr. Ahmed El Mahmoudi, Saudi Arabia			
15. Prof. M. Zaman, Bangladesh	33. Dr. Seyed Mohammad Tajbakhsh, Iran			
16. Dr. Marcantonio Bragdin, Venice, Italy	34. Dr. Amin L. Setyo, Indonesia			
17. Dr. Z. Fuat Topark, Turkey	35. Dr. Francis Gbogbo, Ghana			
18. Dr. Z. Li. Bonn, Germany	36. Dr. S. Shabanlou, Iran			

Back to EEC Journal Details

Home | International Journals | Books | Environmental Consulting | About Us | Contact Us | Submit Paper | © EM International 2012 |

Become a fan on Facebook

Follow us on Twitter

ECOLOGY, ENVIRONMENT AND CONSERVATION VOL. 24 (4) : 2018

CONTENTS

- 1467–1474 Sustainable fisheries resource management based on local knowledge of pole and line fishers (Case study, Murante Villages, Luwu Regency, South Sulawesi, Indonesia) —Amilludin, Yusran NurIndar, Aris Baso, Najamuddin and Andi Adri Arief
- 1475–1481 Economic development of the republic Mari El on the basis of natural resource-based multicluster

—Nina I. Larionova, Tatyana V. Yalyalieva and Dmitry L. Napolskikh

1482–1491 Function of a temporary wetland for wintering anatidea and coot: Mekhada Marsh (North East Algeria)

-Rima Bendjeddou, Zahra Benyacoub Brahmia and Slim Benyacoub

- 1492–1500 Review and Implementation of the accident analysis methods (AAM) in the Oil and GAS Upstream sector —Nikolaos Georgakopoulos
- 1501–1507 Determining crop planting pattern and sorting base on priority farmers' subjective —Parisa Shahinrokhsar, Amin Alizadeh, Hossein Ansary and Mohamad Ghorbany
- 1508–1514 Soil contamination and assessment of heavy metals neartwo landfills area due to leachate migration
 - —Tafë Veselaj, Rifat Morina, Afrim Berisha, Valdet Gashi and Fatbardh Sallaku
- 1515–1522 Ecotourism model based on social asset (Halal Tourism) as the strenghthening of economy of Lombok community, Indonesia —Wildan and Sukardi
- 1523–1529 Riple harmonization of transcontinental allometric *of Picea* spp. *and Abies* spp. forest stand biomass

-Vladimir Andreevich Usoltsev, Seyed Omid Reza Shobairi and Viktor Petrovich Chasovskikh

- 1530–1534 Preliminary study single stage micro gas turbine integrated with South Sumatera Indonesia low rank coal gasification
 - —Fajri Vidian, Hasan Basri, Helmy Alian, Elian Zhafran and Thorik Aziad
- 1535–1540 Results of preliminary studies on the production and agrucultural crops research of "JAMB-70" polycomponent mineral fertilizers
 —Zh. N. Rakhmanberdiyeva, K. T. Zhantasov, Z. K. Myrzaliyeva, B. R. Naimanbayev and D.M. Zhantasova
- 1541–1547 Spatial modeling vocational education development to support regional potential —Agus Wiyono, Abdul Hakim, Endah Setyowati and Agus Suharyanto
- 1548–1556 Evaluation of conditions for effective agricultural land-use as a basis for sustainable development of plant-growing production in the Omsk Region
 —Yuri Mikhailovich Rogatnev, Olga Nikolaevna Dolmatova, Vitaliy Viktorovich Aleschenko, Marina Nikolaevna Veselova and Yulia Stanislavovna Yusova
- 1557-1562 The monitoring of San Jose scale (Homoptera, Diaspididae: *Quadraspidiotusperniciosus* Comstock, 1881) in the southeast of Kazakhstan —Z.B. Beknazarova, B. Lozowicka, B.K. Kopzhasarov and R.A. Iskendirova
- 1563–1567 Multiplet interrelations in Oil Water compositions —Vinera Bekbayeva, Ashimhan Toktasynovich Kanaev, Galina Metaxa and Zy Losinq
- 1568–1575 Domestic and industrial waste as the basis for formation of compound compost —I. S. Belyuchenko

II	CONTENTS <i>Eco. Env. & Cons.</i> 24 (4) : 2018			
1576–1586	The estimation of the sevastopol bays ecological state on basic chemical and microbiological criteria —Tikhonova E. A., Burdiyan N. V., Soloveva O. V., Doroshenko Yu. V.			
1587–1591	The effect of biological fertilizers on productivity of clover on saline soils of rice systems of the Aral Sea Region, Kazakhstan —Zhanar Shadibekovna Zhumadilova, Ibadulla Aigalievich Tautenov and Eric Zharylkasynovich Shorabaev			
1592–1601	Feasibility study of cantrang (Danish Trawl): fisheriesbiology perspective —Sri Suro Adhawati, Achmar Mallawa, Aris Baso and A. Adri Arief			
1602–1608	 Immune-phytopathological assessment of resistance of wheats to stem rust in conditions of the Southeast of Kazakhstan —Z. Amangeldikyzy, A.S. Kochorov, Aziz Karakaya, A.I. Morgunov, R.D. Karbozova and M.A. Gabdulov 			
1609–1616	Changing the properties of cultivated land is a real basis for the formation of new environmental niches — <i>I.S. Belyuchenko and O.A. Melnik</i>			
1617–1623	The influence of seeding time on growth development and productivity of sunflower in the dry steppe area —Beybit Nasiyev, Nurbîlat Zhanatalapov and Alexander Bushnev			
1624–1629	Effects of human pressure on the distribution of <i>Macaca sylvanus</i> in the sector of Ait ouabane, National Park of the Djurdjura, Algeria —Mohammed Oudahmane, Aissa Moali and Farid Bekdouche			
1630–1633	Carbon dioxide (CO ₂) absorption of several landscape plants through photosynthetic route —F. Fathurrahman, Nizam Mohd Said ^{3,4,} Wan Juliana Wan Ahmad, and Che Radziah Che Mohd Zain			
1634–1639	Assessment of lead content in soil and plants as a consequence of continuous application of fertilizer systems —R. F. Baibekov, A. N. Esaulkov, M. S. Sigida, Y. I. Grechishkina and A. V. Voskoboinikov			
1640–1644	The predation efficacy of <i>Coccinella septempunctata</i> L. (Coccinellidae: Coleoptera) against cotton aphid <i>Aphis gossypii</i> glover (Homoptera: Aphididae) — <i>Ali K. R. Al-Shujairi and Sindab S. J. Al-Dahwy</i>			
1645–1650	The selection of parental material for winter barley breeding Inboharic direction —Zhanbolat Serkebaevich Mussabaev, Galiolla Tulendinovich Meirmanov, Anarbai Kainarovich Ortaev and Hristofor Kirchev			
1651-1656	Assessment of recovery of medicinal plants of the Kurtidistrict of the Almaty region —A.S. Seilkhan, R.À. Mirzadinov, A. Aksoy, A. Abulgaziyev and G. Kanat			
1657-1663	The study of the importance of cytogenetic and molecular genetics in the diagnosis of fish diseases — <i>Mohsen Shokohinia</i>			
1664–1668	Studying the technology and methods of increasing the yield of cultivated plants or strongly saline soils —Aliya Ainabekovna Ismailova, Ashimhan Toktasynovich Kanaev, Nariman Zhalgassuly Mahaya Aisijiang and Alexander Vladimirovich Kogut			
1669–1676	Assessment of recovered organic waste quality for application to sandy soils in the United Arab Emirates —Maitha Al Majid Almheiri, James Peter Terry and Munawwar Ali Khan			
1677–1683	Characteristic of stands of forest Fringillidae in the El Kala region (Northeastern Algeria) —Siouane Noureddine, Ziane Nadia and Slim Benyacoub			

1684–1689	Discrimination of tropical Mangrove species with hyperspectral leaf reflectance —Pandi Selvam Pandi, Ramesh Ramachandran, Purvaja Ramachandran and Srinivasalu Sechachalam
1690–1695	Zero waste management and green steel by replacement of steel mill scale in Eco friendly construction —P. Ganeshprabhu and P. Chandrasekaran
1696–1701	Ecological potential of highloft textiles from jute blended nonwovens for sound and thermal insulation —Bharanitharan Ramanathan, K. Thangamani and S. Sundaresan
1702–1711	Environmental effects of exposure to cellphone radiations and its impacts on human health — <i>A. Adappa Sholapuri and Shrinivas Rao</i>
1712–1719	Economic and environmental impacts of producer Company in Coimbatore District, Tamil Nadu —V. Jagadeesh Pandian and Madhavi Ganesan
1720–1725	Improving energy proficiency and trust worthiness for power plant monitoring in WSN —Sathiyaseelan Rathinavel
1726–1731	Study on utilization of waste plastic fibres as a construction entity — <i>S. Karthikeyan and G. Vennila</i>
1732–1737	Performance of different capsicum hybrids for earliness and yield under various protected structures —Daljit Singh Gill ^{1,3} , Ramesh Kumar Sadawarti ¹ and Madhu Sharma ²
1738–1753	Implication of woody species diversity on the aboveground biomass in subtropical sacred groves of Manipur, north east India — <i>Chongtham Sanjita, TH. Binoy Singh and TH. Rojen Singh</i>
1754–1759	Degradation of reactive dyes in textile dyeing effluent by fenton and electro fenton processes —A. Latha, P. Partheeban and R. Ganesan
1760–1766	Problem associated with breeding of two commercially important catfish <i>Clarias magur</i> (Hamilton, 1822) and <i>Heteropneustes fossilis</i> (Bloch, 1974): alternative approaches for solution —Pradip Kumar Maurya, Shubham Gupta, Arvind Kumar Verma and Sullip Kumar Majhi
1767–1775	In-vitro efficacy of fungicides, bioagents and plant leaf extracts against Sclerotium rolfsii causing collar rot disease of french bean (Phaseolus vulgaris L.) —Ashwini Kumar, N. Kudada and Amit Saurabh
1776-1779	<i>Mushroom</i> as food and medicine for Wellness and Wellbeing — <i>A.S. Deshmuknh</i>
1780–1784	Effect of sewage irrigation on physio-biochemical characterization of two Mulberry varieties (Morus alba and Morus serrata) —M. Aslam Abdullah, G.S. Nirmala, Aruna Singh, Rajan Jain, Sindhu Manchikanti and I. Ciurcanu
1785–1793	Impact of sub watershed implementation at Pandoga in swan river catchment area of shivalik foothills H.P, India on life form and biological spectrum <i>—Bindu Sharma, Sujata Bhattacharya and Sunil Puri</i>

1794–1806 Investigation of physicochemical parameters to assess groundwater quality due to solid waste dumping - A case study —P. Vijayalakshmi and Marykutty Abraham

IV	CONTENTS	Eco. Env. & Cons. 24 (4) : 2018
1807–1810	Sexual dimorphism of body size variations and mating Drosophila melanogaster —Veer Bhan	g behaviour in natural populations of
1811–1818	Mathematical modeling and analysis of domestic was moving bed biofilm reactor —Bimenyimana Hubert and Misbar Bashir	tewater treatment in Phagwara using
1819–1823	Effect of city sewage wastewater irrigation on the nu and crops —Afroza Akhter, Abdul Rashid Dar, Irfana Amin and Ari	-
1824–1826	Weed biodiversity and phytosociological composition of <i>—Ranjit Singh and P.N. Dongre</i>	of Bhadohi District of Uttar Pradesh
1827–1829	Consequence of changeable concentration of Cr (VI) or —Ravneet Chug and Manishita Das Mukherji	n a bacterial isolate
1830-1836	Behaviour and the influence of meteorological parame modelling studies, Manali Industrial area, Chennai —J. Karthick and R. Samuel Devadoss	eters towards air pollutant dispersion
1837–1842	Isolation and identification of bioactive protein from fi —Indira N., Valivittan K. and P. Dhasarathan	sh by products
1843-1846	Modelling of hybrid energy systems for renewable control —S. Arulanantha Samy, S. Venkatesh, S.Vasanth and P. S	
1847–1854	Madhav national park: A potential site for vulture in B —Ruby Yadav, Adesh Kumar and Amita Kanaujia	U C
1855–1858	Isolation, screening and identification of cellulose proc —N.C. Tharavathy and M.H. Attiya Ilham	lucing bacteria from rotten rruits
1859–1865	Physico-chemical analysis of natural water sources District, Tamilnadu, India —Indira N., Arunthathi R., Valivittan K. and P. Dhasarat	
1866–1874	Diversity and abundance of coral reef fish species in District, central Moluccas regency – Indonesia —Hasan Tuaputty, Marleny Leasa and John Rafafy Batlo	
1875–1878	Comparative evaluation of wet Lignocellulosic biomass —R. Divyabharathi, P. Subramanian, S. Pugalendhi, Jesudas	
1879–1884	Case study of biogas production from various feedstoc —Shivani and Bashir Misbah	ks
1885–1894	Soil Co ₂ flux and temperature sensitivity (Q ₁₀) in natu of senapati District, Manipur, India —Ng Niirou and Asha Gupta	iral and human impacted ecosystems
1895–1902	Biodiversity status and conservational requirements of — A review —Khasru Alam, Debjoy Bhattacharryay, Soumen Saha an	
1903–1913	Bacterial community structure (V3 Metagenomics) Kerala, India, by 16s RRNA amplicon sequencing —R. R. Reshmi and Salom Gnana Thanga, Vincent	of Ashtamudi estuarine sediment,
1914–1923	Modelling the relationship between land use and surfa —Mahdi Mahmoodi, Mahdi Honarmand, Farzin Naseri a	

1924–1930	Augmenting water stress tolerance in Tomato by silicon supplementation —Chanchal Malhotra, Riti Thapar Kapoor, Deepak Ganjewala and N. B. Singh
1931–1939	Assessing public awareness level on the preservation of coral reefs (The case study in Biak Numfor, Papua, Indonesia) —Lis Melissa Yapanto and Meilinda Lestari Modjo
1940–1944	Model multivariate adaptive regression spline on lead exposure found within the hair of Petrol station's workers in Gorontalo City, Indonesia —Herlina Jusuf
1945–1953	Flood disaster preventive measures using GIS and multicriteria technique in the water sheds area of Ambasamuthiram Town — <i>M. Seenirajan, M. Natarajan, R. Thangaraj and S. Shanmugasundaram</i>
1954–1959	Ranging and feeding ecology of Javan langur (<i>Trachypithecus auratus</i>) rehabilitation in coban Talun protected forest, Batu, East Java, Indonesia — <i>Emanuel Naitio, Amin Setyo Leksono and Bagyo Yanuwiadi</i>
1960–1965	Inter-dependency of forest diversity and service towards the potency of ecotourism development in Pegunungan Arfak nature reserve —Lukas Yowel Sonbait, Hermanus Warmetan, Hotlan Manik and Reinardus Liborius Cabuy
1966–1972	Triple harmonization of transcontinental allometric of <i>Picea</i> spp. and <i>Abies</i> spp. forest stand biomass — <i>Vladimir Andreevich Usoltsev, Seyed Omid Reza Shobairi and Viktor Petrovich Chasovskikh</i>

Eco. Env. & Cons. 24 (4) : 2018; pp. (1940-1944) Copyright@ EM International ISSN 0971–765X

Model multivariate adaptive regression spline on lead exposure found within the hair of Petrol station's workers in Gorontalo City, Indonesia

Herlina Jusuf

Faculty of Public Health, Universitas Negeri Gorontalo, Indonesia

(Recieved 5 June, 2018; accepted 20 August, 2018)

ABSTRACT

MARS (*Multivariate Adaptive Regression Spline*) is one of the non-parametric regression models that employs modified recursive partitioning algorithm. This study applied MARS model in the data of Lead (Pb) exposure in the workers' hair at the petrol station in Gorontalo City, Indonesia. The study is intended to investigate the content of Lead in one's body. The results of the study reveal that the MARS model in the Lead exposure in the workers' hair at the petrol station in Gorontalo City consists of Y = 1.93593 - 0.219669 * BF8 - 0.0220152 * BF13. Based on that MARS model, there are only three variables out of 10 assumed to affect the Lead exposure in the workers' hair at the petrol station in Gorontalo City including the working time, disease symptoms, and age.

Key words: Multivariate, Adaptive, Regression, Spline, Lead exposure, Hair.

Introduction

Time series modelling is usually found in sufficiently stationary and linear data by application of Autoregressive Integrated Moving Average (ARIMA) method for prediction (Arsyad, 1999). This method is highly effective, and model that is highly suitable will be achieved when the two requirements above are met. If the data could not fulfil the assumption, then the obtained model would not be complete in describing the pattern of the system behaviour, hence, unsuitable for forecasting. Development of non-linear time series has been made through the introduction of several flexible methods in various applications, where Multivariate Adaptive Regression Splines (MARS) is one of them (Friedman, 1991). Fluctuated and non linear data and time series modelling to obtain the value of given period in the future was proposed through

MARS approach, which was considered better than the stochastic model (Buja, Duffy, Hastie, Tibshirani, 2001).

One of the chemical elements that are dangerous to human health is the heavy metal. There are several heavy metals that are toxic and acts as a pollutant in the environment such as mercury (Hg), lead (Pb), Cadmium (Cd), and Cuprum (Cu). The lead that polluted the air can come from the burning residue of additive substance from the motor vehicles' fuel. The lead particles in the air can also come from other sources such as Allkil Pb factory and Pb-oxide, coal burning, etc (Sunu, 2001). The lead polluted air can enter the body through inhalation process. Most of the inhaled lead will enter the blood vessels in the lungs. Level of lead's absorption is heavily influenced by the size of the lead particle and the inhaled blood volume during the breathing process. The lead inhaled into the lungs will be absorbed and

HERLINA JUSUF

chained with blood in the lungs to further be distributed to all tissues and organs. In tissues or organs, the inhaled lead will be accumulated within the bone. Regardless, to the small amount of inhaled lead, this metal can be hazardous. This was due to the lead compounds that are toxic to many functions of the body organs (Palar, 1994). The other mechanism for the lead to enter the human body is through oral or direct contact with the skin surface. About 40% of lead within the body which comes from inhalation process is absorbed into the respiratory system. About 5-10% of the lead compounds were absorbed into the gastrointestinal tract (Naria, 2005).

The danger of the inhaled motored-vehicles' emission has a long-term effect on human body. The emission that contained lead is found in vehicles that used leaded-fuels as anti-knock compounds. The lead element in the body can be deposited into the soft tissues (bone marrow, nerve systems, kidney, and liver) and hard tissues (bones, teeth, nails, and hair). The lead element within the soft tissues is toxic within that soft tissues itself (Ardiyanto, 2005), whereas the intrusion of a large quantity of lead into the human body could cause kidney failure (Soesanto, 1998). It can also cause cancer, problems in peripheral and central nervous system, digestion system, and reproduction system (Ardyanto, 2005). Also, in a pregnant woman, lead can penetrate the placenta and enter the blood circulation of the fetus. The lead will be disposed of with the breast milk after the baby was born (Palar, 1994).

There has been extensive research on the level of lead within the body. However, the focus of this investigation is on the petrol's station workers in Gorontalo regency. Therefore, a research to find out the level of lead accumulated within the petrol station workers' body is needed.

Lead Found in Hair

Hair is a solid structure which consists of solid keratin cells from made from epidermis follicles which shaped like a bulb that grows into the dermis layer. Normal and healthy hair looks shiny, elastic, and not easily broken, as well as absorbs water. Hair composition consists of 50.60% of carbon, 6.36% of hydrogen, 17.14% of nitrogen, 5.0% of Sulphur, and 20.80% of oxygen (Pusponegoro, Erdina H.D. 2002). Hair is also one of the skin adnexa that spread along the body except for the palm of the hands, soles of the feet, nails, and lips (Soepardiman, Lily. 2002). There are two generic types of hair in the human body, terminal hair, the pigmented hair that grows on the head, brow, eye lashes, and in the pubic regions, and vellus hair, the least pigmented hair that grows in almost all body parts. (Soepardiman, 2002).

In the human body, the lead will be disposed through the various mechanisms, including through hair. Considering that hair reflects more on the level of a heavy lead pollutant that has entered the body (Kamal, 2007). This is because hair contains a lot of structural proteins that composed of cysteine amino acid that contains disulphide bonds (- S - S -) and cysteine containing sulfhydryl groups (- SH) with the ability to bind the heavy metals that enter the human body. The level of tolerated lead in human hair is $12 \le g/g$, in this level the toxin within the lead is not harmful (Palar, 1994).

Factors that influence the level of lead in human hair are the length of exposure, age, genetic, and nutrition, hence, hair can be used as an indicator for the level of lead pollution in human and animal (Ashraf *et al.* 1995).

Multivariate Adaptive Regression Spline

MARS is one of the non-parametric regression model which uses modified-recursive partitioning algorithm. The MARS modelling is preceded by three things below (Friedman & Silverman, 1989).

- i. Base Function (BF) is a function defined from each region. A maximum number of recommended base functions (BF) are 2-4 times of the number of the predictor variable.
- ii. Maximum interaction (MI) is a number of interaction that happens on the model. The number of maximum interaction (MI) are 1, 2, and 3, if the maximum interaction used is more than 3, then the CGV value will increase and the model used will be more complex. If the maximum interaction used is 1, it means there is no interaction among variables within the model. If the maximum interaction used is 2, then there is an interaction between two variables within the model. If the maximum interaction used is 3, it means that some interaction that happens within the model is mostly among three variables.
- iii. Minimum observation (MO) is a number of minimum observations among knots. A number of maximum interactions (MI) are 0,1,2, and 3, beyond this figure, the CGV will increase. Establishment of the value of the base function

1941

1942

(BF), maximum interaction (MI) and minimum observation will influence the MARS model that will be developed. The multivariate adaptive regression splines (MARS) can be written in the following formula

$$\hat{f}(x) = \beta_0 + \sum_{m=1}^{M} \beta_m \prod_{k=1}^{K_m} \left[S_{km} \cdot \left(x_{\nu(k,m)} - t_{km} \right)_+ \right]$$

Research Method

This study is an observational research with crosssectional approach. This study is conducted on petrol stations' workers that work in seven petrol stations in Gorontalo city with a total number of 48 workers. The samples are taken between 07.00 – 11.00 am because that period is the peak time for vehicles to fill their petrol tanks in these stations. The testing of the hair samples is conducted in *Balai Pengawasan Mutu Perikanan* (fisheries quality control office, henceforth called as BPMP) of Gorontalo city.

The population in this study is all the workers of petrol stations in Gorontalo city. Samples are taken using purposive sampling method based on several criteria. The samples' criteria are as follow: (1) Age 20-40 years old; (2) Hair length minimum 5 cm; (3) Work tenure \geq 2 years and (4) Volunteer to become respondents

Research Variables

The were three variables using of this research. These research Variables are: (1) Work Tenure. It is about the length of time where respondents, in their line of work have been exposed to lead. The longer the working tenure, the higher the risk to be exposed to lead. The objective criteria are short work tenure (≤ 2 years) and long work tenure (> 2 years); (2) Level of Lead (Pb). Number of lead accumulated in respondents' body. The tolerated lead exposure on human hair is $\leq 12 \,\mu g/g$, hence, the toxicity is not severe (WHO, 1994). The objective criteria are normal, when the lead level is $\leq 12 \,\mu g/g$ and abnormal when the level of lead is > 12 μ g/g and (3) Health problems on petrol stations' workers. Health concerns are often found in people who have been exposed to lead. The target of this study is the lead in the hair of petrol stations' workers in the area of Gorontalo city.

Primary data are obtained through an interview with additional observation sheet that contains the questions such as the identity of the respondents (name, age, and respondents' work history, medical history). The respondents' hair specimens are collected and tested on the level of lead in respondents' hair is conducted in the laboratory. Secondary data used in this study are data from BLHRD (Provincial Environment and Research Agency) of Gorontalo province, *Samsat* Office (Vehicle Registration office) of Gorontalo city, and *Badan Pusat Statistik* (statistical bureau) of Gorontalo Province.

Tool, Technique and Research Procedure

The method used in analysing the specimens in this study is Atomic Absorption Spectrophotometry (AAS). The samples are tested at BPMP laboratory of Gorontalo city.

- i. Tools and equipment
- Hair scissor used to cut the respondents' hair
- Plastic bag
- Observation sheet
- Acetone and water
- beaker glass
- volumetric flask
- pipet
- mortar and pestle
- vial polyethylene
- PC computer
- Digital Scale
- *Kooling* Module (KMS) or water cooling system
- Atomic Absorption Spectrophotometry as tool of analysis
- Blower
- Petrol stations workers' hair
- Condensed Nitric Acid (HNO₃)
- Perchlorate Acid
- Aqua dest
- ii. Hair specimen collection technique

Each respondent hair was taken 0.5 - 1 cm, then the hair is put into a labelled plastic bag. Respondents' data are also collected, such as the name, age, and work tenure.

i. Preparation Technique and AAS analysis

Prior to hair specimens' analysis, the specimens are washed with 100 mL of acetone and rinsed three times with water. After that, the hair is washed using the acetone to get rid of the fat and other contaminants that might interfere other elements in hair. The specimens then dried. The specimen then destroyed to obtain a homogenous result. The result is then put into a vial, each specimen is given a label.

Research Findings and Discussion

In Mars modeling process, there are three things to be considered: the base function (BS), maximum interaction (MI), and minimum observation (MO). The base function (BF) is a function defined from each region. The maximum number of recommended base function (BF) is 2-4 times of the number of the predictor variable (Friedman, 1991). The predictor variables that are suspected to influence the lead exposure are ten variables, hence, the number of base function that will be combined in the establishment of the model are 20, 30, and 40.

Maximum interaction (MI) is the number of interaction that happens on the model. The number of maximum interaction (MI) is 1, 2, and 3 (Friedman, 1991). If the maximum interaction used is more than 3, then the CGV value will increase and the model used will be more complex.

Minimum observation (MO) is number of minimum observation among knots. Number of maximum interaction (MI) is 0, 1, 2 and 3, beyond this figure, the CGV will increase.

The establishment of MARS model is conducted through trial and error for all combination of the BF, MI, and MO values that have been previously determined. The possible models based on those combinations are 36 models. From each of these modellings, GCV values will be produced and created predictor variables included into the model. The result is presented in Table 1 below.

Based on the table above, the smallest GCV values are found in model number 11, 23, and 35. Because these three models yield the same result, the model with the smallest MI and MO values are selected. Hence, the chosen model is model number 11, where the value of GVC is 0.08952 with the combination of BF=20, MI=3 and MO=2. The MARS model equation is

Y = 1.93593 - 0.219669 * BF8 - 0.0220152 * BF13	
where,	
$BF6 = (\times 5 \text{ in } (1));$	
BF8 = (×10 in (2)) * BF6;	
$BF13 = max (0, 39 - X_{.}) * BF8;$	

From this model, it is clear that out of ten variables that are assumed to have an influence on the model, only three variables that are proven to have an influence on lead exposure. Because the best model is a model with maximum two interactions, it is suspected that there are factors that are interacting with one another. This model consists of one

intercept (base function master) and three base functions that consist two level-2 interactions.

To examine the variables that influence the lead exposure, interpretation of the MARS model is presented below. Interpretation of this MARS model is quite tricky because the base function in this model consists of not only one variable, but there is also the interaction between variables.

• BF8 = (X10 in (2)) * BF6, where BF6 = (X5 in (1))

It means that BF* coefficient will be meaningful if respondents were indicated to have some complaints and the length of work shift in petrol station was less than eight hours, then each unit increase in base function BF8 will decrease the lead exposure

 Table 1. Trial and Error Result for All BF, MI, and MO Combinations

	Combina	10115		
	BF	MI	МО	GCV
1	20	1	0	0.11958
2	20	1	1	0.11905
3	20	1	2	0.11888
4	20	1	3	0.11905
5	20	2	0	0.11518
6	20	2	1	0.09693
7	20	2 2 3	2	0.10564
8	20	2	3	0.09838
9	20		0	0.11553
10	20	3	1	0.10139
11	20	3	2	0.08952
12	20	3	3	0.09931
13	30	1	0	0.11933
14	30	1	1	0.11871
15	30	1	2	0.11856
16	30	1	3	0.11892
17	30	2	0	0.11518
18	30	2	1	0.09693
19	30	2	2	0.10564
20	30	2	3	0.09838
21	30	3	0	0.09838
22	30	3	1	0.10139
23	30	3	2	0.08952
24	30	3	3	0.09931
25	40	1	0	0.11933
26	40	1	1	0.11871
27	40	1	2	0.11856
28	40	1	3	0.11892
29	40	2	0	0.11518
30	40	2	1	0.09693
31	40	2	2	0.10564
32	40	2	3	0.09838
33	40	3	0	0.11553
34	40	3	1	0.10139
35	40	3	2	0.08952
36	40	3	3	0.09931

by 0.219669 percent.

• BF13 = max (0. 39 - X1) * BF8, where BF8 = (×10 in (2) * BF6 and BF6 = X5 in (1)

It means that coefficient BF8 =13 will be meaningful if the respondent's age were less than 39 years old and indicated health complaint and length of work shift in petrol station was less than 8 hours, then each unit increase in base function BF8 will decrease lead exposure by 0.0220152 percent.

Mars modelling in this study showed that there are interactions among predictor variables, which in turn influence the responds' variables as shown in the following table

Table 2 in general shows the significant interaction among variables in each base function. The three influential predictor variables indicate that each variable contributes to the responds' variable.

Level of variable's importance is the extent of

Table 2. Interaction in Base Function

BF	Interaction
8	Indicated to have health complaint and length of work shift in petrol station
13	Age indicated to have health complaint and length of work shift in petrol station

predictor's variable contribution toward the MARS model. Level of predictor's variable importance in grouped function is calculated by the increase in GCV value. The increase of GVC value is due to the migrations of considered variables within the model. The importance level of predictor's variable is shown in the following table.

Table 3 shows that work tenure in petrol stations and health complaint indication have the biggest contribution by 100% in determining the lead exposure risk. The second contributed variable by 38.43% is the age of the respondents.

Tabel 3. Level of Predictor's Variable Importance

Variable	Level of Importance	GCV
Work tenure	100.00000	0.14486
Indicated health compla	int 100.00000	0.14486
Age	38.43010	0.08373

Conclusion

Based on the findings and analysis discussed above, the following things are concluded in this study: MARS equation model obtained is:Y = 1.93593 - 0.219669 * BF8 - 0.0220152 * BF13. From this model it is obtained that out of 10 variables that are suspected to have an influence on the model, there are only three variables that have the influence on lead exposure namely, work tenure in a petrol station, health complaint indication, and age.

References

- Ajang, L., dkk, 2015. Penentuan Kadar Ion Pb²⁺ (Timbal) Dalam Rambut Karyawan Bengkel di Kota Samarinda. Jurnal Kimia Mulawarman. 12 (2) : No. ISSN 1693-5616. Kimia FMIPA UNMUL.
- Abraham, A. and Steinberg, D. 2001. MARS: Still an Alien Planet in Soft Computing?. School of Computing and Information Technology, Salford System. Inc, USA.
- Arsyad, L. 1999. *Peramalam Bisnis*. Edisi Pertama BPFE : Jogyakarta
- Ardyanto, D. 2005. Deteksi Pencemaran Timah Hitam (Pb) Dalam Darah Masyarakat Yang Terpajan Timbal (Plumbum). *Jurnal Kesehatan Lingkungan*. 2 (1): 67 -76.
- Breiman, L. 1991. Discussion of "Multivariate Adaptive Regression Splines", by J.H. Freidman. Annals of Statistics. 19: 82-90.
- Friedman, J.H. 1990. Multivariate Adaptive Regression Splines, Tech Report 102 Rev, Departement of Statistics Stanford University : California.
- Friedman, J.H. 1991. Multivariate Adaptive Regression Splines (with discussion). *Ann. Statist*. 19 : 1 – 141.
- Darmono. 1995. *Logam dalam Sistem Biologi Makhluk Hidup*. Jakarta: UI-Press.
- DepKes. 2001. Kerangka Acuan Uji Petik Kadar Timbal (Pb) pada Spesimen Darah Kelompok Masyarakat Berisiko Tinggi Pencemaran Timbal. Ditjen PPM dan PLP Departemen Kesehatan RI Jakarta.
- Fergusson, J. E. 1991. The Heavy Elements Chemistry Environmental Impact and Health Effects. Pergamon Press.
- Gunandjar, 1985. Diktat Kuliah Spektrofotometer Serapan Atom. Yogyakarta: PPNY BATAN.
- Hasan, W., dkk, 2012. Pengaruh Jenis Kelamin dan Kebiasaan Merokok terhadap Kadar Timbal Darah. *Jurnal Kesmas.* 8 (4).
- Kamal, Z., Supriyanto, C. and Samin, 2007. Analisa Cemaran Logam Berat Pb, Cu, dan Cd pada Ikan Air Tawar dengan Metode Spektrometri Nyala Serapan Atom (SSA). Seminar Nasional, Yogyakarta.
- Moskoagouw, D. 2000. Kajian Peredaran Logam Berat (Hg, Cd, Pb, Cu, dan Zn) pada Perairan Pantai di Kodya Bitung Propinsi Sulawesi Utara. Bogor: Program Pascasarjana IPB.
- Naria, E. 2005. Mewaspadai Dampak Bahan Pencemar Timbal (pb) di lingkungan terhadap Kesehatan. *Jurnal Komunikasi Penelitian*. 17 (4).
- Palar, H. 1994. Pencemaran dan Toksikologi Logam Berat. Bandung: Rineka Cipta.