Editor-in-Chief of the IJBSBT Journal

Tai-hoon Kim,
GVSA and UTAS, Australia

General Information of IJBSBT

Bibliographic Information
- ISSN: 2233-7849
- Publisher: SERSC

Science & Engineering Research Support Society

Contact Information

Science & Engineering Research Support Society
- Management Office: 20 Virginia Court, Sandy Bay, Tasmania, Australia
- Phone no.: +61-3-9016-9027
- Email: ijbsbt@sersc.org

Submission Guidelines

- Every submitted paper will be carefully reviewed (blind review) by at least three members of the International Program Committee.
- All accepted papers will be published by the web first, and included in the hard copy journal later.
- Authors should submit paper with about 12 pages ~ 18 pages by using online systems for review.

Journal Topics

The goal of IJBSBT is to bring together the researchers from academia and industry as well as practitioners to share ideas, problems and solutions relating to the multifaceted aspects of Bio-Science and Bio-Technology.
Basic Topics:

- Bioelectronics and Biorobotics
- Bioinformatics and Bioengineering
- Bioinspired Information Technology
- Biometrics and its Application
- Biomedicine and Medical Informatics
- Hybrid Research between Bio-technology and IT

Advisory/Editorial Board

- A. Q. K. Rajpoot, MUET, Pakistan
- Aishy Amer, Concordia University, USA
- Apoorva Gaiwak, Medicaps Institute of Technology and Science, India
- Blamah Nachamada Vachaku, University of Jos, Nigeria
- Carlos Juiz, Universitat de les Illes Balears, Spain
- Clare Bates Congdon, University of Southern Maine, USA
- Debnath Bhattacharyya, Heritage Inst. of Technology, India
- Dong-Yup LEE, National University of Singapore, Singapore
- Emilio Corchado, University of Burgos, Spain
- Farzin Deravi, University of Kent, UK
- Francisco Herrera, University of Granada, Spain
- George A. Gravanis, Democritus University of Thrace, Greece
- Guo-Zheng Li, Shanghai University, China
- Janusz Kacprzyk, Polish Academy of Sciences, Poland
- Jason T. L. Wang, New Jersey Institute of Technology, USA
- Jim Torresen, Department of Informatics at the University of Oslo, Norway
• Kenji Mizuguchi, National Institute of Biomedical Innovation, Japan
• Kevin Daimi, University of Detroit Mercy, USA
• Liangjiang Wang, Clemson University, USA
• Lusheng Wang, City University of Hong Kong
• Maricel Balitanas, University of San Agustin, Philippines
• Md. Al Amin Bhuiyan, Jahangirnagar University, Bangladesh
• Md. Ameer Ali, East West University, Bangladesh
• Meena K. Sakharkar, Nanyang Technological University, Singapore
• Michael E. Schuckers, St. Lawrence Univ., USA
• Mohammad Zahidur Rahman, Jahangirnagar University, Bangladesh
• Pong C. Yuen, Hong Kong Baptist University, Hong Kong
• Prashant Bansod, Shri Govindram Seksaria Institute of Technology & Science, India
• R. Ponalagusamy, National Institute of Technology, India
• Rattikorn Hewett, Texas Tech University, USA
• Rossin John Robles, University of San Agustin, Philippines
• Saman Halgamuge, University of Melbourne, Australia
• See-Kiong Ng, Institute for Infocomm Research, Singapore
• Sungwon Park, Hannam University, Korea
• Tatsuya Akutsu, Kyoto University, Japan
• Tommaso Mazza, The Microsoft Research - University of Trento CoSBi, Italy
• Tughrul Arslan, Engineering and Electronics, Edinburgh University, UK
• Waleed Abduliah, University of Auckland, New Zealand
• Xiaofeng Song, Nanjing University of Aeronautics and Astronautics, China
• Yang-sun Lee, Seokyung University, Korea
• Zambare Vasudeo, South Dakota School of Mines & Technology, USA
IJBSBT is indexed by:

- EBSCO
- ProQuest
- ULRIC
- OpenJ-Gate
- SCOPUS
- Cabell

Editorial Secretary

- Ronnie D. Caytiles
Foreword and Editorial

International Journal of Bio-Science and Bio-Technology

We are very happy to publish this issue of an International Journal of Bio-Science and Bio-Technology by Science and Engineering Research Support Society.

This issue contains 32 articles. Achieving such a high quality of papers would have been impossible without the huge work that was undertaken by the Editorial Board members and External Reviewers. We take this opportunity to thank them for their great support and cooperation.

Paper “Correlations between Medical Students’ Self Assessment of Communication Skills and Patient-Physician Interaction Assessed by Standardized Patient Clinical Performance Examination” identifies the correlations between medical students’ communication skills and patient-physician interaction of clinical performance examination. A total of 36 fourth-year medical students were enrolled in this study and were surveyed concerning communication skills during clinical performance examination. This study demonstrated that medical education of communication skills could not be transferred to improvement of patient-physician interaction in clinical skills assessment.

In the paper “Ex-situ Conservation of Indigenous, Threatened and Ethno-Medicinal Diversity of Forest Species”, Madhya Pradesh is rich in plant wealth and endemic flora. As a part of conservation programmes, institute has established an arboretum-cum-botanic garden in 1976, covering an area of 7.34 ha. The garden complex includes various sections situated in the campus and nursery. The main forest botanic garden is situated in 4.23 ha area and houses a wide array of forest flora including trees, shrubs, climbers and herbal plant species in various sections. Of the total species planted, over 50% were threatened and ascribed with conservation value. The garden was of scientific and educational utility. The institute provides diploma and degree courses in collaboration with Universities and colleges. The institute forest botanic garden has been registered under the network of Indian Botanic Gardens in 2005. It was one among the 140 Botanic gardens of India registered by Botanic Garden Conservation International under BGCI-Investing in Nature-India programme.

The paper “EEG-based Emotion Recognition from Human Brain using Hjorth Parameters and SVM” is presenting the emotion recognition of EEG brain signals using Support Vector Machines (SVM). The emotions were elicited in the subjects using emotion related stimuli. They used the emotional stimuli from the International Affective Picture System (IAPS) database in this research. These stimuli belonged to five types of emotions in our experiment such as, happy, calm, neutral, sad and scared. The raw EEG brain signals were preprocessed to remove the artifacts. They introduced a feature extraction method using Hjorth parameters. The set of features were extracted from preprocessed EEG signals of each subject, separately. The combined feature set of all subjects was processed through SVM.

The thesis “Improved Ventricular Fibrillation/Tachycardia Detection using NEWFM for Automated External Defibrillators” proposes improved VF/VT detection. For our experiments, they use the complete Creighton University Ventricular Tachyarrhythmia Database. Samples are analyzed under the same conditions in intervals of 7 s. Based on this data, they propose a time-delay transform. Then, they extract six shockable features,
Table of Contents

Correlations between Medical Students’ Self-Assessment of Communication Skills and Patient-Physician Interaction Assessed by Standardized Patients in Clinical Performance Examination 1
Seleun Oh, Woo Jeong Kim and Min Young Kim

Ex-situ Conservation of Indigenous, Threatened and Ethno-Medicinal Diversity of Forest Species 9
O.P. Chaubey, Archana Sharma and G. Krishnamurth

EEG based Emotion Recognition from Human Brain using HjorthParameters and SVM 23
Raja Majid Mehmod and Hyo Jong Lee

Improved Ventricular Fibrillation/Tachycardia Detection using NEWFM for Automated External Defibrillators 33
Xiyu Zhou and Joon S. Lim

WSN Based Wheeze Detection Systems for Diagnosing Disease like Asthma: A Survey 40
Abhinav Hans and Sheetal Kalra

Muscle Activity of Lower Extremities for Normal Adults According to the Type of Chair and Posture during Sit-to-stand Movement 51
Sunghyoun Cho and Haewon Byeon

An Empirical Application of an Information System to Relieve Chronic Obstructive Pulmonary Disease 61
Seong-Ran Lee
Numerical Simulation of Blood Flow in Centrifugal Heart Pump by Utilizing Meshless Smoothed Particles Hydrodynamic Method

Erfan Rahamanian, Mehdi Navidbakhsh, Mohammad Mohammadzadeh and Hamed Habibi

A Study on Core Stability Training for Postural Control Ability and Respiratory Function in Patients with Chronic Stroke

Sung-Pil Chun, Kyung-Yoon Kim, Tae-Gyeong Kang and Gi-Do Kim

Factors That Affect Health Professionals’ Preparation of Advanced Directives in Korea

Byung Deog Hwang, Ryoung Choi and Jae Woo Park

Camera Calibration Using Direct Mapping and Adaptive Metaheuristics

Jaroslav Moravec and Miloslav Hub

Relations of Job Stress, Burnout, Mindfulness and Job satisfaction of Clinical Nurses

Jung Im Choi and Myung Suk Koh

Critical Thinking Disposition, Professional Self-concept and Caring Perception of Nursing Students in Korea

Hae Young Woo and Young Ran Tak

Estimation of Respiration Rate from ECG Using Canonical Components Analysis and Ensemble Empirical Mode Decomposition

Vineet Kumar and Gurpreet Singh

Nursing students’ Experiences of Simulation-based Education on Hypoglycemia

In-hye Song and Hyeon-cheol Jeong
Relationship between Job Attitude and Job Performance of Reception Staff at General Hospital in Seoul 155

Yeon Suk Oh, Mi Joon Lee and Bum Jeun Seo

The Effectiveness of Inhibition Filtrate Bacteriocins Lactobacillus acidophilus Toward Contaminants Bacteriafrom Swordfish (Auxis rochei) Stew 163

Rieny Sulistijowati, Jetty Nurhajati and Insawosami Awom

How the Factors of Hospital Choice of Cancer Patients Affect Customer Satisfaction 175

Jong-Hyun Yang and Jeong-Ah Yoon

A Comparison of Cervical Flexion, Pain, and Clinical Depression in Frequency of Smartphone Use 183

Junhyuk Park, Kwangho Kim, Namkang Kim, Inwon Choi, Sujung Lee, Sa Jin Tak and Jongeuin Yim

Analysis of Force in Human Muscle using EMG in Hot Rolling Mill 191

K. Govindaraju, B. Sasi Kumar, K. Raja and K. Murugabhoopathy

Identifying Symmetry and Contracted Ratio of Lateral Abdominal Muscles in Stroke Survivors 199

Dongkwon Seo, Seungwon Lee and Yeonseop Lee

Research on Size Precision of Implant Fixtures among Four Different Types of Fastening Methods 207

Soo-chul Park, Chang-suk Kim and In-ho Jeong

A Framework for Data Warehouse Using Data Mining and Knowledge Discovery for a Network of Hospitals in Pakistan 217

Muhammad Arif, Asad Khatak and Mehdi Hussain
Factors Affecting The Spiritual Well-being of Foreign Immigrant Wives in Korea

Hye Jin Kim, Eun Kwang Yoo, Eun Sil Jung, Muyeong seak, Yang

Factors Influencing Ego-resilience in Nursing Students

Jun Hee Noh, Eun Ju Lim

Integrated Distributed Architecture to Integrate Wireless Sensor Networks (WSN) with Grid for Healthcare

Ch. V. Phani Krishna, K. V. D. Kiran and Tai-hoon Kim

Influence Factors on Health and Medical Expense of Public Pension Recipients in South Korea

Ryoung Choi and Byung Deog Hwang

Intelligent Precision Improvement on Robot Assisted Minimally Invasive Direct Coronary Artery Bypass

Hossein Davarpanah, Farzin Plitan, Somayeh Jowkar, Mohammad Beheshti and Saman Rahbar

A Study of Emotional Intelligence and Coping Strategies in Baccalaureate Nursing Students

Mi-Ran Kim and Su-Jeong Han

Contingent Valuation Method of New and Renewable Energy as a Future Alternative in Korea

Woo-Jin Jung

The Study on the Motivation of Sex-Selective Abortion among Indian Immigrants in U.S.A

Jill Tucker, Sung Seek Moon, Minkyung Kim and KyungSook Kim
Multi-Hop N-Screen Traffic Mechanism for Wearable Health-Monitoring System in Hospital Wireless Networks

Kyeong Hur, Won-Sung Sohn and Kil Young Kwon

Effects of Functional Shoes on Joint Moment, Ground Reaction Force, and EMG

Chong-hoon Lee
Dear Renny Sulistijowati, Jaty Nurhajati, Insawasami Averm

We are happy to inform you that your paper entitled “The Effectiveness inhibition Filtrate Bacteriocins Lactobacillus Acidophilus Toward Contaminants Bacteria from Swordfish (Xalas rochei) Stew”, submitted to UBSSB has been accepted for inclusion in the journal.

Please consider the reviewers’ rating/comments carefully when preparing the final version of your paper.

After making the final version, kindly send these documents to ornie@sersc.org by April 30, 2015.

1. Camera-ready paper (http://www.serse.org/journals/posef/posefMS/word.doc)
2. Copyright form (http://www.serse.org/journals/sersc2013/journal%20Copyright%20form.pdf)

We strictly request you to follow the format of the Journal.

*Note: You don’t have to pay processing charge. SERSC’s Korea branch provided financial support.

We will publish papers, on a first-come-first-served basis.

Best regards,

Editor-in-Chief of UBSSB

__

Reviewer: 1

Originality: Accept

Further revision needed
Editor-in-Chief of IUBIT

Reviewer 1

- Originality: Accept
- Quality: Weak Accept
- Relevance: Weak Accept
- Presentation: Accept
- Recommendation: Weak Accept

Summary:

Details:

- Observe proper grammar, sentence construction and spelling
- Indents and spaces between paragraphs must be observed

Reviewer 2

- Originality: Weak Accept
- Quality: Weak Accept
- Relevance: Accept
- Presentation: Accept
- Recommendation: Weak Accept

Summary:

Details:

- Punctuation marks should be properly placed and inserted
Summary:
Details:
Punctuation marks should be properly placed and inserted

Review:

- Originality: Weak Accept
- Quality: Weak Accept
- Relevance: Accept
- Presentation: Accept
- Recommendation: Weak Accept

Summary:
Details:
review grammar and observe proper paper formatting specifically on the references section
Dear Authors,

Good day!

Final paper submission have been received.

Your paper will be included in June 2015 issue of UBSEI.

Thank you.

Very truly yours,

Rosa D. C. Nteni - Secretariat-Financial Management
Science & Engineering Research Support Society
E-mail: ronnie@serse.org
Tel: +62 3 9015 9627 +62 70 1878 7881
Fax: +62 70 1874 0027

From: Rini Sulistiyowati [mailto:rsulisti@iogmail.com]
Sent: Saturday, May 09, 2015 8:15 AM
To: SERSE Secretariat
Subject: Re: Final Version
The Effectiveness of Inhibition Filtrate Bacteriocin Lactobacillus acidophilus Toward Contaminants Bacteria from Swordfish (Auxis rochei) Stew

Riny Sulistijowati*, Jetty Nurhajati**, Insawosami Awom**

*Faculty of Marine and Fisheries, Gorontalo State University
**Padjadjaran University
PO BOX 5, Zip Code 96128 Indonesia
riny.sulistijowati@gmail.com

Abstract

This research was conducted to know the effectiveness of filtrate bacteriocin Lactobacillus acidophilus according to concentrations toward zone of growth inhibition contaminant bacteria from swordfish (Auxis rochei) stew. This research was an experimentally research conducted in laboratory of Food Chemical Research Center of LIPI Bandung used completely randomized design with two replications. Species of contaminant bacteria used were: Bacillus sp. (RR2), (Da, Te, Amp, Sx), Staphylococcus aureus (R4) and Staphylococcus aureus (R5) (Da) with range of concentration the filtrate bacteriocin culture Lactobacillus 50, 60, 70, 80, 90 and 100%. The parameters were diameter (mm) of the zones of bacterial growth inhibition. The results showed that treatment with filtrate of bacteriocin concentration 50 to 100% effective can inhibit the growth of bacterial contaminants. This treatment provide that the filtrate bacteriocin of culture L. acidophilus can be used as bio-preservative in the swordfish stew.

Keywords: Bacteriocins, Lactic Acid Bacteria, Contaminant bacteria, Swordfish

1. Introduction

Swordfish is the object of commercial tuna to be exported as wood fish known as arubushi from Nort Sulawesi Province of Indonesia. The processing of wooden fish (arubushi) included boiled, curried and drained, then soaked in water and pickled thorns. While immersed in water susceptible bacteria from contaminant water or the hands of workers and the equipment used (BSN,[1]). Bacterial contaminant often cause spoilage in some foods that have been process (cooked) or raw materials. Bacterial contaminant from fish like Serratia, Micrococcus, Bacillus, Acetonobacter, Pseudomonas, Staphylococcus, and Flavobacterium (Banwards, [2]). Some strains of the bacteria contaminant are resistant toward antibiotics. It is done by way of preservation of these contaminant destroy bacteria. It can be done by using L. acidophilus bio-ensiling preservation. The effectiveness of bacteriocins produced by L. acidophilus provide opportunities to reduce or bacterial contaminant safely(Ogunbanwo, [3]). Some of the studies support the implementation of this research are for examples: (Sulistijowati, et al., [4]) state that the treatment of inoculum Lactobacillus acidophilus immersion time 90 minutes gave the best result for absence of E. coli in swordfish stew (Auxis rochei). (Sulistijowati, et al., [5]) state that the culture age 18 hours of immersion time in 90 minutes inhibitory Coliform group up to MPN 0 with control MPN 2.63 in comparison without soaking time or 2 log cycle inhibitory Coliform bacteria group. In addition, (Santoso, [6]) the use bacteriocins production of L. Ed plantarum 22 as a preservative products such as fish and shrimp pasteo reduce bacterial contaminant during storage.
The objective of this research was to study bacterial contaminants from boiled swordfish stew that were resistant to antibiotics. The value of the Minimum Inhibitory Concentration (MIC) of the filtrate L. acidophilus bacteriocins and the extent to which the effectiveness of L. acidophilus bacteriocins by concentration of the filtrate became the choice of study. Identification of this research was: The first whether the bacteria found contaminants of swordfish stew that are resistant to antibiotics; The second how much the value of the Minimum Inhibitory Concentration (MIC) of the filtrate L. acidophilus bacteriocins toward every strain bacteria contaminants of swordfish stew; The third how of effectiveness filtrate L. acidophilus bacteriocins according to the concentration toward contaminant bacterial growth inhibitory zone.

The intent of this study was to determine the effectiveness of the culture filtrate L. acidophilus bacteriocins toward contaminants bacterial of swordfish stew that was resistant to multiple antibiotics. While the purpose of this study is to obtain an effective concentration of the filtrate bacteriocins of L. acidophilus to inhibit bacterial contaminants from boiled swordfish that can be used as an agent biopreservative. The usefulness of this study is to provide information about the benefits of bacteriocins L. acidophilus filtrate to inhibit the growth of bacterial contaminants from boiled swordfish so that it can be used as a new biopreservative.

2. Materials And Methods

2.1 Materials and Equipment

Materials used in this study were: L. acidophilus bacterial isolates available in the laboratory of Chemistry LIPI Bandung. Test bacteria used in this study were isolated from bacterial contaminants stew meat tuna. Media and chemicals used were alcohol 70 and 95 %, antibiotics, Brain Heart Infusion (BHI) Agar and Broth (Oxoid), sugar case broth, disinfectants, crystal violet solution, Lugol, oil immersion, Man ROGOSA Sharpe (MRS) broth (Oxoid, CM 359), Mueller Hinton (MH) agar (Oxoid CM 337), Nutrient agar (NA) (Oxoid CM 3B), 0.9 % NaCl physiological, and standardization Mc Farland 1 (3×10^8 Colony Forming units (CFU/ml)). Equipment used in this study were: autoclave, incubator, glass equipment, laminar air flow, antibiotic paper, micrometer size millipore membrane.

2.2 Research Method Phase I

Isolation, Identification and Characteristics of Bacterial Contaminants of Swordfish Stew

The methods used in this study were in the laboratory and the results will be discussed in the descriptive customized with previous results. The test resistance patterns using three strains of bacteria contaminants were Bacillus sp (RR2), Escherichia coli (E.coli), Lactobacillus acidophilus (L.a), and six antibiotics that Clindamycin (DA.2), Tetracycline (Te.30), Amikacin (AK.30), Ampicillin (AMP.10), Gentamycin (CN.10), Chloramphenicol (C.30), Cotrimoxazole (SXT.25), Amoxicillin Clavulanic Acid (AMC.30). Observations were made by looking at the amount of bacterial growth inhibition zone contaminants.

Sterilization Equipment and Materials:

Sterilization and autoclaving the medium at 121 °C and a pressure of 1 atm (15 lbs), a maximum of 1.5 atm for 15 minutes.
Isolation of Bacteria Contaminants: Swordfish Stew

The first fish weeded, discarded gills and entrails, then washed with water and then boiled for 30 min at 80°C temperature. Then the fish drained until cool, then put the fish in a container of water while using tweezers plucked prickly, then drained = 5 hours in a dry place at room temperature. Furthermore, the fish ready to use for the isolation of bacteria. Isolation of bacterial contaminants was conducted using serial dilutions in physiological NaCl solution. A total of 25 g of fish meat samples put in 250 mL of 0.9% sterile physiological saline, and then 1 mL of sample dilution sampled into 10-2 - 10-9 each containing 9 mL of physiological saline. Three final dilution in each sample plating is done, and then incubated at 37°C for 24-48 hours. After the incubation period, the growth of bacterial colonies observed, and then purified on medium Nutrient Agar (NA), in a petri dish and incubated for 24 hours at 37°C (Cappuccino, Sherman [7]).

Gram Staining

Gram staining was conducted to determine the properties of the bacteria to a type of staining and for identification. Physiological saline dripped on object glass and then the bacteria in the test loop streaking the glass object. Mixture dried then fixed three times. Mixture is cooled and then the preparations spalled with carbolic gentan violet dyes. Allowed to stand for 30 seconds. Excess dye was washed with water and discarded. Added Lugol (iodine : potassium iodide : distilled water = 1 : 2 : 300) as a substance, for 30 seconds. Then washed with water. Preparations were washed with 96% alcohol for 2 seconds fuscin for comparison spalled water for 30 seconds, then washed with water. The results of staining, gram-positive bacteria purple and gram-negative bacteria pink (Cappuccino, Sherman [7]).

Biochemistry Test

Test Biochemistry Sugars and Indole, Methyl Red, Voges Proskauer, and Citrate (IMViC). Bacteria Gram stain results that have been known to be Gram-positive or Gram-negative, further observed by biochemical testing media sugars are glucose, lactose, mannit, maltose and sucrose and peptone water media IMViC ia, methyl red, Voges Proskauer and citrate (Cappuccino, Sherman [7]).

Sugar Test

Colonies of bacteria to be tested were taken of the loop and then inoculated into the medium of candy in a row on all test media sugars (glucose, lactose, mannit, maltose and sucrose). Then incubated at 37°C for 24 hours. After an incubation period observed color changes in the medium and the formation of gas in the Durham tube (Cappuccino, Sherman [7]).

IMViC Test

Colonies of bacteria to be tested were taken of the loop and then grown in medium peptone water, methyl red (MR), Voges Proskauer (VP) and citrate as planting on slopes. Then the medium was incubated for 24 hours at 37°C. After incubation the media spilled reagent is then observed color changes (Cappuccino, Sherman [7]).

Rejuvenation Isolates Bacteria Contamination

Rejuvenation is performed on BHI medium and BHI broth agar incubated for 24 hours at 37°C. Colonies that grow then grown into a 10 mL broth medium sugar broth. Bacterial isolates that grow tested in an active state.
Test Pattern toward Antibiotic Resistance Bacteria.

Bacterial contaminants that have actively taken 1 mL in 9 mL planted to sugar cane broth, then incubated for 24 hours at 37°C. After incubation, the bacterial suspension was made in sterile physiological saline to a turbidity equivalent to McFarland 1 (3x10^8 CFU/mL), in the suspensions inoculated into a sterile petri dish containing 5 mL of Muller Hinton medium order and leveled throughout the surface. Paper disc was placed on top of a layer of antibiotic agar using sterile forceps that had been dipped in 70% alcohol and spiritus bunsen. Incubated for 24 hours at 37°C. After the incubation zone was observed and measured using calipers.

2.3. Research Method Phase II

Determination of Minimum Inhibitory Concentration (MIC)
The testing effectiveness of the filtrate L. acidophilus toward bacterial contaminants from swordfish stew, conducted a preliminary test to determine the MIC values filtrate L. acidophilus bacteriocins. This research was carried out experimentally in the laboratory by using 3 strains of bacterial contaminants, namely Bacillus sp. (RR2) (Da, Te, Amp, SXT), S. aureus (R4) and S. aureus(R5) (Da), and various concentrations of filtrate L. acidophilus bacteriocins 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100% were namely (C10, C20, C30, C40, C50, C60, C70, C80, C90 and C100). Observations were made descriptively by looking at the growth of bacterial contaminants on NA medium in a petri dish.

Preparation of L. acidophilus Bacteriocin filtrate (Ogunbanwo et al[3])
One milliliter of the bacterial suspension L. acidophilus who have actively grown in 9 ml of MRS broth and incubated for 18 hour. Then centrifuged at a speed 6000 rpm at 4°C for 15 minutes to separate the cells with the filtrate. Then filtered through millipore membrane size of 0.45 micrometer. Then the filtrate is neutralized to pH 6 with 1 N NaOH was filtered with a Millipore 0.45 to obtain the cell-free supernatant was neutral used as bacteriocins. After the filtrate bacteriocins obtained, then performed concentration of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100% under exposed in UV light for 40 minutes. Furthermore MIC testing.

Rejuvenation Isolates Bacteria Contamination
Rejuvenation was done on medium BHI broth and BHI agar incubated for 24 hours at 37°C.

Determination of Minimum Inhibitory Concentration (MIC)
MIC conducted to determine the minimum concentration and to determine the concentration of the filtrate bacteriocins L. acidophilus best in inhibiting the growth of bacterial contaminants from swordfish stew. The determined MIC done same procedures, bacterial contaminants which have taken 1 ose active streak in BHI and in order then incubated at 37°C for 24 hours. After an incubation period scraped off and put in a 0.9% sterile physiological saline and centrifuged 4000 rpm at 4°C for 10 min for the deposition of bacterial cell. Results centrifugation was washed with 0.9% sterile physiological saline 2 times and centrifuged, which the results are comparable to the turbidity of Mc Farland 1 (3x10^4 CFU/mL). Subsequently 1 mL of the bacterial suspension was added to a contaminant in 1 mL of filtrate bacteriocins at each concentration was then taken of the loop and in streaks on NA medium that had been frozen in a sterile petri dish. Incubation for 24 hours at 37°C. Observations were made by looking at the growth of bacterial contaminants on NA medium in a petri dish.
2.4 Research Method Phase III

Testing Effectiveness Filtrate Bacteriocins L. acidophilus toward Contaminants Bacteria from Swordfish stew.

The effectiveness of the filtrate bacteriocins L. acidophilus test against bacterial contaminants of swordfish stew. The study was carried out experimentally in the laboratory by using a completely randomized design factorial 3x7 with 2 repetitions. The first factor is the 3 strains of bacterial contaminants, namely Bacillus sp (RR2) (Da, Te, Amp, SXT), S. aureus (R4) and S. aureus (R5) (Da). Factor II filtrate bacteriocin concentration were used, namely co (0.9 % physiological saline as a control), c1, c2, c3, c4, c5, and c6 (50, 6, 70, 80, 90and 100 %) with incubation to 18 hours. Each treatment was repeated 2 times, experimental total 42 units. Parameters were observed to test the effectiveness of bacteriocins was formed inhibition zone diameter (mm). The data were analyzed statistically by ANOVA analysis followed by Duncan's Multiple Range Test (DMRT) if significantly different.

Equipment and Material's Sterilization and autoclaving the medium at 121 °C and a pressure of 1 atm (15 lbs), a maximum of 1.5 atm for 15 minutes.

Rejuvenation Isolates Bacteria Contamination

Rejuvenation is done on medium BHI broth and BHI agar incubated for 24 hours at 37 °C.

Determination of the effectiveness test filtrate bacteriocins has been done according to method illustrated by Bundesgesundheitsamt, 1976 in (Nurhaji [8]). The effectiveness test of the filtrate Bacteriocins L. acidophilus performed by the agar diffusion method (paper disc). Suspension of test contaminants bacteria that has been activated, 1 mL were taken and put in 9 mL of sugar cane broth, incubation at 37 °C for 24 hours. Then 0.1 mL of the bacterial suspension was poured on a petri dish and then 20 mL of sterile MH medium that is poured into sterile petri already containing suspensions were homogenized. After freezing medium, paper disc containing 0.05 mL of the filtrate bacteriocins sterile was placed above medium. Incubated at 37 °C for 24 hours. Observations were made by measuring the inhibition zone diameter of inhibition zone based around the paper discs were formed after the incubation period.

3. Results and Discussion

3.1 The Isolation and Identification of Bacteria Contaminants from swordfish Stew

Based on the results of isolation of bacterial contaminants from swordfish stew obtained 10 isolates of bacterial contaminants and after Gram staining of bacterial contaminants known that the tenth were Gram-positive bacteria. From the results of gram staining selected 4 isolates of bacteria have different cell shape and will further tested antibiotic resistance patterns. These four isolates namely R3 (rods, sporulating); R4 (coccii, not sporulating); R5 (coccii, not sporulating) and RR2 (trunk spora).

Gram staining results showed that the ten isolates of bacterial contaminants isolated from tuna fish stew are Gram-positive. These can be caused by Gram-positive bacteria generally form spores which are relatively resistant to heat. In addition to the Gram-positive bacteria are more resistant to physical interference or mechanical disturbances (such as very high given the pressure) compared with Gram-negative bacteria it is caused Gram-positive bacterial cell wall consists of a very thick peptidoglycan which gives rigidity to maintain cell integrity (Banwart[2]). So the selection of 4 bacterial isolates determined by the form of the bacteria. Three of the ten isolates of bacteria are rod-shaped.
and 7 isolates are cocci-shaped, the bacterial isolates are selected rod-shaped bacteria and cocci-shaped bacteria. Four bacterial isolates have been subsequently identified. The results show that the identification of the four bacterial isolates found two types of bacteria, namely Bacillus sp and Staphylococcus aureus. Based on the test resistance patterns can be seen that the type of Bacillus sp. (RR2) and Bacillus sp. (R3) have similarities in patterns of resistance to antibiotics whereas S. aureus (R3) have the same pattern of resistance to S. aureus (R5) and for S. aureus (R4) have different patterns of resistance to S. aureus (R3) and (R5). It can be seen that there are three different bacterial strains based on resistance patterns to antibiotics that Bacillus sp. (RR2) (Da, Te, Amp, SXT), S. aureus (R4) and S. aureus (R5) (Da).

According (Ogunbanwo et al[3]) stated that some fish pathogenic bacteria resistant to multiple antibiotics. Bacterial resistance to an antibiotic can be caused by drugs (antibiotics) can not reach the place of work in the microbial cell, microbial inactivation and drug itself or due to the transfer of resistant genes has been through conjugation, transformation or transduction of other bacteria. The sensitivity of the bacteria to an antibiotic can be caused due to the mechanism of action of antimicrobial that interfere with the metabolism of cells, inhibiting cell wall synthesis, interfere with cell membrane permeability, inhibits the synthesis of proteins and nucleic acids of microbial cell damage.

3.2 The Minimum Inhibitory Concentration (MIC) Test

Testing was conducted to determine the minimum concentration of the filtrate bacteriocins L.acidophillus that still have antibacterial activity against bacterial contaminants derived from tuna fish meat stew. The based on MIC test against three strains of bacterial contaminants derived from tuna meat stew can be seen that filtrate bacteriocins L.acidophillus have influence in inhibiting the growth of bacterial contaminants and have MIC values different. MIC values filtrate bacteriocins L.acidophillus can be seen in Table 1.

<table>
<thead>
<tr>
<th>Bacteri</th>
<th>Replication</th>
<th>Concentration bacteriocins(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus sp. (RR2) (Da, Te, Amp, SXT)</td>
<td>1X</td>
<td>+ + + + -</td>
</tr>
<tr>
<td>S. aureus (R4)</td>
<td>1X</td>
<td>+ + + + +</td>
</tr>
<tr>
<td>S. aureus (R5) (Da)</td>
<td>1X</td>
<td>+ + + + +</td>
</tr>
<tr>
<td>S. aureus (R5) (Da)</td>
<td>2X</td>
<td>+ + + + +</td>
</tr>
</tbody>
</table>

(+) = Growth of bacteria
(-) = Non growth of bacteria

The based on Table 1 it shows that the value of MIC bacteriocins for Bacillus sp. (RR2) (Da, Te, Amp, SXT), S. aureus (R4) and S. aureus (R5) (Da) is 50 %. Based on these results the determination of MIC values that will be used to test the effectiveness of filtrate bacteriocins L.acidophillus against three strains of bacterial contaminants are at concentrations of 50 % - 100 %. Test results of filtrate Bacteriocin effectiveness against bacteria contaminants from swordfish stew. Observations were made by measuring the inhibition zone diameter of bacteriocin filtrate against bacteria contaminants from swordfish (Auris rochei) stew can be seen in Appendices.
3.3 Effectiveness Filtrate Bacteriocins toward Contaminants Bacteria From Swordfish Stew

Effectiveness filtrate bacteriocins L. acidophilus toward contaminants bacteria Bacillus sp. (RR2) (Da, Te, Amp, SXT), S. aureus (R4) and S. aureus (R5) (Da) from swordfish stew can be seen in Figure 2. The Figure 2 be seen that the effectiveness of the filtrate bacteriocins L. acidophilus concentrations of 50% - 100% growth inhibitory regions capable of forming bacteria Bacillus sp contaminants (RR2) (Da, Te, Amp, SXT), S. aureus (R4) and S. aureus (R5) (Da) from swordfish stew. Diameter size at each different concentration. The concentration of the filtrate bacteriocins capable of forming diameter greater inhibitory regions in the three bacterial contaminant that is 90% and 100%. In this figure can also be seen that the higher the concentration of the filtrate bacteriocins diameter greater inhibitory regions. It is influenced by the concentrations of bacteriocins that can affect the content of the filtrate.

![Diameter](image)

RR2 = Bacillus sp. (Da, Te, Amp, SXT)
R4 = S. aureus
R5 = S. aureus (Da)

Figure 2. Effectiveness Filtrate Bacteriocins L. acidophilus Culture Toward Contamination Bacteria From Swordfish Stew (A. rochei)

The based on analysis of variance results indicate that the type of bacterial contaminants and the provision of various concentrations of filtrate bacteriocins L. acidophilus very real effect on bacterial growth inhibition are a diameter. This means that the formation of bacterial growth inhibition are diameters various concentrations of culture filtrate L. acidophilus bacteriocins differ for each treatment.

Duncan's multiple rangestest used to determine differences in the effect of the inhibition zone. The results of Duncan's multiple range test of the influence of the type of bacteria to large inhibitory areas are listed in appendices. Based on diameter inhibition zone it is known that the diameter of the bacterial growth inhibitory regions bacteriocins culture filtrate L. acidophilus influenced by the type of bacterial contaminants derived from tuna meat stew.

Largevalue averagediameter of the growthinhibitionareasbetweenS. aureus bacteria (R4) and Bacillus sp. (RR2) (Da, Te, Amp, SXT) showed highly significant differences are larger than S. aureus (R5) (Da). It can also be seen that the type of bacteria Bacillus sp. (RR2) (Da, Te, Amp, SXT) and S. aureus (R4) showed no difference in effect the formation of bacterial growth inhibition area diameter. This suggests that the growth of bacterial contaminants Bacillus sp. (RR2) (Da, Te, Amp, SXT) and S. aureus (R4) can be inhibited by bacteriocins culture filtrate L. acidophilus with the formation of growth inhibitory
regions. As stated by (Aly, [9]) that the bacteriocins produced by L. acidophilus have bacteriostatic and bactericidal effect.

It is also supported by research and (Ibrahim, Desouky [10]) who stated that antimicrobial metabolites produced by L. acidophilus effective against quality tilapia as effective at inhibiting the growth of S. aureus and other bacteria. Based on appendix it is known that the type of bacteria S. aureus (R5) (Da) showed highly significant differences in the average value of bacterial growth inhibition area diameter smaller than the bacterial species Bacillus sp. (RR2) (Da, Te, Amp, SXT) and S. aureus (R4). This occurs because the activity of antimicrobial compounds L. acidophilus others can be bacteriostatic or bactericidal, this depends on the type and characteristics of microorganisms (Karnoglu, et al.,[11]) and (Teddorov, Dick [12]). Besides the species of microorganisms showed different susceptibility to an antimicrobial work.

Duncan's multiple range test results on the effect of concentration of filtrate bacteriocins L. acidophilus bacteriocins against large inhibitory areas were listed in appendix. Duncan's multiple range test results that the formation of the diameter of the area affected by bacterial growth inhibitory concentrations of filtrate bacteriocins L. acidophilus. Additionally bacteriocins culture filtrate concentration L. acidophilus 50 % - 100 % indicates no difference in the effect of growth inhibition area diameter forming bacteria, which means that various concentrations of filtrate bacteriocins capable of providing an inhibitory effect on the growth of strains of bacteria contaminant. According (Marti, et al., [13]) stated that the antimicrobial compounds activity of the bacteriostatic or bactericidal against other microorganisms it depends on the types, characteristics and concentration of antimicrobial compounds produced.

Mechanism of action of bacteriocins in inhibiting the bacteria that attach to the cytoplasmic membrane, causing the membrane to become unstable, resulting in decreased cell viability and led to the release of the material contained within the cell nucleus so that the cells become dead (Ke, Aln [14]).

4. Conclusion

In this study Effectiveness Inhibition Filtrate Bacteriocins Lactobacillus acidophilus Toward Contaminants Bacteria from Swordfish (Aulurus rochei) Stew reveals that

- There Bacterial contaminants of swordfish stew that has been resistant to some antibiotics such that Clindamycin (DA.2), Tetracycline (Te.30), Ampicillin (AMP.10) and Ceftriaxone (CET.25).
- MIC value for each contaminant different strains of bacteria Bacillus sp (RR2) (Da, Te, Amp, SXT), S. aureus (R.4) and S. aureus (R.5) (Da) is 50 %.
- Concentration of filtrate bacteriocins L. acidophilus from 50 % - 100 % effective in inhibiting the growth of bacterial contaminants from swordfish stew.

Acknowledgment

The author would like to thank to the Head of LIPI Chemistry Center of Bandung, Indonesia which has provided laboratory facilities during the research.

References

APPENDICS
Figure 1. Diameter Inhibition

Table 1. Analysis of Variance: Diameters inhibition of Bacteriocins Filtrate of Lactobacillus acidophilus Culture toward Bacteria Contaminants Originating from Swordfish Stew

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>df</th>
<th>Sum squares</th>
<th>Mean squares</th>
<th>F_calc</th>
<th>F_table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>2</td>
<td>524.190</td>
<td>262.095</td>
<td>5.95**</td>
<td>3.467</td>
</tr>
<tr>
<td>Concentration</td>
<td>6</td>
<td>1095.143</td>
<td>182.524</td>
<td>4.13**</td>
<td>2.573</td>
</tr>
<tr>
<td>Interaction - bacteria and concentration</td>
<td>12</td>
<td>94.143</td>
<td>7.845</td>
<td>0.178</td>
<td>2.250</td>
</tr>
<tr>
<td>Error</td>
<td>21</td>
<td>927.500</td>
<td>44.167</td>
<td></td>
<td>3.173</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>9005.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**df=degrees of freedom, SS: sum of squares, C: centrsquare.
**=Highly significant (diff very real) at the level of error 1% according to test Analysis of Variance.

Table 2. Effect of Bacterial Contaminants from Swordfish Stew toward Diameter Growth Inhibition Bacteria in the Filtrate Bacteriocin

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Diameter Inhibition Zone (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. atro (R6) (Da, Te, Amp, Sx)</td>
<td>b</td>
</tr>
<tr>
<td>S. aureus (R4)</td>
<td>14.21</td>
</tr>
<tr>
<td>S. aureus (R5) (Da)</td>
<td>7.36</td>
</tr>
</tbody>
</table>

The letters are similar to the vertical direction indicates not significantly different at 99% degree of confidence.

Table 3. The Effect of Filtrate Bacteriocin Concentration Toward Diameter Growth Inhibition Contaminant Bacteria

<table>
<thead>
<tr>
<th>Concentration (%)</th>
<th>Diameter Inhibition Zone (mm)</th>
</tr>
</thead>
</table>
Authors

Rieny Sulistijowati S., she received her S.Pi (Fish Processing) from Samratulangi University, M.Si (Microbiology Process) from Padjadjaran University, and Dr. (Fish Industri Technology) from Padjadjaran University. Worked as lecturer to the Departemen Fishery Technology, Faculty of Marine and Fisheries Gorontalo State University. Her major research interest is seafood safety, fisheries biotechnology and fisheries fermentation. She has published several paper in International Journal and Conferences and 4 Books for fish processing.