ISSN 1410-8917 e-ISSN 2597-9914 Surnal Kimia Sains dan Aplikasi https://ejournal.undip.ac.id/index.php/ksa/

Volume 22 | Issue 4 | July 2019 | pages 105-163 Chemistry Department Diponegoro University

Editorial Team

Editor in Chief


```
Dr. Adi Darmawan (ScopusID: 55953897600)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH.,
Tembalang, Semarang, Indonesia
```

Associate editors

Dr. Amin Fatoni (ScopusID: 55488648900) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Jenderal Soedirman, Purwokerto, Indonesia

Dr. Choiril Azmiyawati (ScopusID: 55543514300) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Didik Setiyo Widodo (ScopusID: 57195404137) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dr Fitria Rahmawati (ScopusID: 36053591500)

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Indonesia

Dr. Guozhao Ji (ScopusID: 55262553900) School of Environmental Science and Technology, Dalian University of Technology Dalian, Liaoning, China

Dr. Ibrahim A. I. Hassan (ScopusID: 55652057500) Department of Chemistry, South Valley University Qena, Egypt, Egypt

Dr. Mukhammad Asy'ari (ScopusID: 56117266100) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dr. Mus'ab Abdul Razak (ScopusID: 38961852200) Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Malaysia

Dr. Nor Basid Adiwibawa Prasetya (ScopusID: 56574376400)

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dr. Yayuk Astuti (ScopusID: 57100033100)

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Currently, JKSA has Sinta-2 accreditation based on Ministry of Research, Technology and Higher Education Decree No:3/E/KPT/2019

Journal Profile

Last update: 30th July 2019 Number of documents: 419 Number of citations: 340 Google Scholar's IF: 340/419 = 0.81 h-Index: 7, i10-Index: 4 Google Scholar URI : Click here

Cited in Scopus indexed papers: 58 citations here

Conference Partner

Journe	it content		
Search		-11-	
Search S	cope		

Peer Reviewers

(In alphabetical order by people name)

Abdul Haris (ScopusID: 57193566324)

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University JL. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dr. Ahmad Fathoni (ScopusID: 55866479500) Research Centre for Biotechnology, Indonesian Institute of Sciences (LIPI) Jakarta, Indonesia

Dr. Agung Abadi Kiswandono (ScopusID: 55532426900) Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lampung Bandar Lampung, Indonesia

Dr. Agustina L. N. Aminin (ScopusID: 24779347000) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dr. Aji Prasetyaningrum (ScopusID: 55774140900) Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia

Dr. Alia Damayanti (ScopusID: 35172667300) Teknik Lingkungan, Fakultas Teknik Sipil dan Perencanaan (FTSP), Institut Teknologi Sepuluh Nopember Surabaya, Indonesia

Dr. Aliya Nur Hasanah (ScopusID: 37113754000) Departemen Analisis Farmasi dan Kimia Medisinal, Universitas Padjadjaran Bandung, Indonesia

Dr. Anis Shofiyani (ScopusID: 56737218800) Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Tanjungpura Pontianak, Indonesia

Dr Anto Budiharjo

Biology Department Faculty of Sciences and Mathematics Diponegoro University, Indonesia

Anung Riapanitra (ScopusID: 36480616400) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Jenderal Soedirman Purwokerto, Indonesia

Arifina Febriasari (ScopusID: 57204010423) Universitas Serang Raya Cilegon, Indonesia

Arnelli Arnelli (ScopusID: 57189732420) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dr. Artini Pangastuti (ScopusID: 56499336500) Program Studi Biologi, Universitas Sebelas Maret Surakarta, Indonesia

Dr. Chandra Wahyu Purnomo (ScopusID: 37041534700) Department of Chemical Engineering, Gadjah Mada University Yogyakarta, Indonesia

Prof. Dr. Chih-Hao Lee (ScopusID: 8843640000) Department of Engineering and System Science, National Tsing Hua University Hsinchu, Taiwan

Dr. Dadan Hermawan (ScopusID: 24475997000)

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Jenderal Soedirman, Purwokerto, Indonesia

Dedy Setiawan (ScopusID: 57189378246)

Daegu Gyeongbuk Institute of Science and Technology Daegu, Indonesia

Dr. Deni Pranowo (ScopusID: 55545044000)

Chemistry Department, Faculty of Mathematics and Natural Sciences, Gadjah Mada University Yogyakarta, Indonesia

Dewi Kusrini (ScopusID: 35422315300)

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University JL. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dewi Selvia Fardhyanti (ScopusID: 57189601936)

Currently, JKSA has Sinta-2 accreditation based on Ministry of Research, Technology and Higher Education Decree No:3/E/KPT/2019

Journal Profile

Last update: 30th July 2019 Number of documents: 419 Number of citations: 340 Google Scholar's IF: 340/419 = 0.81 h-Index: 7, i10-Index: 4 GUUGIE SCHULAI UNL. CHEK HEIE Cited in Scopus indexed papers: 58 citations here

Conference Partner

Journal	Content

Search	
Search So	оре
Δ11	÷

Browse By Issue

> By Title Other Journals Categories

Chemical Engineering Department, Semarang State University, Indonesia

Dhoni Hartanto (ScopusID: 57185427200) Semarang State University, Indonesia

Dr. Dwi Hudiyanti (ScopusID: 55681111000)

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University JL. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Elok Kamilah Hayati Universitas Islam Negeri Maulana Malik Ibrahim, Indonesia

Dr. Emmy Sahara (ScopusID: 57190936111) Chemistry Department, Faculty of Mathematics and Natural Sciences, Udayana University Denpasar, Bali, Indonesia

Enny Fachriyah (ScopusID: 57193561900) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University JL. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dr.rer.nat. Fajar Rakhman Wibowo (ScopusID: 6602940233) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University Surakarta, Indonesia

Dr. Faroug Twaig (ScopusID: 57193234002) Faculty of Engineering, Computing and Science, Swinburne University of Technology Kuching, Malaysia

Dr. Gunawan Gunawan (ScopusID: 56548700300) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University JL. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dr. Hamzah Fansuri (ScopusID: 6507845967) Department of Chemistry, Faculty of Sciences, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia

Hans Kristianto (ScopusID: 56069359300) Department of Chemical Engineering, Parahyangan Catholic University, Indonesia

Dr. Hendri Widiyandari (ScopusID: 15836029400) Physics Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University Surakarta, Indonesia

Dr. Ida Ayu Gede Widihati (ScopusID: 57191499368) Chemistry Department, Faculty of Mathematics and Natural Sciences, Udayana University Denpasar, Bali, Indonesia

Dr. Imelda Fajriati (ScopusID: 56426323500) Chemistry Department, UIN Sunan Kalijaga Yogyakarta, Indonesia

Dr. Indriana Kartini (ScopusID: 7801459958) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Indonesia

Dr. Ismiyarto Ismiyarto (ScopusID: 56955654800) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University JL. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dr. James Sibarani (ScopusID: 12803942600) Chemistry Department, Faculty of Mathematics and Natural Sciences, Udayana University Denpasar, Indonesia

Dr. Jiuan Jing Chew (ScopusID: 57189370984) Faculty of Engineering, Swinburne University of Technology Kuching, Malaysia

Prof. Dr. Jutti Levita (ScopusID: 36133187800) Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran Bandung, Indonesia

Dr. Khairul Anam (ScopusID: 56416256600) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University JL Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Dr. Kien Woh Kow (ScopusID: 35280099600) Chemical Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo, China

Dr. Krisna Septiningrum (ScopusID: 55967029800) Balai Besar Industri Agro, Kementerian Perindustrian Bogor, Indonesia

Dr. Kun Sri Budiasih (ScopusID: 55902130500) Jurusan Kimia, FMIPA, Uinversitas Negri Yogyakarta, Indonesia, Indonesia

Lia Destiarti (ScopusID: 57193916846) Departemen Kimia, Universitas Tanjungpura Pontianak, Indonesia

Luciasih Agustini (ScopusID: 13410222800) Badan Penelitian, Pengembangan dan Inovasi, Kementerian Lingkungan Hidup dan Kehutanan, Indonesia

Dr. Lock Hei Ngu (ScopusID: 55279982500)

Dr. Made Puspasari Widhiastuty (ScopusID: 25723964100) Chemistry Department, Faculty of Sciences and Mathematics, Bandung Institute of Technology Bandung, Indonesia

22 4 6 62 64 236 6

Dr. Mardiyah Kurniasih (ScopusID: 57200727113)

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Jenderal Soedirman Purwokerto, ndonesia

Dr. Maulidan Firdaus (ScopusID: 52463607900)

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia

Maulita Cut Nuria Jniversitas Wahid Hasyim, Indonesia

Dr. Mohamad Rafi (ScopusID: 7005112935) Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor Bogor, Indonesia

Dr. Muhammad Dani Supardan (ScopusID: 6506563268) Department of Chemical Engineering University of Syiah Kuala, Indonesia

Dr. Muhammad Cholid Djunaidi (ScopusID: 56968180800) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia

Mukhammad Fauzi urusan Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Jember Jember, Indonesia

Dr. Muthia Elma (ScopusID: 55758444600) Department of Chemical Engineering, Faculty of Engineering, Lambung Mangkurat University, Banjarmasin, Indonesia

Ngadiwiyana Ngadiwiyana (ScopusID: 56180854900) Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University JL. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

. Noor Hindryawati (ScopusID: 55776314700) nemistry Department, Faculty of Mathematics and Natural Sciences, Mulawarman University Samarinda, Indonesia

. Nor Aida Zubir (ScopusID: 10639009700) culty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia, Malaysia

. Noryawati Mulyono (ScopusID: 57193388975) ood Technology Department, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia Jakarta, Indonesia

: Nurhasanah Nurhasanah (ScopusID: 57194053855) rusan Kimia FMIPA, Universitas Lampung

: Nurul Widiastuti (ScopusID: 23020412700) epartment of Chemistry, Faculty of Sciences, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia

: Philiphi de Rozari (ScopusID: 55126620800) nemistry Department, Faculty of Sciences and Engineering, Nusa Cendana University Jalan Adisucipto Penfui, Kupang, donesia

r. Pratama Jujur Wibawa (ScopusID: 36988114200) nemistry Department, Faculty of Sciences and Mathermatics, Diponegoro University, Jl. Prof. Soedarto, SH, Tembalang, emarang, Indonesia

Rachmat Triandi Tjahjanto (ScopusID: 22735666200) nemistry Department, Brawijaya University, Indonesia

. Rapidah Othman (ScopusID: 54796767900) alaysian Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur Kuala Lumpur, Malaysia

. Retno Ariadi Lusiana (ScopusID: 55992806700) nemistry Department, Faculty of Sciences and Mathematics, Diponegoro University JL Prof. Soedarto, SH., Tembalang, emarang, Indonesia

rof. Dr. Riyanto Riyanto (ScopusID: 23976748700) hemistry Department, Universitas Islam Indonesia Yogyakarta, Indonesia

izka Mayasari epartment of Industrial Engineering, Universitas Muhammadiyah Palembang Palembang, Indonesia

r Rodiansono Rodiansono Scopus ID = 55785853800) Department of Chemistry, Lambung Mangkurat University, Indonesia

r. Saefudin Aziz akultas Biologi, Universitas Jenderal Soedirman, Indonesia

r. Saeful Amin (ScopusID: 57204530143) rogram Studi Farmasi, Sekolah Tinggi Ilmu Kesehatan Bakti Tunas Husada Tasikmalaya, Indonesia

r. Saharman Gea (ScopusID: 23004491900) epartment of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara Medan, Indonesia

aprizal Hadisaputra (ScopusID: 55544930300) irusan Pendidikan Kimia, Universitas Mataram Mataram, Indonesia

r. Sayekti Wahyuningsih (ScopusID: 57202300237)

epartment of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University Surakarta, Indonesia

r. Siti Mariyah Ulfa (ScopusID: 57193568190) epartment of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia

r. Sitti Ahmiatri Saptari (ScopusID: 57190940508) ırusan Fisika, Fakultas Sains dan Teknologi, UIN Syarif Hidayatullah Jakarta, Indonesia

riatun Sriatun (ScopusID: 57190872093) hemistry Department. Science and Mathematic Faculty. Diponedoro University. Indonesia

emarang State University, Indonesia

556540800)

а

ScopusID: 36931094200) aculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia

57202282567) niversitas Mulawarman

89732447) ulty of Sciences and Mathematics, Diponegoro University JL. Prof. Soedarto, SH., Tembalang,

: 56771491400) aculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia

: 36519894600) aculty of Mathematics and Natural Sciences, Universitas Jenderal Soedirman, Purwokerto,

igan, Fakultas Teknik Sipil - Lingkungan dan Kebumian, Institut Teknologi Sepuluh Nopember

grum

LLIPI (Research Center of Biomaterial LIPI), Indonesia

usID: 57189732705) tal Engineering, Faculty of Engineering, Diponegoro University, Indonesia

elly Herumurti epartemen Teknik Lingkungan, Fakultas Teknik Sipil - Lingkungan dan Kebumian, Institut Teknologi Sepuluh Nopember urabaya, Indonesia

rs Wida Banar Kusumaningrum usat Penelitian Biomaterial LIPI (Research Center of Biomaterial LIPI), Indonesia

(iharyanto Oktiawan (ScopusID: 57189732705) epartment of Environmental Engineering, Faculty of Engineering, Diponegoro University, Indonesia

r. Zubaidah Ningsih (ScopusID: 54941314100) epartment of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia

r: 52531 View My Stats

 \odot

Kimia Sains dan Aplikasi is indexed in:

ight ©2019 Diponegoro University. Powered by Open Journal Systems and Mason Publishing OJS theme.

stan ... No. and and and the

Table of Contents

Re

Researc	n Articles	
	Potensi Senyawa Antibakteri dari Ekstrak Akar Manis (Glycyrrhiza glabra L) terhadap Bacillus cereus Potential of Antibacterial Compounds from Sweet Root Extract (Glycyrrhiza glabra L) on Bacillus cereus	2 PDF 105-111
	 Gandi Sogandi, Wan Syurya Tri Darma, Raudatul Jannah Views: 20 Language: ID DOI: 10.14710/jksa.22.4.105-111 Received: 18 Feb 2019; Revised: 7 May 2019; Accepted: 13 May 2019; Published: 31 Jul 2019; Available online: 31 May 2019. 	
	Efek Temperatur, Tekanan dan Waktu Reaksi pada Hidrogenasi Asam Heksadekanoat Menjadi 1-Eksadekanol Menggunakan Katalis Ru-Sn(3,0)/C Effect of Temperature, Pressure, and Reaction Time on Hydrogenation of Hexadecanoic Acid to 1-Hexadecanol Using a Ru-Sn(3.0)/C Catalyst	PDF 112-122
	 Nor Ain, Rodiansono Rodiansono, Kamilia Mustikasari Views: 8 Language: ID DOI: 10.14710/jksa.22.4.112-122 Received: 11 Mar 2019; Revised: 2 May 2019; Accepted: 16 May 2019; Published: 31 Jul 	
	2019. 2019.	
	Studi Teoritis Penggunaan Derivasi Asam Siano sebagai Akseptor Elektron dalam Pelargonidin sebagai Senyawa Pewarna Sel Surya Sensitasi Theoretical Study on the Use Cyano Acid Derivation as Electron Acceptors in Pelargonidin as	2 PDF
	 Muhamad Imam Muslim, Sudarlin Sudarlin Views: 4 Language: ID DOI: 10.14710/jksa.22.4.123-128 Received: 2 Oct 2018; Revised: 17 Jun 2019; Accepted: 20 Jun 2019; Published: 31 Jul 2019. 	
-	Studi Kestabilan Zirkonia Terdoping Kation Trivalen melalui Pemodelan Atomistik Study on the Stability of Trivalent Cations Doped Zirconia through Atomistic Modeling	A PDF
- internet	Akram La Kilo, Triwahyuni S. Umamah, Lukman A. R. Laliyo	129-135
	Views: 64 Language: ID DOI: 10.14710/jksa.22.4.129-135	
	O Received: 30 Apr 2019; Revised: 23 Jul 2019; Accepted: 24 Jul 2019; Published: 31 Jul 2019.	
	Pengaruh Rasio LiBOB:TiO2 dari Lembaran Polimer Elektrolit sebagai Pemisah terhadap Kineria Elektrokimia Baterai Lithium-Ion Berhasis LTO	🛓 PDF
	The Effect of Ratio LiBOB: TiO2 of Electrolyte Polymer Sheets as separators on the Electrochemical Performance of LTO-Based Lithium-Ion Batteries	136-142
	L Agriccia Pangestica Saputry, Titik Lestariningsih, Yayuk Astuti	
	Views: 12 Language: ID DOI: 10.14710/jksa.22.4.136-142	
	Seceived: 2 May 2019; Revised: 27 Jun 2019; Accepted: 12 Jul 2019; Published: 31 Jul 2019.	
	Pengaruh Komposisi Elektrolit pada Proses Penyisihan Nikel dari Tiruan Air Limbah Elektroplating Menggunakan Sel Elektrodeposisi Dua Ruang	🕹 PDF
	Effect of Electrolyte Composition on Nickel Removal Process from Artificial Electroplating Wastewater Using Two-Room Electrodeposition Cells	143-149
	L Selly Ayu Janetasari, Djaenudin Djaenudin	
	Views: 8 Language: ID DOI: 10.14710/jksa.22.4.143-149	
	Oracle Received: 6 May 2019; Revised: 15 Jul 2019; Accepted: 20 Jul 2019; Published: 31 Jul 2019.	

	Science (LIPI)	
-	Lambung Mangk <mark>u</mark> rat University	(3)
-	State University of Gorontalo	(3)
-	UIN Sunan Kalijaga	(2)
-	University of Surabaya	(3)
-	Universitas 17 Agustus 1945	(3)

Accreditation

Currently, JKSA has Sinta-2 accreditation based on Ministry of Research, Technology and Higher Education Decree No:3/E/KPT/2019 Decree No:3/E/KPT/2019

Journal Profile

Last update: 30th July 2019 Number of documents: 419 Number of citations: 340 Google Scholar's IF: 340/419 = 0.81 h-Index: 7, i10-Index: 4 Google Scholar URL: Click here Cited in Scopus indexed papers: 58 citations here

Journal Content	
Search	_
	- 20

Validation of Mometasone furoate and CIP100 Residue Analysis Methods After Cleaning of Production Equipment in the "XYZ" Pharmaceutical Industry

Validasi Metode Analisis Residu Mometasone furoate dan CIP100 Setelah Proses

Pembersihan Peralatan Produksi di Industri Farmasi "XYZ"

L Amaandika Galih Arintowibowo, Ririn Sumiyani, Kusuma Hendrajaya Views: 4 | Language: ID | DOI: 10.14710/jksa.22.4.150-156 O Received: 12 May 2019; Revised: 15 Jul 2019; Accepted: 15 Jul 2019; Published: 31 Jul 2019.

Kompatibilitas Nanokristal Selulosa Termodifikasi Setrimonium Klorida (CTAC) dalam Matriks Poliasam Laktat sebagai Material Pengemas Compatibility of Celluloce Nanocrystal Modified Cetrimmonium Chloride (CTAC) in Polylactic Acid Matrix as Packaging Material

L Nina Hartati, Tetty Kemala, Komar Sutriah, Obie Farobie Views: 4 | Language: ID | DOI: 10.14710/jksa.22.4.157-163 O Received: 9 Jun 2019; Revised: 5 Jul 2019; Accepted: 20 Jul 2019; Published: 31 Jul 2019.

PDF

150-156

PDF

157-163

Jurnal Kimia Sains dan Aplikasi 22 (4) (2019): 129–135

Jurnal Kimia Sains dan Aplikasi Journal of Scientific and Applied Chemistry

Journal homepage: http://ejournal.undip.ac.id/index.php/ksa

Studi Kestabilan Zirkonia Terdoping Kation Trivalen melalui Pemodelan Atomistik

Akram La Kilo^{a,*}, Triwahyuni S. Umamah^b, Lukman A. R. Laliyo^b

^a Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Gorontalo, Kota Gorontalo 96128, Indonesia

^b Program Studi Pendidikan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Gorontalo, Kota Gorontalo 96128, Indonesia

* Corresponding author: akram@ung.ac.id

https://doi.org/10.14710/jksa.22.4.129-135

Article Info	Abstract		
Article history:	Title: Study on the Stability of Trivalent Cations Doped Zirconia through Atomistic		
Received: 30 April 2019 Revised: 23 July 2019 Accepted: 24 July 2019 Online: 31 July 2019 Keywords: zirconia; cation trivalent, lattice energy; atomistic modeling; bond valence sum	The aim of this research was to study the stability of the structure of the ZrO_2 doped with trivalent oxide $Zr_{1-x}M_xO_{2-\delta}$ ($M = La^{3+}$, Nd^{3+} , Sm^{3+} , Ed^{3+} , Y^{3+} , Er^{3+} , Yb^{3+} and Lu^{3+} through atomistic modelling and bond valence sum method. Short range potential		
	used in this study was Buckinghams' potential. Result of geometry optimization at constant pressure shown both cell parameters of ZrO ₂ was in good agreement with experimental results because of the difference was only 0.11%. Increasing the concentration and the size of substituting dopant of ZrO ₂ makes the lattice energy of the doped structure was more positive so that the stability of the doped ZrO ₂ structure decreases. The decrease in the stability of ZrO ₂ doped with Y ³⁺ , Er ³⁺ , Yb ³⁺ and Lu ³⁺ was smaller than ZrO ₂ doped with La ³⁺ , Nd ³⁺ , Sm ³⁺ , Eu ³⁺ and Gd ³⁺ . BVS results shown that the structure of ZrO ₂ doped with La ³⁺ was not appropriate because it has different value of BVS was more than 0.1.		
	Abstrak		
Kata Kunci: zirkonia; kation trivalen; energi kisi; pemodelan atomistik, bond valence sum	Tujuan penelitian adalah mempelajari kestabilan struktur ZrO ₂ yang didoping dengan kation trivalen menjadi senyawa Zr _{1-x} M _x O _{2-δ} (M= La ³⁺ , Nd ³⁺ , Sm ³⁺ , Eu ³⁺ , Gd ³⁺ , Y ³⁺ , Er ³⁺ , Yb ³⁺ dan Lu ³⁺ melalui pemodelan atomistik dan kalkulasi <i>Bond Valence Sum</i> . Potensial jarak pendek yang digunakan dalam penelitian ini adalah potensial Buckingham. Hasil optimasi geometri pada tekanan tetap menunjukkan bahwa parameter sel ZrO ₂ induk berkesesuaian dengan hasil eksperimen karena menunjukkan perbedaan nilai kecil, 0,11%. Semakin bertambah konsentrasi dan ukuran dopan yang mensubstitusi ZrO ₂ , maka energi kisi ZrO ₂ terdoping semakin positif sehingga kestabilan struktur ZrO ₂ terdoping semakin menurun. Penurunan kestabilan ZrO ₂ yang didoping Y ³⁺ , Er ³⁺ , Yb ³⁺ dan Lu ³⁺ lebih kecil dibandingkan penurunan kestabilan ZrO ₂ yang didoping dengan La ³⁺ , Nd ³⁺ , Sm ³⁺ , Eu ³⁺ dan Gd ³⁺ . Hasil BVS menunjukkan bahwa struktur ZrO ₂ yang didoping dengan La ³⁺ tidak stabil karena memiliki perbedaan nilai valensi dan BVS lebih dari 0,1.		

1. Pendahuluan

Selama dekade terakhir, pemahaman mengenai struktur kimia dari keramik oksida sebagai katalis,

dielektrik, dan elektronik telah menghasilkan keuntungan secara ekstensif melalui pengembangan teknik pemodelan komputasi [1]. Struktur stabil yang mungkin terjadi dari oksida keramik akibat didoping secara parsial dengan dopan dapat dipelajari terlebih dahulu melalui pemodelan atomistik sebelum material disintesis di laboratorium [2]. Salah satu material keramik oksida adalah zirkonium dioksida atau zirkonia (ZrO₂) yang merupakan bahan teknologi penting sebagai elektrolit (konduktor ion oksigen) dalam beberapa aplikasi industri, seperti elektrolit dari sel bahan bakar oksida padatan (*Solid Oxide Fuel Cell*, SOFC) dan katalis[3].

ZrO₂ adalah oksida polimorf dengan tiga fasa, yaitu monoklin, tetragonal, dan kubus [4]. Fasa yang disebutkan terakhir tidak stabil pada suhu rendah dan mengalami keretakan pada saat pendinginan [5]. Fasa kubus zirkonia tersebut perlu distabilkan dengan cara penambahan secara parsial kation yang lebih besar atau didoping menggunakan kation bervalensi lebih rendah yakni kation trivalen atau divalen untuk membuat kekosongan anion oksigen (oxygen vacancy), seperti Y³⁺ atau kombinasi dari dua efek tersebut [6]. Heuer melaporkan bahwa dopan divalen menyebabkan ketidakstabilan struktur dan terjadinya pemisahan fasa pada suhu tinggi, seperti pada CaZr₄O₉ [7]. Xia dkk. [1] melaporkan bahwa doping yang dilakukan menggunakan kation trivalen seperti itrium dapat menstabilkan fasa kubus ZrO₂. Kation trivalen menstabilkan fasa kubus berstruktur fluorit dengan cara menciptakan kekosongan oksigen.

Kestabilan kation trivalen (M³⁺) dalam ZrO₂ bergantung pada faktor-faktor dari kecocokkan jari-jari antara Zr⁴⁺ (0,840 Å) dan kation M³⁺ serta konsentrasi kation tersebut [8]. Akibtanya, struktur stabil yang terbentuk pun ditentukan oleh faktor-faktor tersebut. Struktur oksida logam tanah jarang adalah bervariasi sesuai dengan radius kation. Struktur heksagonal stabil untuk kation yang lebih besar, yaitu La³⁺ dan Nd³⁺. Kation tanah jarang terbesar La^{3+} (r = 1,160 Å) memiliki kecenderungan kuat menjadi piroklor La₂Zr₂O₇. Kemudian, kation Sm³⁺, Eu³⁺, Gd³⁺, dan kation yang lebih kecil memiliki kedua bentuk, yaitu monoklin dan kubus [9]. Dalam penelitian ini, kation trivalen dari logam tanah jarang (La³⁺ = 1,160, Nd³⁺ = 1,109, Sm³⁺ =1,079, Eu³⁺= 1,066, Gd^{3+} = 1,053, Er^{3+} = 1,004, Yb^{3+} = 0,985, Lu^{3+} = 0,977 Å) dan Y³⁺ (1,019 Å) yang mensubsitusi secara parsial Zr⁴⁺ dari fasa kubus ZrO₂ dianalisis berdasarkan kenaikan konsentrasi kation M3+.

Subtitusi secara parsial Zr^{4+} dari fasa kubus ZrO_2 oleh dopan trivalen (M³⁺) menghasilkan senyawa $Zr_{1-x}M_xO_{2-\delta}$ (x = konsentrasi dopan, 0–10%; M = dopan tivalen; dan $\delta =$ kekosongan oksigen). Struktur kubus ZrO_2 yang tersubtitusi diperoleh dengan cara pemodelan atomistik dan kalkulasi *Bond Valence Sum* (BVS) yang masingmasing menggunakan perangkat lunak GULP (*General Utility Lattice Program*) [10] dan VESTA (*Visualization for Electronic and Structural Analysis*) [11]. Kestabilan struktur ZrO₂ akibat doping dianalisis berdasarkan perubahan energi kisi yang diperoleh dari pemodelan atomistik serta didukung oleh analisis ketepatan struktur ZrO₂ terdoping dengan menggunakan metode BVS.

2. Metodologi

Alat yang digunakan dalam penelitian ini terdiri atas perangkat keras (hardware) dan perangkat lunak (software). Perangkat keras yang digunakan berupa sebuah Personal Computer (PC) dengan prosesor Intel^(R) Core(TM) i5 CPU M540 dengan kecepatan 2,53 GHz, RAM 4,00 GB. Perangkat lunak yang digunakan adalah Operating System (OS) Microsoft^(R) Windows 7 Ultimate Service Pack 1 64-bit, softwareGULP [10], Microsoft Excel 2013, dan VESTA [11]. Obyek penelitian ini adalah senyawa-senyawa La₂O₃, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Y₂O₃, Er₂O₃, Yb₂O₃, dan Lu₂O₃ dengan data input parameter potensial jarak pendek yang diperoleh dari penelitian sebelumnya Wei dkk. [12] dan Xia dkk. [1]. Penelitian ini bersifat teoritis eksploratif. Semua bahan yang digunakan dalam penelitian ini berupa senyawa-senyawa yang hasil perhitungan potensial jarak pendeknya diambil dari penelitian sebelumnya. Penelitian ini menggunakan metode kimia komputasi untuk mengeksplorasi semua senyawa. Metode pemodelan atomistik menggunakan GULP dan kalkulasi BVS dan menggambarkan struktur VESTA.

2.1. Pembuatan Data Input Code GULP

Pemodelan dengan menggunakan *code* GULP dalam penelitian dilakukan untuk menghitung energi kisi dan parameter sel struktur ZrO₂ murni dan ZrO₂ terdoping. Pemodelan yang dilakukan memerlukan data input paremeter sel dan fraksional sel yang dilaporkan oleh Xia *dkk*. [1]. Selain data asli ZrO₂, data ZrO₂ terdoping kation trivalen dibuat juga berdasarkan kenaikan konsentrasi dopan dari o sampai 10%. Data tersebut disimpan dalam *software* GULP pada suatu *folder* sesuai nama dopan yang konsentrasinya sudah ditentukan sebesar 1% sampai 10%. Setelah pengumpulan data selesai, dilanjutkan dengan pengolahan data yang dilakukan dengan menggunakan *software* GULP dan BVS.

2.2. Metode Pemodelan Atomistik

Metode pemodelan atomistik didasarkan pada model Born dari suatu krisal ionik. Interaksi pada padatan kristal dideskripsikan dengan interaksi potensial interatomik yang terdiri dari interaksi long-range (interaksi Coulomb) dan interaksi short range. Interaksi short-range dihasilan dari gaya tolakan dan gaya tarik van der Waals. Oleh karena itu, energi kisi (U) direpresentasikan sebagai:

$$U = \frac{1}{2} \left(\sum_{i \neq j} \frac{q_i q_j}{r_{ij}} + \sum_{i \neq j} S_{ij} \right)$$

di mana *q* adalah muatan ion, *r* adalah jarak antar atom, dan S_{ij} adalah interaksi *short-range*. Interaksi *shortrange* dalam penelitian ini menggunakan potensial Buckingham yang dirumuskan:

$$S_{ij} = A \exp(-\frac{r_{ij}}{\rho}) - C/r_{ij}^{\epsilon}$$

di mana A, ρ , dan C adalah parameter empiris yang berhubungan dengan kekerasan ion (A), ukuran ion (ρ), dan interaksi van der Waals (C). Proses minimalisasi kisi pada penelitian ini dilakukan pada tekanan konstan. Dalam kondisi ini, dimensi sel satuannya dapat berubah sehingga *strain* pada sel dan ion-ion di dalamnya terminimalisasi.

2.3. Metode Bond Valence Sum (BVS)

BVS adalah adalah model empiris untuk menjelaskan valensi atau kekuatan ikatan dari padatan ion [13]. Metode ini dilakukan dengan menjumlahkan semua valensi ikatan di sekeliling atom, dengan menggunakan persamaan:

$$S_{ij} = \exp\left(\frac{r_0 - r_{ij}}{b}\right)$$

Di mana s_{ij} merupakan valensi dari sebuah ikatan, r_{ij} merupakan panjang ikatan yang terukur, dan r_0 merupakan unit panjang ikatan yang dikembangkan untuk unit valensi ikatan (sebuah ikatan tunggal antara atom i dan j); *b* merupakan nilai konstan. Perhitungan valensi yang efektif harus dalam perbedaan 0,1 untuk valensi atom yang diduga [14]. Contohnya, untuk Zr, yang bilangan oksidasinya +4, maka valensi ikatan yang terhitung harus di antara 3,9 dan 4,1.

Teknik penentuan BVS menggunakan VESTA, struktur ZrO_2 terdoping dibuat dalam polihedral. Nilai parameter valensi ikatan, R_o , yang digunakan yaitu 1,928 [15]. Dalam VESTA, konstanta, *b*, yang digunakan telah ditentukan yakni 0,37, sebagaimana yang digunakan oleh La Kilo dkk. dalam memodelkan konduktivitas ion pada γ -Bi₂VO_{5,5}[16].

3. Hasil dan Pembahasan

3.1. Struktur Senyawa Induk ZrO₂

Tahap awal pemodelan yang dilakukan pada penelitian ini yaitu melakukan optimasi dan pencocokan antara model yang dihasilkan melalui pemodelan dengan data hasil studi ZrO₂ yang dilaporkan [1]. Data input yang dibuat lebih baik jika bagian-bagian strukturnya (parameter sel satuan) diketahui terlebih dahulu, seperti space group (grup ruang), cell parameter (parameter sel) yang diperoleh dari data difraksi sinar-X. Data input senyawa ZrO₂ yang telah dibuat selanjutnya dimodelkan pada secara atomistik tekanan tetap dengan menggunakan GULP. Pemodelan struktur ini menyangkut parameter sel yaitu panjang sisi-sisinya, sudut, dan posisi dari atom-atom dalam struktur. Interaksi antar atom-atom yang diperhitungkan adalah interaksi ionik, gaya dispersi dan interaksi Buckingham. Interaksi Buckingham dipilih karena interaksi yang terjadi di dalam struktur adalah interaksi ionik. Hasil pemodelan yang diperoleh dapat dilihat pada tabel 1.

Tabel 1. Parameter struktur hasil pemodelan dan
eksperimen ZrO2

Parameter	Ekspe- rimen	Hasil Pemodelan	Perbedaan (%)
Volume (Å)	130,324	130,746	0,32
а	5,070	5,076	0,11
b	5,070	5,076	0,11
С	5,070	5,076	0,11
Alfa	90	90	0,00
Beta	90	90	0,00
Gama	90	90	0,00
Zr x	0,000	0,000	0,00
Zr y	0,000	0,000	0,00
Zr z	0,000	0,000	0,00
0 <i>x</i>	0,250	0,250	0,00
Oy	0,250	0,250	0,00
0 <i>z</i>	0,250	0,250	0,00

Pada tabel 1, dapat dilihat bahwa parameter kisi hasil pemodelan adalah berkesesuaian baik dengan parameter sel hasil eksperimen, dengan perbedaan panjang sisi-sisi hanya 0,11%. Xia *dkk*. [1] melaporkan bahwa paramater sel yang perbedaannya kurang dari 1% menunjukkan hasil optimasi geometri (pemodelan) berhasil [3].

3.2. Struktur dan Kekosongan Oksigen ZrO₂ Terdoping

Terdapat dua cara untuk mencapai kestabilan struktur ini, yaitu melakukan doping dengan kation yang bervalensi lebih besar untuk memperluas kisi atau doping dengan kation yang bervalensi lebih rendah seperti yang dilakukan dalam penelitian ini. Mekanisme doping dengan valensi yang lebih rendah dapat menciptakan defek kekosongan oksigen seperti pada persamaan reaksi berikut.

$$M_2O_3 + 2 Zr^*_{Zr'} + \frac{1}{2}O_2 \rightarrow 2M'_{Zr} + V_0'' + 2 ZrO_2$$

Persamaan reaksi tersebut dapat dinyatakan bahwa dua ion M^{3+} mensubstitusi dua ion Zr^{4+} untuk menciptakan satu kekosongan oksigen. Pengurangan oksigen tersebut untuk mengimbangi muatan positif, sehingga ZrO_2 terdoping yang terbentuk bermuatan netral, tidak ada elektron bebas. Akibatnya, senyawa ZrO_2 terdoping yang terbentuk adalah senyawa elektrolit. Dopan yang digunakan dalam penelitian ini yakni kation trivalen yang berasal dari oksida trivalen logam tanah jarang ditambah satu logam transisi, Y^{3+} . Interaksi yang digunakan dalam penelitian ini adalah potensial ionik.

Konsentrasi dopan (kation trivalen) yang mensubsitusi secara parsial Zr adalah 1% sampai 10% sebab penelitian sebelumnya menunjukkan adanya aktivitas yang lebih besar pada ZrO₂ terdoping pada konsentrasi dopan di bawah 10%. Substitusi tersebut diimbangi dengan berkurangnya oksigen. Kalkulasi pengurangan tersebut memperhatikan muatan, konsentrasi, dan multiplisitas ion-ion dalam ZrO₂ yang terdoping. Semakin besar konsentrasi dopan yang mensubstitusi Zr⁴⁺, maka semakin kecil nilai okupansi dari oksigen (oksigen terisi). Penurunan okupansi oksigen mengindikasikan penambahan kekosongan oksigen pada ZrO₂ terdoping. Oleh karena itu, semakin besar konsentrasi dopan, maka kekosongan oksigen (vakansi) semakin besar pula.

3.3. Potensial Buckingham ZrO₂ yang Didoping dengan Kation Trivalen

Potensial Buckingham terdiri atas interaksi tolakmenolak dan interaksi dispersi. Dalam ZrO₂ terdoping kation trivalen, interaksi dispersi antar O²⁻ lebih tinggi dibandingkan dengan interaksi dispersi antar ion O²⁻ dan ion logam. Kemampuan dispersi oksigen yang lebih besar menunjukkan kemudahan migrasi ion oksigen dalam ZrO₂ yang terdoping. Migrasi ion oksigen inilah yang mengakibatkan ZrO₂ yang terdoping sebagai elektrolit dengan konduktivitas tinggi dibandingkan ZrO₂ tanpa doping. Potensial Buckingham antara ion dalam senyawa ZrO₂ yang terdoping ditunjukkan pada tabel 2.

Tabel 2. Potensial Buckingham ion-ion dari dopan (oksida trivalen) dalam senyawa ZrO₂

Short-range	A (eV)	ρ (Å)	C (eV·Å ⁶)
Zr ⁴⁺ -O ²⁻	985,87	0,3760	0,00
O ²⁻ -O ²⁻	22764,00	0,1490	27,88
La ³⁺ -O ²⁻	2088,79	0,3460	23,25
Eu ³⁺ -O ²⁻	1925,71	0,3403	20,59
Sm ³⁺ -O ²⁻	1944,44	0,3414	21,49
$Gd^{3+}-O^{2-}$	1885,75	0,3399	20,34
Y ³⁺ -O ²⁻	1766,40	0,3385	19,43
$Er^{3+}-O^{2-}$	1739,91	0,3389	17,55
Yb ³⁺ -O ²⁻	1649,80	0,3386	16,57
Lu ³⁺ -O ²⁻	1618,80	0,3385	19,27

Berdasarkan potensial Buckingham di atas, baik gaya dispersi dan gaya tolak dari La³⁺ terhadap oksigen adalah tertinggi dari semua kation trivalen. Namun, La³⁺ memiliki polaribilitas terendah yang ditunjukkan oleh perbandingan antara kuadrat muatan kulit (shell) dan spring (k) sebagimana termuat pada tabel 3. Sementara Gd³⁺, Lu³⁺, dan Eu³⁺ memiliki polarisabiltas tinggi dan gaya tolak rendah dibandingkan dengan kation lainnya.

Tabel 3. Muatan dan spring ion-ion dalam senyawa ZrO2terdoping kation trivalen

Shell Model	k (eV Å-2)	Shell(e)
O ²⁻	27,290	-2,077
Zr^{4^+}	69,617	1,350
La ³⁺	173,90	-2,149
Nd ³⁺	-	1,322
Eu ³⁺	304,92	3,991
Gd ³⁺	299,96	3,973
Lu ³⁺	308,91	3,278

Dibandingkan dengan kation lain, Sm³⁺, Gd³⁺, dan Y³⁺ justru tidak memiliki polarisabilitas namun memiliki memiliki gaya dispersi tinggi sehingga ketiga logam ini diduga akan memiliki keteraturan geometri yang dapat memudahkan ion oksigen bermigrasi. Ketiga dopan yang dituliskan terakhir diduga dapat memainkan peranan penting dalam meningkatkan kinerja elektrolit ZrO₂ terdoping pada konsentrasi tertentu. Bahkan, doping seperti ini dapat menurunkan suhu sintesis sebagaimana yang dilakukan pada material LSO dan LSGM [17].

3.4. Parameter Sel

Adanya perubahan parameter sel satuan dari struktur ZrO₂ akibat masuknya dopan La³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Y³⁺, Er³⁺, Yb³⁺ dan Lu³⁺ diketahui dengan cara optimasi struktur. Hasil pemodelan untuk parameter sel dapat dilihat pada gambar 1.

Gambar 1. Parameter sel ZrO₂ yang didoping dengan kation trivalen

Hasil pemodelan menunjukkan bahwa oksida ZrO₂ vang didoping dengan kation trivalen mengakibatkan oksida tersebut mengalami perubahan parameter sel, yaitu panjang sisi-sisinya (a, b, dan c). Dari hasil pemodelan juga dapat dilihat bahwa perubahan nilai parameter sel struktur ZrO₂ yang didoping dengan kation La³⁺, Nd³⁺, Sm³⁺, Eu³⁺ dan Gd³⁺ lebih besar dibandingkan dengan yang didoping kation Y^{3+,} Er³⁺, Yb³⁺, dan Lu³⁺. Kenaikan parameter sel hasil pemodelan dapat dihubungkan dengan jari-jari dopan. Dapat dilihat bahwa semakin besar jari-jari dopan (kation trivalen), maka parameter sel ZrO₂ yang terdoping semakin besar. Semakin besarnya jari-jari tiap dopan dapat dilihat pada gambar 2. Kenaikan konsentrasi dopan trivalen yang mensubtitusi secara parsial Zr dapat menaikan parameter sel pula.

Gambar 2. Perbandingan Jejari Dopan

Untuk membuktikan adanya perubahan parameter sel dari kisi kristal, maka dilakukan perhitungan terhadap jarak antar ion-ion dalam kristal. Dua kation dopan yang mensubtitusi struktur ZrO₂ mengambil tempat terdekat dengan oksigen seperti yang ditunjukkan dalam gambar 3.

Gambar 3. Jarak antara M – O (A) dan M – M (B) dalam struktur ZrO₂ yang terdoping dengan oksida trivalen (Keterangan: Kekosongan oksigen tidak ditunjukkan dalam gambar)

Simbol A pada gambar merupakan jarak antara M dan O terdekat, sedangkan simbol B merupakan jarak antara M dan M terdekat. Hasil pemodelan ZrO₂ yang terdoping dengan dopan oksida trivalen menunjukkan bahwa jarak antara M dan O terdekat berada pada panjang berkisar 2,198 Å sampai 2,228 Å dan jarak antara M dan M terdekat berada pada panjang 3,59 Å sampai 3,639 Å, sebagaimana yang ditunjukkan pada gambar 4 dan 5.

Gambar 4. Jarak antara M–O dalam struktur ZrO₂ yang terdoping kation trivalen

Gambar 5. Jarak antara M–M dalam struktur ZrO₂ yang terdoping kation trivalen

Semakin bertambahnya konsentrasi dan ukuran dopan yang mensubstitusi ZrO₂, maka jarak antar dopan dan antara dopan tersebut dengan O semakin besar karena semakin besarnya gaya tolak antar dopan dan antar oksigen dalam struktur. Hal inilah yang mengakibatkan parameter sel kisi semakin membesar dan kestabilan struktur ZrO₂ yang terdoping semakin menurun.

3.5. Energi Kisi

Pembentukan kation dan anion yang memenuhi aturan oktet dari atom-atomnya bukan merupakan sumber kestabilan suatu senyawa ionik [18]. Kestabilan senyawa-senyawa ionik bersumber pada energi kisi kristal yang dilepaskan pada pembentukan kristal. Berdasarkan hal ini, maka penentuan kestabilan struktur ZrO₂ terdoping dilakukan dengan cara menghitung energi kisi kristal. Hasil optimasi senyawa induk ZrO₂ didapatkan bahwa energi kisi senyawa induk ZrO₂ adalah -109,767 eV. Energi kisi ZrO₂ semakin besar dengan adanya dopan yang mensubstitusi secara parsial Zr seperti yang ditunjukkan pada gambar 6.

Gambar 6. Energi kisi ZrO₂yang terdoping kation trivalen

Hasil perhitungan energi kisi melalui pemodelan atomistik menunjukkan bahwa perubahan energi kisi berbanding lurus dengan konsentrasi dopan. Semakin besar nilai konsentrasi dopan maka nilai energi kisi kristal semakin positif sebagaimana ditunjukkan pada gambar 6. Pembentukan senyawa ionik dengan energi kisi menghasilkan perubahan entalpi negatif (ekstoterm) dikarenakan senyawa ionik tersebut dalam keadaan lebih stabil (energi ikatnya kuat). Dengan menghubungkan analisis parameter sel dan energi kisi dapat dikatakan semakin besar jari-jari dopan yang mensubsitusi Zr4+, maka energi kisi ZrO2 yang terdoping semakin naik (positif). Dengan masuknya dopan trivalen yang memiliki jari-jari lebih besar dari Zr4+ mengakibatkan struktur ZrO₂ menjadi kurang stabil karena adanya defek kekosongan yang terbentuk dan jarak antar ion dalam kristal semakin melebar sehingga menyebabkan energi ikat antar ion di dalamnya menjadi semakin lemah dan energi kisinya semakin positif.

3.6. Analisis Struktur ZrO₂ Terdoping dengan Metode Valensi Ikatan

Metode valensi ikatan dapat digunakan untuk menyelidiki ketepatan struktur eksperimen, menentukan bilangan oksidasi, atau untuk mengidentifikasi ketidakstabilan struktur. Hasil perhitungan *Bond Valence Sum* dari ZrO₂ terdoping kation trivalen ditunjukkan pada gambar 7.

Gambar 7. BVS dari ZrO2 terdoping kation trivalen

Atom pusat pada ZrO2 terdoping adalah Zr. Valensi Zr adalah 4, sehingga BVS dari struktur yang tepat adalah mendekati nilai 4. Menurut Brown jika perbedaan nilai antara BVS dan valensi dari atom lebih dari 0,1 satuan valensi, maka struktur tersebut tidak akurat atau tepat [13]. Berdasarkan gambar 7 dapat dilihat ZrO₂ yang didoping dengan La³⁺ memiliki perbedaan nilai lebih dari 0,1 maka struktur tersebut tidak tepat. BVS dari ZrO₂ yang didoping dengan Y³⁺, Yb³⁺, dan, Lu³⁺ memiliki nilai lebih besar dari 4. Hal ini disebabkan ikatan di dalam senyawa mendapat tekanan. Adanya tekanan tersebut menyebabkan beberapa ikatan mengalami peregangan (strain) dan pemampatan (compress), yang ditandai dengan BVS yang nilainya lebih besar (kation mengalami pemampatan) dan BVS yang nilainya lebih kecil (kation mengalami peregangan). Khusus, ZrO₂ yang didoping dengan Y, perbedaan nilai BVS dengan valensi Zr paling kecil dari semua, dan inilah yang menyebabkan struktur

 ZrO_2 terdoping Y dapat diaplikasi sebagai elektrolit pada sel bahan bakar padatan, sebagaimana yang dilaporkan oleh La Kilo dan Mazza [19] dalam memodelkan konduktivitas ion dalam struktur Li₂Sc₃(PO₄)₃.

4. Kesimpulan

ZrO₂ berstruktur kubus yang didoping dengan kation trivalen untuk mensubstitusi secara parsial Zr4+ mengakibatkan struktur ZrO2 terdoping mengalami kekosongan oksigen dan kestabilan ZrO₂ terdoping menurun. Penurunan tersebut semakin besar dengan bertambahnya konsentrasi dan ukuran dopan yang mensubstitusi Zr4+ secara parsial dari ZrO₂. Penurunan tersebut ditunjukan dengan energi kisi yang semakin positif. Penurunan kestabilan ZrO₂ yang didoping Y³⁺, Er³⁺, Yb³⁺ dan Lu³⁺ lebih kecil dibandingkan penurunan kestabilan ZrO₂ yang didoping dengan La³⁺, Nd³⁺, Sm³⁺, Eu³⁺ dan Gd³⁺. Hasil pemodelan juga diperkuat dengan hasil perhitungan Bond Valence Sum. Hasil penelitian dapat dijadikan sebagai petunjuk untuk sintesis ZrO2 yang didoping oksida trivalen dalam meningkatkan kinerja elektrolit dan menurunkan suhu sintesis.

Daftar Pustaka

- [1] Xin Xia, Richard Oldman, Richard Catlow, Computational Modeling Study of Bulk and Surface of Yttria-Stabilized Cubic Zirconia, Chemistry of Materials, 21, 15, (2009) 3576-3585 https://doi.org/10.1021/cm900417g
- [2] Akram La Kilo, Simulasi Komputasi Hantaran Ion di BIMEVOX, Departemen Kimia, Institut Teknologi Bandung, Bandung
- [3] Marco Cologna, Andre L. G. Prette, Rishi Raj, Flash-Sintering of Cubic Yttria–Stabilized Zirconia at 750°C for Possible Use in SOFC Manufacturing, *Journal of the American Ceramic Society*, 94, 2, (2011) 316–319 https://doi.org/10.1111/j.1551–2916.2010.04267.x
- [4] Jérôme Chevalier, Laurent Gremillard, Anil V. Virkar, David R. Clarke, The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends, Journal of the American Ceramic Society, 92, 9, (2009) 1901–1920 https://doi.org/10.1111/j.1551–2916.2009.03278.x
- [5] Arun Suresh, Merrilea J. Mayo, Wallace D. Porter, Claudia J. Rawn, Crystallite and Grain-Size-Dependent Phase Transformations in Yttria-Doped Zirconia, Journal of the American Ceramic Society, 86, 2, (2003) 360-362 https://doi.org/10.1111/j.1151-2916.2003.tb00025.x
- [6] Andrew P.E. York, Tiancun Xiao, Malcom L.H. Green, Brief Overview of the Partial Oxidation of Methane to Synthesis Gas, *Topics in Catalysis*, 22, 3, (2003) 345– 358 https://doi.org/10.1023/a:1023552709642
- [7] R. A. Miller, J. L. Smialek, R. G. Garlick, Phase stability in plasma-sprayed, partially stabilized zirconiayttria, in: A.H. Heuer, L.W. Hobbs (Eds.) Advances in Ceramics. Science and Technology of Zirconia, Columbus, 1981, pp. 241–253.

- [8] F. Hund, Anomale Mischkristalle im System ZrO₂-Y₂O₃ Kristallbau der Nernst-Stifte, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 55,5, (1951) 363-366 https://doi.org/10.1002/bbpc.19510550505
- [9] Matvei Zinkevich, Thermodynamics of rare earth sesquioxides, *Progress in Materials Science*, 52, 4, (2007)597-647 https://doi.org/10.1016/j.pmatsci.2006.09.002
- [10] Julian D. Gale, Andrew L. Rohl, The General Utility Lattice Program (GULP), Molecular Simulation, 29, 5, (2003) 291-341 https://doi.org/10.1080/0892702031000104887
- [11] Koichi Momma, Fujio Izumi, VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data, *Journal of Applied Crystallography*, 44, 6, (2011) 1272–1276 https://doi.org/10.1107/S0021889811038970
- [12] Xi Wei, Wei Pan, Laifei Cheng, Bin Li, Atomistic calculation of association energy in doped ceria, Solid State Ionics, 180, 1, (2009) 13–17 https://doi.org/10.1016/j.ssi.2008.10.019
- [13] I. David Brown, The Bond-Valence Method: An Empirical Approach to Chemical Structure and Bonding, in: M. O'Keeffe, A. Navrotsky (Eds.) Industrial Chemistry Library, Elsevier, 1981, pp. 1–30.
- [14] I. David Brown, Bond Valence Theory, in: I.D. Brown, K.R. Poeppelmeier (Eds.) Bond Valences, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 11– 58.
- [15] I. David Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallographica Section B, 41, 4, (1985) 244-247 https://doi.org/10.1107/S0108768185002063
- [16] A. L. Kilo, B. Prijamboedi, M. A. Martoprawiro, Ismunandar, Modeling ionic conduction in Y-Bi2VO5.5, 2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, (2011) 330-333 https://doi.org/10.1109/ICICI-BME.2011.6108652
- [17] Yoga Trianzar Malik, Atiek Rostika Noviyanti, Dani Gustaman Syarif, Lowered Sintering Temperature on Synthesis of La_{9.33}Si₆O₂₆ (LSO)-La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{2.55} (LSGM) Electrolyte Composite and the Electrical Performance on La_{0.7}Ca_{0.3}MnO₃ (LCM) Cathode, Jurnal Kimia Sains dan Aplikasi, 21, 4, (2018) 205–210 https://doi.org/10.14710/jksa.21.4.205–210
- [18] Effendy, Ikatan Ionik dan Cacat-Cacat pada Kristal Ionik, Bayumedia Publishing, Malang, 2008.
- [19] Akram La Kilo, D. Mazza, Pemodelan Konduktivitas Ion dalam Struktur Li₂Sc₃(PO₄)₃, Jurnal Manusia dan Lingkungan, 18, 3, (2011) 179–183 <u>https://doi.org/10.22146/jml.18439</u>

1. #22954 Summary

- <u>Summary</u>
 <u>Review</u>
 <u>Editing</u>

Submission

Authors	Akram La Kilo, Triwahyuni S. Umamah, Lukman A. R. Laliyo		
Title	Study on the Stability of Trivalent Cations Doped Zirconia through Atomistic Modeling		
Original file	<u>22954-63335-1-SM.docx</u> 30-04-2019		
Supp. files	None		
Submitter	Dr Akram La Kilo 🖾		
Date submitted	April 30, 2019 - 11:11 AM		
Section	Research Articles		
Editor	Yayuk Astuti 🖾		
Abstract Views	172		

Status

Status	Published	Vol 22, No 4 (2019): Volume 22 Issue 4 Year 2019
Initiated	29-07-2019	
Last modified	29-07-2019)

Submission Metadata

Authors

Name	Akram La Kilo 🖾
ORCID iD	http://orcid.org/0000-0002-4885-1838
Scopus ID	<u>54896877400</u>
Sinta ID	<u>6679435</u>
Affiliation	Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Gorontalo
Country	Indonesia
Bio Statement	_
Principal contact	for editorial correspondence.
Name	Triwahyuni S. Umamah 🖾
Sinta ID	<u>6696493</u>

Affiliation	Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Gorontalo
Country	Indonesia
Bio Statement	
Name	Lukman A. R. Laliyo 🖾
Scopus ID	<u>57202604005</u>
Sinta ID	<u>6643522</u>
Affiliation	Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Gorontalo
Country	Indonesia
Bio Statement	

Title and Abstract

Study on the Stability of Trivalent Cations Doped Zirconia through Atomistic Modeling
The aim of this research was to study the stability of the structure of the ZrO ₂ doped with trivalent oxide $Zr_1 x M_x O_{2-\delta}$ (M = La ³⁺ , Nd ³⁺ , Sm ³⁺ , Eu ³⁺ , Gd ³⁺ , Y ³⁺ , Er ³⁺ , Yb ³⁺ and Lu ³⁺ through atomistic modelling and bond valence sum method. Short range potential used in this study was Buckinghams' potential. Result of geometry optimization at constant pressure shown both cell parameters of ZrO ₂ was in good agreement with experimental results because of the difference was only 0.11%. Increasing the concentration and the size of substituting dopant of ZrO ₂ makes the lattice energy of the doped structure was more positive so that the stability of the doped ZrO ₂ structure decreases. The decrease in the stability of ZrO ₂ doped with Y ³⁺ , Er ³⁺ , Yb ³⁺ and Lu ³⁺ was smaller than ZrO ₂ doped with La ³⁺ , Nd ³⁺ , Sm ³⁺ , Eu ³⁺ and Gd ³⁺ . BVS results shown that the structure of ZrO ₂ doped with La ³⁺ was not appropriate because it has different value of BVS was more than 0.1
zirconia; cation trivalent, lattice energy; atomistic modeling; bond valence sum
id
gencies
—
Xin Xia, Richard Oldman, Richard Catlow, Computational Modeling Study of Bulk and Surface of Yttria-Stabilized Cubic Zirconia, Chemistry of Materials, 21, 15, (2009) 3576-3585 https://doi.org/10.1021/cm900417g Akram La Kilo, Simulasi Komputasi Hantaran Ion di BIMEVOX,

Marco Cologna, Andre L. G. Prette, Rishi Raj, Flash-Sintering of Cubic Yttria-Stabilized Zirconia at 750°C for Possible Use in SOFC Manufacturing, Journal of the American Ceramic Society, 94, 2, (2011) 316-319 https://doi.org/10.1111/j.1551-2916.2010.04267.x Jérôme Chevalier, Laurent Gremillard, Anil V. Virkar, David R. Clarke, The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends, Journal of the American Ceramic Society, 92, 9, (2009) 1901-1920 https://doi.org/10.1111/j.1551-2916.2009.03278.x Arun Suresh, Merrilea J. Mayo, Wallace D. Porter, Claudia J. Rawn, Crystallite and Grain-Size-Dependent Phase Transformations in Yttria-Doped Zirconia, Journal of the American Ceramic Society, 86, 2, (2003) 360-362 https://doi.org/10.1111/j.1151-2916.2003.tb00025.x Andrew P.E. York, Tiancun Xiao, Malcom L.H. Green, Brief Overview of the Partial Oxidation of Methane to Synthesis Gas, Topics in Catalysis, 22, 3, (2003) 345-358 https://doi.org/10.1023/a:1023552709642 R. A. Miller, J. L. Smialek, R. G. Garlick. Phase stability in plasma-sprayed. partially stabilized zirconia-yttria, in: A.H. Heuer, L.W. Hobbs (Eds.) Advances in Ceramics. Science and Technology of Zirconia, Columbus, 1981, pp. 241-253. F. Hund, Anomale Mischkristalle im System ZrO2-Y2O3 Kristallbau der Nernst-Stifte, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 55, 5, (1951) 363-366 https://doi.org/10.1002/bbpc.19510550505 Matvei Zinkevich, Thermodynamics of rare earth sesquioxides, Progress in Materials Science, 52, 4, (2007) 597-647 https://doi.org/10.1016/j.pmatsci.2006.09.002 Julian D. Gale, Andrew L. Rohl, The General Utility Lattice Program (GULP), Molecular Simulation, 29, 5, (2003) 291-341 https://doi.org/10.1080/0892702031000104887 Koichi Momma, Fujio Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography, 44, 6, (2011) 1272-1276 https://doi.org/10.1107/S0021889811038970 Xi Wei, Wei Pan, Laifei Cheng, Bin Li, Atomistic calculation of association energy in doped ceria, Solid State Ionics, 180, 1, (2009) 13-17 https://doi.org/10.1016/j.ssi.2008.10.019 I. David Brown, The Bond-Valence Method: An Empirical Approach to Chemical Structure and Bonding, in: M. O'Keeffe, A. Navrotsky (Eds.) Industrial Chemistry Library, Elsevier, 1981, pp. 1-30. I. David Brown, Bond Valence Theory, in: I.D. Brown, K.R. Poeppelmeier (Eds.) Bond Valences, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 11-58. I. David Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallographica Section B, 41, 4, (1985) 244-247 https://doi.org/10.1107/S0108768185002063 A. L. Kilo, B. Prijamboedi, M. A. Martoprawiro, Ismunandar, Modeling ionic conduction in y-Bi2VO5.5, 2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, (2011) 330-333 https://doi.org/10.1109/ICICI-BME.2011.6108652 Yoga Trianzar Malik, Atiek Rostika Noviyanti, Dani Gustaman Syarif,

Yoga Trianzar Malik, Atiek Rostika Noviyanti, Dani Gustaman Syarif, Lowered Sintering Temperature on Synthesis of La9.33Si6O26 (LSO) La0.8Sr0.2Ga0.8Mg0.2O2.55 (LSGM) Electrolyte Composite and the Electrical Performance on La0.7Ca0.3MnO3 (LCM) Cathode, Jurnal Kimia Sains dan Aplikasi, 21, 4, (2018) 205-210 https://doi.org/10.14710/jksa.21.4.205-210 Effendy, Ikatan Ionik dan Cacat-Cacat pada Kristal Ionik, Bayumedia Publishing, Malang, 2008. Akram La Kilo, D. Mazza, Pemodelan Konduktivitas Ion dalam Struktur Li2Sc3(PO4)3, Jurnal Manusia dan Lingkungan, 18, 3, (2011) 179-183

https://doi.org/10.22146/jml.18439

2. Editor/Author Correspondence

Editor 09-06-2019 10:31 PM

Delete

Subject: [JKSA] Editor Decision - your submission needs to be

<u>revised</u>

Dear Dr Akram La Kilo

We have reached a decision regarding your submission to Jurnal Kimia Sains dan Aplikasi, "Studi Kestabilan Oksida Zirkonia (ZrO2) yang Didoping Kation Trivalen melalui Simulasi Atomistik".

Our decision is that you need to revise this manuscript according to the feedback from the review. Please submit this paper no more than 14 days from now.

Regards

Dr. Yavuk Astuti Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang yayuk.astuti@live.undip.ac.id _____ Reviewer A: • Pendahuluan terlalu panjang · Sesuikan format artikel dengan format yang diminta oleh JKSA • Cek sub section 2.2 pada akhir paragraf dan section 3 awal paragraf • Banyak penulisan kata yang kurang tepat, bahasa inggris harus ditulis miring. Tolong dicek secara keseluruhan • Apa perbedaan antara sub bab 2.2 dan 2.3? • Penulisan jumlah angka di belakang koma perlu konsisten dan sama di seluruh kolom • Penulisan 1 tabel harus dalam satu sheet, tidak boleh terpisah • Jelaskan alasan pemilihan dopant yang digunakan • Kestabilan struktur ZrO2 akibat adanya dopant terkait erat dengan ukuran (jari-jari) dopant. Perlu diberikan informasi di awal mengenail jari-jari dari dopant-dopant tersebut. • Semua parameter-parameter seperti A, p, C (misal pada tabel 3) sebharusnya dijelaskan/diberikan keterangan • Gambar 2, akibat tingginya konsnetrasi dopan, menyebabkan kenaikan parameter sel. Parameter sel yang manakah? Panjang sisinya atau yang mana? (sumbu x harus jelas) • Tabel 3 perlu lebih dijelaskan terutama kaitan antara perbedaan dopan yang digunakan dengan potensial buckingham • Dari data-data tersebut, dopan manakah yang paling baik? Apakah baik tidaknya dopan yang digunakan pada ZrO2 itu tergantung dari aplikasi yang diinginkan? misal untuk elektrolit pada sel bahan bakar padatan lebih baik menggunakan dopan Y

	Reviewer B: https://gulp.curtin.edu.au/gulp/overview.cfm
	Mohon konfirmasi terkait software GULP yang dipakai apakah sama dengan link berikut: https://gulp.curtin.edu.au/gulp/overview.cfm. Apabila tidak sama mohon bisa disampaikan link yang sesuai, mengingat artikel ini tidak relevan dengan GULP 4.0 sebagaimana ditunjukkan pada link di atas.
	Di luar penggunaan aplikasi GULP, artikel ini masih memerlukan perbaikan sebelum layak untuk dipublikasikan terutama terkait seberapa penting penggunaan pemodelan untuk membantu eksperimen.
	Komentar secara detail terdapat pada naskah
	Jurnal Kimia Sains dan Aplikasi http://ejournal.undip.ac.id/index.php/ksa
Author 24-06-2019 10:51 PM	Delete
	<u>Subject: Studi Kestabilan Oksida Zirkonia (ZrO2) yang Didoping</u>
	Kation Trivalen melalui Simulasi Atomistik Kanada Yth
	Dr. Yayuk Astuti
	Dengan ini saya kirimkan kembali manuskrip hasil perbaikan berdasarkan koreksi kedua reviewer. Perbaikan mayor dilakukan pada metode penelitian, dimana penulis memasukkan metode simulasi atomistik yang sebelumnya tidak ada ulasannya. Penulisan daftar pustaka sudah disesuiakan dengan cara sitasi JKSA. Pada prinsipnya perbaikan telah dilakukan dengan memperhatikan masukan reviewer, sehingga manuskrip ini diharpkan dapat diterima.
	Terima kasih banyak, telah memberikan kesempatan kepada kami untuk dapat memuat manuskrip kami di JKSA.
	Terima kasih dan salam
	Akram
	Jurnal Kimia Sains dan Aplikasi http://ejournal.undip.ac.id/index.php/ksa
Editor 08-07-2019 07:17 PM	Delete
	Subject: [JKSA] Editor Decision - your submission needs to be
	<u>revised</u> Dear Dr Akram La Kilo
	We have reached a decision regarding your submission to Jurnal Kimia Sains

dan Aplikasi, "Studi Kestabilan Oksida Zirkonia (ZrO2) yang Didoping Kation Trivalen melalui Simulasi Atomistik".

Our decision is that you need to revise this manuscript according to the feedback from the review (Please see below).

When submitting back to us, please include: (i) the answers to the reviewer questions (in docx format) (an example of the answers to the reviewer questions is attached) and (ii) the revised manuscript (in docx format) (Make sure that the revised manuscripts are cleared from the reviewer comments) Compress both files into one zip file and then upload.

Please submit this paper no more than 14 days from now.

Regards

Dr. Yayuk Astuti Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang yayuk.astuti@live.undip.ac.id

Editor comment: If possible, please cite articles published by JKSA

Reviewer B

Delete

Author telah melakukan beberapa perbaikan pada naskah. Namun demikian reviewer, masih melihat beberapa hal yang bisa ditingkatkan dari naskah ini:

1. Kata simulasi tidak tepat digunakan untuk sekedar melakukan optimasi geometri, kata yang lebih tepat adalah pemodelan.

2. Pada Tabel 1, saya rasa tidak perlu menuliskan data sampai 6 angka dibelakang koma

3. Tabel 2, bukan merupakan hasil pemodelan karena hanya menuliskan muatan formal dan hasil setelah dikalikan dengan jumlah ion serta konsentrasinya. Jadi tidak terlalu menarik disajikan dalam hasil.

4. Tabel 3 sebaiknya dipisah jadi 2 tabel, mengingat 2 tabel hanya 1 judul

5. Perubahan karatakter ZrO2 hanya ditekankan pada perubahan konsentrasi Dopan. Mungkin akan lebih menarik bila dilihat dari perngaruh karakteristik dari dopan terhadap karakter ZrO2, misal dari jari-jari, muatan efektif dan lailn-lain(digunakan sebagai aksis)

Jurnal Kimia Sains dan Aplikasi http://ejournal.undip.ac.id/index.php/ksa

Author 23-07-2019 01:41 PM

Subject: Studi Kestabilan Oksida Zirkonia (ZrO2) yang Didoping Kation Trivalen melalui Simulasi Atomistik Kepada Dr. Yayuk Astuti

Berikut komentar kami berdasarkan revisi kedua artikle kami: Editor comment:

If possible, please cite articles published by JKSA

I have cited one article published by JKSA, namely:

Y. T. Malik, A. R. Noviyanti, & D. G. Syarif, Lowered Sintering Temperature on Synthesis of La9.33Si6O26 (LSO)–La0.8Sr0.2Ga0.8Mg0.2O2.55 (LSGM) Electrolyte Composite and the Electrical Performance on La0.7Ca0.3MnO3 (LCM) Cathode. Jurnal Kimia Sains dan Aplikasi, 21, 4, (2018) 205-210. https://doi.org/10.14710/jksa.21.4.205-210

Reviewer B

Author telah melakukan beberapa perbaikan pada naskah. Namun demikian reviewer, masih melihat beberapa hal yang bisa ditingkatkan dari naskah ini:

1. Kata simulasi tidak tepat digunakan untuk sekedar melakukan optimasi geometri, kata yang lebih tepat adalah pemodelan.

Telah diganti semua (41) kata "simulasi" dengan kata "pemodelan". Hal ini dilakukan dengan melihat kembali konsep perbdeaan model dan simulasi berdasarkan software GULP

2. Pada Tabel 1, saya rasa tidak perlu menuliskan data sampai 6 angka dibelakang koma

Telah diperkecil jumlah desimal sesuai dengan paremater: volume, dimensi sel (a, b, c), dan fraksional x, y, dan z adalah 3 desimal; alfa, beta, gama tanpa desimal (0). Kemudian persen perbedaan anatra hasil pemodelan dan ekesperimen adalah 2 desimal.

3. Tabel 2, bukan merupakan hasil pemodelan karena hanya menuliskan muatan formal dan hasil setelah dikalikan dengan jumlah ion serta konsentrasinya. Jadi tidak terlalu menarik disajikan dalam hasil.

Tabel 2 telah ditiadakan sehingga penjelasan pada bagian ini, 3.2 turut disesuaikan

4. Tabel 3 sebaiknya dipisah jadi 2 tabel, mengingat 2 tabel hanya 1 judul

Tabel dimaksud telah dipisah menjadi dua tabel, yaitu menjadi Tabel 2 dan Tabel 3. Nomor tabel berbeda dengan komntar poin 4 karena tabel 2 pada komentar 3 telah ditiadakan.

5. Perubahan karatakter ZrO2 hanya ditekankan pada perubahan konsentrasi Dopan. Mungkin akan lebih menarik bila dilihat dari perngaruh karakteristik dari dopan terhadap karakter ZrO2, misal dari jari-jari, muatan efektif dan lailn-lain(digunakan sebagai aksis)

Penjelasan ini sudah ada; penjelasan pengaruh jejari ion telah dimasukkan. Jejari juga berhubungan dengan polarisabilitas (sebgaimana hasil simulasi pada muatan sel). Di samping itu, jejari ini telah diperjelas dengan model bond valence sum di atas. Sementara, muatan inti efektif tidak dimasukkan karena telah tersirat dalam penjelasan jejari dan BVS. Jika akan dimasukkan muatan inti efektif, maka itu hanya melihat kontraksi kulit secara umum yang dimiliki oleh logam tanah jarang, sehingga perbedaan jejari mereka kecil.

Terima kasih atas perhatian dan kepedulian terhadap artikel kami. Selanjutnya kami menunggu kabar baik dari Ibu Yayuk dan tim editor JKSA.

Salam

Akram

Jurnal Kimia Sains dan Aplikasi http://ejournal.undip.ac.id/index.php/ksa

Editor 24-07-2019 01:58 PM

Delete
Subject: [JKSA] Editor Decision - your submission is accepted

Dear Dr Akram La Kilo

We have reached a decision regarding your submission to Jurnal Kimia Sains dan Aplikasi, "Studi Kestabilan Oksida Zirkonia (ZrO2) yang Didoping Kation Trivalen melalui Pemodelan Atomistik".

Our decision is to accept your submission. Congratulations

In accordance to the Journal policy, you are required to immediately pay the publication fee of Rp 700,000 (USD 50) by transfer to the following bank account: Bank name: PT. BANK NEGARA INDONESIA (PERSERO) TBK SWIFT Code: BNINIDJAUDS Account number: 423759081 Account holder: Adi Darmawan Bank Address: BNI Undip Branch, Semarang, Indonesia

Please send the proof of remittance by email to the editorial office of Jurnal Kimia Sains dan Aplikasi (email: jksa@live.undip.ac.id).

JKSA waives the article processing charge for non-Indonesian author

After payment, in few days you will receipt email for the further process, i.e. copy-editing, layout and proofreading.

Also, please send us an existing Copyright transfer agreement that can be downloaded in the Copyright notice section. Please fill in handwriting and sign and then scan and email us (email: jksa@live.undip.ac.id).

Thank you for your valuable contribution to the journal.

Regards

Dr. Yayuk Astuti Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang yayuk.astuti@live.undip.ac.id

Jurnal Kimia Sains dan Aplikasi http://ejournal.undip.ac.id/index.php/ksa

Jurnal Kimia Sains dan Aplikasi (eISSN: 2597-9914) Copyright ©2019 Diponegoro University. Powered by Open Journal Systems and Mason Publishing OJS theme.

Studi Kestabilan Oksida Zirkonia (ZrO₂) yang Didoping Kation Trivalen melalui Simulasi Atomistik

Akram La Kilo^{*1}, Triwahyuni S. Umamah², Lukman A.R. Laliyo²

 ¹ Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Gorontalo, Kota Gorontalo, Indonesia
 ² Program Studi Pendidikan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Gorontalo, , Kota Gorontalo, Indonesia

*Corresponding Author : akram@ung.ac.id.

Abstract. The aim of this research is to study the stability of the structure of the ZrO₂ doped with trivalent oxide $Zr_{1-x}M_xO_{2-1}$ (M = La³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Y³⁺, Er³⁺, Yb³⁺ and Lu³⁺ through simulation atomistic where the dopant concentration is limited up to 10%. The variables used to study the stability used in this research are Lattice energy and Bond Valence Sum (BVS). this research is theoretical exploration using computational chemistry by atomistic simulation using GULP (General Utility Latice Program) and VESTA (Visualization for Electronic and Structural Analysis). Research objects are nine trivalent oxides with short range potential input data. short range potential used in this study is Buckinghams' potential. Result of geometry optimization at constant pressure shows both cell parameters ZrO₂ through simulation and experimental results are good agreement because the difference is only 0.11%. Increasing the concentration and the size of substituting dopant of ZrO₂ makes the lattice energy of the doped structure more positive so that the stability of the doped ZrO_2 structure decreases. The decrease in the stability of ZrO_2 doped with Y^{3+} , Er^{3+} , Yb^{3+} and Lu^{3+} is smaller than the decrease in the stability of ZrO_2 doped with La^{3+} , Nd^{3+} , Sm³⁺, Eu³⁺ and Gd³⁺. BVS results show that the structure of ZrO₂ doped with La³⁺ is not appropriate because it has different value of valence and BVS more than 0.1. **Keywords:** Zr_{1-x}M_xO_{2-□}; Lattice Energy; Atomistic Simulation; Bond Valence Sum

Abstrak. Tujuan dari penelitian ini yaitu untuk mempelajari Kestabilan struktur ZrO₂ yang didoping oksida trivalen menjadi senyawa $Zr_{1-x}M_xO_{2-\Box}$ (M= La³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Y³⁺, Er³⁺, Yb³⁺ dan Lu³⁺ melalui simulasi atomistik dimana konsentrasi dopan dibatasi sampai 10%. Variabel yang digunakan untuk mempelajari kestabilan adalah melalui energi kisi dan *Bond Valence Sum* (BVS). Penelitian ini bersifat teoritis eksploratif dengan metode simulasi atomistik menggunakan perangkat lunak GULP (*General Utility Latice Program*) dan VESTA (*Visualization for Electronic and Structural Analysis*). Obyek pada penelitian adalah sembilan senyawa oksida trivalen dengan data input potensial jarak pendek. Potensial jarak

pendek yang digunakan dalam penelitian ini adalah potensial Buckingham. Hasil optimasi geometri pada tekanan tetap menunjukkan bahwa parameter sel ZrO₂ induk hasil simulasi dengan hasil eksperimen berkesesuaian dengan baik karena menunjukkan perbedaan hanya sebesar 0,11%. Semakin bertambahnya konsentrasi dan ukuran dopan yang mensubstitusi ZrO₂, maka energi kisi dari struktur ZrO₂ terdoping semakin positif sehingga kestabilan dari struktur ZrO₂ terdoping semakin menurun. Penurunan kestabilan ZrO₂ yang didoping Y³⁺, Er³⁺, Yb³⁺ dan Lu³⁺ lebih kecil dibandingkan penurunan kestabilan ZrO₂ yang didoping dengan La³⁺, Nd³⁺, Sm³⁺, Eu³⁺ dan Gd³⁺. Hasil BVS menunjukkan bahwa struktur ZrO₂ yang didoping dengan La³⁺ tidak tepat karena memiliki perbedaan nilai valensi dan BVS lebih dari 0,1.

Kata kunci: Zr_{1-x}M_xO_{2-□}, Energi Kisi, Simulasi Atomistik, Bond Valence Sum

1. Pendahuluan

Selama dekade terakhir, pemahaman mengenai struktur kimia dari keramik oksida yang digunakan sebagai material struktural dan fungsional di berbagai penerapan sebagai katalis, dielektrik, dan elektronik, telah menghasilkan keuntungan secara ekstensif melalui pengembangan teknik pemodelan komputasi. Dalam konteks ini, zirkonium dioksida (ZrO₂) merupakan bahan teknologi penting yang telah dimanfaatkan sebagai konduktor ion oksigen dan elektrolit dalam beberapa aplikasi industri termasuk sel bahan bakar oksida padatan (Solid Oxide Fuel Cell, SOFC) dan katalisis [1].

Zirkonium (Zr) adalah logam yang memiliki nomor atom 40. Logam ini pertama kali ditemukan pada tahun 1789 oleh kimiawan Martin Klaproth [2]. Logam zirkonium memiliki kerapatan 6,49 g/cm³, titik leleh 1852 °C dan titik didih 3580 °C. Logam ini memiliki struktur kristal heksagonal dan berwarna keabu-abuan. Zr tidak terdapat di alam dalam keadaan murni, melainkan dapat ditemukan bersenyawa dengan oksida silikat dan dinamakan dengan nama mineral zircon ($ZrO_2 \times SiO_2$) atau sebagai oksida bebas (ZrO_2) dengan nama mineral Baddeleyite [3].

ZrO2 adalah oksida polimorfik dalam tiga bentuk: monoklinik, tetragonal, dan kubus. Fasa monoklinik stabil pada suhu kamar sampai 1170 °C, tetragonal pada suhu 1170 °C - 2370 °C, dan kubus di atas 2370 °C [4-5]. Namun, perubahan volume ada kaitannya dengan transformasi ini dimana: selama transformasi monoklinik menjadi tetragonal terjadi penurunan volume 5% yang terjadi ketika zirkonium oksida dipanaskan; sebaliknya, peningkatan volume sebesar 3% - 4% dapat teramati selama proses pendinginan.

Fase kubus ZrO_2 hanya stabil pada suhu tinggi; ekspansi volume yang disebabkan oleh transformasi c-t (kubus-tetragonal) atau t-m (tetragonal-monoklinik) menginduksi tekanan yang sangat besar, dan menyebabkan ZrO_2 murni retak pada saat pendinginan. Kestabilan zirkonia dapat dicapai dengan penambahan kation yang lebih besar untuk memperluas kisi atau dengan doping menggunakan kation bervalensi lebih rendah yakni kation trivalen atau divalen untuk membuat kekosongan anion oksigen (oxygen vacancy), seperti Y3+, atau kombinasi dari dua efek tersebut [6]. Namun, Heuer melaporkan bahwa muatan +2 yang tidak sepadan dari dopan divalen telah terbukti dapat menyebabkan ketidakstabilan struktur dan terjadinya fasa pemisahan pada suhu tinggi (misalnya pada $CaZr_4O_9$) sehingga, dopan dari golongan ini hanya digunakan pada pembuatan Zirkonia Terstabilkan Parsial (PSZ) [7]. Penelitian ini melaporkan kestabilan struktur zirkonia yang didoping dengan dopan/kation trivalen.

Menurut eksperimen yang dilakukan oleh Xia dkk., doping yang dilakukan menggunakan itrium dapat menstabilkan fasa kubus ZrO2 dan kenaikan energi kisinya berbanding lurus dengan konsentrasinya [1]. Dalam penelitian Zhu dkk. menemukan adanya aktivitas yang lebih besar dari zirkonia terstabilkan itria dibandingkan dengan ZrO₂ murni. Hasilnya juga mengindikasikan bahwa kekosongan oksigen dalam zirkonia terstabilkan itria sangat penting dalam deposisi karbon yang mana membatasi jangka waktu katalitis. Penelitian sebelumnya yang dilakukan oleh Butz juga menunjukkan adanya konduktivitas ion untuk YDZ (zirkonia terdoping itria) pada 1000 °C berlaku pada konsentrasi dopan Y₂O₃ 8-9 mol% [9]. Gibson dkk. menemukan hal yang sama pula, namun dalam konsentrasi yang berbeda yaitu pada 7 mol% Y₂O₃ [10]. Itria yang mendoping zirkonia disampaiakn juga dalam artikel ini, yan didukung dengan data hasil simulasi atomistik dan perhitungan Bond Valence Sum (BVS).

Penelitian untuk menganalisis struktur ZrO_2 yang terdoping perlu untuk dilakukan. Artikel ini melaporkan hasil penelitian dari kestabilan ZrO_2 yang didoping dengan dopan trivalen melalui simulasi atomistik. Dopan tersebut mensubstitusi secara parsial Zr^{4+} dari ZrO_2 . Dari substitusi tersebut, didapatkan oksida padatan zirkonia, yaitu $Zr_{1-x}M_xO_{2-\Box}$ (x = konsentrasi dopan, M = dopan, dan \Box = kekosongan oksigen). Dopan kation yang digunakan dalam penelitian ini adalah La³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Y³⁺, Er³⁺, Yb³⁺ dan Lu³⁺, dengan konsentrasi dopan (x) dibatasi sampai 10%.

Variabel yang digunakan dalam mempelajari kestabilan adalah melalui energi kisi dan Bond Valence Sum (BVS). Dalam simulasi atomistik, energi kisi dari ZrO₂ yang didoping dengan dopan kation trivalen dihitung dengan menggunakan GULP (General Utility Lattice Program) [11]. Pada dasarnya, penentuan energi kisi sangat penting dilakukan pada suatu senyawa ionik karena nilainya menjadi kendali termodinamika pembentukan senyawa tersebut. Perubahan energi kisi ZrO_2 akibat doping dianalisis faktor-faktor yang mempengaruhi berubahnya energi kisi tersebut, baik dilihat dari perubahan parameter sel dan jarak antar ion. Dengan adanya hal tersebut, maka kestabilan struktur zirkonia yang didoping dengan kation trivalen dapat dipelajari. Hasil perhitungan energi kisi tersebut didukung oleh analisis ketepatan ketepatan struktur ZrO_2 terdoping dengan menggunakan metode *Bond Valence Sum* (BVS).

2. Methodology

Alat yang digunakan dalam penelitian ini terdiri atas Perangkat Keras (Hardware) dan Perangkat Lunak (Software). Perangkat keras yang digunakan berupa sebuah Personal Computer (PC) dengan prosesor Intel^(R) Core^(TM) i5 CPU M540 dengan kecepatan 2,53 GHz, RAM 4,00 GB. Perangkat lunak yang digunakan adalah Operating System (OS) Microsoft^(R) Windows 7 Ultimate Service Pack 1 64-bit, software GULP (General Utility Lattice Program), Microsoft Excel 2013, dan VESTA (Visualization For Electronic and Structural Analysis). Obyek penelitian ini adalah senyawa-senyawa La₂O₃, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Y₂O₃, Er₂O₃, Yb₂O₃, dan Lu₂O₃ dengan data input parameter potensial jarak pendek yang diperoleh dari penelitian sebelumnya Wei dkk. [12] dan Xia, dkk. [1]. Penelitian ini bersifat teoritis eksploratif. Semua bahan yang digunakan dalam penelitian ini berupa senyawa-senyawa yang hasil perhitungan potensial jarak pendeknya diambil dari penelitian sebelumnya. Penelitian ini menggunakan metode kimia komputasi untuk mengeksplorasi semua senyawa. Metode simulasi atomistik dilakukan dengan menggunakan perangkat lunak GULP (General Utility Latice Program) versi 2007 untuk menghitung energi kisi, simulasi menggunkan metode BVS dan penggambaran struktur menggunakan VESTA (Visualization for Electronic and Structural Analysis) dan pembuatan grafik menggunakan Microsoft Excel 2013.

2.1. Pembuatan Data Input Code GULP

Simulasi dengan menggunakan *code* GULP dalam penelitian dilakukan untuk menghitung energi kisi dan parameter sel struktur ZrO₂ murni ataupun yang terdoping. Simulasi yang dilakukan memerlukan data input sebagai data yang akan diolah. Untuk itu diperlukan untuk membuat data input simulasi terlebih dahulu. Pada tahap pembuatan data input akan lebih baik jika bagian-bagian strukturnya (parameter sel satuan) diketahui terlebih dahulu, seperti *space group* (grup ruang), *cell parameter* (parameter sel) yang diperoleh dari data difraksi sinar-X dan neutronnya. Tahap awal dari penelitian ini dimulai dengan tahap pengumpulan data. Data yang digunakan pada penelitian ini adalah data yang diperoleh dari penelitian Wei dkk. [12] dan Xia dkk [1]. Setelah data didapatkan, data tersebut disimpan dalam *software* GULP pada folder sesuai nama dopan yang konsentrasinya sudah ditentukan sebesar 1% sampai 10%.

Setelah pengumpulan data selesai, dilanjutkan dengan pengolahan data yang dilakukan dengan menggunakan *software* GULP

Pada baris pertama data input merupakan kata kunci. Kata kunci ini terdiri dari kata-kata kontrol yang pada umumnya menentukan tugas-tugas yang akan dilakukan oleh program. Seperti *opti, conp, prop,* dan *comp*, kombinasi kata kunci ini secara otomatis memberitahu program (GULP) untuk melakukan tugas-tugasnya yaitu untuk melakukan optimasi (*opti*), pada tekanan konstan (*conp*), kemudian untuk menghitung sifat kisi (*prop*). Baris kedua adalah judul atau nama (*title*) dari senyawa yang akan disimulasi dengan menambahkan *end* pada akhir nama senyawa tersebut, judul atau nama ini bisa digunakan atau ditiadakan sesuai keperluan. Baris ketiga merupakan parameter sel (*cell*) yang terdiri dari nilai *a, b, c* dan sudut *a, β, γ*. Baris keempat adalah fraksional (*frac*) yaitu menunjukkan letak sumbu *x, y, z* dari atom. Baris kelima adalah kelompok ruang (*space*) biasanya dalam bentuk angka atau kode, dalam penelitian ini *space* yang digunakan adalah bentuk angka. Baris keenam adalah potensial *buckingham* yang menunjukkan interaksi antara kulit dengan kulit, sedangkan untuk baris yang terakhir merupakan interaksi antara inti dengan kulit yang disebut *spring* (tetapan pegas).

2.2. Metode Bond Valence Sum (BVS)

BVS adalah adalah model empiris untuk menjelaskan valensi atau kekuatan ikatan dari padatan ion. Metode ini dilakukan dengan menjumlahkan semua valensi ikatan di sekeliling atom, dengan menggunakan persamaan:

$$S_{ij} = \exp\left(\frac{r_0 - r_{ij}}{b}\right)$$

Dimana s_{ij} merupakan valensi dari sebuah ikatan, r_{ij} merupakan panjang ikatan yang terukur, dan r_0 merupakan unit panjang ikatan yang dikembangkan untuk unit valensi ikatan (sebuah ikatan tunggal antara atom i dan j); *b* merupakan nilai konstan. Perhitungan valensi yang efektif harus dalam perbedaan 0,1 untuk valensi atom yang diduga [13]. Contohnya, untuk Zr, yang bilangan oksidasinya +4, maka valensi ikatan yang terhitung harus di antara 3,9 dan 4,1.

Teknik penentuan BVS menggunakan VESTA, struktur ZrO₂ terdoping dibuat dalam polihedral. Nilai parameter valensi ikatan, R_0 , yang digunakan yaitu 1,928 [14]. Dalam VESTA, Konstanta, *b*, yang digunakan telah ditentukan yakni 0,37, sebagaimana yang digunakan oleh La Kilo dkk. dalam memodelkan konduktivitas ion pada γ -Bi₂VO_{5.5} [15]. Setelah memasukkan nilai R_0 dengan cara meng-klik area grafik ketika menekan tombol <Ctrl>, maka nilai BVS terhitung dan ditampilkan pada area teks.nother section of your paper. The

paragraphs are indented (Body text Indented style). Use a one-column format and do not add any page numbers.

2.3. Metode Bond Valence Sum (BVS)

Metode atomistik yang dilakukan pada penelitian ini diterangkan melalui alur prosedur yang tertera pada gambar 1.

Gambar 1. Prosedur simulasi atomistik ZrO₂ yang didoping dengan Lu³⁺, Yb³⁺, Er³⁺, Y³⁺, Gd³⁺, Eu³⁺, Sm³⁺, Nd³⁺ dan La³⁺ yang mensubstitusi secara parsial Zr⁴⁺.

3. Hasil dan Pembahasan

Another section of your paper. The paragraphs are indented (Body text Indented style). Use a one-column format and do not add any page numbers.

3.1. Struktur Senyawa Induk ZrO₂

Tahap awal simulasi yang dilakukan pada penelitian ini yaitu melakukan optimasi dan pencocokkan antara model yang dihasilkan melalui simulasi dengan data hasil studi difraksi sinar-X ZrO₂ yang dilaporkan oleh Dwivedi dan Cormack [16]. Data input yang dibuat lebih baik jika bagian-bagian strukturnya (parameter sel satuan) diketahui terlebih dahulu, seperti *space group* (grup ruang), *cell parameter* (parameter sel) yang diperoleh dari data difraksi sinar-X. Data input senyawa ZrO₂ yang telah dibuat selanjutnya disimulasi secara atomistik pada tekanan tetap dengan menggunakan GULP. Simulasi struktur ini menyangkut parameter sel yaitu panjang sisi-sisinya, sudut ,dan posisi dari atom-atom dalam struktur. Interaksi antar atom-atom yang diperhitungkan adalah interaksi ionik, gaya dispersi dan interaksi Buckingham. Interaksi Buckingham dipilih karena interaksi yang terjadi di dalam struktur adalah interaksi ionik. Hasil simulasi yang diperoleh dapat dilihat pada tabel 1.

Parameter	Eksperimen	Hasil Simulasi	Perbedaan	Satuan	Persen
Volume	130,323843	130,746425	0,422582	Angstroms ³	0,32
Α	5,070000	5,075474	0,005474	Angstroms	0,11
В	5,070000	5,075474	0,005474	Angstroms	0,11
С	5,070000	5,075474	0,005474	Angstroms	0,11
alpha	90,000000	90,000000	0,000000	Degrees	0,00
Beta	90,000000	90,000000	0,000000	Degrees	0,00
Gamma	90,000000	90,000000	0,000000	Degrees	0,00
Zr x	0,000000	0,000000	0,000000	Fractional	0,00
Zr y	0,000000	0,000000	0,000000	Fractional	0,00
Zr z	0,000000	0,000000	0,000000	Fractional	0,00
O x	0,250000	0,250000	0,250000	Fractional	0,00
Оу	0,250000	0,250000	0,250000	Fractional	0,00
O z	0,250000	0,250000	0,250000	Fractional	0,00
Energi Kisi (eV)	-109,7666649	7			

Tabel 1. Parameter struktur hasil simulasi dan eksperimen ZrO2

Pada tabel 1, dapat dilihat bahwa parameter kisi hasil simulasi adalah berkesesuaian baik dengan parameter sel hasil eksperimen, dengan perbedaan panjang sisi-sisi hanya 0,11%. Xia

dkk. melaporkan bahwa paramater sel yang perbedaannya kurang dari 1% menunjukkan hasil optimasi geomteri (simulasi) berhasil [1].

3.2. Struktur dan Kekosongan Oksigen ZrO₂ Terdoping

Terdapat dua cara untuk mencapai kestabilan struktur ini, yaitu melakukan doping dengan kation yang bervalensi lebih besar untuk memperluas kisi atau dengan melakukan doping dengan kation yang bervalensi lebih rendah seperti yang dilakukan dalam penelitian ini. Mekanisme doping dengan valensi yang lebih rendah dapat menciptakan defek kekosongan oksigen seperti pada persamaan reaksi berikut.

 $M_2O_3+2\ Zr^{\times}{}_{Zr'}+1/2\ O_2 \rightarrow 2M'_{Zr}+V_o \overset{\bullet}{}+2\ ZrO_2$

Persamaan reaksi tersebut dapat dinyatakan bahwa dua ion M^{3+} mensubstitusi dua ion Zr^{4+} untuk menciptakan satu kekosongan oksigen. Pengurangan oksigen tersebut untuk mengimbangi muatan positif, sehingga ZrO_2 terdoping yang terbentuk bermuatan netral, tidak ada elektron bebas. Akibatnya, senyawa ZrO_2 terdoping yang terbentuk adalah senyawa elektrolit. Dopan yang digunakan dalam penelitian ini yakni kation trivalen yang berasal dari oksida trivalen logam tanah jarang. Pemilihan kation jenis ini dikarenakan kation ini memiliki jari-jari ion yang hampir sama dengan Zr^{4+} (0,840 Å). Interaksi yang digunakan dalam penelitian ini adalah potensial ionik sehingga dalam pemilihan dopan harus diperhatikan pula karakter ini. Dopan yang dipilih lebih memiliki karakter ionik dibandingkan karakter kovalen.

Konsentrasi dopan (kation trivalen) yang mensubsitusi secara parsial Zr adalah 1% sampai 10% sebab penelitian sebelumnya menunjukkan adanya aktivitas yang lebih besar pada ZrO₂ terdoping pada konsentrasi dopan di bawah 10%. Adapun substitusi tersebut diimbangi dengan berkurangnya oksigen. Perhitungan pengurangan tersebut memperhatikan muatan, konsentrasi, dan multiplisitas ion-ion dalam ZrO₂ yang terdoping. Perhitungan ini untuk mendapatkan okupansi yang cocok pada setiap konsentrasi dopan yang mensubstitusi ZrO₂, dan hasilnya ditunjukkan pada tabel 2.

Konsentrasi		Mustan	Olaunongi	Multiplicitor	Mustan total	
Dopan M (%)		Muatan	Okupansi	Mutupiisitas	Iviuatan totai	
1	Zr	4	0,99	4	15,84	
	М	3	0,01	4	0,12	
	0	-2	0,9975	8	15,96	
2	Zr	4	0,98	4	15,68	
	М	3	0,02	4	0,24	

Tabel 2. Okupansi ion-ion dalam ZrO2 terdoping pada berbagai konsentrasi dopan

	0	-2	0,995	8	15,92
3	Zr	4	0,97	4	15,52
	М	3	0,03	4	0,36
	0	-2	0,9925	8	15,88
4	Zr	4	0,96	4	15,36
	М	3	0,04	4	0,48
	0	-2	0,99	8	15,84
5	Zr	4	0,95	4	15,2
	М	3	0,05	4	0,6
	0	-2	0,9875	8	15,8
6	Zr	4	0,94	4	15,04
	М	3	0,06	4	0,72
	0	-2	0,985	8	15,76
7	Zr	4	0,93	4	14,88
	М	3	0,07	4	0,84
	0	-2	0,9825	8	15,72
8	Zr	4	0,92	4	14,72
	М	3	0,08	4	0,96
	0	-2	0,98	8	15,68
9	Zr	4	0,91	4	14,56
	М	3	0,09	4	1,08
	0	-2	0,9775	8	15,64
10	Zr	4	0,90	4	14,4
	М	3	0,1	4	1,2
	0	-2	0,975	8	15,6

Nilai okupansi (penempatan) yang akan digunakan sebagai data input dalam simulasi dapat dilihat pada kolom okupansi. Contohnya, pada substitusi dengan konsentrasi dopan 1% nilai okupansi Zr⁴⁺ adalah 0,99; M³⁺ adalah 0,01; O²⁻ adalah 0,9975. Dari tabel 2 juga dapat dilihat bahwa semakin besar konsentrasi dopan yang mensubstitusi Zr⁴⁺ semakin kecil nilai okupansi dari oksigen (oksigen yang terisi). Berkurangnya okupansi oksigen mengindikasikan adanya kekosongan oksigen. Jika konsentrasi dopan diperbesar maka kekosongan oksigen semakin besar pula.

3.3. Potensial Buckingham ZrO₂ yang Didoping dengan Kation Trivalen

Potensial Buckingham terdiri atas interaksi tolak-menolak dan interaksi dispersi. Dalam ZrO₂ terdoping kation trivalen, interaksi dispersi antar O²⁻ lebih tinggi dibandingkan dengan interaksi dispersi antar ion-ion logam. Kemampuan dispersi oksigen yang lebih besar menunjukkan kemudahan migrasi ion oksigen dalam ZrO₂ yang terdoping. Migrasi ion oksigen inilah yang mengakibatkan ZrO₂ yang terdoping sebagai elektrolit dengan konduktivitas tinggi dibandingkan ZrO₂ tanpa doping. Potensial Buckingham antara ion dalam senyawa ZrO₂ yang terdoping ditunjukkan pada tabel 3

a. Short- Range	A (eV)	ρ (Å)	C ($eV \cdot Å^6$)
$Zr^{4+}-O^{2-}$	985,87	0,3760	0,0
O ²⁻ -O ²⁻	22764,00	0,1490	27,88
La ³⁺ -O ²⁻	2088,79	0,3460	23,25
Eu ³⁺ -O ²⁻	1925,71	0,3403	20,59
Sm ³⁺ -O ²⁻	1944,44	0,3414	21,49
$Gd^{3+}-O^{2-}$	1885,75	0,3399	20,34
$Y^{3+}-O^{2-}$	1766,40	0,3385	19,43
Er ³⁺ -O ²⁻	1739,91	0,3389	17,55
$Yb^{3+}-O^{2-}$	1649,80	0,3386	16,57
Lu ³⁺ -O ²⁻	1618,80	0,3385	19,27
b. Shel	l Model	<i>k</i> (eV Å ⁻²)	Shell(e)
O ²⁻		27,290	-2,077
Zr^{4+}		69,617	1,35

Tabel 3. Potensial Buckingham ion-ion dari dopan (oksida trivalen) dalam senyawa ZrO2

3.4. Parameter Sel

Adanya perubahan parameter sel satuan dari struktur ZrO₂ akibat masuknya dopan La³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Y³⁺, Er³⁺, Yb³⁺ dan Lu³⁺ diketahui dengan cara optimasi struktur. Hasil simulasi untuk parameter sel dapat dilihat pada gambar 2.

Gambar 2. Parameter sel ZrO₂ yang didoping dengan kation trivalen

Hasil simulasi menunjukkan bahwa oksida ZrO₂ yang didoping dengan kation trivalen mengakibatkan oksida tersebut mengalami perubahan parameter sel, seperti panjang sisisisinya (*a*, *b*, dan *c*). Dari hasil simulasi juga dapat dilihat bahwa perubahan nilai parameter sel struktur ZrO₂ yang didoping dengan kation La³⁺, Nd³⁺, Sm³⁺, Eu³⁺ dan Gd³⁺ lebih besar dibandingkan dengan yang didoping kation Y^{3+,} Er³⁺, Yb³⁺, dan Lu³⁺. Kenaikan parameter sel hasil simulasi dapat dihubungkan dengan jari-jari dopan. Dapat dilihat bahwa semakin besar jari-jari dopan (kation trivalen), maka parameter sel ZrO₂ yang terdoping semakin besar. Semakin besarnya jari-jari tiap dopan dapat dilihat pada gambar 3. Kenaikan konsentrasi dopan trivalen yang mensubtitusi secara parsial Zr dapat menaikan parameter sel pula.

Gambar 3. Perbandingan Jejari Dopan

Untuk membuktikan adanya perubahan parameter sel dari kisi kristal, maka dilakukan perhitungan terhadap jarak antar ion-ion dalam kristal. Dua kation dopan yang mensubtitusi

struktur ZrO₂ mengambil tempat terdekat dengan oksigen seperti yang ditunjukkan dalam gambar 4.

Gambar 4. Jarak antara M - O(A) dan M - M(B) dalam struktur ZrO_2 yang terdoping dengan oksida trivalen (Keterangan: Kekosongan oksigen tidak ditunjukkan dalam gambar)

Simbol A pada gambar merupakan jarak antara M dan O terdekat, sedangkan simbol B merupakan jarak antara M dan M terdekat. Hasil simulasi ZrO₂ yang terdoping dengan dopan oksida trivalen menunjukkan bahwa jarak antara M dan O terdekat berada pada panjang berkisar 2,198 Å sampai 2,228 Å dan jarak antara M dan M terdekat berada pada panjang 3,59 Å sampai 3,639 Å, sebagaimana yang ditunjukkan pada gambar 5 dan 6.

Gambar 5. Jarak antara M-O dalam struktur ZrO₂ yang terdoping kation trivalen

Gambar 6. Jarak antara M-M dalam struktur ZrO₂ yang terdoping kation trivalen

Semakin bertambahnya konsentrasi dan ukuran dopan yang mensubstitusi ZrO_2 , maka jarak antar dopan dan antara dopan tersebut dengan O semakin besar karena semakin besarnya gaya tolak antar dopan dan antar oksigen dalam struktur. Hal inilah yang mengakibatkan parameter sel kisi semakin membesar dan kestabilan struktur ZrO_2 yang terdoping semakin menurun.

3.5. Energi Kisi

Pembentukan kation dan anion yang memenuhi aturan oktet dari atom-atomnya bukan merupakan sumber kestabilan suatu senyawa ionik [17]. Kestabilan senyawa-senyawa ionik bersumber pada energi kisi kristal yang dilepaskan pada pembentukan kristal. Berdasarkan hal ini, maka peneliti menentukan kestabilan struktur ZrO₂ terdoping dengan menghitung energi kisi kristal. Hasil optimasi senyawa induk ZrO₂ didapatkan bahwa energi kisi senyawa induk ZrO₂ adalah -109.767 eV. Energi kisi ZrO₂ semakin besar dengan adanya dopan yang mensubstitusi secara parsial Zr seperti yang ditunjukkan pada gambar 7.

Gambar 7. Energi kisi ZrO₂ yang terdoping kation trivalen

Hasil perhitungan energi kisi melalui simulasi atomistik menunjukkan bahwa perubahan energi kisi berbanding lurus dengan konsentrasi dopan. Semakin besar nilai konsentrasi dopan maka nilai energi kisi kristal semakin positif sebgaimana ditunjukkan pada gambar 7. Pembentukan senyawa ionik dengan energi kisi menghasilkan perubahan entalpi negatif (ekstoterm) dikarenakan senyawa ionik tersebut dalam keadaan lebih stabil (energi ikatnya kuat). Dengan menghubungkan analisis parameter sel dan energi kisi dapat dikatakan semakin besar jari-jari dopan yang mensubsitusi Zr⁴⁺, maka energi kisi ZrO₂ yang terdoping semakin naik (positif). Dengan masuknya dopan trivalen yang memiliki jari-jari lebih besar dari Zr⁴⁺ mengakibatkan struktur ZrO₂ menjadi kurang stabil karena adanya defek kekosongan yang terbentuk dan jarak antar ion dalam kristal semakin melebar sehingga menyebabkan energi ikat antar ion didalamnya menjadi semakin lemah dan energi kisinya semakin positif.

3.6. Analisis Struktur ZrO₂ Terdoping dengan Metode Valensi Ikatan

Metode valensi ikatan dapat digunakan untuk menyelidiki ketepatan struktur eksperimen, menentukan bilangan oksidasi, atau untuk mengidentifikasi ketidakstabilan ikatan. Hasil perhitungan *Bond Valence Sum* dari ZrO₂ terdoping kation trivalen ditunjukkan pada gambar 8.

Gambar 8. BVS dari ZrO₂ terdoping kation trivalen

Atom pusat pada ZrO₂ terdoping adalah Zr. Valensi Zr adalah 4, sehingga BVS dari struktur yang tepat adalah mendekati nilai 4. Menurut (Brown, 2014) jika perbedaan nilai antara BVS dan valensi dari atom lebih dari 0,1 satuan valensi, maka struktur tersebut tidak akurat atau tepat. Dari gambar 8 dapat dilihat ZrO₂ yang didoping dengan La³⁺ memiliki perbedaan nilai lebih dari 0,1 maka struktur tersebut tidak tepat. BVS dari ZrO₂ yang didoping dengan Y^{3+} , Yb^{3+} , dan, Lu³⁺ memiliki nilai lebih besar dari 4. Hal ini disebabkan ikatan di dalam senyawa mendapat tekanan. Adanya tekanan tersebut menyebabkan beberapa ikatan mengalami peregangan (*strain*) dan pemampatan (*compress*), yang ditandai dengan BVS yang nilainya lebih besar (kation mengalami pemampatan) dan BVS yang nilainya lebih kecil (kation mengalami peregangan). Khusus, ZrO₂ yang didoping dengan Y, perbedaan nilai BVS dengan valensi Zr paling kecil dari semua, inilah yang menyebabkan struktur tesebut dapat dipalikasi sebagai elektrolit pada sel bahan bakar padatan, sebagaimana yang dilaporkan oleh La Kilo dan Mazza dalam memodelkan konduktivitas ion dalam struktur Li₂Sc₃(PO₄)₃ [18].

4. Kesimpulan

ZrO₂ berstruktur kubus yang didoping dengan kation trivalen untuk mensubstitusi secara parsial Zr⁴⁺ mengakibatkan struktur ZrO₂ terdoping mengalami kekosongan oksigen dan kestabilan ZrO₂ terdoping menurun. Penurunan tersebut semakin besar dengan bertambahnya konsentrasi dan ukuran dopan yang mensubstitusi Zr⁴⁺ secara parsial dari ZrO₂. Penurunan tersebut ditunjukan dengan energi kisi yang semakin positif. Penurunan kestabilan ZrO₂ yang didoping Y³⁺, Er³⁺, Yb³⁺ dan Lu³⁺ lebih kecil dibandingkan penurunan kestabilan ZrO₂ yang didoping dengan La³⁺, Nd³⁺, Sm³⁺, Eu³⁺ dan Gd³⁺. Hasil simulasi juga diperkuat dengan hasil perhitungan *Bond Valence Sum*. Hasil penelitian dapat dijadikan sebagai petunjuk untuk meneliti lebih lanjut ZrO₂ yang didoping oksida trivalen.

Daftar Pustaka

- Xia, X., Oldman, R., & Catlow, R. (2009). Computational Modeling Study of Bulk and Surface of Yttria-Stabilized Cubic Zirconia. *Chemistry of Materials*, 21(15), 3576– 3585.
- [2] Denry, I., & Kelly, R. (2008). State of the Art of Zirconia for Dental Applications. Dental Materials, 24(3), 299-307.
- [3] Piconi, C., & Maccauro, G. (1999). Zirconia as a Ceramic Biomaterial. *Biomaterials*, 20(1), 1-25.
- [4] Chevalier, J., Gremillard, L., Virkar, A. V., & Clarke, D. R. (2009). The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. Journal of the American Ceramic Society, 92(9), 1901-1920.
- [5] Suresh, A., Mayo, M. J., & Porter, W. D. (2003). Crystallite and Grain-Size-Dependent Phase Transformations in Yttria-Doped Zirconia. *Journal of the American Ceramic Society*, 86(2), 360-362.
- [6] York, A. P., Xiao, T., & Green, M. L. (2003, April). Brief Overview of the Partial Oxidation of Methane to Synthesis Gas. 22(3-4), pp. 345-358.
- [7] Heuer, A. H. (1981). Science and Technology of Zirconia (Advances in Ceramics). American Ceramic Society.
- [8] Zhu, J. J., Ommen, J. V., Bouwmeester, H. J., & Lefferts, L. (2015). Activation of O₂ and CH₄ on Yttrium-Stabilized Zircoma for the Partial Oxidation of Methane to Synthesis Gas. *Journal of catalysis*, 233(2), 434-441.
- [9] Butz, B. (2010). Yttria-Doped Zirconia as Solid Electrolyte for Fuel-Cell Applications. Sudwestdeutscher Verlag Fur Hochschulschriften AG .
- [10] Gibson, R. I., Dransfield, G. P., & Irvine, J. T. (1998). Influence of Yttria Concentration upon Electrical Properties and Susceptibility to Ageing of Yttria-stabilised Zirconias. *Journal of the European Ceramic Society*, 18(6), 661-667.
- [11] Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation, 29(5), 291-341.
- [12] Wei, X., Pan, W., Cheng, L., & Li, B. (2009). Atomistic calculation of association energy in doped ceria. *Solid State Ionic*, *108*(1), 13-17.
- [13] Brown, I. D. (2014). Bond Valence Theory. In Bond Valences (Vol. 158, pp. 11-58). Berlin: Springer.
- [14] Brown, I. D., & Altermatt, D. (1985). Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. B41, pp. 244-247.
- [15] La Kilo, A., Prijamboedi, B., Martoprawiro, M. A., & Ismunandar. (2011). Modeling Ionic Conduction in γ-Bi2VO5.5. International Conference on Instrumentation, Communication, Information Technology and Biomedical Engineering (pp. 330-333). Bandung: IEEE.
- [16] Dwivedi, A., & Cormack, A. N. (1990). A computer Simulation Study of the Defect Structure of Calcia-Stabilized Zirconia. Philosophical Magazine A, 61(1), 1-22.
- [17] Efendy. (2008). *Ikatan Ionik dan Cacat-Cacat pada Kristal Ionik*. Malang, Indoensia/Jawa Timur: Bayumedia Publishing.
- [18] La Kilo, A., & Mazza, D. (2011). Pemodelan Konduktivitas Ion dalam Struktur Li₂Sc₃(PO₄)₃. Jurnal Manusia dan Lingkungan, 18(3), 179-183.

Studi Kestabilan Zirkonia Terdoping Kation Trivalen melalui Pemodelan Atomistik

Akram La Kilo*¹, Triwahyuni S. Umamah², Lukman A.R. Laliyo²

¹Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Gorontalo, Kota Gorontalo <u>96128</u>, Indonesia ²Program Studi Pendidikan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Gorontalo, Kota Gorontalo <u>96128</u>, Indonesia

*Corresponding Author: akram@ung.ac.id.

Abstract. The aim of this research was to study the stability of the structure of the ZrO_2 doped with trivalent oxide $Zr_{1-x}M_xO_{2\frac{x}{4}}$ (M = La³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Y³⁺, Er³⁺, Yb³⁺ and Lu³⁺ through atomistic modeling and bond valence sum method. Short range potential used in this study was Buckinghams' potential. Result of geometry optimization at constant pressure shown both cell parameters of ZrO_2 was in good agreement with experimental results because of the difference was only 0.11%. Increasing the concentration and the size of substituting dopant of ZrO_2 makes the lattice energy of the doped structure was more positive so that the stability of the doped ZrO_2 structure decreases. The decrease in the stability of ZrO_2 doped with Y³⁺, Er³⁺, Yb³⁺ and Lu³⁺ was smaller than ZrO_2 doped with La³⁺, Nd³⁺, Sm³⁺, Eu³⁺ and Gd³⁺. BVS results shown that the structure of ZrO_2 doped with La³⁺ was not appropriate because it has different value of BVS was more than 0.1.

Keywords: zirconia; cation trivalent, Lattice Energy; Atomistic Modeling; Bond Valence Sum

Abstrak. Tujuan penelitian adalah mempelajari kestabilan struktur ZrO₂ yang didoping dengan kation trivalen menjadi senyawa $Zr_{1-x}M_xO_{2\underline{v},\underline{\delta}}$ (M= La³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Y³⁺, Er³⁺, Yb³⁺ dan Lu³⁺-melalui pemodelan atomistik dan kalkulasi *Bond Valence Sum*. Potensial jarak pendek yang digunakan dalam penelitian ini adalah potensial Buckingham. Hasil optimasi geometri pada tekanan tetap menunjukkan bahwa parameter sel ZrO₂ induk berkesesuaian baik dengan hasil eksperimen karena perbedaan nilai kecil, 0,11%. Semakin bertambah konsentrasi dan ukuran dopan yang mensubstitusi ZrO₂, maka energi kisi ZrO₂ terdoping semakin positif sehingga kestabilan struktur ZrO₂ terdoping semakin menurun. Penurunan kestabilan ZrO₂ yang didoping Y³⁺, Er³⁺, Yb³⁺ dan Lu³⁺ lebih kecil dibandingkan penurunan kestabilan ZrO₂ yang didoping dengan La³⁺, Nd³⁺, Sm³⁺, Eu³⁺ dan Gd³⁺. Hasil BVS menunjukkan bahwa

Deleted: Formatted: Font: Italic

Deleted: ...(

-	Deleted: hasil pemodelan dengan hasil eksperimen
1	Deleted: dengan
-(Deleted: menunjukkan
1	Deleted: hanya sebesar
Y	Deleted: nya
Y	Deleted: dari struktur
1	Deleted: dari

struktur ZrO₂ yang didoping dengan La³⁺ tidak stabil karena memiliki perbedaan nilai valensi dan BVS lebih dari 0,1.

Kata kunci: Zirkonia; Kation Trivalen; Energi Kisi; Pemodelan Atomistik, *Bond Valence* Sum

1. Pendahuluan

Selama dekade terakhir, pemahaman mengenai struktur kimia dari keramik oksida sebagai katalis, dielektrik, dan elektronik telah menghasilkan keuntungan secara ekstensif melalui pengembangan teknik pemodelan komputasi [1]. Struktur stabil yang mungkin terjadi dari oksida keramik akibat didoping secara parsial dengan dopan dapat dipelajari terlebih dahulu melalui pemodelan atomistik sebelum material disintesis di laboratorium [2]. Salah satu material keramik oksida adalah zirkonium dioksida atau zirkonia (ZrO₂) yang merupakan bahan teknologi penting sebagai elektrolit (konduktor ion oksigen) dalam beberapa aplikasi industri, seperti elektrolit dari sel bahan bakar oksida padatan (*Solid Oxide Fuel Cell*, SOFC) dan katalis [3].

 ZrO_2 adalah oksida polimorf dengan tiga fasa, yaitu monoklin, tetragonal, dan kubus [4]. Fasa yang disebutkan terakhir tidak stabil pada suhu rendah dan mengalami keretakan pada saat pendinginan [5]. Fasa kubus zirkonia tersebut perlu distabilkan dengan cara penambahan secara parsial kation yang lebih besar atau didoping menggunakan kation bervalensi lebih rendah yakni kation trivalen atau divalen untuk membuat kekosongan anion oksigen (*oxygen vacancy*), seperti Y³⁺-atau kombinasi dari dua efek tersebut [6]. Heuer melaporkan bahwa dopan divalen menyebabkan ketidakstabilan struktur dan terjadinya pemisahan fasa pada suhu tinggi, seperti pada CaZr₄O₉[7]. Xia dkk. melaporkan bahwa doping yang dilakukan menggunakan kation trivalen seperti itrium dapat menstabilkan fasa kubus ZrO₂ [1]. Kation trivalen menstabilkan fasa kubus berstruktur fluorit dengan cara menciptakan kekosongan oksigen.

Kestabilan kation trivalen (M^{3+}) dalam ZrO₂ bergantung pada faktor-faktor dari kecocokkan jari-jari antara Zr⁴⁺ (0,840 Å) dan kation M^{3+} serta konsentrasi kation tersebut [8]. Akibtanya, struktur stabil yang terbentuk pun ditentukan oleh faktor-faktor tersebut. Struktur oksida logam tanah jarang adalah bervariasi sesuai dengan radius kation. Struktur heksagonal stabil untuk kation yang lebih besar, yaitu La³⁺ dan Nd³⁺. Kation tanah jarang terbesar La³⁺ (r = 1,160 Å) memiliki kecenderungan kuat menjadi piroklor La₂Zr₂O₇ [9]. Kemudian, kation Sm³⁺, Eu³⁺, Gd³⁺, dan kation yang lebih kecil memiliki kedua bentuk, yaitu monoklin dan kubus [10]. Dalam penelitian ini, kation trivalen dari logam tanah jarang (La³⁺ = 1,160, Nd³⁺ = 1,109, Sm³⁺ = 1,079, Eu³⁺ = 1,066, Gd³⁺ = 1,053, Er³⁺ = 1,004, Yb³⁺ = 0,985, Lu³⁺ = 0,977 Å)

dan Y^{3+} (1,019 Å) yang mensubsitusi secara parsial Zr^{4+} dari fasa kubus ZrO_2 dianalisis berdasarkan kenaikan konsentrasi kation M^{3+} .

Subtitusi secara parsial Zr⁴⁺ dari fasa kubus ZrO₂ oleh dopan trivalen (M^{3+}) menghasilkan senyawa Zr_{1-x}M_xO₂ (x = konsentrasi dopan, 0-10%; M = dopan tivalen; dan δ_{-} = kekosongan oksigen). Struktur kubus ZrO₂ yang tersubtitusi diperoleh dengan cara pemodelan atomistik dan kalkulasi *Bond Valence Sum* (BVS) yang masing-masing menggunakan perangkat lunak GULP (*General Utility Lattice Program*) [11] dan VESTA (*Visualization for Electronic and Structural Analysis*) [12]. Kestabilan struktur ZrO₂ akibat doping dianalisis berdasarkan perubahan energi kisi yang diperoleh dari pemodelan atomistik serta didukung oleh analisis ketepatan struktur ZrO₂ terdoping dengan menggunakan metode BVS.

2. Metodologi

Alat yang digunakan dalam penelitian ini terdiri atas perangkat keras (*hardware*) dan perangkat lunak (*software*). Perangkat keras yang digunakan berupa sebuah *Personal Computer* (PC) dengan prosesor *Intel*^(R)-*Core*^(TM) i5 CPU M540 dengan kecepatan 2,53 GHz, RAM 4,00 GB. Perangkat lunak yang digunakan adalah *Operating System* (OS) *Microsoft*^(R)-*Windows* 7 *Ultimate Service Pack* 1 64-*bit, software*_GULP [11], *Microsoft Excel* 2013, dan VESTA [12]. Obyek penelitian ini adalah senyawa-senyawa La₂O₃, Nd₂O₃, Sm₂O₃, Eu₂O₃, Gd₂O₃, Y₂O₃, Er₂O₃, Yb₂O₃, dan Lu₂O₃ dengan data input parameter potensial jarak pendek yang diperoleh dari penelitian sebelumnya Wei dkk. [13] dan Xia, dkk. [1]. Penelitian ini bersifat teoritis eksploratif. Semua bahan yang digunakan dalam penelitian ini berupa senyawa-senyawa yang hasil perhitungan potensial jarak pendeknya diambil dari penelitian sebelumnya. Penelitian ini menggunakan metode kimia komputasi untuk mengeksplorasi semua senyawa. Metode pemodelan atomistik menggunakan GULP dan kalkulasi BVS dan menggambarkan struktur VESTA.

2.1. Pembuatan Data Input Code GULP

Pemodelan dengan menggunakan *code* GULP dalam penelitian dilakukan untuk menghitung energi kisi dan parameter sel struktur ZrO₂ murni dan ZrO₂ terdoping. Pemodelan yang dilakukan memerlukan data input paremeter sel dan fraksional sel yang dilaporkan oleh Xia dkk [1]. Selain data asli ZrO₂, data ZrO₂ terdoping kation trivalen dibuat juga berdasarkan kenaikan konsentrasi dopan dari 0 sampai 10%. Data tersebut disimpan dalam *software* GULP pada suatu *folder* sesuai nama dopan yang konsentrasinya sudah ditentukan sebesar 1% sampai 10%. Setelah pengumpulan data selesai, dilanjutkan dengan pengolahan data yang dilakukan dengan menggunakan *software* GULP dan BVS.

2.2. Metode Pemodelan Atomistik

Metode pemodelan atomistik didasarkan pada model Born dari suatu krisal ionik. Interaksi pada padatan kristal dideskripsikan dengan interaksi potensial interatomik yang terdiri dari interaksi *long-range* (interaksi Coulomb) dan interaksi short range. Interaksi *short-range* dihasilan dari gaya tolakan_dan gaya tarik van der Waals. Oleh karena itu, energi kisi (*U*) direpresentasikan sebagai:

$$U = \frac{1}{2} \left(\sum_{i \neq j} \frac{q_i q_j}{r_{ij}} + \sum_{i \neq j} S_{ij} \right)$$

dimana q adalah muatan ion, r adalah jarak antar atom, dan S_{ij} adalah interaksi *short-range*. Interaksi *short-range* dalam penelitin ini menggunakan potensial Buckingham yang dirumuskan:

$$S_{ij} = A \exp(-\frac{r_{ij}}{\rho}) - C/r_{ij}^6$$

dimana A, ρ , dan C adalah parameter empiris yang berhubungan dengan kekerasan ion (A), ukuran ion (ρ), dan interaksi van der Waals (C). Proses minimalisasi kisi pada penelitian ini dilakukan pada tekanan konstan. Dalam kondisi ini, dimensi sel satuannya dapat berubah sehingga *strain* pada sel dan ion-ion di dalamnya terminimalisasi.

2.3. Metode Bond Valence Sum (BVS)

BVS adalah adalah model empiris untuk menjelaskan valensi atau kekuatan ikatan dari padatan ion [14]. Metode ini dilakukan dengan menjumlahkan semua valensi ikatan disekeliling atom, dengan menggunakan persamaan:

$$S_{ij} = \exp\left(\frac{r_0 - r_{ij}}{b}\right)$$

Dimana s_{ij} merupakan valensi dari sebuah ikatan, r_{ij} merupakan panjang ikatan yang terukur, dan r_0 merupakan unit panjang ikatan yang dikembangkan untuk unit valensi ikatan (sebuah ikatan tunggal antara atom i dan j); *b* merupakan nilai konstan. Perhitungan valensi yang efektif harus dalam perbedaan 0,1 untuk valensi atom yang diduga [15]. Contohnya, untuk Zr, yang bilangan oksidasinya +4, maka valensi ikatan yang terhitung harus di antara 3,9 dan 4,1.

Teknik penentuan BVS menggunakan VESTA, struktur ZrO_2 terdoping dibuat dalam polihedral. Nilai parameter valensi ikatan, r_0 , yang digunakan yaitu 1,928 [16]. Dalam VESTA,

Formatted: Font: Italic
Formatted: Font: Italic

Deleted:

Deleted: Ra

Formatted: Font: Not Italic

konstanta, *b*, yang digunakan telah ditentukan yakni 0,37, sebagaimana yang digunakan oleh La Kilo dkk. dalam memodelkan konduktivitas ion pada γ-Bi₂VO_{5,5} [17].

3. Hasil dan Pembahasan

3.1. Struktur Senyawa Induk ZrO₂

Tahap awal pemodelan yang dilakukan pada penelitian ini, yaitu melakukan optimasi dan pencocokan antara model yang dihasilkan melalui pemodelan dengan data hasil studi ZrO₂ yang dilaporkan Xia dkk. [1]. Data input yang dibuat lebih baik jika bagian-bagian strukturnya (parameter sel satuan) diketahui terlebih dahulu, seperti *space group* (grup ruang), *cell parameter* (parameter sel) yang diperoleh dari data difraksi sinar-X. Data input senyawa ZrO₂ yang telah dibuat selanjutnya dimodelkan secara atomistik pada tekanan tetap dengan menggunakan GULP. Pemodelan struktur ini menyangkut parameter sel yaitu panjang sisisisinya, sudut, dan posisi dari atom-atom dalam struktur. Interaksi antar atom-atom yang diperhitungkan adalah interaksi ionik, gaya dispersi dan interaksi Buckingham. Interaksi Buckingham dipilih karena interaksi yang terjadi di dalam struktur adalah interaksi ionik. Hasil pemodelan yang diperoleh dapat dilihat pada tabel 1.

Parameter	Eksperimen	Hasil Pemodelan	Perbedaan (%)
Volume (Å)	130,324	130,746	0,32
а	5,070	5,076	0,11
b	5,070	5,076	0,11
с	5,070	5,076	0,11
Alfa	90	90	0,00
Beta	90	90	0,00
Gama	90	90	0,00
Zr x	0,000	0,000	0,00
Zr y	0,000	0,000	0,00
Zr z	0,000	0,000	0,00
O x	0,250	0,250	0,00
O y	0,250	0,250	0,00
O_z	0,250	0.250	0,00

Pada tabel 1, dapat dilihat bahwa parameter kisi hasil pemodelan adalah berkesesuaian baik dengan parameter sel hasil eksperimen, dengan perbedaan panjang sisi-sisi hanya 0,11%. Xia dkk. melaporkan bahwa paramater sel yang perbedaannya kurang dari 1% menunjukkan hasil optimasi geometri (pemodelan) berhasil [3].

Deleted: k

3.2. Struktur dan Kekosongan Oksigen ZrO2 Terdoping

Terdapat dua cara untuk mencapai kestabilan struktur ini, yaitu melakukan doping dengan kation yang bervalensi lebih besar untuk memperluas kisi atau doping dengan kation yang bervalensi lebih rendah seperti yang dilakukan dalam penelitian ini. Mekanisme doping dengan valensi yang lebih rendah dapat menciptakan defek kekosongan oksigen seperti pada persamaan reaksi berikut.

 $M_2O_3 + 2~Zr^{\times}{}_{Zr'} + 1/2~O_2 \rightarrow 2M'_{Zr} + V_o{}^{\bullet} + 2~ZrO_2$

Persamaan reaksi tersebut dapat dinyatakan bahwa dua ion M³⁺ mensubstitusi dua ion Zr⁴⁺ untuk menciptakan satu kekosongan oksigen. Pengurangan oksigen tersebut untuk mengimbangi muatan positif, sehingga ZrO₂ terdoping yang terbentuk bermuatan netral, tidak ada elektron bebas. Akibatnya, senyawa ZrO₂ terdoping yang terbentuk adalah senyawa elektrolit. Dopan yang digunakan dalam penelitian ini yakni kation trivalen yang berasal dari oksida trivalen logam tanah jarang ditambah satu logam transisi, Y³⁺. Interaksi yang digunakan dalam penelitian ini adalah potensial ionik.

Konsentrasi dopan (kation trivalen) yang mensubsitusi secara parsial Zr adalah 1% sampai 10% sebab penelitian sebelumnya menunjukkan adanya aktivitas yang lebih besar pada ZrO₂ terdoping pada konsentrasi dopan di bawah 10%. Substitusi tersebut diimbangi dengan berkurangnya oksigen. Kalkulasi pengurangan tersebut memperhatikan muatan, konsentrasi, dan multiplisitas ion-ion dalam ZrO₂ yang terdoping. Semakin besar konsentrasi dopan yang mensubstitusi Zr⁴⁺, maka semakin kecil nilai okupansi dari oksigen (oksigen terisi). Penurunan okupansi oksigen mengindikasikan penambahan kekosongan oksigen pada ZrO₂ terdoping. Oleh karena itu, semakin besar konsentrasi dopan, maka kekosongan oksigen (vakansi) semakin besar pula.

3.3. Potensial Buckingham ZrO2 yang Didoping dengan Kation Trivalen

Potensial Buckingham terdiri atas interaksi tolak-menolak dan interaksi dispersi. Dalam ZrO₂ terdoping kation trivalen, interaksi dispersi antar O²⁻ lebih tinggi dibandingkan dengan interaksi dispersi antar ion O²⁻ dan ion logam. Kemampuan dispersi oksigen yang lebih besar menunjukkan kemudahan migrasi ion oksigen dalam ZrO₂ yang terdoping. Migrasi ion oksigen inilah yang mengakibatkan ZrO₂ yang terdoping sebagai elektrolit dengan konduktivitas tinggi dibandingkan ZrO₂ tanpa doping. Potensial Buckingham antara ion dalam senyawa ZrO₂ yang terdoping ditunjukkan pada tabel 2.

	-	-	-
Short-range	<i>A</i> (eV)	ρ (Å)	$C (\mathrm{eV} \cdot \mathrm{\AA}^6)$
Zr ⁴⁺ -O ²⁻	985,87	0,3760	0,00
O ²⁻ -O ²⁻	22764,00	0,1490	27,88
La ³⁺ -O ²⁻	2088,79	0,3460	23,25
Eu ³⁺ -O ²⁻	1925,71	0,3403	20,59
Sm ³⁺ -O ²⁻	1944,44	0,3414	21,49
Gd ³⁺ -O ²⁻	1885,75	0,3399	20,34
Y ³⁺ -O ²⁻	1766,40	0,3385	19,43
Er ³⁺ -O ²⁻	1739,91	0,3389	17,55
Yb ³⁺ -O ²⁻	1649,80	0,3386	16,57
Lu ³⁺ -O ²⁻	1618,80	0,3385	19,27

Tabel 2. Potensial Buckingham ion-ion dari dopan (oksida trivalen) dalam senyawa ZrO2

Berdasarkan potensial Buckingham di atas, baik gaya dispersi dan gaya tolak dari La^{3+} terhadap oksigen adalah tertinggi dari semua kation trivalen. Namun, La^{3+} memiliki polaribilitas terendah yang ditunjukkan oleh perbandingan antara kuadrat muatan kulit (*shell*) dan *spring* (*k*) sebagimana termuat pada tabel 3. Sementara Gd³⁺, Lu^{3+} , dan Eu³⁺ memiliki polarisabiltas tinggi dan gaya tolak rendah dibandingkan dengan kation lainnya.

Formatted: Font: Italic
Formatted: Font: Italic

Shell Model	<i>k</i> (eV Å ⁻²)	Shell(e)
O ²⁻	27,290	-2,077
Zr^{4+}	69,617	1,350
La ³⁺	173,90	-2,149
Nd ³⁺	-	1,322
Eu ³⁺	304,92	3,991
Gd^{3+}	299,96	3,973
Lu ³⁺	308,91	3,278

Tabel 3. Muatan dan spring ion-ion dalam senyawa ZrO2 terdoping kation trivalen

Dibandingkan dengan kation lain, Sm³⁺, Gd³⁺, dan Y³⁺ justru tidak memiliki polarisabilitas namun memiliki memiliki gaya dispersi tinggi sehingga ketiga logam ini diduga akan memiliki keteraturan geometri yang dapat memudahkan ion oksigen bermigrasi. Ketiga dopan yang dituliskan terakhir diduga dapat memainkan peranan penting dalam meningkatkan kinerja

elektrolit ZrO₂ terdoping pada konsentrasi tertentu. Bahkan, doping seperti ini dapat menuru<u>n</u>kan suhu sintesis sebagaimana yang dilakukan pada material LSO dan LSGM oleh Malik dkk. [18].

3.4. Parameter Sel

Adanya perubahan parameter sel satuan dari struktur ZrO₂ akibat masuknya dopan La³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺, Y³⁺, Er³⁺, Yb³⁺ dan Lu³⁺ diketahui dengan cara optimasi struktur. Hasil pemodelan untuk parameter sel dapat dilihat pada gambar <u>1</u>.

Gambar 1. Parameter sel ZrO₂ yang didoping dengan kation trivalen

Hasil pemodelan menunjukkan bahwa oksida ZrO₂ yang didoping dengan kation trivalen mengakibatkan oksida tersebut mengalami perubahan parameter sel, yaitu panjang sisi-sisinya (*a*, *b*, dan *c*). Dari hasil pemodelan juga dapat dilihat bahwa perubahan nilai parameter sel struktur ZrO₂ yang didoping dengan kation La³⁺, Nd³⁺, Sm³⁺, Eu³⁺ dan Gd³⁺ lebih besar dibandingkan dengan yang didoping kation Y³⁺, Er³⁺, Yb³⁺, dan Lu³⁺. Kenaikan parameter sel hasil pemodelan dapat dihubungkan dengan jari-jari dopan. Dapat dilihat bahwa semakin besar jari-jari dopan (kation trivalen), maka parameter sel ZrO₂ yang terdoping semakin besar. Semakin besarnya jari-jari tiap dopan dapat dilihat pada gambar <u>2</u>. Kenaikan konsentrasi dopan trivalen yang mensubtitusi secara parsial Zr dapat menaikan parameter sel pula.

Deleted: 2

Deleted: 3

Deleted: 2

Gambar 2. Perbandingan Jejari Dopan

Untuk membuktikan adanya perubahan parameter sel dari kisi kristal, maka dilakukan perhitungan terhadap jarak antar ion-ion dalam kristal. Dua kation dopan yang mensubtitusi struktur ZrO₂ mengambil tempat terdekat dengan oksigen seperti yang ditunjukkan dalam gambar <u>3</u>.

Deleted: 4

Deleted: 3

Gambar <u>3</u>. Jarak antara M - O(A) dan M - M(B) dalam struktur ZrO_2 yang terdoping dengan oksida trivalen (Keterangan: Kekosongan oksigen tidak ditunjukkan dalam gambar)

Simbol A pada gambar merupakan jarak antara M dan O terdekat, sedangkan simbol B merupakan jarak antara M dan M terdekat. Hasil pemodelan ZrO₂ yang terdoping dengan dopan oksida trivalen menunjukkan bahwa jarak antara M dan O terdekat berada pada panjang berkisar 2,198 Å sampai 2,228 Å dan jarak antara M dan M terdekat berada pada panjang 3,59 Å sampai 3,639 Å, sebagaimana yang ditunjukkan pada gambar <u>4 dan 5</u>.

Deleted: 4

Deleted: 5 Deleted: 6

Gambar <u>4</u>. Jarak antara M-O dalam struktur ZrO₂ yang terdoping kation trivalen

Gambar 5. Jarak antara M-M dalam struktur ZrO₂ yang terdoping kation trivalen

Semakin bertambahnya konsentrasi dan ukuran dopan yang mensubstitusi ZrO₂, maka jarak antar dopan dan antara dopan tersebut dengan O semakin besar karena semakin besarnya gaya tolak antar dopan dan antar oksigen dalam struktur. Hal inilah yang mengakibatkan parameter sel kisi semakin membesar dan kestabilan struktur ZrO₂ yang terdoping semakin menurun.

3.5. Energi Kisi

Pembentukan kation dan anion yang memenuhi aturan oktet dari atom-atomnya bukan merupakan sumber kestabilan suatu senyawa ionik [19]. Kestabilan senyawa-senyawa ionik bersumber pada energi kisi kristal yang dilepaskan pada pembentukan kristal. Berdasarkan hal Deleted: 6

Deleted: 5

ini, maka penentuan kestabilan struktur ZrO₂ terdoping <u>dilakukan</u> dengan <u>cara</u> menghitung energi kisi kristal. Hasil optimasi senyawa induk ZrO₂ didapatkan bahwa energi kisi senyawa induk ZrO₂ adalah -109,767 eV. Energi kisi ZrO₂ semakin besar dengan adanya dopan yang mensubstitusi secara parsial Zr seperti yang ditunjukkan pada gambar <u>6</u>.

Gambar 6. Energi kisi ZrO2 yang terdoping kation trivalen

Hasil perhitungan energi kisi melalui pemodelan atomistik menunjukkan bahwa perubahan energi kisi berbanding lurus dengan konsentrasi dopan. Semakin besar nilai konsentrasi dopan maka nilai energi kisi kristal semakin positif sebgaimana ditunjukkan pada gambar 6. Pembentukan senyawa ionik dengan energi kisi menghasilkan perubahan entalpi negatif (ekstoterm) dikarenakan senyawa ionik tersebut dalam keadaan lebih stabil (energi ikatnya kuat). Dengan menghubungkan analisis parameter sel dan energi kisi dapat dikatakan semakin besar jari-jari dopan yang mensubsitusi Zr⁴⁺, maka energi kisi ZrO₂ yang terdoping semakin naik (positif). Dengan masuknya dopan trivalen yang memiliki jari-jari lebih besar dari Zr⁴⁺ mengakibatkan struktur ZrO₂ menjadi kurang stabil karena adanya defek kekosongan yang terbentuk dan jarak antar ion dalam kristal semakin melebar sehingga menyebabkan energi ikat antar ion di dalamnya menjadi semakin lemah dan energi kisinya semakin positif.

3.6. Analisis Struktur ZrO2 Terdoping dengan Metode Valensi Ikatan

Metode valensi ikatan dapat digunakan untuk menyelidiki ketepatan struktur eksperimen, menentukan bilangan oksidasi, atau untuk mengidentifikasi ketidakstabilan

Delete	ed: peneliti		
Delete	ed: m		
Delete	ed: k		

Deleted: 7

Deleted: 7

Deleted: 7

Deleted: ikatan

struktur. Hasil perhitungan Bond Valence Sum dari ZrO2 terdoping kation trivalen ditunjukkan

Deleted: 8

Gambar 7. BVS dari ZrO₂ terdoping kation trivalen

Deleted: 8

Atom pusat pada ZrO₂ terdoping adalah Zr. Valensi Zr adalah 4, sehingga BVS dari struktur yang tepat adalah mendekati nilai 4. Menurut Brown jika perbedaan nilai antara BVS dan valensi dari atom lebih dari 0,1 satuan valensi, maka struktur tersebut tidak akurat atau tepat [14]. Berdasarkan gambar 8 dapat dilihat ZrO₂ yang didoping dengan La³⁺ memiliki perbedaan nilai lebih dari 0,1 maka struktur tersebut tidak tepat. BVS dari ZrO₂ yang didoping dengan Y³⁺, Yb³⁺, dan, Lu³⁺ memiliki nilai lebih besar dari 4. Hal ini disebabkan ikatan di dalam senyawa mendapat tekanan. Adanya tekanan tersebut menyebabkan beberapa ikatan mengalami peregangan (*strain*) dan pemampatan (*compress*), yang ditandai dengan BVS yang nilainya lebih besar (kation mengalami pemampatan) dan BVS yang nilainya lebih kecil (kation mengalami peregangan). Khusus, ZrO₂ yang didoping dengan Y, perbedaan nilai BVS dengan valensi Zr paling kecil dari semua, <u>dan</u> inilah yang menyebabkan struktur <u>ZrO₂ terdoping Y</u> dapat diaplikasi sebagai elektrolit pada sel bahan bakar padatan, sebagaimana yang dilaporkan oleh La Kilo dan Mazza dalam memodelkan konduktivitas ion dalam struktur Li₂Sc₃(PO₄)₃ [20].

4. Kesimpulan

 ZrO_2 berstruktur kubus yang didoping dengan kation trivalen untuk mensubstitusi secara parsial Zr^{4+} mengakibatkan struktur ZrO_2 terdoping mengalami kekosongan oksigen dan kestabilan ZrO_2 terdoping menurun. Penurunan tersebut semakin besar dengan bertambahnya konsentrasi dan ukuran dopan yang mensubstitusi Zr^{4+} secara parsial dari ZrO_2 . Penurunan tersebut ditunjukan dengan energi kisi yang semakin positif. Penurunan kestabilan ZrO_2 yang didoping Y^{3+} , Er^{3+} , Yb^{3+} dan Lu^{3+} lebih kecil dibandingkan penurunan kestabilan ZrO_2 yang Formatted: Subscript

didoping dengan La³⁺, Nd³⁺, Sm³⁺, Eu³⁺ dan Gd³⁺. Hasil pemodelan juga diperkuat dengan hasil perhitungan *Bond Valence Sum*. Hasil penelitian dapat dijadikan sebagai petunjuk untuk sintesis ZrO₂ yang didoping oksida trivalen dalam meningkatkan kinerja elektrolit dan menurunkan suhu sintesis.

Daftar Pustaka

- X. Xia, R. Oldman, &R. Catlow, Computational Modeling Study of Bulk and Surface of Yttria-Stabilized Cubic Zirconia, Chemistry of Materials, 21, 15, (2009) 3576– 3585.<u>https://doi.org/10.1021/cm900417g</u>
- [2] A. La Kilo, Simulasi Komputasi Hantaran Ion di BIMEVOX, Disertasi, Institut Teknologi Bandung, 2012.
- [3] M. Cologna, A.L. Prette, &R. Raj, Flash-sintering of cubic yttria-stabilized zirconia at 750° C for possible use in SOFC manufacturing, Journal of the American Ceramic Society, 94, 2, (2011) 316-319 <u>https://doi.org/10.1111/j.1551-2916.2010.04267.x</u>
- [4] J. Chevalier, L. Gremillard, AV. Virkar, DR. Clarke, The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. Journal of American Ceramic Society, 92, (2009) 1901–1920 <u>https://doi.org/10.1111/j.1551-2916.2009.03278.x</u>
- [5] A. Suresh, M.J. Mayo, W.D. Porter, &C.J. Rawn, Crystallite and grain-size-dependent phase transformations in yttria-doped zirconia. Journal of the American Ceramic Society, 86, 2, (2003) 360-362 <u>https://doi.org/10.1111/j.1151-2916.2003.tb00025.x</u>
- [6] A.P. York, T. Xiao, &M.L. Green, Brief overview of the partial oxidation of methane to synthesis gas. Topics in Catalysis, 22, 3-4, (2003)345-358 <u>https://doi.org/10.1023/A:1023552709642</u>
- [7] R. A.Miller, J. L. Smialek, R. G. Garlick, A. H. Heuer, and L. W. Hobbs, Science and technology of zirconia." Advances in Ceramics 3, (1981)241-253.
- [8] Hund, Anomale Mischkristalle im System ZrO₂-Y₂O₃. Kristallbau der Nernst-Stifte. Zeitschrift f
 'ur Elektrochemie und Angewandte Physikalische Chemie, 55, 5 (1951). <u>https://doi.org/10.1002/bbpc.19510550505</u>
- [9] J. Lefèvre, Some structural modifications of fluorite-type phases in systems based on zirconia or hafnium oxide. Ann. Chim.(Paris), 8, 1-2, (1963) 117-149.
- [10] M. Zinkevich, Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52, 4, (2007)597-647<u>https://doi.org/10.1016/j.pmatsci.2006.09.002</u>
- [11] J.D. Gale, &A.L. Rohl, The General Utility Lattice Program (GULP). Molecular Simulation, 29, 5, (2003) 291-341<u>https://doi.org/10.1080/0892702031000104887</u>
- [12] K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data," J. Appl. Crystallogr., 44, (2011) 1272-1276<u>https://doi.org/10.1107/S0021889811038970</u>
- [13] X. Wei, W. Pan, L. Cheng, & B. Li, Atomistic calculation of association energy in doped ceria. Solid State Ionic, 108, 1,(2009) 13-17 <u>https://doi.org/10.1016/j.ssi.2008.10.019</u>
- [14] I.D. Brown, The bond-valence method: an empirical approach to chemical structure and bonding, Structure and bonding in crystals, 2, (1981) 1-30.
- [15] I.D. Brown, Bond Valence Theory. In Bond Valences (Vol. 158, (2013) pp. 11-58). Berlin: Springer <u>https://doi.org/10.1007/430_2012_89</u>
- [16] I.D. Brown, & D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. B41, (1985) 244-247. https://doi.org/10.1107/S0108768185002063
- [17] A. La Kilo, B. Prijamboedi, M.A. Martoprawiro, & Ismunandar, Modeling Ionic Conduction in γ-Bi₂VO_{5.5}. International Conference on Instrumentation,

Communication, Information Technology and Biomedical Engineering (pp. 330-333)(2011), Bandung: IEEE.DOI: <u>10.1109/ICICI-BME.2011.6108652</u>

- [18] Y. T. Malik, A. R. Noviyanti, & D. G. Syarif, Lowered Sintering Temperature on Synthesis of La_{9.33}Si₆O₂₆ (LSO)–La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{2.55} (LSGM) Electrolyte Composite and the Electrical Performance on La_{0.7}Ca_{0.3}MnO₃ (LCM) Cathode. *Jurnal* Kimia Sains dan Aplikasi, 21, 4, (2018) 205-210. <u>https://doi.org/10.14710/jksa.21.4.205-210</u>
- [19] Efendy. (2008). Ikatan Ionik dan Cacat-Cacat pada Kristal Ionik. Malang, Indoensia/Jawa Timur: Bayumedia Publishing.
- [20] A. La Kilo and D. Mazza, Pemodelan Konduktivitas Ion dalam Struktur Li₂Sc₃(PO₄)₃. Jurnal Manusia dan Lingkungan, 18, 3, (2011) 179-183. <u>https://doi.org/10.22146/jml.18439</u>