Editor in Chief

Dr. Dinesh Babu, University of Louisiana at Monroe, United States

Editor

David King, Macrothink Institute, United States

Associate Editors

Farzad Deyhim, Texas A & M University-Kingsville, United States
Leticia M. Estevinho, Instituto Politécnico de Bragança, Portugal

Editorial Board Members

Aly Farag El Sheikha, Malaysia
Aftab Alam, Vice President of Agriculture (R&D), Edenworks Inc. 234 Johnson Avenue, Brooklyn 11206 NY USA, United States
AYSE DEMIR KARAMAN, ADNAN MENDERES UNIVERSITY, Turkey
Bulent Ergonul, Celal Bayar University, Turkey
Chenlin Hu, The Ohio State University, United States
Codina Georgiana Gabriela, "Stefan cel Mare" University Suceava, Romania
Coman Gigi, Dunarea de Jos University of Galati, Romania
Costas V. Nikiforidis, Wageningen University, Netherlands
Etetor Roland Eshiet, Sustainable Energy Environmental and Educational Development (SEEED), United States
Farzad Deyhim, Texas A & M University-Kingsville, United States
Ian James Martins, Edith Cowan University, Australia
Ibtisam Mustafa Kamal Mahmood, Soran university, Iraq
Israel Olusegun Otemuyiwa, Obafemi Awolowo University, Nigeria
Jinhua Wu, Torrey Pines Institute for Molecular Studies, United States
Dr. Joaquin Bautista-Gallego, DISAFA-University of Turin, Italy
Laura Siracusa, Italian National Research Council - Institute of Biomolecular Chemistry, Italy
Jose M. Camiña, National University of la Pampa and National Council of Scientific and Technical Researches (CONICET), Argentina
José María Zubeldia, Gestión Sanitaria de Canarias – Gobierno de Canarias, Spain
Lisa Tussing-Humphreys, USDA-Ars
Mahesh Padanad, University of Texas Southwestern Medical Center, United States
Mamdouh M El-Bakry, Cairo University, Egypt
Marcos Taveira, University of Porto, Portugal
Michaela Pascoe, Institute of Neurosciences and Psychology, Sahlgrenska Academy at the University of Gothenburg Sweden, Sweden
Milla Gabriela Santos, Universidade Federal de Uberlandia (UFU), Brazil
Mirella Nardini, CREA, Italy
Montaser Fawzy Abdel-Monaim, Agriculture Res. Center, Plant Pathology Res. Institute, Egypt
Nicoletta Cristiana Quaglia, Università degli Studi di Bari "Aldo Moro", Italy
Dr. Olaiide Ruth Aderibigbe, National Horticultural Research Institute Ibadan, Nigeria
Özlem EMIR COBAN, Turkey
Renan TUNALIOGLU, Adnan Menderes University, Turkey
Reyna Luz Vidal-Quintanar, Universidad de Sonora, Mexico
Rigoane Ghayth, Laboratoire de Chimie Organique-Physique UR11ES74, Faculté des Sciences de Sfax, B.P. < 1171 > 3038 Sfax, Université de Sfax, Tunisie., Tunisia
Rita de Cássia Santos Navarro Silva, Universidade Federal de Viçosa, Brazil
Samuel Asumadu-Sarkodie, SEES, Middle East Technical University, Northern Cyprus Campus, Turkey
To make sure that you can receive messages from us, please add the 'macrothink.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.
Mailing Address
Macrothink Institute
5348 Vegas Dr. #825
Las Vegas, Nevada 89108
United States

Principal Contact
David King
Macrothink Institute
5348 Vegas Dr. #825
Las Vegas, Nevada 89108
United States
Phone: 1-702-953-1852 ext.523
Fax: 1-702-420-2900
Email: jfs@macrothink.org

Support Contact
Technical Support
Email: jfs@macrothink.org

To make sure that you can receive messages from us, please add the 'macrothink.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.
Focus and Scope

Journal of Food Studies is a peer review international journal, published by Macrothink Institute. It publishes research papers and review papers in the field of food science and technology, engineering and nutrition, including food policy matters, food quality, food nutrition, food safety, etc. It also publishes papers concerning about obesity research, food processing and control technologies, food chemistry and related areas.

Section Policies

Articles

- Open Submissions
- Indexed
- Peer Reviewed

Peer Review Process

The journal uses double-blind system for peer-review; both reviewers and authors' identities remain anonymous. The paper will be peer-reviewed by three experts; two reviewers from outside and one editor from the journal typically involve in reviewing a submission.

Publication Frequency

Annual in 2019, published in December
Annual in 2018, published in December
Annual in 2017, published in December
Annual in 2016, published in December
Annual in 2015, published in December
Annual in 2014, published in December
Semiannual in 2013, published in June and December
Annual in 2012, published in December

Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Archiving

This journal utilizes the LOCKSS system to create a distributed archiving system among participating libraries and permits those libraries to create permanent archives of the journal for purposes of preservation and restoration. More...

Index/List/Archive

CNKI
EBSCOhost
Gale's Academic Databases
Google Scholar
Lockss
Open J-Gate
ProQuest
Sherpa/Romeo
Ulrich's

To make sure that you can receive messages from us, please add the 'macrothink.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

Copyright © Macrothink Institute ISSN 2166-1073
Vol 7, No 1 (2018)

Table of Contents

Articles

Aroma Components from Baked Soybean Oil Extracted by CO2 Supercritical Fluid Extraction
Xinchu Weng, Luo Wang, Chenxiao Zhang

Detection of Proteolysis in Milk by Pseudomonas fluorescens Using Urea PAGE Method
Chove Lucy Mlipano, Grandison Alistair, Lewis Michael

Preliminary Study on the Role of Ionic Calcium in Gelation and Proteolysis of UHT Milk
Chove Lucy Mlipano, Mongi Richard, Chenge Lawrence

Effect of Depth and Distance of the Borehole from the Septic Tank on the Physico-Chemical Quality of Water
Chove Lucy Mlipano, Mongi Richard, Chenge Lawrence

Comparison of the Characteristics of Two Kinds of Tea Seed Oils: Oil-tea Seed Oil and Green-Tea Seed Oil
Xinchu Weng, Zhuoting Yun, Chenxiao Zhang

Nutrient Content and In-vitro Starch Hydrolysis of Some Varieties of NERICA Rice
Otemuyiwa Israel Olusegun, Farotimi Oluwatosin Grace, Falade Olumuyiwa Sunday, Sanusi Kayode, Adewusi Steve Adeniyi

Getting Healthy Without Getting High: Lexaria’s Approach to Cannabinoids
Sylvain Charlebois

Nutrition Analysis of “Sujakaju” as a Functional Drink of Health
Laksmyn Kadir, Syam S. Kumaji, Wirnangsi D. Uno

Organoleptic, Physical and Microbiological Characteristics of Eggs Consumed in Dakar (Senegal)
Abdelsalam Adoum Doutoum, Abdelsalam Tidjani, Djamaladine Mahamat Doungous, Hamadou Abba, Alioune Ndiaye, Coumba Faye, Roumane Moukhtar, Marius K. Somda, Malang Seydli, Bhen Sikina Toguebaye, Alfred S. Traore

To make sure that you can receive messages from us, please add the 'macrothink.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.
Nutrition Analysis of “Sujakaju” as a Functional Drink of Health

Laksmy Kadir, Syam S. Kumaji, Wirnangsi D. Uno

Abstract

Malnutrition, poverty and abundant corn crops are the factors that provide the potential for innovation to create “Sujakaju” (corn-soy milk). The innovation aims to tackle the issues in children health and welfare in Gorontalo. The purpose of this study is to generate the proper formulation of a combination of well-nutrition corn-soy milk. The study employed experimental method with four treatments; each treatment group consumes different kind of corn-soy milk, i.e. milk of pulo (waxy) corn and soybean, Kiki corn and soybeans, hybrid corn and soybean, and from sweet corn and soybean with ratio of 50:50, 100:50 and 150:50 respectively. The results show that milk from mixture pulo corn and soybean suits the most for well-nutrition corn-soy milk by the composition ratio of 150:50, in which it contains the highest carbohydrate and protein nutrition and the lowest fat, compared to the treatment of 50:50 and 100:50 ratios.
Nutrition Analysis of “Sujakaju” as a Functional Drink of Health

Laksmyn Kadir (Corresponding Author)
Department of Biology, Faculty of Mathematics and Natural Sciences
Universitas Negeri Gorontalo,
Jendral Sudirman Street No.6, Gorontalo, 96128, Indonesia
E-mail: laksmyn04@gmail.com

Syam S. Kumaji
Department of Biology, Faculty of Mathematics and Natural Sciences
Universitas Negeri Gorontalo,
Jendral Sudirman Street No.6, Gorontalo, 96128, Indonesia
E-mail: syam_bio@ung.ac.id

Wirnangsi D. Uno
Department of Public Health, Faculty of Sport and Health Science
Universitas Negeri Gorontalo,
Jendral Sudirman Street No.6, Gorontalo, 96128, Indonesia
E-mail: asi_1403@ung.ac.id

Received: July 8, 2018 Accepted: September 1, 2018 Published: September 3, 2018
doi:10.5296/jfs.v7i1.13369 URL: https://doi.org/10.5296/jfs.v7i1.13369

Abstract
Malnutrition, poverty and abundant corn crops are the factors that provide the potential for innovation to create “Sujakaju” (corn-soy mil). The innovation aims to tackle the issues in
children health and welfare in Gorontalo. The purpose of this study is to generate the proper formulation of a combination of well-nutrition corn-soy milk. The study employed experimental method with four treatments; each treatment group consumes different kind of corn-soy milk, i.e. milk of pulo (waxy) corn and soybean, Kiki corn and soybeans, hybrid corn and soybean, and from sweet corn and soybean with ratio of 50:50, 100:50 and 150:50 respectively. The results show that milk from mixture pulo corn and soybean suits the most for well-nutrition corn-soy milk by the composition ratio of 150:50, in which it contains the highest carbohydrate and protein nutrition and the lowest fat, compared to the treatment of 50:50 and 100:50 ratios.

Keywords: Corn, Green beans, Nutrition, Organolepti

1. Introduction

Gorontalo is among the regions with largest corn production in Indonesia. The corn production continues to rise significantly since the government released the agropolitan program of encouraging its society to cultivate corn. In 2002, the corn production of Gorontalo was still in the level of 245.284 tons. The crops were distributed to all over Indonesia, and some were exported overseas (State Department of Agricultural Affairs, 2003). However, it is ironic that the health status of Gorontalo society somehow is not in accordance with the abundant corn crops. This is due to the census which exposes the high level of people who suffer from malnutrition in Gorontalo.

Packed with a good amount of carbohydrate and with almost similar calories, corn is suitable to replace rice to be the daily staple. Aside from that, corn is also used commonly in sectors of food, chemical, and pharmaceutical industries. In the form of kernels, corn can be processed into various foods, e.g. corn flour, corn rice, and snacks (popcorn and corn nuts). Corn is also transformed into frying oil, margarine, and food formula. Moreover, corn starch is a common use in pharmaceutical industry and as food ingredients, namely for ice cream, cake, and milk.

There are several common local breeds of corn in Gorontalo, e.g. pulo (waxy) corn, kiki corn, hybrid corn, and sweet corn. In Gorontalo, aside from utilization as a daily staple, one way to consume corn is to process it into milk. However, to be consumed by children, corn milk lacks amino acid. To tackle the solution, and as an effort of food fortification, it is possible to add soybean into corn milk. Moehji (1982) once emphasizes that soybean is considered to have properties of complex protein. The limiting amino acid of corn is lysine; meanwhile, in soybean, the limiting amino acid is methionine (Winarno, 1997). Moehji further asserts that blending corn and soybean can complete each other’s amino acid contents as well as other nutrition.

It is undeniable that nutrition fulfilment contributes significantly to the optimal development of a child’s health. Protein is essential for a child, as it is the source of the human immune system (immunoglobulin). Therefore, a direct red line can be drawn between nutrition and immune system. One who lacks nutrition is more likely to have weak immune system, thus, making the person more susceptible to disease. It is a down-spiral cycle, which when a person is infected by the disease, the less he or she will eat, and eventually, the more prone he or she is from malnutrition.
Such illustration draws the researcher’s concern to carry out a study to generate a precise formulation of a mixture of well-nutrition soybean and corn milk

2. Materials and Methods

The research took place in microbiology and chemical laboratories of Faculty of Mathematics and Natural Sciences of Gorontalo State University. The whole phases of research (from preparation to result presentation) were conducted for three months, from March until May 2016

2.1 Research Tools and Material

The research comprised tools as follows: blender, knife, 100ml measuring cup, container, 100ml beaker, chopping board, waterbath, analytical scale, funnel, filter, aluminium foil, thermometer, and stirrer. Also, the research material included pulo (waxy) corn, kiki corn, hybrid corn, sweet corn, soybean (*Phaseolus radiatus L.*), sugar, and water.

2.2 Research Procedures

The study employed steps as follows:

2.2.1 Making Corn-Soy Milk

The process of making corn-soy milk uses ratio of 1:1 (50 grams of corn:50 grams of soybean), 2:1 (100 grams of corn:50 grams of soybean), and 3:1 (150 grams of corn:50 grams of soybean)

The process of making corn-soy milk involves:
- Cleanse the corn and soybean kernel with water.
- Soak the soybean kernel in cold water for four hours; the water is then replaced every two hours.
- Boil the soybean in hot water of 85 until 90°C for 15 minutes, let the temperature to cool down, and remove the boiling water. The same process goes to corn, only with six minutes of boiling time.
- Grind and blend the soybean and corn in a blender, add 1.5 liters of 80°C water
- Filter the mixture of corn and soy to get the filtrate extracts. These filtrate extracts are the raw form of corn-soy milk.
- Boil the raw corn-soy milk by 70°C for 8-10 minutes. While stirring it, add 12% of sugar. When the process finishes, let the milk cool down to a room temperature.

2.2.2 Nutrition Analysis of Corn-Soy Milk

2.2.3 Carbohydrate Test

The carbohydrate test employed Phenol method, as it can measure the total carbohydrate of liquid food and food extracts, and measure the total amount of sugar of prepared samples.

2.2.4 Fat Test

The fat test comprised Babcock method, in which it measures the fat substance level of milk in emulsion form.

2.2.5 Protein Test

The research conducted Kjeldahl method to measure nitrogen level of the milk. The method involved steps i.e. destruction, distillation, and titration. (Sudarmadji in Biahimo, 2008).
3. Results

The result displays the nutrition analysis of corn-soy milk, shown in Table 1.

Table 1. Nutrition Analysis of Corn-soy Milk

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Group</th>
<th>Carbohydrate</th>
<th>Protein</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>50:50</td>
<td>JH*KH</td>
<td>0.1103</td>
<td>10.3603</td>
<td>12.3273</td>
</tr>
<tr>
<td></td>
<td>JK*KH</td>
<td>0.0080</td>
<td>10.2430</td>
<td>11.4227</td>
</tr>
<tr>
<td></td>
<td>JP*KH</td>
<td>0.1203</td>
<td>10.4203</td>
<td>11.0433</td>
</tr>
<tr>
<td></td>
<td>JM*KH</td>
<td>0.0793</td>
<td>10.2410</td>
<td>13.2630</td>
</tr>
<tr>
<td></td>
<td>JH*KH</td>
<td>0.1400</td>
<td>10.1883</td>
<td>13.0350</td>
</tr>
<tr>
<td>100:50</td>
<td>JK*KH</td>
<td>0.1663</td>
<td>10.4860</td>
<td>12.9423</td>
</tr>
<tr>
<td></td>
<td>JP*KH</td>
<td>0.1303</td>
<td>10.7500</td>
<td>10.7300</td>
</tr>
<tr>
<td></td>
<td>JM*KH</td>
<td>0.1103</td>
<td>10.5300</td>
<td>13.5000</td>
</tr>
<tr>
<td></td>
<td>JH*KH</td>
<td>0.1200</td>
<td>10.0977</td>
<td>12.8340</td>
</tr>
<tr>
<td>150:50</td>
<td>JK*KH</td>
<td>0.1310</td>
<td>10.6940</td>
<td>12.4117</td>
</tr>
<tr>
<td></td>
<td>JP*KH</td>
<td>0.1903</td>
<td>10.9503</td>
<td>10.4403</td>
</tr>
<tr>
<td></td>
<td>JM*KH</td>
<td>0.1470</td>
<td>10.4800</td>
<td>14.8950</td>
</tr>
</tbody>
</table>

The previous table exposes that in treatment ratio of 50:50, mixture group JP*KH (Pulo corn and soybean) contains the highest carbohydrate and protein level of 0.1203 and 10.4203 respectively. In addition, the mixture group also comes with a lowest fat level of 11.0433. Moreover, in treatment ratio of 100:50, mixture group JK*KH (Kiki corn and soybean) scores the highest level of carbohydrate with 0.1663. Concurrently, JP*KH (Pulo corn and soybean) group contains the highest level of protein and lowest fat level of 10.7500 and 10.7300 respectively. Furthermore, in the treatment group of 150:50, mixture JP*KH (Pulo corn and soybean) has the highest carbohydrate and protein level, and the lowest fat level, of 0.1903, 10.9503, and 10.4403 respectively.

Based on the analysis, it is deduced that mixture of Pulo corn and soybean has a complete nutrition for corn-soy milk in the composition ratio of 150:50, in which the group contains more carbohydrate and protein with less fat than 50:50 and 100:50 ratio. In short, the nutrition level of each mixture groups is shown in following Figure 1 to 4.
Figure 1. Nutrition analysis of mixture group of hybrid corn and soybean. Details: Jagung Hibrida Bisi-2: Bisi-2 hybrid corn; Kacang Hijau: soybean; karbohidrat: carbohydrate; lemak=fat

Figure 2. Nutrition analysis of mixture group of Kiki corn and soybean. Details: jagung kiki = kiki corn, kacang hijau = soybean, karbohidrat: carbohydrate; lemak=fat
4. Discussion

It is unquestionable that milk contains essential nutrients for a human. People consume purchased cow milk at stores. Nonetheless, its relatively high price and small-scale supply in the stores lowers people’s purchase power. Corn-soy milk might be the suitable alternative for Gorontalo society to fulfil the program of empat sehat-lima sempurna (complete nutrition plan).

Moreover, corn-soy milk is made of local food source in which it is a proper combination of corn and soybean. The notion is echoed by Moehji (1982) who argues that combination of both enables a person to fulfil the requirements of nutrition supply, wherein the amino acid between both can complete each other.
Furthermore, the result reveals that different combinations of corn breeds with soybean are in average able to generate a fair amount of nutrients needed by human body. Nevertheless, the statistic display that pulo corn-soybean made corn-soy milk generates the most nutrients for the body within the ratio of 150:50, in which the mixture contains the highest level of carbohydrate and protein, with the lowest fat level.

Corn-soy milk from pulo corn and soybean is stated to be the most suitable product to consume since based on the nutrition analysis, it is discovered that Pulo corn contains most starch level among the four corn breeds. Moreover, the mixture is rich in protein since both mixtures’ amino acids support each other. As an illustration, Widowati (2011) elaborates that the relatively-low level of lysine amino acid in corn is supported by high level of lysine in soybean. Likewise, low-level of methionine in soybean is completed by a large amount of the substance in corn. Furthermore, pulo corn-soybean corn-soy milk contains the lowest fat level since the high amount of protein decreases the fat level, by that, it is suitable for daily consumption (Winarno, 2010).

5. Conclusion
SUJAKAJU made from mixture of pulo corn and soybean with composition ratio of 150:50 which the ideal nutrient content, in which it contains the highest carbohydrate and protein nutrition and the lowest fat, compared to the treatment of 50:50 and 100:50 ratios.

Acknowledgement
The authors would like to thank those who have participated in this research, the Directorate General of Higher Education of Republic of Indonesia, which has provided funding for this research. The Institute for Research and Community Service of State University if Gorontalo (LPPM-UNG), Department of Biology State University of Gorontalo.

References

Tiommanisyah. (2010). *Analysis of rough protein content in soybeans, peanuts and green beans using kjehdal macro method as mixed food substance*. Medan: USU.

Copyright Disclaimer

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).