Sport Scientific and Practical Aspects

Country: Bosnia and Herzegovina

Subject Area and Category: Health Professions, Physical Therapy, Sports Therapy and Rehabilitation

Publisher: Sport Tuzla University

Publication type: Journals

ISSN: 18404561, 18404413

Scope: Sport Scientific And Practical Aspects is an international journal of sport science and kinesiology. The journal publishes scientific, theoretical and empirical articles and other written material related to following kinesiology fields: Biomechanics, Kinesiology Assessment, Training Theory, Management in Sport, Physical Education, Methodology, Statistics and Research Methods, Sport and Health, Adaptive Physical Activity, Sport. The aim and intention of the journal is to increase theoretical and practical knowledge of above mentioned kinesiology fields, to enable and encourage young researchers to publish their articles and to provide practical information, useful for kinesiology practitioners, coaches, PE teachers, athletic trainers, physical therapists and athletes.

Homepage
How to publish in this journal
Contact
Join the conversation about this journal

Quartiles

Physical Therapy, Sports Therapy and Rehabilitation

2018

SJR

Citations per document

Total Cites Self-Cites

0.12

2018
Dear Melanie,

thanks for your response but i don't know how can I communication with Scopus database. Can you guidance me?

thank you so much
Management
(For short information click on the member’s name)

Editor-in-Chief

Vlatko Šeparović
(Tuzla University, Bosnia and Herzegovina)

Associate Editors-in-Chief

Monèm Jemni
(University of Greenwich, United Kingdom)

Edin Užičanin
(Tuzla University, Bosnia and Herzegovina)

Almir Atiković
(Tuzla University, Bosnia and Herzegovina)

Scientific Consultants

Milan Čoh
(University of Ljubljana, Slovenia)

Ekrem Čolakhodžić
(University Džemal Bijedić, Bosnia and Herzegovina)

Haris Pojskić
(Mid Sweden University, Sweden)

Young Editor

Fuad Babajić
(Tuzla University, Bosnia and Herzegovina)
Section Editors

Exercise Physiology
Monèm Jemni - United Kingdom, University of Greenwich

Biomechanics, Kinesiology Assessment
Milan Čoh - Slovenia, Ljubljana
Barry Munkasy - Georgia Southern University
Siniša Kovač - B&H

Training theory
Duško Bjelica - Montenegro, Podgorica
Ekrem Čolakhodžić - B&H, Mostar
Goran Bošnjak - B&H, Banja Luka

Management in Sport
Edita Kastratović - Serbia, Beograd
Stevo Popović - Montenegro
Tarik Huremović - B&H, Tuzla

Education
Jože Štihec - Slovenia, Ljubljana
Muriz Hadžikadunić - B&H, Sarajevo
Mladen Kvesić - B&H, Mostar
Iket Mahmutović - B&H, Mostar

Methodology, Statistics and Research methods
Mihajlo Mijanović - Montenegro, Nikšić
Julijan Malacko - Serbia, Novi Sad

Sport and Health
Edvin Dervišević - Slovenia, Ljubljana
Farid Čolujca - B&H, Tuzla

Adaptive physical activity
Hana Valkova - Czech Republic
Suada Kapidžić-Duraković - B&H

Sport
Ivan Čuk - Slovenia, Ljubljana
Žarko Kostovski - Macedonia, Skoplje
<table>
<thead>
<tr>
<th>International Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>(For short information click on the member’s name)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donald A. Chu</td>
<td>USA (California)</td>
<td>Alameda</td>
</tr>
<tr>
<td>David G. Behm</td>
<td>Canada</td>
<td>Newfoundland</td>
</tr>
<tr>
<td>Keijo Häkkinen</td>
<td>Finland</td>
<td>Jyväskylä</td>
</tr>
<tr>
<td>Monèm Jemni</td>
<td>United Kingdom</td>
<td>Quatar University</td>
</tr>
<tr>
<td>Dietmar Schmidtbleicher</td>
<td>Germany</td>
<td>Frankfurt</td>
</tr>
<tr>
<td>Barry Munkasy</td>
<td>USA (Georgia)</td>
<td>Georgia</td>
</tr>
<tr>
<td>Sergio J. Ibanez</td>
<td>Spain</td>
<td>Extremadura</td>
</tr>
<tr>
<td>Jaime Sampaio</td>
<td>Portugal</td>
<td>Vila Real</td>
</tr>
<tr>
<td>José Antonio Pérez Turpin</td>
<td>Spain</td>
<td>University of Alicante</td>
</tr>
<tr>
<td>Alun Gwyn Williams</td>
<td>UK (Alsager)</td>
<td>Manchester Metropolitan University</td>
</tr>
<tr>
<td>Taisuke Kinugasa</td>
<td>Singapore</td>
<td>Singapore Sports School</td>
</tr>
<tr>
<td>Hakan Gur</td>
<td>Turkey</td>
<td>Bursa</td>
</tr>
<tr>
<td>John Cronin</td>
<td>New Zealand</td>
<td>Auckland</td>
</tr>
<tr>
<td>Frane Erčulj</td>
<td>Slovenia</td>
<td>Ljubljana</td>
</tr>
<tr>
<td>Dražen Dizdar</td>
<td>Croatia</td>
<td>Zagreb</td>
</tr>
<tr>
<td>Hana Valkova</td>
<td>Czech Republic</td>
<td>Olomouc</td>
</tr>
<tr>
<td>Ivan Čuk</td>
<td>Slovenia</td>
<td>Ljubljana</td>
</tr>
<tr>
<td>Karim Chamari</td>
<td>Tunisia</td>
<td>University of Manouba</td>
</tr>
<tr>
<td>Anis Chaouachi</td>
<td>Tunisia</td>
<td>Faculties of Medicine of Tunis and Sousse</td>
</tr>
<tr>
<td>Anne Delextrat</td>
<td>UK</td>
<td>London</td>
</tr>
<tr>
<td>Sergej Polievskiy</td>
<td>Russia</td>
<td>Moscow</td>
</tr>
<tr>
<td>Edvin Dervišević</td>
<td>Slovenia</td>
<td>Ljubljana</td>
</tr>
<tr>
<td>Miha Marinšek</td>
<td>Slovenia</td>
<td>Maribor</td>
</tr>
<tr>
<td>Hamid Arazi</td>
<td>Iran</td>
<td>Gilan</td>
</tr>
<tr>
<td>Nikola Rausavljević</td>
<td>Croatia</td>
<td>Split</td>
</tr>
<tr>
<td>Jože Štihec</td>
<td>Slovenia</td>
<td>Ljubljana</td>
</tr>
<tr>
<td>Edita Kastratović</td>
<td>Serbia</td>
<td>Belgrade</td>
</tr>
<tr>
<td>Duško Bjelica</td>
<td>Montenegro</td>
<td>Podgorica</td>
</tr>
<tr>
<td>Dobrica Živković</td>
<td>Serbia</td>
<td>Niš</td>
</tr>
<tr>
<td>Matej Tušak</td>
<td>Slovenia</td>
<td>Ljubljana</td>
</tr>
</tbody>
</table>

UDK: 796
print ISSN 1840-4413,
online ISSN 1840-4561
Catalogue: COBISS BH

Indexing
InfoBase Index
WorldCat
CAB Abstracts
Physical Education Index
Genamics Journal Seek
Open J-Gate
EBSCO Sportdiscus
DOAJ
Directory of Research Journals Indexing
Electronic Journals Index
Academic Journals Database
Index Copernicus
getCITED
Elsevier's EMCare database

Delivery Platforms
Google Scholar Beta
Scirus
NewJour
Zentralbibliothek Köln

Links
www.flos.unzt.ba
www.unzt.ba
Review paper

DIFFERENCES IN MORPHOLOGICAL AND POSTURAL STATUS BETWEEN PRIMARY SCHOOL MALES AND FEMALES

Dževad Džibrić

Abstract | Full text (html) | Full text (PDF)

Review paper

COMPARISON OF MOTOR SKILLS OF YOUNG SCHOOL STUDENTS

Aleksandar Pajkić, Radenko Dobras i Duško Lepir

Abstract | Full text (html) | Full text (PDF)

Original scientific paper

NATIONAL TEAMS RANKING BASED ON SITUATIONAL EFFICIENCY INDICATORS OF THE OFFENCE AT THE WORLD HARDBALL CHAMPIONSHIP

Sanja Baiqorić, Muris Dug, Nina Bijedić, Samra Mededović

Abstract | Full text (html) | Full text (PDF)

Original scientific paper

THE DEVELOPMENT OF FLEXI BAR TRAINING MODEL FOR OVERWEIGHT ADULT

Yanyong Phanpheng and Ashira Hiruntrakul

Abstract | Full text (html) | Full text (PDF)

Original scientific paper

A MODEL METHODICAL PROCEDURE FOR LEARNING A NEW ELEMENT IN ARTISTIC GYMNASTICS TKACHEV SALTO

Almir Atiković, Ivan Čuk

Abstract | Full text (html) | Full text (PDF)

Original scientific paper

THE EFFECT OF HOLLOW SPRINT AND SPRINT TRAINING ON LONG JUMP SKILLS

Aisah R. Pomatahu

Abstract | Full text (html) | Full text (PDF)
THE EFFECT OF HOLLOW SPRINT AND SPRINT TRAINING ON LONG JUMP SKILLS

Aisah R. Pomatahu
State University of Gorontalo, Indonesia

Abstract
This experimental, field research is to find out whether or not both the hollow sprint and sprint training affect long jump skills and to explore the difference of the effects of these two types of training. Furthermore, the design of this study consisted of two tests, namely pre-test and post-test. The sample involved 20 students of public junior high school SMPN 4 Gorontalo, Indonesia. The results show that both hollow sprint and sprint training affects the students’ long jump skills. In addition, there is no significant difference regarding the effect of both trainings on the students’ skills in such an athletic sport.

Keywords: hollow sprint, sprint training, long jump.

INTRODUCTION
The long jump is among the sports of athletics. There are several styles of long jump, namely sit down in the air, walking in the air, and schnepfer. According to Teguh Sutanto (2016:23-24), long jump, as the name suggests, is a sport in which the athlete leaps as far as possible. Feri Kurniawan (2012:44-46) argues that the athlete is required to perform several movements other than running before jumping; this is to maximize the distance of the jump.

A coach must pay attention to the training program for the athletes. Every program that s/he chooses must be in sync with types of sport and the condition of the athletes. There are several workouts for long jump athletes; some of them are a hollow sprint and sprint training. Hollow sprint is a drill program involving two interval sprints interrupted by a hollow period of regular workouts. The similar opinion regarding this type of training is also explained by Apta Mylsidayu and Febi Kurniawan (2015:122); they opine that the hollow period can involve jogging or walking. The distance for this hollow period is varied, but it is typically around 200m or less (2001:37). This involves (a) the target of running speed and (b) 40m of sprinting, 40m of jogging, 40m of sprinting, and 40m of walking.

Hollow sprint is a workout method comprising two sprints involving jogging or walking intervals between the sprints (Fox, Bowers & Foss, 1993: 178). RekHajeldine (1985: 102) regards the interval (walking or jogging) as a recovery period and further adds that the distance of the sprints and the interval ranges from 30 to 50 meter.

According to Mulyono B (1988:1), sprint is an exercise regimen that is performed repeatedly in a short time with relatively high intensity.

A person is demanded to run as fast as possible over a short distance to increase speed. Sukadiyanto (2005: 115) argues that this type of speed exercise is among the approaches to enhance anaerobic endurance.

An example of this exercise is 40 to 50 meter of sprint repeated over 16 to 20 times. Each repetition consists of complete recovery (t.r) and interval time (t.i). The ratio for t.r I and t.i I is 9 and 12-13 respectively. In other words, the recovery time is about 30 seconds for three seconds of sprinting with an interval of 36 seconds. This is to allow the athlete to regain and stabilize the energy and prevent fatigue during the next exercise or repetition. This concept also resonates to the argument proposed by Fox, Bowers, and Foss (1988:315) that a complete recovery is essential and should be performed in the interval of the exercises repeatedly.

Finding a suitable exercise method is important to improve the skills of both beginner and expert long jump athletes, it is believed that hollow sprint and sprint are applicable for the athletes. These training programs had been implemented by 23 students and the results show a positive outcome. It is shown that the exercises are effective to improve the long jump skills of the students who are new to the sport and those who already have the basics.

RESEARCH METHODOLOGY
This experimental, field study employed both pre-test and post-test design; it was conducted at public junior high school SMPN 4 Gorontalo for 2 months consisting of 16 meetings. Furthermore, 20 students in the research site were selected as the sample from a total of 200 students (research population). The samples had different characteristics and were selected randomly.
A pre-test and post-test were used as a research instrument to generate the required data. These tests were to measure the students’ long jump skills and were administered before and after the two-month treatment (implementing the hollow sprint and sprint training).

RESULTS AND DISCUSSION

Description of Research Results

This section provides the description of findings and analysis regarding the difference of the effect between hollow sprint and sprint training on the students’ long jump skills. The following table provides the data of the pre-test and post-test.

Table 1. Data of Research Results

<table>
<thead>
<tr>
<th>No.</th>
<th>$X_{1.1}$</th>
<th>$X_{1.2}$</th>
<th>$X_{2.1}$</th>
<th>$X_{2.2}$</th>
<th>$X_{1.1}^2$</th>
<th>$X_{1.2}^2$</th>
<th>$X_{2.1}^2$</th>
<th>$X_{2.2}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.8</td>
<td>2.01</td>
<td>2.5</td>
<td>2.65</td>
<td>3.24</td>
<td>4.0401</td>
<td>6.25</td>
<td>7.0225</td>
</tr>
<tr>
<td>2</td>
<td>2.97</td>
<td>3.09</td>
<td>3.22</td>
<td>3.35</td>
<td>8.8209</td>
<td>9.5481</td>
<td>10.368</td>
<td>11.222</td>
</tr>
<tr>
<td>3</td>
<td>1.7</td>
<td>1.85</td>
<td>2.06</td>
<td>2.18</td>
<td>2.89</td>
<td>3.4225</td>
<td>4.2436</td>
<td>4.7524</td>
</tr>
<tr>
<td>4</td>
<td>3.43</td>
<td>3.52</td>
<td>2.17</td>
<td>2.23</td>
<td>11.764</td>
<td>12.390</td>
<td>4.7089</td>
<td>4.9729</td>
</tr>
<tr>
<td>5</td>
<td>2.17</td>
<td>2.25</td>
<td>2.01</td>
<td>2.1</td>
<td>4.7089</td>
<td>5.0625</td>
<td>4.0401</td>
<td>4.41</td>
</tr>
<tr>
<td>6</td>
<td>3.31</td>
<td>3.43</td>
<td>2.09</td>
<td>2.2</td>
<td>10.956</td>
<td>11.764</td>
<td>4.3681</td>
<td>4.84</td>
</tr>
<tr>
<td>7</td>
<td>2.96</td>
<td>3.05</td>
<td>1.75</td>
<td>1.9</td>
<td>8.7616</td>
<td>9.3025</td>
<td>3.0625</td>
<td>3.61</td>
</tr>
<tr>
<td>8</td>
<td>1.74</td>
<td>1.85</td>
<td>2.17</td>
<td>2.24</td>
<td>3.0276</td>
<td>3.4225</td>
<td>4.7089</td>
<td>5.0176</td>
</tr>
<tr>
<td>9</td>
<td>2.51</td>
<td>2.66</td>
<td>1.71</td>
<td>1.8</td>
<td>6.3001</td>
<td>7.0756</td>
<td>2.9241</td>
<td>3.24</td>
</tr>
<tr>
<td>10</td>
<td>3.05</td>
<td>3.21</td>
<td>3.2</td>
<td>3.35</td>
<td>9.3025</td>
<td>10.304</td>
<td>10.24</td>
<td>11.222</td>
</tr>
<tr>
<td>Total</td>
<td>25.64</td>
<td>26.92</td>
<td>22.88</td>
<td>24</td>
<td>69.77</td>
<td>76.33</td>
<td>54.91</td>
<td>60.31</td>
</tr>
</tbody>
</table>

Description:

$X_{1.1}$: Hollow Sprint Group (before treatment)
$X_{1.2}$: Hollow Sprint Group (after treatment)
$X_{2.1}$: Sprint Training Group (before treatment)
$X_{2.2}$: Sprint Training Group (after treatment)

Description of the Data of Hollow Sprint Group Variable

As the study is experimental, a pre-test was administered before starting the treatment. The data of this pre-test was represented by the symbol $X_{1.1}$. By the end of the experiment, a final evaluation of the students’ long jump skills was conducted; the result of this test was represented by the symbol $X_{1.2}$.
Table 2. Data of Hollow Sprint Training

<table>
<thead>
<tr>
<th>No.</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Gain (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.8</td>
<td>2.01</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>2.97</td>
<td>3.09</td>
<td>0.12</td>
</tr>
<tr>
<td>3</td>
<td>1.7</td>
<td>1.85</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>3.43</td>
<td>3.52</td>
<td>0.09</td>
</tr>
<tr>
<td>5</td>
<td>2.17</td>
<td>2.25</td>
<td>0.08</td>
</tr>
<tr>
<td>6</td>
<td>3.31</td>
<td>3.43</td>
<td>0.12</td>
</tr>
<tr>
<td>7</td>
<td>2.96</td>
<td>3.05</td>
<td>0.09</td>
</tr>
<tr>
<td>8</td>
<td>1.74</td>
<td>1.85</td>
<td>0.11</td>
</tr>
<tr>
<td>9</td>
<td>2.51</td>
<td>2.66</td>
<td>0.15</td>
</tr>
<tr>
<td>10</td>
<td>3.05</td>
<td>3.21</td>
<td>0.16</td>
</tr>
<tr>
<td>Total</td>
<td>25.64</td>
<td>26.92</td>
<td>1.28</td>
</tr>
<tr>
<td>Mean</td>
<td>2.564</td>
<td>2.692</td>
<td>0.128</td>
</tr>
</tbody>
</table>

The above table shows that the average score of both pre and post-test describing the effect of hollow sprint exercise on long jump skills reaches 2.56, while the post-test score is 2.69 indicating an increase of 0.13. Moreover, all of the aspects of measurement are increased in both of the tests. This is represented in the following chart.

Figure 1. Data of Pre-test and Post-test of Hollow Sprint Group

Description of the Data Sprint Training Group Variable

A pre-test is required before proceeding to the treatment since this present study is experimental. The data of this pre-test was represented by the symbol X2.1. A final evaluation of the students’ long jump skills was done after the treatment; the result of this test was represented by the symbol X2.2.
Table 3. Data of Sprint Training

<table>
<thead>
<tr>
<th>No.</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>Gain (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>2.65</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>3.22</td>
<td>3.35</td>
<td>0.13</td>
</tr>
<tr>
<td>3</td>
<td>2.06</td>
<td>2.18</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>2.17</td>
<td>2.23</td>
<td>0.06</td>
</tr>
<tr>
<td>5</td>
<td>2.01</td>
<td>2.1</td>
<td>0.09</td>
</tr>
<tr>
<td>6</td>
<td>2.09</td>
<td>2.2</td>
<td>0.11</td>
</tr>
<tr>
<td>7</td>
<td>1.75</td>
<td>1.9</td>
<td>0.15</td>
</tr>
<tr>
<td>8</td>
<td>2.17</td>
<td>2.24</td>
<td>0.07</td>
</tr>
<tr>
<td>9</td>
<td>1.71</td>
<td>1.8</td>
<td>0.09</td>
</tr>
<tr>
<td>10</td>
<td>3.2</td>
<td>3.35</td>
<td>0.15</td>
</tr>
<tr>
<td>Total</td>
<td>22.88</td>
<td>24</td>
<td>1.12</td>
</tr>
<tr>
<td>Mean</td>
<td>2.288</td>
<td>2.4</td>
<td>0.112</td>
</tr>
</tbody>
</table>

The above table shows that the average score of both pre and post-test describing the effect of hollow sprint exercise on long jump skills reaches 2.29, while the post-test score is 2.4; this indicates an increase of 0.11. All the measurement aspects of long jump skills are improved.

Figure 2. Data of Pre-test and Post-test of 0 5 10 15 20 25 30 Pree Test Post Test Gain (d)
Sprint Training Group

Calculation of Variant and Standard Deviation

Table 4. Calculation of Variant and Standard Deviation

<table>
<thead>
<tr>
<th>No.</th>
<th>X1.1</th>
<th>X1.2</th>
<th>Gain</th>
<th>X2.1</th>
<th>X2.2</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.8</td>
<td>2.01</td>
<td>0.21</td>
<td>2.5</td>
<td>2.65</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>2.97</td>
<td>3.09</td>
<td>0.12</td>
<td>3.22</td>
<td>3.35</td>
<td>0.13</td>
</tr>
<tr>
<td>3</td>
<td>1.7</td>
<td>1.85</td>
<td>0.15</td>
<td>2.06</td>
<td>2.18</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>3.43</td>
<td>3.52</td>
<td>0.09</td>
<td>2.17</td>
<td>2.23</td>
<td>0.06</td>
</tr>
<tr>
<td>5</td>
<td>2.17</td>
<td>2.25</td>
<td>0.08</td>
<td>2.01</td>
<td>2.1</td>
<td>0.09</td>
</tr>
<tr>
<td>6</td>
<td>3.31</td>
<td>3.43</td>
<td>0.12</td>
<td>2.09</td>
<td>2.2</td>
<td>0.11</td>
</tr>
<tr>
<td>7</td>
<td>2.96</td>
<td>3.05</td>
<td>0.09</td>
<td>1.75</td>
<td>1.9</td>
<td>0.15</td>
</tr>
<tr>
<td>8</td>
<td>1.74</td>
<td>1.85</td>
<td>0.11</td>
<td>2.17</td>
<td>2.24</td>
<td>0.07</td>
</tr>
<tr>
<td>9</td>
<td>2.51</td>
<td>2.66</td>
<td>0.15</td>
<td>1.71</td>
<td>1.8</td>
<td>0.09</td>
</tr>
<tr>
<td>10</td>
<td>3.05</td>
<td>3.21</td>
<td>0.16</td>
<td>3.2</td>
<td>3.35</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>2.564</td>
<td>2.692</td>
<td>0.128</td>
<td>2.288</td>
<td>2.4</td>
<td>0.112</td>
</tr>
<tr>
<td>Total</td>
<td>25.64</td>
<td>26.92</td>
<td>1.28</td>
<td>22.88</td>
<td>24</td>
<td>1.12</td>
</tr>
<tr>
<td>Mean</td>
<td>0.44796</td>
<td>0.429396</td>
<td>0.001596</td>
<td>0.285018</td>
<td>0.301156</td>
<td>0.001129</td>
</tr>
</tbody>
</table>

The above table shows the calculation of the variant and standard deviation of both hollow sprint and sprint training. The score of the variant and standard deviation of pre-test of a hollow sprint is 0.45 and 0.43 respectively, while the variant and standard deviation of the post-test score reaches 0.67 and 0.66 correspondingly. The calculation of the pre-test of the sprint training is 0.29 and the post-test is 0.30. The standard deviation reaches 0.53 (pre-test) and 0.55 (post-test).

Data Prerequisite Test

Normality Test
Normality Test of Hollow Sprint Group

The results of the normality test of hollow sprint variable show that the highest deviation value or L observation (Lo) reaches 0.1487. According to the table of L critical values of Liliefors at α = 0.05 ; n = 10, the value of L table (Lt) measures at 0.258, meaning that Lo is less than Lt. The testing criteria asserts that if Lo ≤ Lt, Ho is accepted. This signifies that the sample is from the normally distributed population.

Normality Test of Sprint Training Group

The results of the normality test of sprint training variable show that the highest deviation value or L observation (Lo) reaches 0.1082. According to the table of L critical values of Liliefors at α = 0.05 ; n = 10, the value of L table (Lt) measures at 0.258, meaning that Lo is less than Lt. The testing criteria asserts that if Lo ≤ Lt, Ho is accepted. This signifies that the sample is from the normally distributed population.

Homogeneity Test

The following formula was used to test the homogeneity of the variants of the population selected as the research sample.

\[F = \frac{\text{Highest variant}}{\text{Smallest variant}} \]

The result of the homogeneity test of variants in group 1 and group 2 reveals that the value of F observation (Fo) of these groups is 1.04 and 1.06 respectively. The value of table of F distribution or Ft at α = 0.05, dk = 10 - 1 = 9 reaches 3.18. According to the criteria of testing, Ho is accepted if Fo ≤ Ft. Thereby, the hollow sprint and sprint training is similar or homogenous. The summary of the calculation is provided in the following table.
Table 5. Summary of Homogeneity Test Calculation

<table>
<thead>
<tr>
<th>Group</th>
<th>Largest Variant</th>
<th>Smallest Variant</th>
<th>Fcount</th>
<th>Ftable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollow Sprint</td>
<td>0.45</td>
<td>0.43</td>
<td>1.04</td>
<td>3.18</td>
<td>Homogenous</td>
</tr>
<tr>
<td>Sprint Training</td>
<td>0.30</td>
<td>0.29</td>
<td>1.06</td>
<td>3.18</td>
<td>Homogenous</td>
</tr>
</tbody>
</table>

Hypothesis Testing Analysis

Hypothesis Testing of the Effect of Hollow Sprint on Long Jump Skills

A t-test was used to examine the hypothesis regarding the impact of the hollow sprint on students’ long jump skills. The result of the test shows that t-count = 13, meaning that this value outnumbers the t-table = 1.812 at α = 0.05; dk = n-1 (10-1 = 9). Therefore, the alternative hypothesis Ha is accepted as the test result reveals that the H0 is rejected if t-count > t-table; and hence, the hypothesis that “the hollow sprint impacts on the students’ long jump skills” is accepted.

Hollow Sprint Group

Hypothesis Testing of the Effect of Sprint Training on Long Jump Skills

A t-test was used to examine the hypothesis regarding the impact of sprint training on students’ long jump skills. The result of the test shows that t-count = 11, meaning that this value outnumbers the t-table = 1.812 at α = 0.05; dk = n-1 (10-1 = 9). Therefore, the alternative hypothesis Ha is accepted due to the result of the test reveals that the H0 is rejected if t-count > t-table. This confirms that the hypothesis “the sprint training impacts on the students’ long jump skills” is accepted. This is represented by the following Figure 4.
The third hypothesis of this present study states that “there is a difference regarding the impact of hollow sprint and sprint training on the students’ long jump skills.” However, according to the assumption of the researcher, both the impact of both exercises are not significantly
The Effect of Hollow Sprint on Long Jump Skills

The hypothesis of this study states that “the hollow sprint training impacts on the students’ long jump skills.” Hollow sprint is a set of more than two sprint exercises with an interval of a hollow period, i.e., jogging or walking, between the sprints. The distance for this hollow period is varied, but it is typically around 200m or less (Harsono, 2001:37). This comprises (a) the target of running speed and (b) 40m of sprinting, 40m of jogging, 40m of sprinting, and 40m of walking. Hollow sprint is a workout method comprising two sprints involving jogging or walking intervals between the sprints (Fox, Bowers & Foss, 1993: 178). RekHajeldine (1985: 102) regards the interval (walking or jogging) as a recovery period. Furthermore, the distance of the sprints and the interval ranges from 30 to 50 meter. The result of the test shows that $t_{count} = 13$, meaning that this value outnumbers the $t_{table} = 1.812$ at $\alpha = 0.05$; $dk = n-1$ (10-1 = 9). Therefore, the alternative hypothesis H_a is accepted since the test results reveal that the H_0 is rejected if $t_{count} > t_{table}$; and thereby, the hypothesis that “the hollow sprint impacts on the students’ long jump skills” is accepted.

The Effect of Sprint Training on Long Jump Skills

The hypothesis of this study states that “the sprint training impacts on the students’ long jump skills.” Sprint is an exercise regimen that is performed repeatedly in a short time with relatively high intensity. A person is demanded to run as fast as possible over a short distance to increase speed. Sukadiyanto (2005: 115) argues that this type of speed exercise is among the approaches to enhance anaerobic endurance. An example of this exercise is 40 to 50 meter of sprint repeated over 16 to 20 times. Each repetition consists of complete recovery (t.r) and interval time (t.i). The ratio for t.r I and t.i I is 9 and 12-13 respectively. In other words, for three seconds of sprinting, the recovery time is about 30 seconds with an interval of 36 seconds. The result of the test shows that $t_{count} = 11$, meaning that this value outnumbers the $t_{table} = 1.812$ at $\alpha = 0.05$; $dk = n-1$ (10-1 = 9). Therefore, the alternative hypothesis H_a is accepted as the test result reveals that the H_0 is rejected if $t_{count} > t_{table}$. This signifies that the hypothesis “the sprint training impacts on the students’ long jump skills” is accepted.

The Difference of the Effect of Hollow Sprint and Sprint Training on Long Jump Skills

The objective of this study is to improve students’ long jump skills by implementing hollow sprint and sprint training program. The effect of both trainings on the students’ skills in such an athletic sport is similar and has no significant difference. This is based on the result of the testing of the third hypothesis. The calculation results show that the value of $t_{count} = 0.07$. The value of t_{table} reaches 1.73 at $\alpha = 0.05$; $dk = n_1 + n_2 - 2 = 18$. In conclusion, the t_{count} is less than t_{table} (0.07 < 1.73). The criteria explain that the H_0 is rejected as the $t_{count} > t_{table}$ and this also signifies that the H_a is also rejected. Considering these conditions, this study finds out that the impact of hollow sprint and sprint training on the students’ long jump skills is no difference. This also signifies that the hypothesis stating that the two training programs have a different effect on the skills of such an athletic sport is rejected as the effects of both trainings are relatively the same.

CONCLUSION

The objective of this study is to find out whether or not both the hollow sprint and sprint training affect long jump skills and to explore the difference in the effect of both training programs. The results reveal that both hollow sprint and sprint training contributes to the students’ long jump skills. On top of that, the effect of both trainings on the students’ skills in such an athletic sport is similar and has no significant difference.

REFERENCES