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NONLINEAR OPTICAL WAVEGUIDE SPECTROSCOPY OF
POLY(3-BUTYLTHIOPHENE)
MOHAMAD JAHJA and CHRISTOPH BUBECK

Abstract

We prepared thin films of the conjugated polymer poly(3-butylthiophene) by spin-coating and

performed transmission and reflection spectroscopy to characterize the dispersion of linear

refractive index and absorption coefficient at in-plane polarization. Slab waveguides of this

regiorandom polythiophene derivative have mode propagation losses smaller than 1 dB/cm at

wavelengths larger than 1000 nm. We determined the nonlinear refractive index and two-photon

absorption of slab waveguides by means of intensity-dependent prism coupling using picosecond

laser pulses in the range 700–1300 nm. These data yield the dispersion of the figures of merit,

which appear promising for all-optical waveguide switching at wavelengths larger than 1200 nm.

Polythiophene conjugated polymer slab waveguide

intensity-dependent prism coupling nonlinear refractive index two-photon absorption

�gures of merit all-optical switching
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We prepared thin films of the conjugated polymer poly(3-butylthiophene) by spin-
coating and performed transmission and reflection spectroscopy to characterize the dis-
persion of linear refractive index and absorption coefficient at in-plane polarization. Slab
waveguides of this regiorandom polythiophene derivative have mode propagation losses
smaller than 1 dB/cm at wavelengths larger than 1000 nm. We determined the nonlinear
refractive index and two-photon absorption of slab waveguides by means of intensity-
dependent prism coupling using picosecond laser pulses in the range 700–1300 nm. These
data yield the dispersion of the figures of merit, which appear promising for all-optical
waveguide switching at wavelengths larger than 1200 nm.

Keywords: Polythiophene; conjugated polymer; slab waveguide; intensity-dependent
prism coupling; nonlinear refractive index; two-photon absorption; figures of merit; all-
optical switching.

1. Introduction

Waveguides are basic modules for integrated optics and all-optical switching
devices.1–5 The switching of light by light is generally based on the non-linearities
of the refractive index n or the absorption coefficient α. Their dependencies on light
intensity I are commonly expressed by

n = n0 + n2I (1)

and

α = α0 + α2I, (2)

where n0 and α0 refer to the linear refractive index and absorption coefficient
at low intensity, respectively. The nonlinear refractive index n2 and the nonlin-
ear absorption coefficient α2 are proportional to the real and imaginary parts of
the complex third-order susceptibility χ(3), respectively.6,7 Polymers with a highly
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delocalized π-electron system along their backbone have gained much interest in
recent years, because they exhibit large third-order optical non-linearities.8,9 In par-
ticular, the nonlinear optical properties of polythiophenes have been investigated
with many characterization methods such as third-harmonic generation,10–13 degen-
erate four-wave mixing,14–17 Z-scan,18–20 two-photon absorption (TPA) induced
fluorescence,21–24 and model calculations as well.25,26 However, the nonlinear opti-
cal data of polythiophenes are still not completely known in the near infrared (NIR)
to estimate the application criteria for all-optical waveguide switching devices,
which are expressed by so-called figures of merit.2–5 This would require the deter-
mination of all data presented in Eqs. (1) and (2) at particular laser wavelengths λ

in the NIR range of 800–1500nm, respectively.
Intensity-dependent prism coupling turned out as a suitable characterization

method of slab waveguides to determine the signs and absolute values of n0, n2,
α0, and α2, i.e., without the need for reference materials.27,28 Recently, the conju-
gated model polymer MEH-PPV was investigated with intensity-dependent prism
coupling and its figures of merit are most promising in the range of 1100–1200nm
at the low-energy tail of its two-photon absorption.28–30

We selected the regiorandom poly(3-butylthiophene), abbreviated P3BT (see
Fig. 1(a) for its chemical structure) to perform nonlinear optical waveguide spec-
troscopy, because P3BT has a sufficiently high glass transition temperature and is
suitable for preparing slab waveguides with small mode propagation losses. This
paper aims to present our measurements of the linear and nonlinear optical data
by means of intensity-dependent prism coupling to evaluate the figures of merit in
the NIR range and to clarify their spectral dependence.
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Fig. 1. Chemical structure of P3BT and (a) spectra of absorption coefficient α and (b) refractive
index n of thin films measured at TE polarization. The absorption coefficient is displayed as
determined relative to fused silica (uncorrected, dashed line) and after correction of reflection
losses at interfaces (corrected, full line). Lines are from reflectometry experiments (film thickness

d = 48nm). Data points are from prism coupling experiments at TE polarization (full circles)
using slab waveguides (d = 535 nm).
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2. Experimental Details

2.1. Materials and film preparation

Regiorandom poly(3-butylthiophene), abbreviated P3BT, was purchased from
Rieke-Metals and used without further treatment. Figure 1(a) shows its chemi-
cal structure. Characterizations of molecular weights and glass transition temper-
ature (Tg) were performed at our institute with Gel Permeation Chromatography
(GPC) and Differential Scanning Calorimetry (DSC), respectively. P3BT used in
this work has weight average molecular weight Mw = 3.09 × 104 g/mol, number
average molecular weight Mn = 1.02 × 104 g/mol, and Tg = 60◦C, respectively.

P3BT films were spin-cast from their freshly prepared and filtered (0.45 µm
syringe filters) toluene solutions onto fused silica substrates, which were cleaned
in the following sequence: Washing with liquid soap, then rinsing 10 times with
purified water (Milli-Q, Millipore), cleaning in an ultrasonic bath with a solution
of 1% detergent (Hellmanex, Hellma) in Milli-Q water for 15 minutes, 10 times
rinsing in purified water, cleaning with ethanol, and drying the substrate in a flow
of nitrogen.

Typical film thicknesses d in the range of 50–70 nm as needed for optical spec-
troscopy were obtained by using a solution concentration by weight cw = 4% and
spinning speed ω = 1000 rpm. Waveguides with typical thickness in the range of
500–600nm were prepared using cw = 8% and ω ≈ 1000 rpm. Residual solvents
after spin-coating were removed by subsequently annealing the samples to 45◦C in
a vacuum oven for at least 4 hours at slow changes of temperature to avoid stresses
in the films. The film thicknesses were measured with a Tencor model P-10 stylus
profilometer.

2.2. Linear optical spectroscopy

Transmission and reflection spectra of thin films (d ≈ 50 nm) were measured by
using a UV-Vis-NIR spectrophotometer (Perkin Elmer Model Lambda 900) at
in-plane orientation of the electrical field vector of incident light (TE-polarization).
The spectra of the refractive index n(λ) of the films were obtained by reflectom-
etry at nearly perpendicular incidence and were evaluated by means of Fresnel’s
equations as described earlier.11,31,32

The refractive indices of waveguides at TE-polarization of the electric field vector
were determined by prism coupling using the m-line technique1,33 and a continuous
wave (cw) Nd : YAG laser. The typical thicknesses of waveguides were in the range
of 400–800nm.

Waveguide attenuation loss experiments were performed by use of the cw-
Nd : YAG laser at 1064nm and the set-up described earlier.34 The scattered light
from the waveguide mode was imaged by a lens onto a diode array. Attenuation loss
coefficients αgw were determined from the scattered light intensity as a function of
distance from the coupling prism. The detection limit of this method is in the order
of αgw ≈ 0.5 dB/cm.
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2.3. Intensity-dependent prism coupling

The prism coupler set-up depicted in Fig. 2 was used to measure the nonlinear
optical coefficients α2 and n2 by intensity-dependent prism coupling as reported
recently.27,28 Slab waveguides were pressed against the prism base by means of a
spring-loaded clamping screw. The prism material was N-LaSF18A Schott glass and
the prism angle was γ = 60◦. The prism and photodetector PD2 were mounted on θ

and 2θ arms of two-stage goniometers, respectively. Both goniometers are computer
controlled and have a precision of 0.01◦. Photodetector PD1 was mounted in front
of the prism. Both detectors, PD1 and PD2, are InGaAs-type photodiodes.

Second-harmonic output pulses of a Nd : YAG laser (EKSPLA Model PL 2143B)
were used to pump an Optical Parametric Generator (OPG, EKSPLA Model

Nd:YAG, SHG: 532 nm

OPG: 
680-2200 nm

L1 D L2 AFR

PD1

PD2

PC
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Fig. 2. Experimental set-up of intensity-dependent prism coupling of slab waveguides prepared
on fused silica substrates, which are pressed against the bottom plane of the prism. A Nd :YAG
laser was used, whose second-harmonic output (SHG) pumped an optical parametric generator
(OPG). Symbol assignments: L1 and L2: lenses; D: spatial filter; FR: Fresnel rhombus; A: polarizer;
PD1 and PD2: photodetectors, which are connected to a BOXCAR amplifier; PC: computer. The
enlargement shows details of prism coupling and its relevant parameters as explained in the text.
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PG501), which has a wavelength tuning range of 680–2000nm. The typical pulse
durations of fundamental laser wavelength 1064nm and OPG output are 28 ps and
15 ps, respectively, similar to an earlier work.28 Lenses L1 of focal length f = 8 cm
and L2 (f = 100 cm) were used to focus the laser beam onto the prism base involv-
ing a spatial filter. The laser beam diameter db was measured with a beam profiler
(Newport model LBP2-USB2). Typical values are db = 0.4–0.8mm at the prism
base. The intensity of the laser pulses was varied by means of a Fresnel rhombus and
a polarizer. Pulse energy was measured with a pyroelectric detector (Laser probe
model RjP-735).

Photodiode PD1 was used to measure the relative intensity of incident beam.
PD2 detected the reflected signal from the prism base. Signals of both photodetec-
tors were further processed in a BOXCAR amplifier (Stanford Research Systems
Model SR250). The problem of laser pulse-to-pulse fluctuations was reduced by
selecting and amplifying only such pulses that were located within a narrow energy
window at PD1. The normalized reflected intensity IR was obtained by evaluating
the ratio of signals from PD2 and PD1 for each pulse and averaging it over 30–50
pulses.

3. Results

We used transmission and reflection spectroscopy to determine the intrinsic absorp-
tion coefficient α(λ) and the refractive index n at in-plane (TE) polarization of the
electric field vector of incident light. The spectra of α(λ) were evaluated from trans-
mission spectra after correction of reflection losses at film/air- and film/substrate-
interfaces as described earlier.11,31,32 Figure 1(a) shows the spectra α(λ) before
and after correction of reflection losses. We obtain the intrinsic absorption coeffi-
cient αmax = (1.32 ± 0.05) × 105 cm−1 and wavelength λmax = (430 ± 2) nm of the
maximum of the main absorption band. The experimental error of λmax is caused
by the broad absorption band and the experimental error of αmax is mainly due
to the uncertainty of d, respectively. The dispersion of the refractive index n as
derived from reflectometry is displayed in Fig. 1(b) together with the results of
prism coupling experiments, which are also presented in Table 1. The linear refrac-
tive indices from reflectometry and prism coupling show reasonable agreement, i.e.,
the difference of their refractive indices is smaller than 0.006.

Nonlinear prism coupling occurs when the incident intensity I is so large that the
refractive index of the film nf becomes intensity-dependent. Similarly, the absorp-
tion coefficient of the film αf can also change, e.g. because of increased two-photon
absorption. Figure 3 shows an example of intensity-dependent prism coupling. The
minimum of the coupling angle θ shifts with increasing energy of the incident laser
pulses. This is directly related to a change of nf . The resonance curve also becomes
deeper due to an increase of αf . The intensity-dependent shifts of the coupling
curves were fully reversible, at least using input laser pulse energies up to approxi-
mately 1.5 µJ at λ = 1064nm. Numerical fits to the measured data were performed
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Fig. 3. Coupling curves of TE0 waveguide modes of a 535 nm thick film of P3BT prepared on a
fused silica substrate at the fundamental wavelength of the Nd : YAG laser (1064 nm), that were
excited at different pulse energies E measured in front of the prism. The reflected intensity IR is
displayed versus coupling angle θ (compare Fig. 2). The lines are numerical fits to the experimental
points using the model reported recently.28 Fit parameters: air gap thickness da = 264 nm (held
constant); refractive index nf and absorption coefficient αf of the film were varied to fit the
measurements at three energies (E = 0.34µJ: nf = 1.6862, αf = 1.7 cm−1; E = 0.79µJ: nf =
1.6863, αf = 3.7 cm−1; E = 1.29µJ: nf = 1.6864, αf = 5.7 cm−1).

by varying only the two parameters nf and αf . The other parameters, such as
beam diamater db and air-gap thickness da were evaluated initially and were held
constant in the fitting procedure of the intensity-dependent shifts of the coupling
curves as described in detail earlier.28

A crucial step in the evaluation of intensity-dependent prism coupling is the
determination of the air-gap thickness da between the prism base and film surface,
which is accomplished by simulation of the angular-dependence of the reflected
intensity IR at low input energy as described in detail elsewhere.27,28 The knowledge
of da enables the evaluation of the average intensity 〈Igw〉 in the waveguide.27,28

Figure 4 shows examples of the changes of nf and αf at 1064nm as a function
of 〈Igw〉. For comparison with the data of intensity-dependent prism coupling, the
results of prism coupling using a low power cw-Nd : YAG laser are also shown in
Fig. 4. The data of nf and αf increase linearly with 〈Igw〉, which is typical for a
third-order nonlinear optical process and allow the evaluation of n2 and α2 of the
waveguide according to

∆nf = n2 〈Igw〉 , (3)

∆αf = α2 〈Igw〉 . (4)

The intensity-dependent prism coupling experiments were performed in the
range 700–1300nm. The results of the linear refractive index n0 and the linear
absorption coefficient α0 refer to extrapolations of nf and αf to the corresponding
data at 〈Igw〉 = 0. They are shown in Table 1, together with the evaluated nonlinear
optical coefficients n2 and α2, respectively.
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Fig. 4. Intensity dependencies of (a) absorption coefficient αf and (b) refractive index nf of a
P3BT slab waveguide (d = 535 nm) at TE polarization. The average guided wave intensity 〈Igw〉 is
calculated as described previously.27,28 The data were measured with intensity-dependent prism
coupling (squares) and also using a low power cw-Nd : YAG laser (circles, waveguide thickness
d = 834 nm) as described in the text. The experimental error of αf at low intentsiy (full circle) is
less than symbol size.

4. Discussion

4.1. Linear optical properties

Inspection of Table 1 reveals that the waveguide losses at TE polarization decrease
monotonically from α0 = 3 cm−1 at 700 nm to approximately 0.2 cm−1 and less at
λ > 1000nm. As the electronic and vibrational absorptions of P3BT are negligible
at 600 nm < λ < 1600nm, we interpret this decay with Rayleigh and Mie type light
scattering and their typical wavelength dependence.35 This shows that regioran-
dom P3BT is suitable to prepare slab waveguides with sufficiently low waveguide
propagation losses < 1 dB/cm at λ > 1000nm.
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The refractive index shows normal dispersion at λ > 550nm. The results from
thin films, determined with reflectometry (d ≈ 50 nm), and films with d > 500nm
investigated with prism coupling yield nearly the same refractive index, i.e., the
data of n do not differ more than ∆n = 0.006, which is close to the experimental
uncertainty.

4.2. Nonlinear optical properties

We like to point out first that the intensity-dependent changes of n and α observed
here have a pure electronic origin, i.e., they are not thermally induced because of
the short pulse duration (typically 20 ps) and low repetition rate (10Hz) of our laser
system. Furthermore, thermal “nonlinearities” would normally show n2 < 0 only.

Inspection of Table 1 shows large two-photon absorption (TPA) of P3BT
excited at laser wavelengths of 900–1100nm, which refers to a TPA energy level
at 2.26–2.76eV. This is in good agreement with earlier reports of TPA in poly-
thiophenes. Using the oligomer α-sexithienyl, Periasamy et al. observed several
distinct TPA energy levels at 2.25–2.48 eV,21 which are close to the TPA level of
poly(3-octylthiophene) thin films located at 2.5 eV as reported by Sakurai et al.22

Polythiophenes can show a second, higher-energy TPA maximum at approximately
3.5 eV.23,24 However, we do not observe this TPA level at 3.5 eV for experimental
reasons.

The nonlinear refractive index of P3BT has a maximum n2 = 1× 10−13 cm2/W
at approximately 1100nm and decreases monotonically at larger λ. At shorter wave-
lengths, n2 becomes zero at approximately λ = 850nm and gets a negative sign at
λ < 850nm. We interpret this dispersion of n2 by considering the joint occurrance
of two electronic processes: TPA as described above, and saturable absorption,
which happens if the laser wavelength approaches the tail of the electronic absorp-
tion band. Saturation of the exciton absorption in polythiophenes at high laser
pulse intensities was already observed earlier.14,15,19,20 Kramers–Kronig relations36

and model calculations27 reveal that the dispersions of absorption coefficient and
refractive index are strongly correlated to each other. This way, we see a quali-
tative agreement of the dispersion of n2 of P3BT with both, the model of Stege-
man for a three-level system37 and the dispersion of n2 of the conjugated polymer
MEH-PPV.28,30

4.3. Figures of merit

The materials requirements for all-optical waveguide switching devices can be for-
mulated as so-called figures of merit2–5

W =
n2I

α0λ
, (5)

T =
2α2λ

n2
. (6)
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Figures of merit of different materials are usually compared by using a typical inten-
sity I = 1 GW/cm2. The application criteria of waveguides for all-optical switching
are satisfied if W > 1 and T < 1.2–5 We use the measured values of α0, α2 and
n2 to calculate W and T by means of Eqs. (5) and (6), respectively. The coeffi-
cient α0 also includes the waveguide propagation losses induced by light scattering.
Table 1 shows that W reaches a maximum value of W = 4.5 at 1100nm according
to the maximum of n2 and decreases at longer wavelengths. Although our data
of T suffer from large experimental errors caused mainly by significant difficulties
to determine α2 with intensity-dependent prism coupling, we observe that T is
dominated by the dispersion of TPA. Consequently, we expect that T decreases
for λ > 1200nm and should not be a limiting factor at longer wavelengths. At
λ < 1000nm, the requirements for the figures of merit cannot be satisfied because
of small n2 values, strongly increasing linear waveguide attenuation losses α0, and
the possible second TPA maximum at 3.5 eV.23,24 We conclude that P3BT is a
promising materials candidate for all-optical waveguide-switching applications at
λ > 1200nm.

5. Summary and Conclusion

We prepared thin films of regiorandom poly(3-butylthiophene) (P3BT) and char-
acterized their linear and nonlinear optical properties with reflectometry and
intensity-dependent prism coupling using picosecond laser pulses, which were tuned
in the wavelength range 700–1300nm. Our experiments provide the linear and non-
linear optical data α0, n0, α2 and n2, which are obtained from absolute measure-
ments, as no reference materials are needed.

The linear waveguide attenuation losses α0 are mainly caused by light scattering,
which decrease towards the near-infrared. At λ > 1000nm, the waveguides have
sufficiently low losses < 1 dB/cm as needed for waveguide applications in integrated
optics.

We observe significant two-photon absorption (TPA) in the order of α2 =
1 cm/GW at laser wavelengths λ = 1100–1200nm. This agrees well with earlier
reports of TPA in polythiophenes, which locate a TPA energy level at 2.5 eV.21,22

The dispersion of n2 is dominated by TPA and saturable absorption. The latter
process causes a negative sign of n2 at λ < 800 nm. The dispersion of n2 is in
qualitative agreement with a model calculation of Stegeman involving a three-level
system.37 The absolute value of n2 (1100nm) = 1 × 10−13 cm2/W is about half of
the value reported for the conjugated model polymer MEH-PPV28–30 and competes
well with silicon, which has n2 (1270 nm) = 2.6 × 10−14 cm2/W.38

We determined the dispersion of the figures of merit, which are the relevant
application criteria for all-optical waveguide switching devices. Our results of P3BT
thin films are in line with the behavior of the conjugated polymer MEH-PPV, which
also shows most promising figures of merit at the low-energy tail of the two-photon
absorption. In the spectral region at λ > 1200nm, the data of n2 of P3BT are still
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resonantly enhanced by TPA, but the waveguide attenuation losses can already be
small enough to enable all-optical waveguide switching applications.
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