Mercury Levels in the River Water and Urine of Traditional Gold Miners in Hulawa Village East Sumalata District North Gorontalo Regency

Rama Hiola
Faculty of Sports and Health, State University of Gorontalo

Abstract

Introduction. Gold mining process with mercury is conducted by separating gold from the sands through amalgamation process and combustion process mostly conducted by group of traditional gold miners. This research aims to know mercury levels correlation in the river water and urine of traditional gold miners. Method. This research used research design of Analytical Survey with Cross Sectional Study approach to be analyzed using pearson correlation test. Result. The research result showed that there were 2 rivers with mercury levels of 0.0213 ppm and 0.0183 ppm respectively in which it did not met the requirement of threshold value, while the urine sample that been tested in this research met the requirement of threshold value. Based on the result if pearson correlation analysis, it was obtained r value = 0.073, then correlation of mercury levels in the river water and urine of traditional gold miners was in very low category. Discussion. It is suggested to the gold miners in which they should not dispose mining waste to the river without waste treatment process first in order to not damage the environment around such as river ecosystem and people around.

Keywords: Mercury (Hg), River Water, Urine of Miners, Traditional Gold Miners, Environmental Effect

Introduction

In Indonesia, heavy metal pollution (Widiarnarko et al., 2000) tends to increase as with the increase of industrialization process (Li et al., 2014). Since industrialization era, mercury (Villalba et al., 2015) becomes excavation pollutant (Hou et al., 2016) material due to mercury can be used as maximum as possible (Bavec et al., 2015). One of cause to the environmental pollution by mercury (Riaz et al., 2016) is tailing disposal of gold processing (Veiga et al., 2014) which processed in amalgamation way (Garcia et al., 2015).

The effect of mercury (Hg) to the health (Parsons and Percival, 2005) depends on its compound form. Inorganic Hg compound (Rose et al., 2015) and metallic Hg compound (Rumayor et al., 2013) according to International Agency for Research on Cancer (IARC) included into group 3, which hazardous materials which don’t cause cancer to human; while, methylmercury and its compounds
included into group of 2B, which is hazardous materials which can be carcinogenic to human. Mercury has neuro-toxic properties, which is toxic to the central nervous system (Central Nervous System- CNS).

Gold mining in Hulawa Village, East Sumalata District, North Gorontalo Regency is unorganized gold mining location (Male at all, 2013) or known as Illegal Gold Mining (PETI-Penambangan Emas Tanpa Izin) (Dutu, 2016). Processing method in this mining performed in traditional way through amalgamation process (Veiga et al, 2015) with simple tools (Drevnick et al, 2016). This mining activity uses mercury as main material in separating gold (Appel and Na-Oy, 2014). All activities that conducted by miners do not use any Personal Protective Equipment (PPE) (Arezes and Miguel, 2013) which can protect themselves from chemical compound exposure (Dhal et al, 2013). From all gold mining locations, the oldest location is in Hulawa Village. It is due to this mining location was established since Dutch East Indies era (Government of Gorontalo Province, 2008).

Hulawa river is water source for people (Ngoye and Machiwa, 2004) in Hulawa Village. Hulawa river functioned as conservation area (Khamis et al, 2014) which managed to maintain condition around river flow area in order to not be degraded (Abell et al, 2007). For people in East Sumalata District, Hulawa river used for social and economic interests, agriculture needs, clean water, and fishery. This river (Everard M and McInnes, 2013) includes into subsequent-permanent type with (V) shape. Hulawa river flows from west to east and ended in Sumalata Gulf. Around the boundary of Hulawa river, there are people settlements and Illegal Gold Mining activities in which the waste goes into the Hulawa river and ended in Sulawesi Sea (Environment, Research, and Information Technology Agency of Gorontalo Province, 2013).

According to the research result that been conducted by Regional Environmental Agency (BLH) of North Gorontalo Regency, it was found that from 30 miner samples that been taken, 100% suffered by mercury toxic (Li et al, 2015) with nail bio-marker shows levels above threshold value, which is 1-2 mg/Kg (WHO, 1990).
Based on another research result that conducted by (Wardiyatun and Hartini, 2009) which was about miners in Rengas Tujuh Village Tumbang Titi District Ketapang Regency West Kalimantan Province, showed that 44.4% (8 people) miners in Rengas Tujuh Village contaminated by mercury in their urine sample with mercury levels of 2.32-45.29 g/l and the average mercury level was 7.6 g/l. There were 3 gold miners who had mercury levels above the threshold value (NAB) in their urine sample. The research that conducted by (Gafur and Jahja, 2014) showed that mercury levels in Hulawa river was 0.0284 ppm and according to the Ministry of Health Regulation in 2001, heavy metal levels that allowed in the water body is 0.001 ppm.

Research Method

a. Research Location and Design

This research was conducted in Bukit Pasolo Gold Mining, Hulawa Village, East Sumalata District, North Gorontalo Regency. Sample test was conducted in Physics Laboratory in the State University of Gorontalo and this research design used Analytical Survey (Frank, 1996) with Cross Sectional Study (Barnet et al, 2012) approach to study about correlation dynamics between risk and effect factors by observation approach or data collection all at once in a time (Notoatmodjo, 2010).

b. Research Population and Sample

Population in this research was all gold miners in traditional gold mining location of Hulawa Village for 30 people and sample in this research was river water and miner’s urine. Sample taking technique in this research was conducted by using purposive sampling technique (Topp, 2004).

c. Data Analysis

Analysis of correlation coefficient used to know the level of correlation for mercury levels in the river water as X variable and urine of gold miners as Y variable by using Pearson Product Moment (Sugiyono, 2008). The equation of Pearson correlation can be seen in the formula below:

\[r_{xy} = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{(n \sum x^2 - (\sum x)^2)(n \sum y^2 - (\sum y)^2)}} \]
Independent Variable

y = Dependent Variable

n = Number of Sample

Research Result

1. Mercury (Hg) Levels in the River Water

Sample taking of river water was performed in the established location, which was in river location as direct disposal location of gold processing waste using mercury. Sample was taken in 5 areas and then conducted by test in Physics Laboratory State University of Gorontalo.

Table 3.1. The result of mercury (Hg) levels test in the river water

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>The Result of Mercury Levels in the River Water (ppm)</th>
<th>Explanation</th>
<th>Standard of Ministry of Health Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.0213</td>
<td>TMS</td>
<td>Threshold value of mercury levels in the river water is 0.001 ppm</td>
</tr>
<tr>
<td>02</td>
<td>0.0183</td>
<td>TMS</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>0.0013</td>
<td>MS</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>0.0003</td>
<td>MS</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>0.0001</td>
<td>MS</td>
<td></td>
</tr>
</tbody>
</table>

From the test result of mercury levels in Physics Laboratory State University of Gorontalo to the river water around gold mining location, it was obtained the result of sample code 01 was 0.0213 ppm in which it was the highest mercury levels and sample code 05 obtained 0.0001 ppm where it was the lowest mercury levels. According to the Ministry of Health Regulation No.416/Ministry of Health/Regulation/IX/1990: threshold level of mercury levels to the river water is 0.001 ppm.

2. Mercury (Hg) Levels in the Miner’s Urine

Urine sample taken from traditional gold miners in Hulawa Village, East Sumalata District, North Gorontalo Regency.

Table 3.2 The Result of Mercury Levels Test to the Gold Miner’s Urine

<table>
<thead>
<tr>
<th>Respondent</th>
<th>The Result of Mercury Levels in the Urine (ppm)</th>
<th>Explanation</th>
<th>Standard of WHO</th>
</tr>
</thead>
</table>

Table 1: Mercury Levels in the Human’s Urine

<table>
<thead>
<tr>
<th></th>
<th>Threshold Value (ppm)</th>
<th>Respondent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0040</td>
<td>MS</td>
</tr>
<tr>
<td>B</td>
<td>0.0021</td>
<td>MS</td>
</tr>
<tr>
<td>C</td>
<td>0.0033</td>
<td>MS</td>
</tr>
<tr>
<td>D</td>
<td>0.0010</td>
<td>MS</td>
</tr>
<tr>
<td>E</td>
<td>0.0011</td>
<td>MS</td>
</tr>
</tbody>
</table>

The average threshold value of mercury levels in the human’s urine is 0.004 ppm. From the result of mercury levels test to the urine sample of gold miners, it was obtained that 5 tested urine sample had mercury levels which still in the tolerance of threshold value where the highest mercury levels was respondent A with 0.0040 ppm and the lowest mercury levels was respondent D with 0.0010 ppm. Based on standard that established by WHO, threshold value of mercury levels in the human urine is 0.004 ppm.

3. Level of Correlation for Mercury Levels in the River Water and Urine of Gold Miners

Based on the result of pearson correlation analysis by using the assistance of SPSS which aims to know level of correlation for mercury levels in the river water and urine of traditional gold miners, it was obtained that correlation coefficient value \(r = 0.073 \). If it is related with Table 3.1 to make correlation coefficient interpretation then level of correlation for mercury levels in the river water and urine of gold miners in Hulawa Village East Sumalata District North Gorontalo Regency was in very low category.

Discussion

1. Mercury Levels in the River Water

Mercury is heavy metal that mostly used by human in many activities (Cao et all, 2015) such as traditional gold mining activity (Appel and Na-Oy, 2014). Mercury used to separate gold from other materials.

Gold mining in Hulawa Village still uses traditional processing method, which is through amalgamation process with very simple tools (Veiga et all, 2014). Amalgamation process is gold processing by mixing gold ore with liquid mercury. Amalgamation process that conducted by gold miners in Hulawa Village for years have caused river pollution by mercury around the mining location; in which excavation process that conducted along with amalgamation process have caused mercury washing process in the residue goes into the river. It is in line
with the statement of (Kiefer et al, 2014) that “gold mining with amalgamation technique is predicted to be mercury contamination around its area”.

From the test result that conducted in Physics Laboratory State University of Gorontalo, mercury levels in the river water around gold mining location was obtained result of 0.0213 for sample 01 in which it was the highest mercury levels and 0.0001 ppm for sample 05 in which it was the lowest mercury levels. According to the Ministry of Health Regulation No.416/Ministry of Health/Regulation/IX/1990: threshold level of mercury levels to the river water is 0.001 ppm.

It was affected by the distance of sample taking area. This research result was in line with (Foucher et al, 2013) which showed that distance of mining location determines level of mercury concentration which accumulated in sediment; where the nearer distance of mining location, the higher mercury concentration compared with location which far from mining location.

The nearest sample to mining location in this research was sample 01 with mercury levels above threshold value, which was 0.0213 ppm and sample 05 had mercury levels decrease with mercury levels of 0.0001 in which it was the furthest sample to mining location.

2. Mercury Levels in the Urine of Gold Miners

Contact between mercury and individu can be occurred through skin inhalation (Sun et al, 2013) or digestion (swallowed) (Martinez et al, 2015) which then adsorbed and distributed by blood to all body parts and finally it will have excretion process through the route of urine, sweat, saliva, breast milk, feces, nail, and hair ((Yeganeh et al, 2013)).

From the test result that conducted in Physics Laboratory State University of Gorontalo, mercury levels in the urine of gold miners showed that 5 studied urine samples had mercury levels in tolerance levels where the highest mercury levels was respondent A for 0.0040 ppm and the lowest was respondent D for
Based on standard that been established by WHO, the average threshold value of mercury levels in human urine is 0.004 ppm.

The difference mercury level in the urine of gold miners was affected by many factors such as age and working period. Respondent A had mercury levels in the urine for 0.0040 ppm, which was higher than other respondents due to respondent A was older (43 years old) with longer working period (4 years) compared to respondent D who had mercury levels in the urine for 0.0010 ppm. Respondent D had the lowest mercury levels in the urine due to respondent D was still young (26 years old) with shorter working period (3 years).

It was in line with the research of (Solenkova et all, 2014), Hg concentration also affected by other factors such as exposure duration (working period), Hg compound form in the body, Hg dosage which adsorbed in the body, metabolism ability (organ performance and function), and age in which age supports in excreting toxic in the body.

3. **Level of Correlation for Mercury Levels in the River Water and Urine of Gold Miners**

Mercury is one of heavy metal which can be organic (Khan et all, 2013) and inorganic (MacDonald et all, 2015) compound and it is mostly found in the nature and distributed in the rocks, mine ore, soil, water, and air. Mercury is kind of metal which in normal condition it is liquid with grey color and odorless. Mercury has properties of easy to evaporate in room temperature and can be solid in the pressure of 7640 atm (Widiowati, et al., 2008 in Junita, 2013).

After conducted by test of mercury levels in the river water and urine of gold miners in Physics Laboratory State University of Gorontalo, then the test result was analyzed based on pearson correlation using SPSS application which aims to know level of correlation for mercury levels in the river water and urine of traditional gold miners. It was obtained correlation coefficient value \(r = 0.073 \) in which \(r > 0 \) means there was linear and positive relationship, which was the larger X variable the larger Y variable. If it is seen from \(r \) value and correlated with Table 3.1 for correlation coefficient interpretation, then it would be obtained that level of correlation for mercury levels in the river water and urine of traditional
gold miners in Hulawa Village East Sumalata District North Gorontalo Regency was included into very low category.

Conclusion

Mercury levels in the river water around gold mining location in Hulawa Village East Sumalata District North Gorontalo Regency was obtained 2 samples that did not met the requirement of threshold value of mercury levels. They were sample 01 and sample 02 with the mercury levels of 0.0213 ppm and 0.0183 ppm respectively. Sample 01 had the highest mercury levels of 0.0213 ppm and sample 05 had the lowest mercury levels of 0.0001 ppm. According to the Ministry of Health Regulation No.416/Ministry of Health/Regulation/IX/1990: threshold level of mercury levels to the river water is 0.001 ppm.

Mercury levels in the urine of gold miners in Hulawa Village East Sumalata District North Gorontalo Regency was obtained 5 studied urine samples in which those samples were still in tolerance range. The highest mercury levels was in respondent A for 0.0040 ppm and the lowest mercury levels was in respondent D for 0.0010 ppm. Based on standard that been established by WHO, the average threshold value of mercury levels in human urine is 0.004 ppm.

It is expected that Government of North Gorontalo Regency able to manage the condition before the large effect comes to the people and environment around mining location. And the miners are expected to use personal protective equipment during the mining works and should not dispose mining waste directly to the river body without any waste treatment first.

Reference

Dhal B, Thatoi N, Das N and Pandey D. 2013. Chemical and microbial remediation of hexavalent chromium from contaminated soil and

Anonymous Ministry of Health Regulation No.416/Ministry of Health/Regulation/IX/1990

Email dari Publisher (Submission jurnal)

Status has been changed for your article No. 30822-RJMS

Medwell Journals medwelljournals@gmail.com ke saya

Status for the article No. 30822-RJMS has been changed to:

Manuscript has been sent for 1st Round evaluation

For further information, please logon the system at http://medwelljournals.com with your user and password.

Best Regards:
Medwell Journals Support Team
http://www.medwelljournals.com
Tel: +92-41-58070000, 58080000
E-mail: jna@eosc.org
MERCURY LEVELS IN THE RIVER WATER AND CLAY OF HUMAN USE AT HULAWA VILLAGE EAST SEMALATA DISTRICT NORTH GORONTALO REGENCY

Eurasia Husn
Faculty of Science and Health, State University of Gorontalo

Abstract
Gold mining process with mercury is conducted by separating gold from the sand through amalgamation process and combustion process mostly conducted by group of traditional gold miners. This research aimed to lower mercury levels correlation in the river water and sites of traditional gold miners. Method: This research used research design of Analytical Survey with Cross Sectional Study approach to be analyzed using Pearson correlation test. Result: The research showed that there were 2 rivers with mercury levels of 0.021 ppm and 0.028 ppm respectively which did not meet the requirement of threshold value, while the same sample that been tested in this research met the requirement of threshold value. Based on the result (Pearson correlation analysis), it was obtained 0.034, then correlation of mercury levels in the river water and sites of traditional gold miners was in very low category. Discussion: It is suggested to the gold miners in which they should not dispose mining waste to the river without waste treatment process first in order to not damage the environment around such as river ecosystems and people around. Keywords: Mercury (Hg), River Water, Use of Miners, Traditional Gold Miners, Environmental Effect

Introduction
In Indonesia, heavy metal pollution (Effendison et al., 2009) tends to increase as with the increase of industrialization process (Lee et al., 2014) since...
Email dari Publisher:

Jurnal telah selesai tahapan revisi di sistem dinyatakan di terima untuk dipublikasi
Evaluation Sheet for 30822-RJMS

Does author clearly declared their Conflict of Interest Statement?

A statement on conflicts of interest should be included in the manuscript. Either mention: ‘none declared’, or specify the authors' financial or other interests which should be known to the readers.

Research Journal of Medical Sciences (RJMS) policy requires that authors of all manuscripts should reveal any financial interests or connections that may be of direct or indirect nature. One should also clarify other situations that might arise the question of bias in the reported work, conclusions, implications, stated opinions including pertinent commercial and other sources of funding for the individual author(s), for the associated department(s), organization(s), personal relationships and direct academic competition.

Answer:

No i have completed conflict of statements that I make.

Does author provided Running Title to appear at the top of each printed page?

A brief running title of about 60 characters should be provided. Choose the running title carefully as this version of your title will be used in electronic alerting services and some mobile applications too.

Answer:

Yes i am willing Provided Running Title to Appear at the top of each printed page.

Does abstract provides basic content of the paper without extensive experimental detail and prepared according to the journal format?

Abstract should describe the main objective(s) of the study, explains how the study was done without presenting extensive experimental details, and summarize the most important results and their significance. Please minimize the use of abbreviations and do not cite references in the abstract. Abstract of the manuscript should not be exceed 350 words and must be structured into separate sections: Background, the context and purpose of the study; Materials and Methods, how the study was performed and which statistical tests were being used; Results, the main findings; Conclusions, brief summary.
and potential implications. **Main conclusions** and interpretation of findings with emphasis on new important aspects of the study and observations should be included in the abstract.

Answer:

The author has made improvements to the format of the abstract, please be checked in order to comply with the rules of writing in RJMS.

Does Author provide significant statement in the paper?

Significance Statement (120 words maximum)

The significance statement should provide a clear explanation of the importance and relevance of the research in a manner accessible to researchers without specialized knowledge in the field.

Significance Statement may also be presented in the form of 3 to 5 bullets, short summary which describe what this paper adds to and what was already known. Include at least one implication for public health policy and practices.

The Significance Statement will appear within the paper below the abstract.

Answer:

yes I have given a statement in accordance with the rules set.

Does author point out the importance of the results and place them in the context of previous studies and in relation to the application of the work?

- Focused on the interpretation of the results
- Should not repeat information already presented in the “Results” section
- The Discussion should explain the significance of the results and place them into a broader context.
- It should not be redundant with the Results section.
- This section may contain subheadings and can in some cases be combined with the Results section.

Answer:

The author has made improvements to the discussion sessions, please be checked in order to comply with the rules of writing in RJMS. Thank you.

Author clearly acknowledged the funding agency and those individuals who support the project?
Acknowledgements should be brief, and should not include thanks to anonymous referees and editors, inessential words, or effusive comments. A person can be thanked for assistance, not “excellent” assistance, or for comments, not “insightful” comments, for example. Acknowledgements can contain grant and contribution numbers.

Answer:

Author not statement with Acknowledgements can contain grant and contribution numbers

Do all references cited in the text are according to the journal format?

Authors are responsible for the accuracy of cited references and these should be checked before the manuscript is submitted. Please ensure that every reference cited in the text is also present in the reference list (and vice versa).

Authors are responsible for ensuring that the information in each reference is complete and accurate. All references must be numbered consecutively and citations of references in text should be identified using numbers in square brackets (e.g., “as discussed by Smith [9]”; “as discussed elsewhere [9, 10]”). All references should be cited within the text; otherwise, these references will be automatically removed.

Answer:

the author has added all references according to the journal format

Does author use personal pronouns throughout the article?

Authors are guided not to use first-person pronouns in their writing and preferring a more passive tone, Instead of “We speculate that...”, these professors prefer "The authors speculate that..." or "It is speculated that...". Generally action done by the author should be described as

e.g.,

"The tests were completed,"

"The central hypothesis of this work was tested in a level 5 clean room.").

The reason behind this is to emphasize and encourage objectivity of scientific work to be published in the journal.
Email dari Publisher:

Tahapan Final Declaration autor untuk persiapan publish
Email dari Publisher:

pemberitahuan bahwa jurnal telah terbit
EDITORIAL BOARD

Editor-in-Chief:
Dr. Gianfranco D. Alpini

Director Publications:
Dr. Muhammad Sohail (Pakistan)

EDITORIAL BOARD MEMBERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Name</th>
<th>Country/Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Wayne R. Leifert</td>
<td>(Australia)</td>
<td>Dr. A. Daryani</td>
<td>(Iran)</td>
</tr>
<tr>
<td>Dr. Andrey Pavlovich Anisimov</td>
<td>(Russia)</td>
<td>Dr. Antonio An Tung Chuh</td>
<td>(Hong Kong)</td>
</tr>
<tr>
<td>Dr. Antonio G Tristano</td>
<td>(USA)</td>
<td>Dr. Arndt P. Schulz</td>
<td>(Germany)</td>
</tr>
<tr>
<td>Dr. Athanasios Papatsoris</td>
<td>(United Kingdom)</td>
<td>Dr. Benjamin JW Kienast</td>
<td>(Germany)</td>
</tr>
<tr>
<td>Dr. Bor Luen Tang</td>
<td>(Singapore)</td>
<td>Dr. Brian M. Ross</td>
<td>(Canada)</td>
</tr>
<tr>
<td>Dr. Carlo Torti</td>
<td>(Italy)</td>
<td>Dr. Chunxiang Zhang</td>
<td>(USA)</td>
</tr>
<tr>
<td>Dr. Donovan McGrowder</td>
<td>(Jamaica)</td>
<td>Dr. Elias Zintzaras</td>
<td>(Greece)</td>
</tr>
<tr>
<td>Dr. Elif Derya Ubeyli</td>
<td>(Turkey)</td>
<td>Dr. Eyad Elkord</td>
<td>(United Kingdom)</td>
</tr>
<tr>
<td>Dr. George Perry</td>
<td>(USA)</td>
<td>Dr. Giovanni Tarantino</td>
<td>(Italy)</td>
</tr>
<tr>
<td>Dr. Han Dai</td>
<td>(USA)</td>
<td>Dr. Hany M. Elsheikha</td>
<td>(United Kingdom)</td>
</tr>
<tr>
<td>Dr. HE Xiangyi</td>
<td>(China)</td>
<td>Dr. John M. Luk</td>
<td>(Hong Kong)</td>
</tr>
<tr>
<td>Dr. Jonny St-Amand</td>
<td>(Canada)</td>
<td>Dr. Jorge Melendez Zajgla</td>
<td>(Mexico)</td>
</tr>
<tr>
<td>Dr. Jose E. Tanus Santos</td>
<td>(Brasil)</td>
<td>Dr. Joseph I. Shapiro</td>
<td>(USA)</td>
</tr>
<tr>
<td>Dr. Malay Chatterjee</td>
<td>(India)</td>
<td>Dr. Mark A. Smith</td>
<td>(USA)</td>
</tr>
<tr>
<td>Dr. Martin Storr</td>
<td>(Germany)</td>
<td>Dr. Mohammad Hossein Dehghan</td>
<td>(Iran)</td>
</tr>
<tr>
<td>Dr. Nima Rezaei</td>
<td>(Iran)</td>
<td>Dr. Ovidiu Burta</td>
<td>(Romania)</td>
</tr>
<tr>
<td>Dr. Peter A. Horn</td>
<td>(Germany)</td>
<td>Dr. Pierre Vereecken</td>
<td>(Belgium)</td>
</tr>
<tr>
<td>Dr. Qing Ma</td>
<td>(USA)</td>
<td>Dr. R. Manojkumar</td>
<td>(USA)</td>
</tr>
<tr>
<td>Dr. Rakesh Kumar M Parikh</td>
<td>(India)</td>
<td>Dr. Richard Y. Zhao</td>
<td>(USA)</td>
</tr>
<tr>
<td>Dr. Rob Siebers</td>
<td>(New Zealand)</td>
<td>Dr. Shannon Stroud Glaser</td>
<td>(USA)</td>
</tr>
<tr>
<td>Dr. Sharon De Morrow</td>
<td>(USA)</td>
<td>Dr. Simak Salami</td>
<td>(Iran)</td>
</tr>
<tr>
<td>Dr. Sunil Saxena</td>
<td>(USA)</td>
<td>Dr. Vatsala Misra</td>
<td>(India)</td>
</tr>
<tr>
<td>Dr. Viroj Wiwanitkit</td>
<td>(Thailand)</td>
<td>Dr. W. H. Yuen</td>
<td>(Hong Kong)</td>
</tr>
<tr>
<td>Dr. William CS Cho</td>
<td>(Hong Kong)</td>
<td>Dr. Xiong-Zhi Wu</td>
<td>(China)</td>
</tr>
<tr>
<td>Dr. Yousef Rasmi</td>
<td>(Iran)</td>
<td>Mr. Wasim S. Khan</td>
<td>(UK)</td>
</tr>
</tbody>
</table>
ABSTRACTED/INDEXED IN

:: Agro Asia
:: World Agri. Database
:: MedLit
:: IndexCopernicus
:: ASCI-ACR
:: EMBASE
TABLE OF CONTENT

Research Journal of Medical Sciences (2018 Volume 12)

Number of issues per year: 6
ISSN: 1815-9345 (Print)
ISSN: 1983-0095 (Online)

CURRENT ISSUE | ARCHIVE | EDITORS | GUIDE TO AUTHORS | SUBMIT A MANUSCRIPT

ARCHIVE >> Volume 11 Issue 2, 2017

Mercury Levels in the River Water and Urine of Traditional Gold Miners in Hutawa Village East Sumatara District North Sumatra Region
Hamsa Hilda

Behavioral and Community Within Improving Health Status of the Environment (Survey Based on the Communities Who Stay Surrounding PT. Benui Bosowa Mine, Bandung District, Matos Region)
Ilias and Andi Nusdi

Prevalence Pneumococcal Seventy Years of Systematic and Taxonomy In Perspective of the Present-Day Diagnostic Demands
C. Blundaya Temitups and I. Oloh Anthony

Colorectal Cancer and Ethnic Groups in Kazakhstan: A Retrospective Study of 705 Cases
Rasim A. Kazimov, Bekshyshen D. Seisenbayev, Greg V. Gilmov, Bedekzet K. Nurmachev, and Murat E. Zhambayev

The Effect of Self-Care Education on Quality of Life for Patients with Hip Joint Replacement
Seyed Kazemi Mousavi, Mehrv Bozorgnejad, Hamid Peyrovi and Agha Fatemeh Hoseini
Mercury Levels in the River Water and Urine of Traditional Gold Miners in Hulawa Village East Sumalata District North Gorontalo Regency

Rama Hiola
Faculty of Sports and Health, State University of Gorontalo, Gorontalo, Indonesia

Abstract: Gold mining process with mercury is conducted by separating gold from the sands through amalgamation process and combustion process mostly conducted by group of traditional gold miners. This research aims to know mercury levels correlation in the river water and urine of traditional gold miners. This research used research design of analytical survey with cross sectional study approach to be analyzed using pearson correlation test. The research result showed that there were 2 rivers with mercury levels of 0.0213-0.0183 ppm respectively in which it did not met the requirement of threshold value while the urine sample that been tested in this research met the requirement of threshold value. Based on the result if pearson correlation analysis, it was obtained $r = 0.073$, then correlation of mercury levels in the river water and urine of traditional gold miners was in very low category. It is suggested to the gold miners in which they should not dispose mining waste to the river without waste treatment process first in order to not damage the environment around such as river ecosystem and people around.

Key words: Mercury (Hg), river water, urine of miners, traditional gold miners, environmental effect

INTRODUCTION

In Indonesia, heavy metal pollution (Widianarko et al., 2000) tends to increase as with the increase of industrialization process (Li et al., 2014, 2015). Since, industrialization era, mercury (Villalba et al., 2015) becomes excavation pollutant material due to mercury can be used as maximum as possible (Bavec et al., 2015). One of cause to the environmental pollution by mercury (Riaz et al., 2016) is tailing disposal of gold processing (Veiga et al., 2014a, b, 2015) which processed in amalgamation way (Garcia et al., 2015).

The effect of mercury (Hg) to the health (Parsons and Percival, 2005) depends on its compound form (Banco et al., 2014). Inorganic Hg compound (Rose et al., 2015) and metallic Hg compound (Rumayor et al., 2013) according to International Agency for Research on Cancer (IARC) included into group 3 which hazardous materials which don’t cause cancer to human while methylmercury and its compounds included into group of 2B which is hazardous materials which can be carcinogenic to human. Mercury has neuro-toxic properties which is toxic to the central nervous system (Central Nervous System-CNS) (Insu orgas and Kusnoputro, 2011).

Gold mining in Hulawa village, East Sumalata District, North Gorontalo Regency is unorganized gold mining location (Male et al., 2013) or known as Illegal Gold Mining (PETI-Penambangan Emas Tanpa Izin) (Dutt, 2016). Processing method in this mining performed in traditional way through amalgamation process (Veiga et al., 2015) with simple tools (Drewnick et al., 2016). This mining activity uses mercury as main material in separating gold (Appel and Na-Oy, 2014). All activities that conducted by miners do not use any Personal Protective Equipment (PPE) (Arezes and Miguel, 2013) which can protect themselves from chemical compound exposure (Dhal et al., 2013). From all gold mining locations, the oldest location is in Hulawa village. It is due to this mining location was established since Dutch East Indies era (GGP, 2008).

Hulawa river is water source for people (Ngoye and Machiu, 2004) in Hulawa village. Hulawa river functioned as conservation area (Khamis et al., 2014) which managed to maintain condition around river flow area in order to not be degraded (Abell et al., 2007). For people in East Sumalata District, Hulawa river used for social and economic interests, agriculture needs, clean water and fishery. This river (Everard and McInnes, 2013) includes into subsequent-permanent type with (V) shape. Hulawa river flows from West to East and ended in Sumalata Gulf. Around the boundary of Hulawa river, there are people settlements and Illegal Gold Mining activities in which the waste goes into the Hulawa river and ended in Sulawesi Sea (ERITAGP, 2013).

According to the research result that been conducted by Regional Environmental Agency (BLH) of North
Gorontalo Regency, it was found that from 30 miner samples that been taken, 100% suffered by mercury toxic (Li et al., 2015) with nail bio-marker shows levels above threshold value which is 1-2 mg kg$^{-1}$.

Based on another research result that conducted by (Wardiyatun and Hartini, 2009) which was about miners in Rengas Tujuh Village Tumbang Titi District Ketapang Regency West Kalimantan Province, showed that 44.4% (8 people) miners in Rengas Tujuh Village contaminated by mercury in their urine sample with mercury levels of 2.32-45.29 g L$^{-1}$ and the average mercury level was 7.6 g L$^{-1}$. There were 3 gold miners who had mercury levels above the threshold value (NAB) in their urine sample. The research that conducted by Gafur and Jajia showed that mercury levels in Hulawa river was 0.0284 ppm and according to the Ministry of Health Regulation in 2001, heavy metal levels that allowed in the water body is 0.001 ppm.

MATERIALS AND METHODS

Research location and design: This research was conducted in Bukit Pasolo Gold Mining, Hulawa village, East Sumalata District, North Gorontalo Regency. Sample test was conducted in Physics Laboratory in the State University of Gorontalo and this research design used analytical survey (Frank, 1996) with cross sectional study (Barnett et al., 2012) approach to study about correlation dynamics between risk and effect factors by observation approach or data collection all at once in a time (Notoatmodjo, 2010).

Research population and sample: Population in this research was all gold miners in traditional gold mining location of Hulawa village for 30 people and sample in this research was river water and miner's urine. Sample taking technique in this research was conducted by using purposive sampling technique (Topp et al., 2004).

Data analysis: Analysis of correlation coefficient used to know the level of correlation for mercury levels in the river water as X variable and urine of gold miners as Y variable by using pearson product moment (Sugiyono, 2008). The equation of pearson correlation can be seen in the equation:

$$ r_{xy} = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}} $$

Where:
- \(r \) = Pearson correlation coefficient
- \(x \) = Independent variable
- \(y \) = Dependent variable
- \(n \) = Number of sample

RESULTS

Mercury (Hg) levels in the river water: Sample taking of river water was performed in the established location which was in river location as direct disposal location of gold processing waste using mercury. Sample was taken in 5 areas and then conducted by test in Physics Laboratory State University of Gorontalo (Table 1).

From the test result of mercury levels in Physics Laboratory State University of Gorontalo to the river water around gold mining location, it was obtained the result of sample code 01 was 0.0213 ppm in which it was the highest mercury levels and sample code 05 obtained 0.0001 ppm where it was the lowest mercury levels. According to the Ministry of Health Regulation No. 416/Ministry of Health/Regulation/IX/1990: threshold level of mercury levels to the river water is 0.001 ppm.

Mercury (Hg) levels in the miner’s urine: Urine sample taken from traditional gold miners in Hulawa village, East Sumalata District, North Gorontalo Regency (Table 2). From the result of mercury levels test to the urine sample of gold miners, it was obtained that 5 tested urine sample had mercury levels which still in the tolerance of threshold value where the highest mercury levels was respondent A with 0.0040 ppm and the lowest mercury levels was respondent D with 0.0010 ppm. Based on standard that established by WHO threshold value of mercury levels in the human urine is 0.004 ppm.

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Mercury levels in the river water (ppm)</th>
<th>Explanation</th>
<th>Standard of ministry of health regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.0213</td>
<td>TMS</td>
<td>Threshold value of mercury levels in the river water is 0.001 ppm</td>
</tr>
<tr>
<td>02</td>
<td>0.0183</td>
<td>TMS</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>0.0013</td>
<td>MS</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>0.0003</td>
<td>MS</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>0.00001</td>
<td>MS</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: The result of mercury levels test to the gold miner’s urine

<table>
<thead>
<tr>
<th>Respondent</th>
<th>Mercury levels in the urine (ppm)</th>
<th>Explanation</th>
<th>Standard of WHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0040</td>
<td>MS</td>
<td>The average threshold value of mercury levels</td>
</tr>
<tr>
<td>B</td>
<td>0.0021</td>
<td>MS</td>
<td>In the human's urine</td>
</tr>
<tr>
<td>C</td>
<td>0.0033</td>
<td>MS</td>
<td>Is 0.004 ppm</td>
</tr>
<tr>
<td>D</td>
<td>0.0010</td>
<td>MS</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.0011</td>
<td>MS</td>
<td></td>
</tr>
</tbody>
</table>
Level of correlation for mercury levels in the river water and urine of gold miners: Based on the result of pearson correlation analysis by using the assistance of SPSS which aims to know level of correlation for mercury levels in the river water and urine of traditional gold miners, it was obtained that correlation coefficient value $r = 0.073$. If it is related with Table 1 to make correlation coefficient interpretation then level of correlation for mercury levels in the river water and urine of gold miners in Hulawa Village East Sumalata District North Gorontalo Regency was in very low category.

DISCUSSION

Mercury levels in the river water: Mercury is heavy metal that mostly used by human in many activities (Cao et al., 2015) such as traditional gold mining activity (Appel and Na-Oy, 2014). Mercury used to separate gold from other materials.

Gold mining in Hulawa village still uses traditional processing method which is through amalgamation process with very simple tools (Veiga et al., 2014). Amalgamation process is gold processing by mixing gold ore with liquid mercury. Amalgamation process that conducted by gold miners in Hulawa village for years have caused river pollution by mercury around the mining location in which excavation process that conducted along with amalgamation process have caused mercury washing process in the residue goes into the river. It is in line with the statement of Kiefer et al. (2014) that “gold mining with amalgamation technique is predicted to be mercury contamination around its area”.

In this research, the researcher used Hulawa river water as research sample. Sample was taken in 5 sample areas in the direct disposal location of mining waste. It was taken from the furthest area to the nearest area such in Fig. 1.

From the test result that conducted in Physics Laboratory State University of Gorontalo, mercury levels in the river water around gold mining location was obtained result of 0.0213 for sample 01 in which it was the highest mercury levels and 0.0001 ppm for sample 05 in which it was the lowest mercury levels. According to the Ministry of Health Regulation No. 416/Ministry of Health/Regulation/IX/1990: threshold level of mercury levels to the river water is 0.001 ppm.

It was affected by the distance of sample taking area. This research result was in line with Foucher et al. (2013) which showed that distance of mining location determines level of mercury concentration which accumulated in sediment where the nearer distance of mining location, the higher mercury concentration compared with location which far from mining location. The nearest sample to mining location in this research was sample 01 with mercury levels above threshold value which was 0.0213 ppm and sample 05 had mercury levels decrease with mercury levels of 0.0001 in which it was the furthest sample to mining location.

Mercury levels in the urine of gold miners: Contact between mercury and individual can be occurred through skin inhalation (Sun et al., 2013) or digestion (swallowed) (Martinez et al., 2015) which then absorbed and distributed by blood to all body parts and finally it will have excretion process through the route of urine, sweat, saliva, breast milk, feces, nail and hair.

From the test result that conducted in Physics Laboratory State University of Gorontalo, mercury levels in the urine of gold miners showed that 5 studied urine samples had mercury levels in tolerance levels where the highest mercury levels was respondent A for 0.0040 ppm and the lowest was respondent D for 0.0010 ppm. Based on standard that been established by WHO the average threshold value of mercury levels in human urine is 0.004 ppm.

The difference mercury level in the urine of gold miners was affected by many factors such as age and working period. Respondent A had mercury levels in the urine for 0.0040 ppm which was higher than other respondents due to respondent A was older (43 years old) with longer working period (4 years) compared to respondent D who had mercury levels in the urine for 0.0010 ppm. Respondent D had the lowest mercury levels in the urine due to respondent D was still young (26 years old) with shorter working period (3 years).

It was in line with the research of (Solenkova et al., 2014), Hg concentration also affected by other factors such as exposure duration (working period), Hg compound form in the body, Hg dosage which adsorbed
in the body, metabolism ability (organ performance and function) and age in which age supports in excreting toxic in the body.

Level of correlation for mercury levels in the river water and urine of gold miners: Mercury is one of heavy metal which can be organic (Khan et al., 2013) and inorganic (MacDonald et al., 2015) compound and it is mostly found in the nature and distributed in the rocks, mine ore, soil, water and air. Mercury is kind of metal which in normal condition it is liquid with grey color and odorless. Mercury has properties of easy to evaporate in room temperature and can be solid in the pressure of 7640 atm (Jurita, 2013).

After conducted by test of mercury levels in the river water and urine of gold miners in Physics Laboratory State University of Gorontalo, then the test result was analyzed based on pearson correlation using SPSS application which aims to know level of correlation for mercury levels in the river water and urine of traditional gold miners. It was obtained correlation coefficient value \(r = 0.073 \) in which \(r > 0 \) means there was linear and positive relationship which was the larger \(X \) variable the larger \(Y \) variable. If it is seen from \(r \) value and correlated with Table 1 for correlation coefficient interpretation, then it would be obtained that level of correlation for mercury levels in the river water and urine of traditional gold miners in Hulawa Village East Sumalata District North Gorontalo Regency was included into very low category.

CONCLUSION

Mercury levels in the river water around gold mining location in Hulawa Village East Sumalata District North Gorontalo Regency was obtained 2 samples that did not met the requirement of threshold value of mercury levels. They were sample 01 and sample 02 with the mercury levels of 0.0213-0.0183 ppm, respectively. Sample 01 had the highest mercury levels of 0.0213 ppm and sample 05 had the lowest mercury levels of 0.0001 ppm. According to the Ministry of Health Regulation No. 416/Ministry of Health/Regulation/IX/1990: threshold level of mercury levels to the river water is 0.001 ppm.

Mercury levels in the urine of gold miners in Hulawa Village East Sumalata District North Gorontalo Regency was obtained 5 studied urine samples in which those samples were still in tolerance range. The highest mercury levels was in respondent A for 0.0040 ppm and the lowest mercury levels was in respondent D for 0.0010 ppm. Based on standard that been established by WHO the average threshold value of mercury levels in human urine is 0.004 ppm.

It is expected that Government of North Gorontalo Regency able to manage the condition before the large effect comes to the people and environment around mining location. And the miners are expected to use personal protective equipment during the mining works and should not dispose mining waste directly to the river body without any waste treatment first.

REFERENCES

ERITAOP., 2013. [Environmental status area (SLHD)]. Gorontalo Provincial Environment, Research and Information Technology Agency, Gorontalo, Indonesia. (In Indonesian)

GIP., 2008. [Supervision of the implementation of the gold mining activities without permission (illegal) in Gorontalo]. Pemerintah Provinsi Gorontalo, Gorontalo, Indonesia. (In Indonesian)

Wardiyatun, S. and E. Hartini, 2009. [Factors associated with the mercury levels in urine at the gold mine workers in Rengas Village seven Tumbles Titi District of Ketapang in West Kalimantan (In Indonesian)]. J. Viseques, 8: 1-11.