PERSAMAAN DIFERENSIAL BIASA

PDB Orde Pertama

Resmawan

UNIVERSITAS NEGERI GORONTALO

September 2018

2.7 Persamaan Diferensial Eksak

Persamaan diferensial orde satu dengan bentuk umum

$$M(x,y) dx + N(x,y) dy = 0$$
 (1)

dapat diselesaikan dengan ide dasar turunan.

• Ingat (kalkulus) bahwa turunan total dari suatu fungsi F = F(x, y), dinotasikan dF dan didefinisikan

$$dF = F_x(x, y) dx + F_y(x, y) dy$$
 (2)

 Jika ruas kanan pada persamaan (2) mengespresikan hal sama dengan persamaan(1), maka fakta dapat digunakan untuk menyelesaikan model persamaan diferensial yang diberikan.

Definition (PD Eksak)

Persamaan diferensial orde satu dengan bentuk (1)

$$M(x,y) dx + N(x,y) dy = 0$$

dikatakan sebagai persamaan diferensial **eksak** pada suatu daerah R dari bidang-xy jika terdapat suatu fungsi $F\left(x,y\right)$, sedemikian sehingga berlaku

untuk semua (x, y) di R.

• Fungsi F(x,y) yang memenuhi (3) dinamakan **fungsi potensial** dari persamaan diferensial (1), sehingga dapat ditulis

$$dF\left(x,y\right) =0$$

• Jika F(x, y) = c mempunyai turunan parsial orde kedua yang kontinu, maka berlaku

$$F_{xy}(x,y) = F_{yx}(x,y)$$

• Akibatnya, jika M(x, y) dan N(x, y) terdefinisi dan mempunyai turunan parsial kontinu, maka berlaku

$$F_{xy}\left(x,y\right)=M_{y}\left(x,y\right)$$
 dan $F_{yx}\left(x,y\right)=N_{x}\left(x,y\right)$

• Dengan demikian, jika persamaan (1) merupakan diferensial total dari F(x, y), maka berlaku

$$M_{y}(x,y) = N_{x}(x,y)$$

resmawan@ung.ac.id (MathUNG)

Theorem (Solusi Umum PD Eksak)

Misal diberikan persamaan diferensial eksak (1)

$$M(x,y) dx + N(x,y) dy = 0$$

maka **Solusi Umum** persamaan diferensial ini adalah fungsi F(x, y) = c, dimana F(x, y) memenuhi

$$F_{x}\left(x,y
ight)=M\left(x,y
ight)$$
 dan $F_{y}\left(x,y
ight)=N\left(x,y
ight)$

dan c merupakan konstanta sebarang.

Proof.

Tulis kembali persamaan diferensial tersebut dalam bentuk

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$

sehingga dengan asumsi eksak, diperoleh

$$F_{x}(x,y) + F_{y}(x,y) \frac{dy}{dx} = 0$$

Karena

$$\frac{dF}{dx} = 0$$

Maka

$$F(x,y) = c$$
, untuk sebarang c konstanta

Masalah selanjutnya adalah:

- Bagaimana suatu persamaan diferensial dikatakan eksak?
- Bagaimana menentukan fungsi potensialnya?

Perhatikan Teorema berikut

Theorem

Misalkan M, N, dan turunan parsial pertama M_y , N_y kontinu dalam suatu daerah R pada bidang-xy, maka persamaan diferensial biasa (1)

$$M(x,y) dx + N(x,y) dy = 0$$

dikatakan eksak untuk semua x, y di R jika dan hanya jika

$$M_{y}\left(x,y\right) = N_{y}\left(x,y\right) \tag{4}$$

Proof.

Andaikan persamaan diferensial tersebut eksak, maka berdasarkan definisi keeksakan, terdapat fungsi F(x, y) sedemikian sehingga

$$F_x = M$$
 dan $F_y = N$

Dengan turunan parsial, diperoleh

$$F_{xy} = M_y$$
 dan $F_{yx} = N_x$

Karena M_y dan N_x kontinu di R maka F_{xy} dan F_{yx} juga kontinu di R, sehingga

$$F_{xy} = F_{yx}$$
 atau $M_y = N_x$

Sebaliknya jika persamaan (4) dipenuhi, akan ditunjukkan bahwa terdapat fungsi potensial F(x, y) sedemikian sehingga

$$F_{x}(x,y) = M(x,y) \tag{5}$$

dan

$$F_{y}(x,y) = N(x,y) \tag{6}$$

Berikut diberikan langkah-langkah secara umum untuk menentukan solusi umum dari persamaan diferensial eksak, yang dalam hal ini sama dengan mencari fungsi potensial $F\left(x,y\right)$.

• Solusi umum dari persamaan diferensial (1) adalah fungsi F(x,y)=c, dimana fungsi F(x,y) diberikan oleh

$$F(x,y) = \int M(x,y) dx + g(y)$$
 (7)

dengan g(y) dihasilkan dari

$$F_{y}\left(x,y\right)=N\left(x,y\right)$$

② Diferensialkan persamaan (7) terhadap y, diperoleh

$$\frac{\partial}{\partial y}\int M(x,y)\,dx+g'(y)=N(x,y)$$

3 Dengan demikian, fungsi g(y) pada solusi umum persamaan diferensial eksak diberikan oleh

$$g(y) = \int \left(N(x, y) - \frac{\partial}{\partial y} \int M(x, y) dx\right) dy + c$$

→ 4回 → 4 回 → 4 回 → 9 へ ○

9 Dengan cara yang sama, penentuan F(x, y) = c, dapat dilakukan melalui pendekatan lain, yakni

$$F(x,y) = \int N(x,y) dx + g(x)$$
 (8)

dengan g(x) dihasilkan dari

$$F_{x}(x,y)=M(x,y)$$

Diferensialkan persamaan (8) terhadap x, diperoleh

$$\frac{\partial}{\partial x} \int N(x, y) \, dy + g'(x) = M(x, y)$$

1 Dengan demikian, fungsi g(x) pada solusi umum persamaan diferensial eksak diberikan oleh

$$g(x) = \int \left(M(x, y) - \frac{\partial}{\partial x} \int N(x, y) \, dy \right) dx + c$$

Example

Tentukan apakah persamaan diferensial berikut eksak atau bukan?

1
$$[1 + \ln(xy)] dx + \frac{x}{y} dy = 0$$

$$x^2y dx - (xy^2 + y^3) dy = 0$$

Solution

Misalkan

$$M\left(x,y\right)=\left[1+\ln\left(xy\right)
ight]\ dan\ N\left(x,y\right)=rac{x}{y}$$

@ Maka

$$M_y\left(x,y
ight) = rac{1}{y} \quad dan \quad N_x = rac{1}{y} \Rightarrow M_y = N_x \Rightarrow PD \; Eksak$$

Misalkan

$$M(x, y) = x^2y \ dan \ N(x, y) = xy^2 + y^3$$

Maka

$$M_y\left(x,y
ight)=x^2$$
 dan $N_x=2xy\Rightarrow M_y
eq N_x\Rightarrow PD$ Non Eksak

Example

Tentukan solusi umum dari persamaan diferensial berikut:

②
$$\frac{xy-1}{x}dx + \frac{xy+1}{y}dy = 0; \quad x > 0, y > 0$$

3
$$2x^2 \frac{dy}{dx} + 4xy = 3\sin x$$
; $y(2\pi) = 0$

Solution

• Misal $M(x,y) = (5x^2 + 2xy^3)$ dan $N(x,y) = (3x^2y^2 - 2y^3)$ Maka $M_y = 6xy^2 = N_x \Rightarrow PD$ Eksak Selanjutnya diberikan fungsi potensial

$$F(x,y) = \int M(x,y) dx + g(y)$$

$$= \int (5x^2 + 2xy^3) dx + g(y)$$

$$= \frac{5}{3}x^3 + x^2y^3 + g(y)$$

Langkah selanjutnya, fungsi g(y) diperoleh dari

$$F_{y}(x,y) = N(x,y)$$

40.40.45.45. 5 00.

Solution

Fungsi g (y) diperoleh dari

$$F_{y}(x,y) = N(x,y)$$

$$\frac{\partial}{\partial y}(\frac{5}{3}x^{3} + x^{2}y^{3} + g(y)) = 3x^{2}y^{2} - 2y^{3}$$

$$g'(y) = -2y^{3}$$

 $g\left(y\right)$ diperoleh dengan mengintegralkan $g'\left(y\right)$

$$g(y) = \int -2y^3 dy = -\frac{1}{2}y^4 + c$$

Dengan demikian, solusi umum PD adalah

$$\frac{5}{3}x^3 + x^2y^3 - \frac{1}{2}y^4 = c$$

Solution

2. Misal $M(x,y) = \frac{xy-1}{x}$ dan $N(x,y) = \frac{xy+1}{y}$ Maka $M_y = 1 = N_x \Rightarrow PD$ Eksak Selanjutnya diberikan fungsi potensial

$$F(x,y) = \int M(x,y) dx + g(y)$$
$$= \int \left(\frac{xy - 1}{x}\right) dx + g(y)$$
$$= xy - \ln x + g(y)$$

Langkah selanjutnya, fungsi g(y) diperoleh dari

$$F_{y}(x,y) = N(x,y)$$

4 D L 4 D L 4 T L 4 T L D 0 0 0

Solution

2. Fungsi g (y) diperoleh dari

$$F_{y}(x,y) = N(x,y)$$

$$\frac{\partial}{\partial y}(xy - \ln x + g(y)) = \frac{xy + 1}{y}$$

$$x + g'(y) = \frac{xy + 1}{y}$$

$$g'(y) = \frac{xy + 1}{y} - x$$

$$g'(y) = -\frac{1}{y}$$

Solution

2. g(y) diperoleh dengan mengintegralkan g'(y)

$$g(y) = \int -\frac{1}{y} dy$$
$$= -\ln y + c$$

Dengan demikian, solusi umum PD adalah

$$xy - \ln x - \ln y = c$$
$$xy - \ln xy = c$$

Solution

3. Persamaan Diferensial yang diberikan dapat ditulis kembali dalam bentuk

$$(4xy - 3\sin x) dx + 2x^2 dy = 0; \quad y(2\pi) = 0$$

Misal $M(x, y) = 4xy - 3\sin x \ dan \ N(x, y) = 2x^2$ Maka $M_v = 4x = N_x \Rightarrow PD$ Eksak

Selanjutnya diberikan fungsi potensial

$$F(x,y) = \int N(x,y) dy + g(x)$$
$$= \int (2x^2) dy + g(x)$$
$$= 2x^2y + g(x)$$

Solution

3. Langkah selanjutnya, fungsi g(x) diperoleh dari

$$F_{x}(x,y) = M(x,y)$$

$$\frac{\partial}{\partial x}(2x^{2}y + g(x)) = 4xy - 3\sin x$$

$$4xy + g'(x) = 4xy - 3\sin x$$

$$g'(x) = 4xy - 3\sin x - 4xy$$

$$g'(x) = -3\sin x$$

dengan mengintegralkan g'(x) terhadap x, diperoleh

$$g(x) = \int -3\sin x \, dx$$
$$= 3\cos x + c$$

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▼) Ч

Solution

3. Dengan demikian, solusi umum PD adalah

$$2x^2y + 3\cos x = c$$

Untuk menemukan solusi khusus, digunakan nilai awal y $(2\pi) = 0$, sehingga

$$2(2\pi)^{2}(0) + 3\cos(2\pi) + c = 0$$

 $c = -3\cos(2\pi)$
 $= -3$

Dengan demikian, diperoleh solusi khusus PD adalah

$$2x^2y + 3\cos x = -3$$

◆ロト ◆問 ト ◆ き ト ◆ き ・ り へ ()

Problem

- Selesaikan ketiga soal sebelumnya dengan pendekatan yang berbeda.
- Selesaikan PD dengan nilai awal berikut jika memenuhi kriteria eksak

$$(1 + ye^{xy})dx + (xe^{xy} + 2y)dy = 0;$$
 $y = 2$ jika $x = 0$

* Soal-Soal Latihan 5

Problem

Untuk soal no 1-3, tentukan apakah PD yang diberikan memenuhi kriteria eksak atau tidak:

- $[\cos(xy) xy\sin(xy)] dx x^2\sin(xy) dy = 0$
- $ye^{xy}dx + (2y xe^{xy}) dy = 0$ Untuk soal no 4 – 7, selesaikan persamaan diferensial yang diberikan:
- $(4e^{2x} + 2xy y^2) dx + (x y)^2 dy = 0$
- $(2xy + \cos y) dx + (x^2 x \sin y 2y) dy = 0$

2.8 Persamaan Diferensial Eksak dengan Faktor Integrasi

- Pada subbab ini kita akan membahas ssuatu persamaan diferensial tak eksak namun dapat direduksi menjadi persamaan diferensial eksak.
- Kemungkinan untuk mereduksi PD non eksak menjadi PD eksak adalah dengan mengalikan PD tersebut dengan suatu fungsi taknol.
- Fungsi taknol tersebut selanjutnya akan disebut dengan Faktor Integrasi.

Definition

Suatu fungsi taknol I(x, y) dikatakan **Faktor Integrasi** dari

$$M(x,y) dx + N(x,y) dy = 0$$

jika persamaan diferensial

$$I(x,y) M(x,y) dx + I(x,y) N(x,y) dy = 0$$

memenuhi kriteria eksak.

Example

Tunjukkan bahwa $I = \cos(xy)$ merupakan faktor integrasi dari persamaan diferensial

$$[\tan(xy) + xy] dx + x^2 dy = 0$$

◆□▶ ◆圖▶ ◆불▶ ◆불▶ 를 ∽의

Solution

Kalikan I dengan PD yang diberikan, diperoleh

$$\cos(xy) \left[\tan(xy) + xy \right] dx + x^2 \cos(xy) dy = 0$$
$$\left[\sin(xy) + xy \cos(xy) \right] dx + x^2 \cos(xy) dy = 0$$

sehingga

$$M_y = x \cos(xy) + (x \cos(xy) - x^2 y \sin(xy))$$

= $2x \cos(xy) - x^2 y \sin(xy)$
= N_x

PD Eksak $\Rightarrow I = \cos(xy)$ merupakan Faktor Integrasi dari PD yang diberikan.

40 40 40 40 40 10 00

Untuk menemukan Faktor Integrasi dari suatu PD non eksak, perhatikan bentuk umum PD

$$M(x,y) dx + N(x,y) dy = 0$$

Andaikan I(x, y) adalah faktor integrasi sehingga diperoleh PD Eksak

$$IM dx + IN dy = 0 (9)$$

Karena persamaan (9) merupakan PD Eksak, maka berlaku

$$D_{y}(IM) = D_{x}(IN)$$

$$IM_{y} + I_{y}M = IN_{x} + I_{x}N$$

$$IM_{y} - IN_{x} = I_{x}N - I_{y}M$$

$$I(M_{y} - N_{x}) = I_{x}N - I_{y}M$$

Perhatikan persamaan terakhir

$$I\left(M_{y}-N_{x}\right)=I_{x}N-I_{y}M\tag{10}$$

resmawan@ung.ac.id (MathUNG) Persama

Faktor integrasi untuk mereduksi persamaan diferensial non eksak ke persamaan diferensial eksak dapat dicari dengan mengacu pada persamaan (10).Dari persamaan ini, dapat diperoleh beberapa jenis faktor integrasi antara lain :

- Faktor integrasi yang hanya bergantung pada x, I = I(x)
- $oldsymbol{9}$ Faktor integrasi yang hanya bergantung pada $y,\ I=I(y)$
- **3** Faktor integrasi yang bergantung pada x dan y, I = I(xy)

2.8.1 Faktor Integrasi Fungsi x

Jika faktor integrasi I hanya merupakan fungsi dari x, yaitu I(x) maka diperoleh

$$I_x = \frac{dI}{dx} dan I_y = 0$$

Akibatnya, persamaan (10) dapat ditulis kembali menjadi

$$I(M_{y} - N_{x}) = \frac{dI}{dx}N - (0) M$$

$$\frac{dI}{dx} = \frac{I(M_{y} - N_{x})}{N}$$

$$\frac{1}{I}dI = \frac{(M_{y} - N_{x})}{N}dx$$

dimana

$$\frac{(\mathit{M}_y - \mathit{N}_x)}{\mathit{N}}$$

2.8.1 Faktor Integrasi Fungsi x

Selanjutnya didefinisikan

$$p(x) = \frac{(M_y - N_x)}{N}$$

sehingga diperoleh

$$\frac{1}{I}dI = p(x) dx \tag{11}$$

Dengan mengintegralkan kedua ruas pada persamaan (11) diperoleh

$$\int \frac{1}{I} dI = \int p(x) dx$$

$$\ln I = \int p(x) dx$$

Artinya, faktor integrasi I yang merupakan fungsi x adalah

$$I(x) = e^{\int p(x) dx}; \quad p(x) = \frac{(M_y - N_x)}{N}$$
 (12)

2.8.2 Faktor Integrasi Fungsi y

Jika faktor integrasi I hanya merupakan fungsi dari y, yaitu I(y) maka diperoleh

$$I_x = 0$$
 dan $I_y = \frac{dI}{dy}$

Akibatnya, persamaan (10) dapat ditulis kembali menjadi

$$I(M_{y} - N_{x}) = (0) N - \frac{dI}{dy}M$$

$$\frac{dI}{dy} = -\frac{I(M_{y} - N_{x})}{M}$$

$$\frac{1}{I}dI = -\frac{(M_{y} - N_{x})}{M}dy$$

dimana

$$-\frac{(M_y-N_x)}{M}$$

2.8.2 Faktor Integrasi Fungsi y

Selanjutnya didefinisikan

$$q(y) = -\frac{(M_y - N_x)}{M}$$

sehingga diperoleh

$$\frac{1}{I}dI = q(y) dy (13)$$

Dengan mengintegralkan kedua ruas pada persamaan (13) diperoleh

$$\int \frac{1}{I} dI = \int q(y) dy$$

$$\ln I = \int q(y) dy$$

Artinya, faktor integrasi I yang merupakan fungsi y adalah

$$I(x) = e^{\int q(y) dy}; \quad q(y) = -\frac{(M_y - N_x)}{M}$$
 (14)

resmawan@ung.ac.id (MathUNG)

2.8.3 Faktor Integrasi Fungsi x dan y

Jika faktor integrasi I merupakan fungsi dari x dan y, I(x, y), misalkan z = xy, sehingga I = I(z). Dengan aturan rantai, diperoleh

$$\frac{\partial I}{\partial x} = \frac{dI}{dz} \cdot \frac{\partial z}{\partial x} = y \frac{dI}{dz}$$

$$\frac{\partial I}{\partial y} = \frac{dI}{dz} \cdot \frac{\partial z}{\partial y} = x \frac{dI}{dz}$$

Akibatnya, persamaan (10) dapat ditulis kembali menjadi

$$I(M_{y} - N_{x}) = yN \frac{dI}{dz} - xM \frac{dI}{dz}$$

$$(yN - xM) \frac{dI}{dz} = I(M_{y} - N_{x})$$

$$\frac{1}{I}dI = \left(\frac{M_{y} - N_{x}}{yN - xM}\right) dz; \frac{M_{y} - N_{x}}{yN - xM} \text{ merupakan fungsi } z.$$

2.8.3 Faktor Integrasi Fungsi x dan y

Selanjutnya didefinisikan

$$r\left(z\right) = \frac{M_{y} - N_{x}}{yN - xM}$$

sehingga diperoleh

$$\frac{1}{I}dI = \frac{M_y - N_x}{yN - xM}dz \tag{15}$$

Dengan mengintegralkan kedua ruas pada persamaan (15) diperoleh

$$\int \frac{1}{I} dI = \int r(z) dz$$

$$\ln I = \int r(z) dz$$

Artinya, faktor integrasi I yang merupakan fungsi z adalah

$$I(z) = e^{\int r(z) dz}; \quad r(z) = \frac{M_y - N_x}{yN - xM}$$
 (16)

Examples

Tentukan faktor integrasi dan solusi umum persamaan diferensial berikut:

$$(3y^3 - 5x^2y) dx + (5xy^2 - 3x^3) dy = 0$$

Solution

1 Dari persamaan diferensial yang diberikan, diperoleh

$$M(x, y) = 4x^3 + x^2 - y^2 \text{ dan } N(x, y) = 2xy$$

 $M_y(x, y) = -2y \text{ dan } N_x(x, y) = 2y$

Perhatikan bahwa

$$M_y - N_x = -2y - 2y = -4y \neq 0$$

sehingga persamaan yang diberikan bukan persamaan diferensial eksak. Oleh karena itu perlu ditentukan faktor integrasi.

→ロト → □ ト → 三 ト → 三 ・ りへで

Solution

Selanjutnya perhatikan bahwa

$$\frac{M_y - N_x}{N} = \frac{-4y}{2xy} = -\frac{2}{x}$$

memuat variabel x, sehingga faktor integrasi I merupakan fungsi dari x. Definisikan

$$p(x) = \frac{M_y - N_x}{N} = -\frac{2}{x}$$

Dengan demikian diperoleh faktor integrasi

$$I(x) = e^{\int p(x) dx} = e^{\int -\frac{2}{x} dx}$$

= $e^{-2 \ln x} = \frac{1}{x^2}$

4 D > 4 A > 4 B > 4 B > B 9 9 9

Solution

Kalikan faktor integrasi dengan PD awal diperoleh

$$\frac{1}{x^2}[(4x^3 + x^2 - y^2) dx + 2xy dy] = 0$$
$$\left(4x + 1 - \frac{y^2}{x^2}\right) dx + \frac{2y}{x} dy = 0$$

Dari PD baru ini dapat diidentifikasi bahwa

$$M_{y}(x,y) = N_{x}(x,y) = -\frac{2y}{x^{2}}$$

yang menunjukkan bahwa persamaan telah tereduksi menjadi persamaan diferensial eksak.

4 D L 4 D L 4 E L 4 E L 5 O O O

Solution

• Selanjutnya solusi umum diperoleh berupa F(x,y)=c, mengikuti

$$F(x,y) = \int M(x,y) dx + g(y) = \int \left(4x + 1 - \frac{y^2}{x^2}\right) dx + g(y)$$
$$= 2x^2 + x + \frac{y^2}{x} + g(y)$$

Selanjutnya fungsi g'(y) dapat diperoleh dengan

$$F_{y}(x,y) = N(x,y)$$

$$\frac{2y}{x} + g'(y) = \frac{2y}{x}$$

$$g'(x) = 0$$

400400

Solution

 $\textbf{ 0} \ \, \textit{Dengan pengintegralan, diperoleh g} \left(x \right) \\$

$$g(x) = k$$

Dengan demikian, solusi umum PD adalah

$$2x^2 + x + \frac{y^2}{x} = k$$
 atau $2x^3 + x^2 + y^2 = kx$

→ロト → □ ト → 重 ト → 重 → りへで

Solution

2. Dari persamaan diferensial yang diberikan, diperoleh

$$M(x,y) = y^2 e^x + xy \ dan \ N(x,y) = 4ye^x + \frac{3}{2}x^2 + 4y$$

 $M_y(x,y) = 2ye^x + x \ dan \ N_x(x,y) = 4ye^x + 3x$

Perhatikan bahwa

$$M_y - N_x = 2ye^x + x - 4ye^x - 3x = -2ye^x - 2x \neq 0$$

sehingga persamaan yang diberikan bukan persamaan diferensial eksak. Oleh karena itu perlu ditentukan faktor integrasi.

Solution

2. Selanjutnya perhatikan bahwa

$$\frac{M_{y} - N_{x}}{M} = \frac{-2(ye^{x} + x)}{y(ye^{x} + x)} = -\frac{2}{y}$$

memuat variabel y, sehingga faktor integrasi I merupakan fungsi dari y. Definisikan

$$q(y) = -\frac{M_y - N_x}{M} = \frac{2}{y}$$

Dengan demikian diperoleh faktor integrasi

$$I(y) = e^{\int q(y) dy} = e^{\int \frac{2}{y} dy}$$

= $e^{2 \ln y} = y^2$

Solution

2. Kalikan faktor integrasi dengan PD awal diperoleh

$$y^{2}[(y^{2}e^{x} + xy) dx + (4ye^{x} + \frac{3}{2}x^{2} + 4y) dy] = 0$$
$$(y^{4}e^{x} + xy^{3}) dx + (4y^{3}e^{x} + \frac{3}{2}x^{2}y^{2} + 4y^{3}) dy = 0$$

Dari PD baru ini dapat diidentifikasi bahwa

$$M_y(x, y) = N_x(x, y) = 4y^3e^x + 3xy^2$$

yang menunjukkan bahwa persamaan telah tereduksi menjadi persamaan diferensial eksak.

4 D F 4 D F 4 D F 5000

Solution

2. Selanjutnya solusi umum diperoleh berupa F(x, y) = c, mengikuti

$$F(x,y) = \int M(x,y) dx + g(y) = \int (y^4 e^x + xy^3) dx + g(y)$$

= $y^4 e^x + \frac{1}{2} x^2 y^3 + g(y)$

Selanjutnya fungsi g'(y) dapat diperoleh dengan

$$F_{y}(x,y) = N(x,y)$$

$$4y^{3}e^{x} + \frac{3}{2}x^{2}y^{2} + g'(y) = 4y^{3}e^{x} + \frac{3}{2}x^{2}y^{2} + 4y^{3}$$

$$g'(x) = 4y^{3}e^{x} + \frac{3}{2}x^{2}y^{2} + 4y^{3} - 4y^{3}e^{x} - \frac{3}{2}x^{2}y^{2}$$

$$= 4y^{3}$$

Solution

2. Dengan pengintegralan, diperoleh g(y)

$$g(y) = \int 4y^3 dy$$
$$= y^4 + k$$

Dengan demikian, solusi umum PD adalah

$$y^4 e^x + \frac{1}{2} x^2 y^3 + y^4 = k$$

Solution

3. Dari persamaan diferensial yang diberikan, diperoleh

$$M(x,y) = 3y^3 - 5x^2y$$
 dan $N(x,y) = 5xy^2 - 3x^3$
 $M_y(x,y) = 9y^2 - 5x^2$ dan $N_x(x,y) = 5y^2 - 9x^2$

Perhatikan bahwa

$$M_y - N_x = 9y^2 - 5x^2 - 5y^2 + 9x^2 = 4(x^2 + y^2) \neq 0$$

sehingga persamaan yang diberikan bukan persamaan diferensial eksak. Oleh karena itu perlu ditentukan faktor integrasi.

∢ロト ←団 ト ← 重 ト ← 重 ・ り へ ○

Solution

3. Selanjutnya perhatikan bahwa

$$\frac{M_y - N_x}{yN - xM} = \frac{4(x^2 + y^2)}{y(5xy^2 - 3x^3) - x(3y^3 - 5x^2y)} = \frac{4(x^2 + y^2)}{2xy(x^2 + y^2)} = \frac{2}{xy}$$

memuat variabel x dan y, sehingga faktor integrasi I merupakan fungsi dari x dan y. Misalkan z = xy, sehingga diperoleh

$$r(z) = \frac{M_y - N_x}{yN - xM} = \frac{2}{xy} = \frac{2}{z}$$

Dengan demikian diperoleh faktor integrasi

$$I(z) = e^{\int r(z) dz} = e^{\int \frac{2}{z} dz}$$

= $e^{2 \ln z} = z^2 = (xy)^2$

Solution

3. Kalikan faktor integrasi dengan PD awal diperoleh

$$(xy)^2[(3y^3 - 5x^2y) dx + (5xy^2 - 3x^3) dy] = 0 (3x^2y^5 - 5x^4y^3) dx + (5x^3y^4 - 3x^5y^2) dy = 0$$

Dari PD baru ini dapat diidentifikasi bahwa

$$M_y(x, y) = N_x(x, y) = 15x^2y^4 - 15x^4y^2$$

yang menunjukkan bahwa persamaan telah tereduksi menjadi persamaan diferensial eksak.

∢ロト ←団 ト ← 重 ト ← 重 ・ り へ ○

Solution

3. Selanjutnya solusi umum diperoleh berupa $F(\mathsf{x},\mathsf{y}) = \mathsf{c}$, mengikuti

$$F(x,y) = \int N(x,y) \, dy + g(x)$$

$$= \int (5x^3y^4 - 3x^5y^2) \, dy + g(x)$$

$$= x^3y^5 - x^5y^3 + g(x)$$

Selanjutnya fungsi g'(x) dapat diperoleh dengan

$$F_x(x,y) = M(x,y)$$

$$3x^2y^5 - 5x^4y^3 + g'(x) = 3x^2y^5 - 5x^4y^3$$

$$g'(x) = 3x^2y^5 - 5x^4y^3 - 3x^2y^5 + 5x^4y^3$$

$$= 0$$

Solution

3. Dengan pengintegralan, diperoleh g(x)

$$g(x) = k$$

Dengan demikian, solusi umum PD adalah

$$x^3y^5 - x^5y^3 = k$$

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
*
*
*
*
<

Berikut diberikan beberapa soal untuk latihan

Problem

$$(x^2 - y^2 + x)dx + 2xydy = 0$$

$$2 \frac{x(1+y)}{1+x^2} dx + \ln(1+x^2) dy = 0$$

$$(x-2y)dx + (x^2-1)dy = 0$$

$$(3y + 3e^{x}y^{(2/3)})dx + (x-1)dy = 0$$

$$2y^2 dx + (2x + 3xy + 2y) dy = 0$$

* Soal-Soal Latihan 6

Problem

Untuk soal no 1-2, tentukan apakah fungsi yang diberikan merupakan faktor integrasi dari PD yang diberikan:

- ② $I(x,y) = y^{-2}e^{-x/y}$, $y[x^2 2xy] dx x^3 dy = 0$ Untuk soal no 3 – 6, tentukan faktor integrasi dan solusi umum dari persamaan diferensial yang diberikan:
- $2y \ dx + y (x^3 + e^{-3y} \sin y) \ dy = 0$
- $y [2 \ln (xy) + 1] dx + x^2 dy = 0$
- $(3xy 2y^{-1}) dx + x (x + y^{-2}) dy = 0$
- **6** $2y(y+2x^2) dx + x(4y+3x^2) dy = 0$

3. Penutup

" Terima Kasih, Semoga Bermanfaat "