KARYA ILMIAH

Pengarang
Ismail Djakaria
Subjek
- Sains
Abstrak
Principal component analysis (PCA) is a method used to reduce dimentionality of the dataset. However, the use of PCA failed to carry out the problem of non-linear and non-separable data. To overcome this problem such data is more appropriate to use PCA method with the kernel function, which is known as the kernel PCA (KPCA). In this paper, Iris dataset visualized with PCA and KPCA, that contains are the length and the width of sepal and petal.
Penerbit
Universitas Jember
Kontributor
-
Terbit
2010
Tipe Material
ARTIKEL
Identifier
-
Right
Jurnal ILMU DASAR Vol. 11 No. 1, Januari 2010 : 31 – 38
Berkas ini telah didownload sebanyak 221 kali
Download