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ABSTRACT

The complexity of the dynamical behaviors of interaction between prey and its predator is studied.

The prey and predator relationship involves the age structure and intraspecific competition on
predators, and the nonlinear harvesting of prey following the Michaelis-Menten type term. Some
biological validities are shown for the constructed model such as the existence and uniqueness
as well as the non-negativity and boundedness of solutions. Global dynamics of the model
are presented by employing the Lyapunov function along with the generalized Lassale invariant
principle. The changes in dynamical behaviors driven by the harvesting and the memory effect are
exhibited namely transcritical, saddle-node, backward, and Hopf bifurcations. The appearance
of these interesting phenomena is strengthened by giving numerical simulations consisting of
bifurcation diagrams, phase portraits, and their time series.

Keywords: bifurcation, age structure, intraspecific competition, harvesting, memory effect

1 INTRODUCTION

Since Lotka and Volterra introduced the classical predator-prey model, theoretical studies of predation
without age structure have attracted the attention of many authors, see for example [7, 18} [14} 16, 35, 43]].
However, in nature, many species of plants and animals could have life histories that can simply be
partitioned into two age stages: immature and mature stages. In each stage, individuals of species have
identical biological characteristics such as the ability to reproduce, motile, ingest food, and survive [[15]]. In
particular, there are amphibians, insects, birds, and mammals with life cycles that can last from only several
days or weeks to more than a century. For this reason, some researchers have developed the predator-prey
model by incorporating age structure either in prey or/and predator population with other factors that
also influence the dynamics of the predator-prey model, mainly restricted to the classical integer-order,
stochastic or delay equations [23) 21} 9, |11}, 26} 40} 45,44, 5, 22, 46, 19].
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In 1997, Wang and Chen [38] considered the predator-prey model with age structure for the predator
population using time delays. If we ignore the effect of time delay, the model can be written as follows:

dx x
=rx (1 — —) — mxz,

dt K

dy

_— = — —_ 1
7 nxz — By — 01y, (1)
dz

— = By — dyz.

p By — b2z

Here x(t), y(t), and z(t) represent the population densities of prey, immature predator, and mature predator,
at time ¢, respectively. Model (T)) assumes the prey grows logistically with r as the intrinsic growth rate, K
is the carrying capacity; m is the linear Holling type I functional response, n is the conversion rate with
which captured prey are converted to new immature predator, /3 is the maturity rate of the predator, 6; and
02 are the death rate of the immature and mature predator, respectively. It is also assumed that only the
mature predator can feed the prey through the term mazz. If we do not consider the age structure of the
predator population, then model (I]) is reduced to the classical Lotka-Volterra model for which the positive
equilibrium or the boundary equilibrium of this model is globally asymptotically stable. This means that
the model has no periodic solution. On the other hand, [38]] prove that in model (T]) there exists an orbitally
asymptotically stable periodic solution around the interior equilibrium point which suggests that the age
structure can cause periodic oscillation of populations.

From the point of view of human needs, harvesting of populations generally occurs in wildlife, forestry,
and fisheries management. When harvesting is integrated into the predator-prey model, there are three
types of harvesting, namely constant harvesting [6], linear harvesting [39} 28]], and non-linear harvesting
[41} 20, 47]. In this paper, we assume that the predator is not a commercial species and there is intraspecific
competition among immature predators. Therefore, the predator-prey model with age structure and
intraspecific competition in predator (I)) where the prey population is subject to Michaelis-Menten type
harvesting is given by

dz x hx
—zmc(l——) — mxz —
dt

K c+z’
d
& = nwz - By — by — wy?, 2)
dt
dz
% By —Gye.
o By — d2z

An example of prey-predator interactions whose biological phenomena are described in the model (2)) can
be found in the African wild dog with its prey impala. The African wild dogs are a social structure that
lives in packs. For three to four weeks, young African wild dogs were in the den with their mother. All
adult members of African wild dogs are caring for the young and provide food for them. The hunting
members of the pack will return to the den where they regurgitate meat for the nursing female and young.
In some cases, more young fail to survive because the hunting member does not bring back sufficient food
for the young which lead to intraspecific competition in immature predator [29]. On the other hand, the
prey, impala, even though there are no major threats to their survival, poaching has become significantly
contributed to the decline in its number [18]].

Frontiers 2
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Note that the growth rates of the prey, immature, and mature predator populations in the model (2]
depend only on the local state as the left-hand side is the integer-order derivative. On the other hand, most
biological systems have properties where the current state is affected by all of the past states or it’s called
the memory effect. Therefore, modeling with memory effects can be done by analyzing the system using
fractional-order calculus [[17, 27]]. The operators of the fractional-order derivative have non-local properties
to make them more suitable for dynamical systems which have memory influences on their state variables.

After Riemann and Liouville generalized the concept of integer-order calculus to the fractional-order
calculus over two decades ago, the studies about the predator-prey models with fractional-order differential
equation have gained much attention, for example, (34, 30, 3} 12, 42, [13, 31]. The fractional-order
derivatives are defined as an integration that provides the ability to store the whole memory over time
and hence it could give an exact description of different ecological phenomena. For this reason, the new
structure for the model (2) is given in the following form

h
CDe(t) = ra (1 - %) —mxz — c+$33 = F,
“Dy(t) = nwz — By — b1y —wy® = B, )

CDE(t) = By — bpz = Fy.

The existence and local stability of all equilibrium points of model (3] are discussed in [32]. However,
to the best of our knowledge, the global dynamics and bifurcation analysis of model (3)), to this day,
has not been investigated. Here, CD? f(t) is the standard Caputo derivative for a continuous function
f(z) € C(]0, +0o0),R) which is defined as follows

D) = F(ll_Q) /0 (tfi(?)adr, @

where I'(x) is the gamma function, ¢ > 0, and 0 < o < 1 is known as the order of the fractional derivative.

Because of the above mentioned, we have organized our work in several sections: In we
develop the existence and uniqueness solution of the model (3)). To check the biologically well-posedness
of the model, we establish the non-negativity and boundedness of solutions of the model in In
we derive some sufficient conditions to ensure the global asymptotic stability of each locally
asymptotically stable equilibrium point by applying the Lyapunov functions. We then analyze the existing
conditions of transcritical, saddle-node, backward, and Hopf bifurcations in Some numerical
simulations of our obtained results are carried out in Finally, the conclusions are given in

2 EXISTENCE AND UNIQUENESS

In this section, we will show that the model (3] has a unique solution. A similar manner given by [24] is
adopted. We first take the integral transform on both sides of to achieve

t
(t) — 2(0) = ﬁ /0 FA(N()(t — 7)) dr,
t
y(t) — y(0) = ﬁ /0 By(N(r)(t —7)° L dr, 5)

Frontiers 3
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2(t) — 2(0) = — )/O Fy(N()(t - 1) dr,

()

78 where N(7) = (z(7),y(7),2(7)). Now, the following theorem is given to show that the kernels
79 Fi(N(t)), ¢ = 1,2, 3 satisfy the Lipschitz condition.

80  THEOREM 1. The kernel F;(N(t)), i = 1,2, 3 satisfy the Lipschitz condition.
PROOF. Suppose that [|z(t)|| < a1, [|2(t)]] < a2, [ly(@)l| < a3, [[5@A)]] < a4, [|2()]| < a5, and

|IZ(t)|| < ag are bounded functions. For z, Z, v, ¥, z, and Z, we have

Iy (2() = Fy (2(1))]] = lra: (1- %) = moz - C’fx} - [rm (1- %) = mas - chfx}

= r(:v—x)—%(az—{—x)(:)s—:n)—mz(x—:v)—ch((c_{_:;_:jo )H
<=+ B s agm o — 7+ 2 e - 2
=g ”‘T - "Z‘“ )

1B (0(0) — Fa (GO = || [0z — By — b1y — wy?] — [ — 87— 615 — 3]

= =By —9) =0y —9) —wly+ 7))y -9l
<Blly =gl +o1lly — gl +wlaz + as) ly — 7|

1F3 (2(2)) — F3 (2(1)]] = [[[By — 022] — [By — 627
<gsll=—=l,

h
81 where g1 =1 + W +asm+ —, go = + 61 +w(as + aq), and g3 = 2. Therefore, we conclude
c

82 that Fj, © = 1,2, 3 satisfy the Lipschitz condition. Furthermore, it is clear that 0 < ¢; < 1, then F; are
83 contractions for 2 = 1, 2, 3. This ends the proof.

Next, from we obtain the recursive patterns as follows.

1 t
Pin(t) = an(t) — zp-1(t) = m/o (Fy (7, 2p_1) — Fi(T, 2n_2)) (t — 7)* L dr,
¢
Pan(t) = yn(t) = yn-1(t) = %04)/0 (Fo(7,yn-1) = Fa(7,yn—2)) (t — 7)* " dr, (6)
1 t
pan(t) = zn(t) — 2n-1(t) = m/o (F3(7, 2n—1) — F3(T, 2n_2)) (t — 7)* "L dr,

with initial conditions zo(t) = z(0), yo(t) = y(0), and zp(t) = z(0). Now, we evaluate the norm of |eq. (6)
We achieve

1 t
el = o) = 2ar O] = 7 [ [P 0e0) = Fa(rozaa)) (=) ]

Frontiers 4
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lo2n (Il = llyn(t) = v1 (D] = ﬁ /O (ol ynos) — Faryyns)) (t — )V dir|

1
o

Applying the Lipschitz condition from [Theorem 1|toleq. (7), we get

t
el < 2 /0 le1any (]| dr,

t
o) < 5 /0 leansy (7)]| dr,

t
H@?’n(t)u < %/0 HQO?)(n—l)(T)H dr.

Therefore, can be written as

= Z e1i(t), yn(t)
i=1

Finally, the existence of a solution is given by the following theorem.

THEOREM 2. The solution of model (3)) exists if we have t; such that (

PROOF. According to (8]), we obtain

le1n (@) < [lzn(0)]] ltﬂ] 7
le2n (@) < Nlyn(0)] [r—]
t

a1 < lon(O)) [ 25

t19;
[(a)

(
192
(a)
g3
(04)] ’

t
lo3n (Bl = ll2n(t) = zn—1(t)]| = mfo |(Fs3(7, 2n—1) — F3(7, 2n—2)) (t — 7)* L dr||.

n
= pailt), and z,(t Z p3i(t
i=1

) <1l,¢=1,23

(7

®)

€

(10)

which represent the existence and continuity of the system. To show that the solution of the model (3]) can
be set up from the functions (I0), the following assumptions are given.

z(t) — 2(0) = 2 (t) — Qa(t),
y(t) — y(0) = yn(t) — Q2n(?), (11)
2(t) — 2(0) = 2 (t) — Q3n(t)
Thus,
10l = |55 | (F(r0) - Fi(r o) dr
Frontiers 5
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1 t
= T(a) /O 1Fy(7,2) = Fi(7, 2n1)|| dr

13951

< — Ty
— F(a) ||I Tn 1H7
1 t
t)=||= F: - F ~1)) d
10l 0= | i [ (Pt = Ftraca)
1 t
< e | 1P = Parnc)| (12)
tg2
< = — Yn—1]| -
= P(Oé) Hy Un 1”
1 t
t) = ||= F: — F ~1)) d
Q0= | i [ (Fatr) = Rtz
1 t
S@/o |Fy(r.2) — Fy(r, 21|l dr
tgs
< — Zp—
— F(Oé) HZ Zn 1H
By repeating the process, we acquire
¢ 1n+1
1Qun (1) < () gk,
i ¢ :n—i-l
[l < |57y 9™'F (13)
i t :n—i—l
t < |- ’IL—|—1k:'
HQ3R( )H = _F(Oz)_ 93

88 Thus, ||Q1n(t)]| — 0, |Q2n(t)]| — 0, and ||Qs(t)]| — 0 as 1 — oc.

In the end, we will show that the solution unique for each initial value by utilizing the contradiction
approach. Suppose that there exists another solution of the model (3)) namely x1(¢), y1(t), and 21 (¢). Then

we have
2(t) — 2 (1) = ﬁ /Ot (Fi(r,2) — Fi(r, 2n_1)) dr,
0 =) = s [ ()~ Falrn0) 19
2(t) = 21(t) = ﬁ /Ot (Fy(7,2) = Fy(r, 2a1)) dr.

Applying the norm on both sides, we achieve

t
[z(t) =z ()] = ﬁ/o [E1(7, 2) = Fi(7, 21| dr,

Frontiers 6
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() — @)l ::1?é;5(/£ 1Bo(r, ) — Fo(r gl dr, (1)

1 t
1540 = 210l = 75 | 1P 2) = Fatr )|
By considering we obtain

la(t) — 21Ol = 22 Jlo() - w1 (1)

I(a)
mw—wuwzggﬂmw—m@w
Hdw—nwuzgﬁwaw—auw.

Therefore, the following equations are concluded.

Jott) - =10l = (1- 1) <0,

T(a)
nmw—wwuz(r—ﬁ%)sa (16)
W@—m@%=@—§%)so

We finally give the following theorem.

lgi
I'(a)

THEOREM 3. Equation (16) has a unique solution, provide that (1 — > >0,i=1,2,3.

PROOF. Letleq. (16)|be valid. Therefore, ||z (t) — z1(t)|| = ||ly(t) — y1(t)]] = ||2(t) — z1(¢)|| = 0. This
means z(t) = x1(t), y(t) = y1(¢), and z(t) = I1(t). Hence, the solution is always unique. Therefore, the
existence and uniqueness of the solution are completely proven given by and[3]

3 NON-NEGATIVITY AND BOUNDEDNESS
In this section, we will show that for any initial condition in Ri where
Ri ={(z,y,2) : 2>0,y>0,2>0, z€R, y e R},

the solution not only exists and is unique but also bounded and always in Ri as t — oo. Therefore, we
have the following two theorems.

THEOREM 4. [f the initial condition in Ri then both population densities of prey and predator given by
model @) remain in R3..

Frontiers 7
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PROOF. To prove this non-negativity condition, we apply reductio ad absurdum (contradiction method)
which also use in [[3 23]]. We assume that there exists ¢ > 0 such that

z(t) > 0, when0 <t <,

z(f) = 0, whent =1 (17)
z(tt) < 0, whent =1,

From the first equation ineq. (3)]along with[eq. (I7)] we have

“Di'x (t)],5) = 0. (18)

According to Lemma 3.1 in [4], we get () = 0 which contradicts with where z(t*) < 0. This
means that z(¢) > 0 for all £ € [0, oo]. In similar manner, we can show that y(¢) > 0 and z(¢) > 0 for all
t € [0, 00]. In a conclusion, we have the non-negative solution for model (B]) when the initial values in Ri.

THEOREM 5. The solution of model (3)) is always bounded in Ri for the initial condition in Ri.
PROOF. Since we work the population model, it is natural that the population must be bounded due to
the limitation of their biological resources which also knows as environmental carrying capacity. Thus, the
boundedness of the solution of model (3) is also important to learn and prove. From [Theorem 4] we can
define a positive function as follows.
Nt)=o+—=+ —. (19)

For any v > 0, the following fractional-order differential equation holds.

CDEN(E) + 3N () = “Dfa(t) + =CDfy(t) + —CDpy(t) + yN ()

h
= (rx<1—%)—mxz— ‘ )+%(nxz—6y—51y—wy2)

c+x
m m mz
4——(5@/—(52,z)—|—’y:10+u—l—7
n n n
ra? hx Smy  wmy?  damz ymy — ymz
=rr— — — — — — +yr+——+
K c+zx n n n n n
<o 7"_332 B o1my B domz e+ ymy n ymz
K n n n n
2
rx mz
:(TﬂLV)x—?+(7—51)—+(7—52)—
By choosing v < min{dy, d2}, we obtain
C o T.T2
DN (1) + N () < (r+7)z — N
_ x2_(7’+’7)K9‘3
K r
o x2_(r+7)Kx+(r+7)2K2_(7‘+7)2K2
K r 4r? 4r?
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_ (r+NEN? _ (r+9)°K?
[y
o r+7)K\?  (r+9)%K
——E(x— 2r > * 4r

(T +)’K

- 4r

According to Lemma 3 in [33]], we apply the comparison principle and obtain

r+ V)ZK

Nt < (N(O) _ ! (r+7)°K

4yr (20)

E, [—~t*
4yr > o=t +
2
K
(o) )
) 4vyr
initial conditions are confined to €2 where

For t — oo, we achieve N/ which means all solutions of model with non-negative

2
Q. {(:c,y, DERS : N(t) —a(t)+ W m) o TR o}. @)

n n dyr

4 GLOBAL DYNAMICS

In this section, the global dynamics of model (3) are investigated. Denote that all biological equilibrium
points, their existence conditions, and their local stability are successfully described in [32] which can be
rewritten by the following theorem.

THEOREM 6. (i) The origin point &, = (0,0, 0) always exists. It is locally asymptotically stable (LAS)
h
ifr<-—.
c

h
(ii) The axial point €4 = (,0,0) where & is positive root of x> + (¢ — K)x + (— - c) K = 0 which
r

has

h
(a) an equilibrium point if ¢ > —.
r
h
(b) a pair of equilibrium points if ¢ < min {K, — }
r
(c+ 2)%r (B + 91)d2
pn

(iii) The interior point E1 = (x*,y*, 2*) exist if a;, i = 2, 3 in [32] satisfies the following statements.

Moreover, it is LAS if h < and T <

(a) An equilibrium point in Ri if azg < 0.
(b) Two equilibrium points in Ri ifaa < 0 and as > 0.
The LAS condition of 1 can be seen in Theorem 4 in [32)].

Denote that all equilibrium points may attain local asymptotic stability with several biological conditions.
Now, we will identify the biological properties to obtain globally asymptotically stable (GAS) for each
equilibrium point. The analytical results are given by the following three theorems.
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h
130  THEOREM 7. The origin point &, = (0,0,0) is GAS if r < p=
c+o

131 PROOF. We define the positive definite Lyapunov function as follows.

my  mz
Vi(z,y,2) o+ 2y (22)
n n

By applying Lemma 3.1 in [37], we compute the c—order derivative of V;(x, y, z) along the solution of
model (@) as follows.

“DiVi(e,y.2) < ODfa + DRy + T ODf

B x hax m 9y M
= (m<1—K)—mxz— )—l—n(na:z By — 61y wy)+n(5y 922)

c+x

ra? hx Bmy  Smy  wmy®  Pfmy  damz
=ryr—— —Mmrz — +mrz — — - + -

K c+x n n n n n

ra? hx Simy  wmy?  damz
= rr -  — — —_ J— J—

K c+z n n n

hx oymy  damz

<rr— — — .

c+x n n

From we have © < ¢ and hence

h ) 5
DOV, (2, y, 2) < 1o — —— — AT 02TE

c+o n n
( h > oymy  domz
= — —r|lx— —
c+o n n

h
132 Therefore, “D{V; (z, v, 2) < 0 for all (z,y, 2) € Ri ifr < e We also find that “DV; (z,y, 2) = 0

133 if (z,9,2) = (0,0,0). This conveys that {£,} is the only invariant set on wich “D¢Vy(z,y, z) = 0.

134 Obeying Lemma 4.6 in [17], r < obviously becomes the biological condition of &, to a reach GAS.

c+o

hK 5
135 THEOREM 8. The axial point 4 = (#,0,0) is GAS if — < & < —.
cr n

136 PROOF. We construct a positive definite Lyapunov function based on the Volterra equation as follows.

Vg(x,y,z):(x—f—ilnﬁ)%———i——. (23)

T

The av—order derivative of Vo (z, y, ) along the solution of model (3)) given by Lemma 3.1 in [37] is given
by

A Cra Cra
T —Z m~ D m~ Dz
)CDtaqu ty+ t
T n n

= (x—x) (m(l—%)—mxz— ha )+%(nwz—ﬁy—(51y—wy2)+

x c+x

CD?VQ(JZ,y,Z) S (
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m
— (By — d22)
) re h méy  mwy®:  mdaz

=(z—2)(r———mz— +mzz — - -

K ct+uw n n n
B ) r ) h(z — ) moy  mwy®  mosz
= (z-4%) ( K(m ) (c+x)(c+2) mz) L n n

N2 9
_ r 12 h(z—2) R moyy  mwy mdooz
B K(x %) +(c+x)(c+i)+mmz n n n
2
< —L(x—fg)2+ h(x : ) b — mdéry  mdaz
K cT n n

= — L—i (x—a%)z—m(sly— §—i’ mz
K cz n n

J
2 we have CDfVy(7,y,2) < 0 for all (v,y,2) € R3. It is also clear that

Since — < 7 <
cr n
CDVy(2,y, 2) = 0if (z,y,2) = (£,0,0). This confirms that {£,} is the only invariant set on which

CDVy(x,y, 2) = 0. Therefore, £ 4 is GAS due to Lemma 4.6 in [17]. This confirms the justifiability of
[Theorem 8|

THEOREM 9. Let {1x := {(%%Z) 2 < (1 = ma’)my na} and h < % The interior point
2

Er = (x*,y*, z*) is GAS in Q.

(1 + om)my*

PROOF. Consider a positive definite Lyapunov function as follows.

1 o x\2
o= (= mn )+ o)« S5
Xz n Y

24
Oy 2z* (24

By appying Lemma 3.1 in [37] and Lemma 1 in [1]], we obtain the a—order derivative of Vs(x,y, 2) as
follows.

_ * . * 1 _ *
“Dpvatrna) < (T8 Oppa e 2 (LY Oppy 4 L (222 ) oy
x n Y 09 z

() oo 2) e 22)

L m (y _yy*> (nzz — By — o1y —wy2) + 1 (Z ;Z*> (By — 622)

n 0o
= (z m)( K(m ) —m(z Z>+(C+ZE)(C—{—$*)
mxz  mx*z* mw(y —y") y o
+(y_y*)( v oy o RS O
2
= —L<x—$*)2+mz*x+m:ﬁ*z+ h(z — %) _my*xz_mx*z*y
K (c+x)(c+ x¥) y y*
2 2
mw (y —y* z o — *
_#ﬁ_’*y_ﬂ?‘z”*‘%'
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Figure 1. Bifurcation diagram driven by the harvesting rate (1) of model (3) around the axial point using
the parameter values: » = 0.1, K = 5, m = 0.25, ¢ = 0.5, n = 0.01, 5 = 0.06, 61 = 0.05, d2 = 0.05,
w=0.1,and o = 0.9.

Applying we have

Coma rh o mw(y—y*)? (2 2%)?
DiVs(x,y,z) < — K2 (x—2%)" — -

* (1 =mx*)my* —no

Since — < , we achieve
2 (14 om)my*
C'DQV( )<_ T_h ( N *)2_mw(y_y*)2_(z_'2*)2
t V2\T, Y, %) > K 02 T z n o :

2
Thus, “DVs(x,y, 2) < 0 forall (z,y,z) € R3 when h < % We also confirm that “D¢Vs(x,y, 2) = 0

if (x,y,2) = (z*,y*, 2*) and hence {€]} is the only invariant set on which “D®Vs(z, v, ) = 0. Based on
Lemma 4.6 in [[17], the interior point &7 is GAS in {2x. This ends the proof.

5 BIFURCATION ANALYSIS

In this section, we will study the occurrence of several phenomena namely transcritical, saddle-node,
backward, and Hopf bifurcations. Two parameters are chosen namely the harvesting rate (h) and the order
of the derivative () as the memory index. For the analytical purpose, we define the following parameter.

hi = cr,
h*_(c+K)2r
2T 4K
o = —arctan |2 .
T 1

Frontiers 12



147
148

149
150

Panigoro

et al.

Bifurcation Analysis of a Predator-Prey Model...

Initial values

® £~(0,0,0)

4
ZL‘(Z)

8 0.00

B &~ (4812,0,0)

0.06

G

T 0.2

0.0
0.12

.

i

r

0 200

|
400

t

600

|
800

1000

Figure 2. Phase portrait and time series of model (3)) using parameter values: » = 0.1, K = 5, m = 0.25,
c=0.5,n=0.01, 8 =0.06, 01 = 0.05, 02 = 0.05, w = 0.1, &« = 0.9, and h = 0.02
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Figure 3. Phase portrait and time series of model (3)) using parameter values: » = 0.1, K = 5, m = 0.25,
c=0.5,n=0.01, 8 =0.06, 61 = 0.05, 02 = 0.05, w = 0.1, « = 0.9, and h = 0.12
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Figure 4. Phase portrait and time series of model (3)) using parameter values: » = 0.1, K = 5, m = 0.25,
c=0.5,n=0.01, 8 =0.06, 01 = 0.05, 02 = 0.05, w = 0.1, « = 0.9, and h = 0.18

Next, the following theorem is given for describing the occurrence of transcritical bifurcation driven by the
harvesting rate (%) as the bifurcation parameter.

THEOREM 10. The origin point £, and the axial point £ 4 exchange their stability via transcritical
bifurcation when h passes through h7.
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Figure 5. Bifurcation diagram driven by the order of the derivative («) of model (3]) around the axial point
&1 using parameter values: r = 0.8, K =5, m = 0.25, h = 0.01, ¢ = 0.08, n = 0.2, § = 0.4, §; = 0.01,
92 = 0.01, 02 = 0.01, and w = 0.1.
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Figure 6. Phase portrait of model (3)) around interior point £; using parameter values
151 PROOF. Since the axial consists of two equilibrium points, we focus on the axial point nearest to the

152 origin point. When h = hj, the axial point merge with the origin point & = £4 = (0,0,0) where the
153 eigenvalues of the Jacobian matrix are: \; = 0, A2 = (8 + 1), and A3 = —d2. We obtain |arg (A2 3)| =
154 71 > an/2 while |arg (A1)| = an/2. This means & = €4 = (0,0, 0) is non-hyperbolic. When h} < h <

K 2
155 %, by applying Theorems 2 and 3 in [32], &) becomes LAS while the nearest £ 4 becomes a saddle

156 point. For 0 < h < hj, The origin & becomes unstable and nearest £4 ¢ Ri becomes unstable. This
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Figure 7. Phase portrait of model (3]) around interior point £; using parameter values

condition show the existence of transcritical bifurcation where i becomes the bifurcation parameter while
h = hj is the bifurcation point.

Now, the existence of saddle-node bifurcation on axial will be proven by still regarding the harvesting
rate (h) as the bifurcation parameter. As a result, the following theorem is proposed.

h
THEOREM 11. Suppose that ¢ < min § —, K } The axial point € 4 undergoes saddle-node bifurcation
r

when h passes through the bifurcation point h3,.

PROOF. According to Theorem 1 in [32], the axial point does not exist when i > h5. When h = hJ,

. e . K—c . . . .
a unique equilibrium point £4 = (T’ 0, 0) occurs in axial where its Jacobian matrix has three

1
eigenvalues: Ay = O0and \g3 = —— [5 + 01 + 02 + /(B + 61 — 62)2 + 26n(K — )] Since |arg (A1)| =

am /2, this axial point is non- hyperbollc When h < h* two axial pomts occurs given by EG A (Z4,0,0)

(h* — . h*
A\ and Tp = . It is easy
r

to validate that both £ and 82 are in Ri and have different stability. As a consequence, all the given
circumstances express the occurrence of saddle-node bifurcation.

K —c K —c

and Effl = (Zp,0,0) where &, =

Based on and |11} we obtain more global bifurcation namely backward bifurcation given by
the following lemma.

LEMMA 1. The model (3)) undergoes backward bifurcation driven by the harvesting rate (h).
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PROOF. From previous theorems, the axial point £ exists and LAS while &, is unstable when h < h7].
When h] < h < hj, £, becomes LAS, £ still exists and LAS, and unstable Sg occurs. The bistability
condition is held for this interval of A which means that the convergence of the solution is very sensitive to
the initial condition. Finally, those two axial points merge when h = hJ and disappear when h > hj. This
completes the proof.

Finally, we will show that the memory index in this case the order of the derivative («) affects the
dynamical behaviors of model (3) indicated by the appearance of Hopf bifurcation around the interior point
Er.

THEOREM 12. Suppose the characteristic equation of the Jacobian matrix evaluated at E; can be written
as X2 + &0 4+ &\ + &3 = 0 which has a pair of complex conjugate eigenvalues A2 = (1 £ iCo where
(1 > 0 and one real negative eigenvalue (A3 < 0). Model|3\undergoes a Hopf bifurcation when the order

2 ¢

of the fractional derivative o crosses out the critical value o = = arctan ‘C—l

¢
¢

PROOF. From the earlier assumptions, we have minj<;<3 |arg()\;)| = arctan|g2|. Therefore, the

solution of m(a*) = o*§ — min|arg(A;)| = 0 is only when o* = = arctan S2

E 1
transversal condition: d”;éa) la=a* = 5 which is not equal 0, we can assure that the sign of m(«) is

changes when the bifurcation parameter « passing by «*. It means that the equilibrium point &7 is stable
when a € (0, a*) and is unstable for o* < a < 1.

2 . If we check the

6 NUMERICAL SIMULATIONS

In this section, we explore the dynamical behaviors of model (3)) numerically to support analytical findings,
especially the occurrence of bifurcation. The predictor-corrector scheme given by [10] is employed. All of
the parameters used in these simulations are assumptions matched with the biological conditions given by
the previous analysis results. This decision was taken because this work does not specifically address an
ecological case involving a particular organism.

To show the occurrence of several bifurcations driven by the harvesting rate (h), we first set the parameter
as follows.

r=01, K=5 m=025 c=0.5, n=0.0l,
B =10.06, 6, = 0.05, d2 = 0.05, w = 0.1, & = 0.9. (25)

By varying the harvesting rate in the interval 0 < i < 0.24, the bifurcation diagram is portrayed as in
We have three types of dynamic behaviors around the axial point. When 0 < h < h] = 0.05, we
have unstable origin point £, and LAS £ 4. The origin point losses its stability via transcritical bifurcation
when h crosses h} and the unstable axial point £4 occurs simultaneously. These dynamics are maintained
for interval h] < h < hj = 0.15125. On the other hand, the stable branch of axial point £4 is preserved for
0 < h < h5. The LAS point and unstable point of £4 merge into the non-hyperbolic point when h = h3.
The axial point finally disappeared when h passes through h35 while the sign of &£, doesn’t change. Thus we
have saddle-node bifurcation on axial with 3 as the bifurcation point. If we observe from a more global
point of view, these interesting phenomena represent the existence of backward bifurcation marked by
the occurrence of bistability condition. To show these dynamical behaviors, we choose three values of
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harvesting rate in each interval: A = 0.02,0.12,0.18 and portray them as phase portraits and time series.
See to[dl The interesting phenomenon called bistability is portrayed in Two equilibrium
points LAS simultaneously impact the sensitivity of the convergence of the solution to the selection of the
initial value. The two closest initial values are set which converge to the different equilibrium points. One
of them convergent to the origin point and the other solution convergent to the axial point. This means, two
conditions may arrive namely the extinction of all populations and the only prey existence point.

The next circumstance occurs in the interior point of model (3)) which demonstrates the influence of the
order of the derivative as the memory index to the dynamical behaviors around the interior point. We set
the parameter as follows.

r=08, K=5 m=0.25 h=0.01, c=0.08 n=0.2,
B =04, 61 =0.01, 62 =0.01, 6o =0.01, w=0.1. (26)

To identify the dynamical behaviors, we vary the values of « in the interval 0.76 < o < 1. As result, we
obtain the bifurcation diagram given by For o < o* =~ (.86, the interior point &7 is LAS. To show
this condition, we give the phase portraits by selecting a = 0.81 and o = 0.84as given by [Figure 6|a,b).
Nearby solution oscillates and convergent to £;7. When « crosses o™ = 0.86, &£ losses its stability via
Hopf bifurcation which is indicated by the occurrence of periodic signal namely limit-cycle. The nearby
solution stays away from &; and convergent to the limit-cycle. The evolution of the limit-cycle given by
also shows that the diameter of the limit-cycle increases when alpha increases. We portray the
phase portraits in [Figure 6(c,d) to show the dynamics of solutions around &; for « = 0.87 and o = 0.9. It
is shown that the density of all populations are oscillated and finally converges to the limit cycle which
guarantees that all populations could maintain their existence seasonally. To show the peak of their densities,
we also plot time series in It is clear that for bigger «, the peak is getting higher.

7 CONCLUSIONS

The dynamics of a predator-prey model incorporating four biological conditions namely age structure,
intraspecific competition, Michaelis-Menten type harvesting, and memory effect have been studied. All
biological validity has been presented such as the existence, uniqueness, non-negativity, and boundedness
of the solution. The dynamics of the model have been explored by showing the global stability condition
for each point, and the appearance of several bifurcations namely transcritical, saddle-node, backward, and
Hopf bifurcations. Most of the bifurcations occur around the axial point driven by the harvesting rate. Some
of the biological impacts of these phenomena are the extinction of all populations or the single existence of
the prey population. The bistability condition exists as the impact of backward bifurcation which states
that the existence of prey depends on the initial condition. The occurrence of Hopf bifurcation occurs in
the interior of the model driven by the order of the derivative as the memory effect. Although the interior
point losses its stability when the order of the derivative increase, the existence of all populations can be
maintained due to the occurrence of a stable limit cycle. The densities of all populations change seasonally
when the memory effect strengthens and the peak of the density for each population decreases when the
memory effect weakens.
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ABSTRACT

The complexity of the dynamical behaviors of an interaction between a prey and its predator is
studied. The prey and predator relationship involves the age structure and intraspecific competition
on predators, and the nonlinear harvesting of prey following the Michaelis-Menten type term.
Some biological validities are shown for the constructed model such as the existence and
unigueness as well as the non-negativity and boundedness of solutions. Global dynamics of the
model are presented by employing the Lyapunov function along with the generalized Lassale
invariant principle. The changes in dynamical behaviors driven by the harvesting and the memory
effect are exhibited namely transcritical, saddle-node, backward, and Hopf bifurcations. The
appearance of these interesting phenomena is strengthened by giving numerical simulations
consisting of bifurcation diagrams, phase portraits, and their time series.

Keywords: bifurcation, age structure, intraspecific competition, harvesting, memory effect

1 INTRODUCTION

Since Lotka and Volterra introduced the classical predator-prey model, theoretical studies of predation
without age structure have attracted the attention of many authors, see for example [7, 18} [14} 16, 32, 40].
However, in nature, many species of plants and animals could have life histories that can simply be
partitioned into two age stages: immature and mature stages. In each stage, individuals of species have
identical biological characteristics such as the ability to reproduce, motile, ingest food, and survive [135].
In particular, there are amphibians, insects, birds, and mammals with life cycles which can last from
only several days or weeks to more than a century. For this reason, some researchers have developed
the predator-prey model by incorporating age structure either in prey or/and predator population with
other factors that also influence the dynamics of predator-prey model, mainly restricted to the classical
integer-order, stochastic or delay equations [22, 20, 9, |11} 25, 37,42} 41} 15, 21}, 43} [18]].
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In 1997, Wang and Chen [35] considered the predator-prey model with age structure for the predator
population using time delays. If we ignore the effect of time delay, the model can be written as follows:

dx x
=re (1 — —) — Mz,

dt K

dy

_— = — —_ 1
7 nxrz — By — 01y, (1)
dz

— = By — dyz.

p By — b2z

Here x(t), y(t), and z(t) represent the population densities of prey, immature predator, and mature predator,
at time ¢, respectively. Model (I)) assumes the prey grows logistically with r as the intrinsic growth rate,
K is the carrying capacity; m is the linear Holling type I functional response, n is the conversion rate
with which captured prey are converted to new immature predator, 3 is the maturity rate of the predator,
01 and 97 are the death rate of the immature and mature predator, respectively. It is also assumed that
only the mature predator has the ability to feed the prey through the term maxz. If we do not consider the
age structure of the predator population, then model (1) is reduced to the classical Lotka-Volterra model
for which the positive equilibrium or the boundary equilibrium of this model is globally asymptotically
stable. This means that the model has no periodic solution. On the other hand, [35]] prove that in model (T
there exists an orbitally asymptotically stable periodic solution around the interior equilibrium point which
suggests that the age structure can cause periodic oscillation of populations.

From the point of view of human needs, harvesting of populations generally occurs in wildlife, forestry,
and fisheries management. When harvesting is integrated into the predator-prey model, there are three
types of harvesting, namely constant harvesting [6], linear harvesting [36} 26]], and non-linear harvesting
[38119,44]. In this paper, we assume that the predator is not commercial species. Therefore, the predator-
prey model with age structure in predator (1) where the prey population is subject to Michaelis-Menten
type harvesting is given by

dx (1 :c) hx
—=rz|(l— =) —mzz—
K )

dt c+x

d

i = nxz — By — 61y — wy’, (2)
dt

dz

— = [y — 022.

7 = Py — 022

Note that the growth rates of the prey, immature and mature predator populations in the model (2) depend
only on the local state as the left-hand side is the integer-order derivative. On the other hand, most biological
systems have properties where the current state is affected by all of the past states or it’s called the memory
effect. Therefore, modeling with memory effects can be done by analyzing the system using fractional-order
calculus. The operators of the fractional-order derivative have non-local properties to make them more
suitable for dynamical systems which have memory influences on their state variables.

After Riemann and Liouville generalize the concept of integer-order calculus to the fractional-order
calculus over two decades ago, the studies about the predator-prey models with fractional-order differential
equation have gained much attention, for example [31, 133, 27, 3} 2, [12} 39, [13} 28]]. The fractional-order
derivatives are defined as an integration that provides the ability to store the whole memory over time
and hence it could give an exact description of different ecological phenomena. For this reason, the new
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structure for the model (2)) is given in the following form

h
CDx(t) = ra (1 - %) —mzz — c—l—xx = F,
“Dy(t) = nwz — By — b1y —wy® = B, )

CDR:(t) = By — by = P,

The existence and local stability of all equilibrium points of model (3) are discussed in [29]. Here, CD? (t)
is the standard Caputo derivative for a continuous function f(z) € C([0,+0c0), R) which is defined as
follows

Cra o 1 ! f/(T) .
DL = Fea [ G @

where I'(x) is the gamma function, ¢ > 0, and 0 < a < 1 is known as the order of the fractional derivative.

In view of the above mentioned, we have organized our work in several sections: In[Section 2, we develop
the existence and uniqueness solution of the model (3)). To check the biologically well-posedness of the
model, we establish the non-negativity and boundedness of solutions of the model in[Section 3| In{Section 4]
we derive some sufficient conditions to ensure the global asymptotic stability of each locally asymptotically
stable equilibrium point by applying the Lyapunov functions. We then analyze the existence conditions of
transcritical, saddle-node, backward, and Hopf bifurcations in Some numerical simulations of

our obtained results are carried out in[Section 6| Finally, the conclusions are given in[Section 7

2 EXISTENCE AND UNIQUENESS

In this section, we will show that the model (3)) has a unique solution. A similar manner given by [23] is
adopted. We first take the integral transform on both sides of to achieve

t
(1) — 2(0) = ﬁ /0 RN (t — 7)) dr,
1 t %
Vi) = 9(0) = fos /0 B(N(r)(t —7)* L dr, 5)
t
2(t) — 2(0) = ﬁ /0 Fy(N()(t — 1) dr.

Now, the following theorem is given to show that the kernels F;(N(¢)), i = 1,2, 3 are contracted and
satisfy the Lipschitz condition.

THEOREM 1. Suppose that ||z(t)| < a1, [|2()]| < ag, ||y(®)|| < as,
|Z2(t)|| < ag are bounded functions. Let

[y < aq, 2] < a5, and

(a1 + CLQ)T’
K
g2 =B+ 61 +w(az + a),

h
g1 =1+ +mz+z,

g3 = 02.

The kernel F;(N(t)), i = 1,2, 3 are contracted and satisfy the Lipschitz condition if 0 < g; < 1, i = 1,2, 3.
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PROOF. For z, z, v, 9, 2, and z, we have

I (P4~ Fi o)l = [m: (1= %)~ maz - C’fx} - {ri’ (1= %) ~maz - Chfx}

- T(aj—x)—%(m%—x)(:p—x)—mz(x—x)—ch((c_{_xx_ca;x )H
smrx—fn+WHx—fu+m%—fu+§ux—zu
=0 ”I - f“ )

|1 Fs (y(t) — Fa (y(t))]| = H [n:ﬁz — By — oy — wyﬂ — [na:z — By — 01y — ngQ] ||

=|-Bly—9) —aly—9) —wy+9 -7
< Blly =gl + o1 lly — yll +wlas + a4) |ly — 9l

=gy —ll,
£ (y(8) — F5 (@) = [By — d22] — [By — d22]||
<gslz—Z

69  Therefore, we conclude that F;, ¢« = 1,2, 3 satisfy Lipschitz condition. Furthermore, it is clear that
70 0 < g; < 1, then F; are contractions for 2 = 1,2, 3. This ends the proof.

Next, from we obtain the recursive patterns as follows.

t
Pin(t) = 2a(t) — 21 (t) = ﬁ/o (Fl(TézO — Fi(1,25-2)) (t = 7)* " dr,
() = ya(t) — yo1(t) = ﬁ /0 (Fo(m, 1) — Fa(r,yns)) (t — 1)L dr, ©)
1 t
3n(t) = zn(t) = 2n-1(t) = m/o (F3(7, 2n-1) — F3(7, 2n—2)) (t — 7)* " dr,

with initial conditions zo(t) = z(0), yo(t) = y(0), and zp(¢) = z(0). Now, we evaluate the norm of |eq. (6)
We achieve

I = llzn(t) = zn-1 (D)l = ﬁ/o [(Fa(r, 2n-1) = Fi(r,20-2)) (t = 7)* " dr |,

le2n ()l = [lyn(t) = yn1 ()] = ﬁ/o [(Fa(7, yn-1) = Fo(T, yn—2)) (t = 7)*~ (7)

a-l1 dT”.

t
lean (@)l = llzn(t) = zn-1 ()] = ﬁ/o [(F5(7, 2n—1) = F3(7, 2n-2)) (t =7

Applying the Lipschitz condition from [Theorem 1|toleq. (7), we get

t
le1n ()]l < %/0 [e1(2-1)(7) ]| dﬂ%
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Therefore, can be written as

= oult), yn(t)
i=1

lean(t)] < 205 /0 3sy (]| dr.

t
HSDSn(t)H < %/0 HSD?)(TL—I)(T)H dr.

Finally, the existence of a solution is given by the following theorem.

THEOREM 2. The solution of model (3)) exists if we have t1 such that (

PROOF. According to (8), we obtain

lotm(®] < llza()] [t(i] |
lozn®)] < [19a(0)] [tﬂ]

o < Izn(O)) [ 25

t19i

['(«)

~—

(a
ol

r
t

n
= Z gOgi(t , and Zn Z gOgZ
=1

) <1,i=1,2,3.

®)

)

(10)

which represent the existence and continuity of the system. To show that the solution of the model (3] can
be set up from the functions (10)), the following assumptions are given.

x(t) — 2(0) = 2p(t) — Qun(t),
y(t) — y(0) = yn(t) — Q2n(t), (11)
2(t) — 2(0) = zp(t) — Q3n(t)
Thus,
|Q1n| (¢ H F1 (1,2) — Fi(1,20—1)) dT
m/0 IFy(r.2) — Fy(r a1)|| dr
tg
S F(Oé) ||"E - mn—l” )
Qe )= s [ () =t
< i | 1R - Bl i (12)
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192
< =
~ ()

a6 = |5 (Fa(r, ) = By(r, 200) dr

ly =yl -

1 t
< | 152 = (sl dr

tgs
< — Zp—
— F(Oé) HZ Zn 1H
By repeating the process, we acquire
Tt ] n+1
[Qun ()| < () 91"k,
i ¢ ; n+1
[Qa2n(t)]| < (o) gk,
- " i n+1
| < = nlg
HQ3R( )H = _F(Oé)_ 93

75 Thus, ||Q1n(t)]| — 0, |Q2n(t)]| — 0, and ||Qs,(£)]| — 0 as 1 — oc.

(13)

In the end, we will show that the solution unique for each initial value by utilizing the contradiction
approach. Suppose that there exists another solution of the model (3)) namely 1 (¢), y1(¢), and 21 (¢). Then

we have
t
() — 2 (t) = ﬁ /0 (Fi(7.2) — Fi(r,an1)) dr,
y(t) = (1) = ﬁ /0 (Fa(r,y) — Fa(7, gn1)) dr, (14)
z(t) — z1(t) = ﬁ/o (F3(T,2) — F3(T, 2p—1)) dT.
Applying the norm on both sides, we achieve
t
o) =210l = a5 | 1m0 = Alrann)] dr
1 t
190 = = 5 | 1Per0) = Pelroc)] (1)
t
[2(t) —21(t)]| = ﬁ/g | E5(7,2) — F3(7, 2p—1)|| dr.
By considering we obtain
|z(t) — 21 (t)|| = % |z (t) — 1 ()],
6
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Hmw—ymwuzggjmaw—w@w,

I=(t) = 51 0)] = iy =) — 210

Therefore, the following equations are concluded.

T(a)
HMﬂ—mwuz(r—ﬁ%)sa (16)
Hdﬂ—m@”=<r—§%)§0

We end this section by giving the following theorem.

1gi
I'(a)

THEOREM 3. Equation (16) has a unique solution, provide that (1 — ) >0,i=1,2,3.

PROOF. Letleq. (16)|is valid. Therefore, ||z(t) — z1(¢)|| = ||y(t) — v1(t)|| = ||z(t) — z1(t)]] = 0. This
means z(t) = x1(t), y(t) = y1(¢), and z(t) = I;(t). Hence, the solution is always unique. Therefore, the
existence and uniqueness of the solution are completely proven given by and[3]

3 NON-NEGATIVITY AND BOUNDEDNESS

In this section, we will show that for any initial condition in Ri where
Ri ={(z,y,2) : 2>0,y>0,2>0, z€R, y e R},

the solution not only exists and is unique but also bounded and always in Ri as t — oo. Therefore, we
have the following two theorems.

THEOREM 4. [fthe initial condition in Ri’_ then both population densities of prey and predator given by
model (3) remain in R3..

PROOF. The proof unraveled clearly by using the contradiction method along with employing Lemma
3.1 in [4]. The similar way can be seen in [3, 30, 24].

THEOREM 5. The solution of model (3) is always bounded in Ri’_ for the initial condition in R“j’r.

PROOF. Since we work the population model, it is natural that the population must be bounded due to
the limitation of their biological resources which also knows as environmental carrying capacity. Thus, the
boundedness of the solution of model (3) is also important to learn and prove. From[Theorem 4] we can
define positive function as follows.

my — mz

Nt)=z+—+—. (17)
n n

For any v > 0, the following fractional-order differential equation holds.

CDEN(E) + AN (1) = “Dfa(t) + ~ODPy() + —CDy(t) + YN(1)
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h
— m:(l—ﬁ)—m:vz— ’ )—i—%(nwz—ﬁy—ély—wa)

K c+zx
m m mz
%——(ﬂy—égz)—l—yaﬂ—u—l—7
n n n
2 h ) 24
—m’—ﬂ— T oimy  wmy® gmz+7x+m+7mz
K c+x n n n n n
24 )
<rp_TE _timy Gmz o omy  ymz
K n n n n
2
rT mz
=(r+y)e— o=+ (y=0)—=+(y—d)—

CDEN (1) + AN (1) < (r +7)e =
B r (r+~)Kzx
- - ()
_ (r+NEx | (r+9)*K?  (r+9)*K?
__E<x2_ r | 42 a 4r? )
YL (r+ DK\ _ (4 9)K
SR AL
o r+MEK\> (r+7)?2K
B —?<x— 2r ) i 4r
<(T+’7)2K
- 4r

According to Lemma 3 in [30], we apply the comparison principle and obtain

(r+ fy)QK
dyr

(r+ ’y)zK.

o (18)

Nit) < (W) - ) Bt 4

which means all solutions of model (3) with non-negative

2
K
For t — oo, we achieve NV (t) — %
T

initial conditions are confined to € where

A t +7)?K
Q::{(a:,y,z)eRi:N(t):w(t)—i-mi()—i- - <0,0=%+6,6>0}. (19)

4 GLOBAL DYNAMICS

In this section, the global dynamics of model (3)) are investigated. Denote that all biological equilibrium
points, their existence conditions, and their local stability are successfully described in [29] which can be
rewritten by the following theorem.
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THEOREM 6. (i) The origin point €, = (0,0, 0) always exists. It is locally asymptotically stable (LAS)
h
ifr<-—.
c

h
(ii) The axial point £, = (,0,0) where & is positive root of 2> + (¢ — K)x + (— - c) K = 0 which
r

has

(a) an equilibrium point if ¢ > —.
r
h
(b) a pair of equilibrium points if ¢ < min {K, — }
r
)2
(c+z)°r and & < (54—(51)52.
K bn
(iii) The interior point E1 = (x*,y*, 2*) exist if a;, i = 2, 3 in [29] satisfies the following statements.

Moreover, it is LAS if h <

(a) An equilibrium point in ]Ri)’r if azg < 0.
(b) Two equilibrium points in Ri if ap < 0andas > 0.
The LAS condition of 1 can be seen in Theorem 4 in [29].

Denote that all equilibrium points may attain local asymptotically stability with several biological
conditions. Now, we will identify the biological properties to obtain globally asymptotically stable (GAS)
for each equilibrium point. The analytical results are given by the following three theorems.

h
THEOREM 7. The origin point €, = (0,0,0) is GAS if r < =
c+o

PROOF. We define the positive definite Lyapunov function as follows.

Vl(x,y,z):x—i-@—f—% (20)
n n

By applying Lemma 3.1 in [34], we compute the a—order derivative of V;(x, y, z) along the solution of
model (3] as follows.

m m
“DiVi(w,y,2) < “Dfw+ Dy + —Dftz

h
= (m (1 - %) —mar— % ) + %(nxz—ﬁy— oy — wy?) + %(ﬁy—cbz)

c+x
ra? hx Bmy  omy  wmy®  fmy  damz
=TT —— —Mmrz — +mrz — — — + -
K ct+w n n n n n
ra? hx Ssimy  wmy?  damz
=rr—— — — — —
K c+zx n n n

hx oymy  damz
<rzr-— — — .

c+x n n

Fromleq. (19), we have x < ¢ and hence

h ) 5
CD?Vl([L‘,:%Z) S rr — v _ 1my . 2mz

c+o n n
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( h ) oymy  domz
= — —r|z— —

c+o n n

h

Therefore, “ DV (z,y,2) < 0 forall (z,y,2) € RY if r < . We also find that “D§Vy (z,y, 2) = 0
ct+o

if (x,y,2) = (0,0,0). This conveys that {£,} is the only invariant set on wich “D¢Vy (x,y,2) = 0.

Obeying Lemma 4.6 in [17], » <

n obviously becomes the biological condition of &, to a reach GAS.
ct+o

hK 5
THEOREM 8. The axial point E4 = (2,0,0) is GAS if — < & < —=.
cr n

PROOF. We construct a positive definite Lyapunov function based on the Volterra equation as follows.

Vg(x,y,z):(x—:%—i‘lng)+@+%. (21)
z n n

The av—order derivative of Va(z, y, ) along the solution of model (3)) given by Lemma 3.1 in [34] is given
by

A CDa CDa
DRI,y 2) < (x x) “Dpr+ 4 L

T n n
=T x hx m 9

_( " )(Tx(1—§>—mxz—c+x>+E(n:17z—6y—51y—wy)—|—

m

— -0

- (By — 022)

. re h moy  mwy®  mosz
=(x—-2)|r———mz— +mzz — - -
K ct+uw n n n
B . r . h(x — &) moy  mwy®  mosz
= (x a:)( K(x $)+(c+x)(c+:2') mz)—i—ma:z - . .
AN\ 2 2
B r 2 h(x — ) ) mo1y  mwy md9z
B K<x ) (c+2)(c+ 1) e n n n
2
r 2 h(x—12) R mory  mooz

< " (p— _ _
- K (z—2) cx mrz n n

~

J
Since — < & < —, we have CDVy(2,y,2) < 0 for all (z,y,2) € R3. It is also clear that

cr n
CDMVy(2,y, 2) = 0if (z,y,2) = (2,0,0). This confirms that {£,} is the only invariant set on which

CDMVy,(x,y, 2) = 0. Therefore, £4 is GAS due to Lemma 4.6 in [[17]]. This confirms the justifiability of
Theorem &

z* 1 —max*)my* —no Ar
THEOREM 9. Let Qx = {(x,y, z) 1 —< ( Jmy } and h < —. The interior point
z

(14 om)my* K
Er = (%, y*, 2%) is GAS in Qx.
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125 PROOF. Consider a positive definite Lyapunov function as follows.

1 _x\2
o (o= 2)+ 2 (s -t L2
Xz n Y

22
Oy 2z* (22)

By appying Lemma 3.1 in [34] and Lemma 1 in [1]], we obtain the a—order derivative of Vs(x,y, 2) as

follows.
_ * . * 1 _ *
“Dpvatrpna) < (T8 Oppa 2 (1LY Oppy 1 L (222 ) oy
x n Yy 02 z
r—x* <1 m) hx
= re(l——)—mxz—
x K c+zx
m (y—y* 9 1 (z—2*
+g( ; )(nmz—ﬁy—ély—wy)Jrg( e )(ﬁy—ézz)
* r . . h(z — z*)
=(x—x ——(—a") —m(z — +
(@ >( K( ) (z=27) (c+x)(c+x*))
o [(mxz  mx*z" mw(y —y* (Y z—zF
] e e A PR
Yy Yy n Y z
r 9 hiz— 2*)? my*rz  max*zy
= ——(z—2")"+mZfex+maz*z+ - -
K (c+z)(c+ z¥) y y*
Fruly—4)° Wz g . (=2
Applying we have
2 )
Cra r h %\ 2 mw(y_y> (Z_Z>
D < (L _ D)oo _
tVQ(I,y,Z) = (K CQ> (Q? Z ) n P
* n *
—(l—mx ——*)z+(1+am)z
my
* 1_ k *
Since c < ( ma’)my na, we achieve
z (14 om)my*
CDaV( )< r h ( *)2 mw (y_y*)2 (Z_Z*)2
,y,2) < —|—=— = | (x —2%)" — — .
i VALY, 20 = K n z*

2
%. We also confirm that “D§Vs(x, y, 2) = 0
127 if (z,y,2) = (z*,y*, 2*) and hence {E€;} is the only invariant set on which “D§V3(, y, ) = 0. Based on

128 Lemma 4.6 in [[17], the interior point &7 is GAS in §2x. This ends the proof.

126 Thus, “D¢V3(x,y, 2) < 0forall (z,y, 2) € RZ’F when h <

5 BIFURCATION ANALYSIS

In this section, we will study the occurrence of several phenomena namely transcritical, saddle-node,
backward, and Hopf bifurcations. Two parameters are chosen namely the harvesting rate (k) and the order
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Figure 1. Bifurcation diagram driven by the harvesting rate (1) of model (3) around the axial point using
the parameter values: » = 0.1, K = 5, m = 0.25, ¢ = 0.5, n = 0.01, 5 = 0.06, 61 = 0.05, d2 = 0.05,
w=0.1,and o = 0.9.
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Figure 2. Phase portrait and time series of model (3] using parameter values: r = 0.1, K = 5, m = 0.25,
c¢c=0.5,n=0.01, 8 = 0.06, 61 = 0.05, 62 = 0.05, w = 0.1, « = 0.9, and h = 0.02

F 0.6
e Initial values B &~ (3500 : = 9 a
¢ & ~(0,0,0 > &2~ (1,0,0) 8
0 I I I
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103 %005 —

SN |
" 0.0 w02
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2 5
z(¢) 4 0.00 y(t) t

Figure 3. Phase portrait and time series of model (3] using parameter values: r = 0.1, K = 5, m = 0.25,
c¢=0.5,n=0.01, 8 =0.06, 61 = 0.05, 62 = 0.05, w = 0.1, « = 0.9, and h = 0.12

of the derivative («) as the memory index. For the analytical purpose, we define the following parameter.
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e  Initial values ® £,~(0,0,0) T 0.4 -~

| | | |
2 0.05 0 200 400 600 800 1000
z(¢) 4000 y(t) t

Figure 4. Phase portrait and time series of model (3)) using parameter values: » = 0.1, K = 5, m = 0.25,
c=0.5,n=0.01, 8 =0.06, 01 = 0.05, 02 = 0.05, w = 0.1, « = 0.9, and h = 0.18

—— Limit-cycle
— ) —stable
= = & —unstable

‘ o~ 0.86

& 5
0.76 ] ! ZQ’\
0.88 0.91 00 2
o .

Figure 5. Bifurcation diagram driven by the order of the derivative («) of model (3)) around the axial point
&1 using parameter values: » = 0.8, K =5, m = 0.25, h = 0.01, ¢ = 0.08, n = 0.2, 8 = 0.4, 61 = 0.01,
d2 = 0.01, 62 = 0.01, and w = 0.1.

N 2
o = — arctan
s

1

Next, the following theorem is given for describing the occurrence of transcritical bifurcation driven by the
harvesting rate (h) as the bifurcation parameter.

THEOREM 10. The origin point £, and the axial point £ exchange their stability via transcritical
bifurcation when h passes through h7.

PROOF. Since on axial consists of two equilibrium points, we focus on the axial point nearest to the
origin point. When i = hj, the axial point merge with the origin point & = £4 = (0,0,0) where the
eigenvalues of the Jacobian matrix are: A\; = 0, Ay = (5 + d1), and A3 = —J>. We obtain |arg (A2 3)| =
7 > am/2 while |arg (A\1)| = an/2. This means & = €4 = (0,0, 0) is non-hyperbolic. When h] < h <
(c+ K)?r

4K
point. For 0 < h < hj, The origin & becomes unstable and nearest £4 ¢ Ri becomes unstable. This
condition show the existence of transcritical bifurcation where i becomes the bifurcation parameter while
h = h] is the bifurcation point.

, by applying Theorems 2 and 3 in [29], & becomes LAS while the nearest £ 4 becomes a saddle

Now, the existence of saddle-node bifurcation on axial will be proven by still regarding the harvesting
rate (h) as the bifurcation parameter. As a result, the following theorem is proposed.
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Figure 6. Phase portrait of model (3)) around interior point £ using parameter values
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Figure 7. Phase portrait of model (3) around interior point £; using parameter values
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h
THEOREM 11. Suppose that c < min§ —, K } The axial point € 4 undergoes saddle-node bifurcation
r

when h passes through the bifurcation point hj.

PROOF. According to Theorem 1 in [29], the axial point does not exist when i > h5. When h = hJ,

. e . —C . . . . .
a unique equilibrium point £4 = (T’ 0, 0) occurs in axial where its Jacobian matrix has three

1
eigenvalues: \; = Oand A3 = —= [5 + 01 + 02+ /(8 + 61 — 62)2 + 26n(K — )] Since |arg (A1)| =
am /2, this axial point is non- hyperbollc When h < h* two axial p01nts occurs glven by EG A = (24,0,0)

and Effl = (2p,0,0) where &, = 5 ¢ + T and I, = ¢ 1/ . It is easy

to validate that both £ and 52 are in Ri and have different stability. As a consequence, all the given
circumstances express the occurrence of saddle-node bifurcation.

Based on and [IT] we obtain more global bifurcation namely backward bifurcation given by
the following lemma.

LEMMA 1. The model (3)) undergoes backward bifurcation driven by the harvesting rate (h).

PROOF. From previous theorems, the axial point £4 exists and LAS while &, unstable when h < h7].
When h] < h < h3, & becomes LAS, £ still exists and LAS, and unstable 52 occurs. The bistability
condition is held for this interval of 4/ which means that the convergence of the solution is very sensitive to
the initial condition. Finally, those two axial points merge when h = hj and disappears when h > h3. This
completes the proof.

Finally, we will show that the memory index in this case the order of the derivative («) affects the
dynamical behaviors of model (3] indicated by the appearance of Hopf bifurcation around the interior point
Er.

THEOREM 12. Suppose the characteristic equation of the Jacobian matrix evaluated at E; can be written
as A3 + &0\ + &)\ + & = 0 which has a pair of complex conjugate eigen values A2 = (1 £ ¢y where
(1 > 0 and one real negative eigen value (A3 < 0). Model 3|undergoes a Hopf bifurcation when the order
2 @)

d

of the fractional derivative o crosses out the critical value o = = arctan

PROOF. From the earlier assumptions, we have minj<;<3 |arg();)| = arctan |g|. Therefore, the

G
&

transversal condition: == [,=+ = 5 which is not equal 0, we can assure that the sign of m(a) is
changes when the bifurcation parameter « passing by a*. It means that the equilibrium point &7 is stable
when a € (0, ") and is unstable for o* < a < 1.

[¢]
G

* 2

solution of m(a*) = a*§ — min|arg(A;)| = 0 is only when o* = Zarctan |32|. If we check the
dm(e)

6 NUMERICAL SIMULATIONS

In this section, we explore the dynamical behaviors of model (3) numerically to support analytical findings,
especially the occurrence of bifurcation. The predictor-corrector scheme given by [10] is employed. All of
the parameters used in these simulations are assumptions matched with the biological conditions given by
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the previous analysis results. This decision was taken because this work does not specifically address an
ecological case involving a particular organism.

To show the occurrence of several bifurcations driven by the harvesting rate (h), we first set the parameter
as follows.

r=0.1, K =5 m=0.25 ¢=0.5, n=0.01,
8 =0.06, 61 =0.05, 60 =0.05, w=0.1, «a=0.9. (23)

By varying the harvesting rate in the interval 0 < h < 0.24, the bifurcation diagram is portrayed as in
We have three types of dynamic behaviors around the axial point. When 0 < h < hj = 0.05, we
have unstable origin point £, and LAS £4. The origin point losses its stability via transcritical bifurcation
when h crosses h] and the unstable axial point £ 4 occurs simultaneously. This dynamics are maintained for
interval h] < h < hj = 0.15125. On the other hand, the stable branch of axial point £ 4 is preserved for
0 < h < h5. The LAS point and unstable point of £4 merge into the non-hyperbolic point when h = h3.
The axial point finally disappeared when h passes through h5 while the sign of &£, doesn’t change. Thus we
have saddle-node bifurcation on axial with h3 as the bifurcation point. If we observe from a more global
point of view, these interesting phenomena represent the existence of backward bifurcation marked by
the occurrence of bistability condition. To show these dynamical behaviors, we choose three values of
harvesting rate in each interval: ~ = 0.02,0.12,0.18 and portray them as phase portraits and time series.
See to[d] The interesting phenomenon called bistability is portrayed in Two equilibrium
points LAS simultaneously impact the sensitivity of the convergence of the solution to the selection of the
initial value. Two closest initial values are set which converge to the different equilibrium points. One of
them convergent to the origin point and the other solution convergent to the axial point. This means, two
conditions may arrive namely the extinction of all populations and the only prey existence point.

The next circumstance occurs in the interior point of model (3|) which demonstrates the influence of the
order of the derivative as the memory index to the dynamical behaviors around the interior point. We set
the parameter as follows.

r=08, K=5 m=0.25 h=0.01,c=0.08 n=02,
B=0.4, 6, =0.01, d3 =0.01, d = 0.01, w=0.1. (24)

To identify the dynamical behaviors, we vary the values of « in the interval 0.76 < o < 1. As result, we
obtain the bifurcation diagram given by For a < a* ~ (.86, the interior point £ is LAS. To show
this condition, we give the phase portraits by selecting a = 0.81 and o = 0.84as given by [Figure 6{a,b).
Nearby solution oscillates and convergent to £;7. When « crosses o =~ 0.86, £ losses its stability via
Hopf bifurcation which is indicated by the occurrence of periodic signal namely limit-cycle. The nearby
solution stays away from &£; and convergent to the limit-cycle. The evolution of the limit-cycle given by
also shows that the diameter of the limit-cycle increases when alpha increases. We portray the
phase portraits in [Figure 6(c,d) to show the dynamics of solutions around £; for « = 0.87 and o = 0.9. It
is shown that the density of all populations are oscillated and finally converges to the limit-cycle which
guarantees that all populations could maintain their existence seasonally. To show the peak of their densities,
we also plot time series in [Figure /| It is clear that for bigger «, the peak is getting higher.
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7 CONCLUSIONS

The dynamics of a predator-prey model incorporating four biological conditions namely age structure,
intraspecific competition, Michaelis-Menten type harvesting, and memory effect have been studied. All
biological validity has been presented such as the existence, uniqueness, non-negativity, and boundedness
of the solution. The dynamics of the model have been explored by showing the global stability condition
for each point, and the appearance of several bifurcations namely transcritical, sadd de, backward, and
Hopf bifurcations. Most of the bifurcations occur around the axial point driven by thedrvesting rate. Some
of the biological impacts of these phenomena are the extinction of all populations or the single existence of
the prey population. The bistability condition exists as the impact of backward bifurcation which states
that the existence of prey depends on the initial condition. The occurrence of Hopf bifurcation occurs in
the interior of the model driven by the order of the derivative as the memory effect. Although the interior
point losses its stability when the order of the derivative increase, the existence of all populations can be
maintained due to the occurrence of a stable limit-cycle. The densities of all populations change seasonally
when the memory effect strengthens and the peak of the density for each population decreases when the
memory effect weakens.
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ABSTRACT

The complexity of the dynamical behaviors of interaction between prey and its predator is studied.

The prey and predator relationship involves the age structure and intraspecific competition on
predators, and the nonlinear harvesting of prey following the Michaelis-Menten type term. Some
biological validities are shown for the constructed model such as the existence and uniqueness
as well as the non-negativity and boundedness of solutions. Three equilibrium points namely
the origin, axial, and interior point are found including their global dynamics by employing
the Lyapunov function along with the generalized Lassale invariant principle. The changes in
dynamical behaviors driven by the harvesting and the memory effect are exhibited namely
transcritical, saddle-node, backward, and Hopf bifurcations. The appearance of these interesting
phenomena is strengthened by giving numerical simulations consisting of bifurcation diagrams,
phase portraits, and their time series.

Keywords: bifurcation, age structure, intraspecific competition, harvesting, memory effect

1 INTRODUCTION

Since Lotka and Volterra introduced the classical predator-prey model, theoretical studies of predation
without age structure have attracted the attention of many authors, see for example [6} 12, 28] 135]. However,
in nature, many species of plants and animals could have life histories that can simply be partitioned into
two age stages: immature and mature stages. In each stage, individuals of species have identical biological
characteristics such as the ability to reproduce, motile, ingest food, and survive [[11]]. In particular, there are
amphibians, insects, birds, and mammals with life cycles that can last from only several days or weeks
to more than a century. For this reason, some researchers have developed the predator-prey model by
incorporating age structure either in prey or/and predator population with other factors that also influence
the dynamics of the predator-prey model, mainly restricted to the classical integer-order, stochastic, or
delay equations [18, 16,8} 132,137,136, 17, [15].




25
26

27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

44
45
46
47
48
49
50
51
52

53
54

Panigoro et al. Bifurcation Analysis of a Predator-Prey Model...

In 1997, Wang and Chen [30] considered the predator-prey model with age structure for the predator
population using time delays. If we ignore the effect of time delay, the model can be written as follows:

dx x
=rx (1 — —) — mxz,

dt K

dy

_— = — —_ 1
7 nxz — By — 01y, (1)
dz

— = By — dyz.

p By — b2z

Here x(t), y(t), and z(t) represent the population densities of prey, immature predator, and mature predator,
at time ¢, respectively. Model (T)) assumes the prey grows logistically with r as the intrinsic growth rate, K
is the carrying capacity; m is the linear Holling type I functional response, n is the conversion rate with
which captured prey are converted to new immature predator, /3 is the maturity rate of the predator, 6; and
02 are the death rate of the immature and mature predator, respectively. It is also assumed that only the
mature predator can feed the prey through the term mazz. If we do not consider the age structure of the
predator population, then model (I]) is reduced to the classical Lotka-Volterra model for which the positive
equilibrium or the boundary equilibrium of this model is globally asymptotically stable. This means that
the model has no periodic solution. On the other hand, [30] prove that in model (T]) there exists an orbitally
asymptotically stable periodic solution around the interior equilibrium point which suggests that the age
structure can cause periodic oscillation of populations.

From the point of view of human needs, harvesting of populations generally occurs in wildlife, forestry,
and fisheries management. When harvesting is integrated into the predator-prey model, there are three types
of harvesting, namely constant harvesting [3], linear harvesting [31], and non-linear harvesting [38]]. In this
paper, we assume that the predator is not a commercial species and there is intraspecific competition among
immature predators. Therefore, the predator-prey model with age structure and intraspecific competition in
predator ((I)) where the prey population is subject to Michaelis-Menten type harvesting is given by

dx (1 x) hx
—=rz|(l— =) —mzz—
K )

dt c+x

d

i = nxz — By — 61y — wy’, (2)
dt

dz

— = [y — 022.

o =Py — 02z

An example of prey-predator interactions whose biological phenomena are described in the model (2) can
be found in the African wild dog with its prey impala. The African wild dogs are a social structure that
lives in packs. For three to four weeks, young African wild dogs were in the den with their mother. All
adult members of African wild dogs are caring for the young and provide food for them. The hunting
members of the pack will return to the den where they regurgitate meat for the nursing female and young.
In some cases, more young fail to survive because the hunting member does not bring back sufficient food
for the young which lead to intraspecific competition in immature predator [22]. On the other hand, the
prey, impala, even though there are no major threats to their survival, poaching has become significantly
contributed to the decline in its number [14].

Note that the growth rates of the prey, immature, and mature predator populations in the model (2))
depend only on the local state as the left-hand side is the integer-order derivative. On the other hand, most
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biological systems have properties where the current state is affected by all of the past states or it’s called
the memory effect. Therefore, modeling with memory effects can be done by analyzing the system using
fractional-order calculus [[13, 21]. The operators of the fractional-order derivative have non-local properties
to make them more suitable for dynamical systems which have memory influences on their state variables.

After Riemann and Liouville generalized the concept of integer-order calculus to the fractional-order
calculus over two decades ago, the studies about the predator-prey models with fractional-order differential
equation have gained much attention, for example, [27, 123, (3,19, 134, |10} 24]. The fractional-order derivatives
are defined as an integration that provides the ability to store the whole memory over time and hence it
could give an exact description of different ecological phenomena. For this reason, the new structure for
the model (2) is given in the following form.

h
CDx(t) = ra (1 — %) —mzz — cfx = Fi(x,y, 2),
“DRy(t) = naz — By — 1y — wy’ = Falay, 2), ®

CDtaZ(t) = ﬁy - 522 - Fg(ﬂf,]j,Z)-

The existence and local stability of all equilibrium points of model (3] are discussed in [25]. However,
to the best of our knowledge, the global dynamics and bifurcation analysis of model (3), to this day,
has not been investigated. Here, CD? f(t) is the standard Caputo derivative for a continuous function
f(z) € C(]0, +00),R) which is defined as follows

C o o 1 t f/(T) T
DL = ey | oo @

where I'(x) is the gamma function, ¢ > 0, and 0 < a < 1 is known as the order of the fractional derivative.

Because of the above mentioned, we have organized our work in several sections: In we
develop the existence and uniqueness solution of the model (3)). To check the biologically well-posedness
of the model, we establish the non-negativity and boundedness of solutions of the model in In
we derive some sufficient conditions to ensure the global asymptotic stability of each locally
asymptotically stable equilibrium point by applying the Lyapunov functions. We then analyze the existing
conditions of transcritical, saddle-node, backward, and Hopf bifurcations in Some numerical
simulations of our obtained results are carried out in Finally, the conclusions are given in

2 EXISTENCE AND UNIQUENESS

In this section, we will show that the model (3)) has a unique solution. A similar manner given by [[19]
is adopted. We first take the Riemann-Liouville integral (Definition 1 in [33]]) on both sides of to
achieve the following Volterra-type integral equations.

t
£(t) — 2(0) = ﬁ /0 F(N()(t - 7)o dr,
t
y(t) — y(0) = ﬁ /0 By(N()(t - 1)~ dr, 5)
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2(t) — 2(0) = — )/O Fy(N()(t - 1) dr,

()

. Now, we will show that the kernels F;(N(t)), i = 1,2,3 satisfy
the Lipschitz condition. For ||.|| is the Euclidean norm, we suppose that ||z(t)|| < a1, ||Z(t)| < a2,
ly@®)| < as, |[gt)|| < aq, ||2(t)|| < as, and ||Z2(t)|| < ag are bounded functions. For z, z, v, 9, z, and Z,

we have
( ] T ) hx B < ] T > B hz
re 7 mz s rT e miz -

£ (2(1)) = Fu(2(0)]l =

- T(aj—x)—%(:p%—x}(:p—x)—mz(x—x)—ch((C_{_z_iLx )H
STHx—:UH—l—wHw—az”+a5m]|:c—:1:H+EH$—xH
=0 ”‘T - f“ )

17 (y(t) = F2 (g()|| = ||[nez = By — b1y — wy?] — [naz — By — 617 — wi?] |

=-Bly—9) —aly—9) —wy+9y -7
< Blly =gl + 1 lly — yll +wlas + a4) |ly — 9l

=g2lly —ull,
£ (2(8)) = F3 (z(0)]] = [I[By — d22] — [By — 627]|
<gslz—=zl,

h
where g1 =7 + W +asm+ —, go = f+ 81 +w(as + aq), and g3 = 2. Therefore, we conclude
c

that F;, « = 1, 2, 3 satisfy the Lipschitz condition. Furthermore, it is clear that if 0 < g; < 1 then F; are
contractions for ¢ = 1, 2, 3. Therefore, the following theorem is obtained.

THEOREM 1. The kernel F;(N(t)), i = 1,2,3 satisfy the Lipschitz condition and contractions if
0<gi<l,i=123

Next, the can be written as follows.

x(t) :$(0)+ﬁ/0 Fi(N()(t—7)tdr
y<t>=y<0>+ﬁ /0 By(N()(t — 1)L dr
t
2(t) = 2(0) + ﬁ /0 B(N(@)(t - 1) dr.

which can be writen by the following recursive formula

t
xn(t) = z(0) + ! ] /0 Fi(7, 21,1, 2)(t — 7)1 dr,

@)
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) =90)+ s [ Palrinor,2)(e =),
t
zn(t) = 2(0) + ﬁ/o F3(1, 2,1, 2n1)(t — 7)1 dr,

with initial conditions xo(t) = x(0), yo(t) = y(0), and zo(¢) = 2(0). Therefore, we have

1 t
Qpln(t) = l’n(t) - In—l(t) - m/o (Fl(T, Tn—1,Y, Z) — F1(7—’ Tn_9,, Z)) (t _ T)a—l d7‘,
t
902n(t) = yn(t) - yn—1(t) = ﬁ/o (FQ(T,.Q:, Yn—1, z) _ FQ(T,QS’, Yn—2, Z)) (Zf o 7_)04—1 dT, (6)
t
eaa(8) = (0) = 511(0) = s | (Ba(ry. ) = Fa(roy. 50)) ¢ = )7,

where @, (t) = Y771 91, (1), yn(t) = D25 2,(t), and 2z, (t) = D27 w3, (t). Now, we evaluate the
norm of We achieve

I, (DI = lln(t ) — zn-1 (1)

/ |(F1(7, 2n=1,y, 2) — Fi(T,2n—2,y,2)) (t — 7)*

o2, (D) = ||yn( — Yn—1(t)|l
/ |(Fa(r, 2, yn1, 2) — Folr, 0, yns, 2)) (¢ — 7)° L dr ], ™
s, () = Hzn( ) — zn—1(t)]|
< ﬁ /Ot (Fs(r 2,5, 2n1) — Fy(r 2,4, 2n2)) (¢ — 1) L dr]).

From we have that the kernel satify the Lipschitz condition and hence becomes

1= Zpo|| (= 7)2 L dr,

Jen(®) = 01Ol < £
t
o) = 3] < 25 /O lnet — yn_sll (£ — 1)~ dr,

t
Jz0lt) = 20t O < 225 [ enms = sl (6= 7)1

The last inequality gives
g1 !
D < = d
e Ol < s [ el dr

t
a0l < s /0 2, ()| dr, ®)
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g3 [
o (1 < 55 | s o

84 Finally, the existence of a solution is given by the following theorem.

85 THEOREM 2. The solution of model has a solution under the condition if we have t1 such that
t19i

—_— 1,i=1,2,3.
86 <F(a+1))< , 1 , 2,3

PROOF. We assume that (), y(t), and z(¢) are bounded and their kernel F;, i = 1,2, 3 satisfy Lipschitz
condition. According to (8)), we obtain

w01 < o0l | 5205

(a+1)

a0 < )] [ 225 )

a0 < a0 | 225 ]

which represent the existence and continuity of the system. To show that the solution of the model (3]) can
be set up from the functions (9)), We assume

y(t) — y(0) = yalt) — Qo, (1), (10)

where ();,, ¢ = 1,2, 3 are remaining terms. Furthermore, the given terms would be demonstrated hold
|Qi || — 0Vi=1,2,3. Denote we find that

1Quall H—/tm(my,) Fi(ryan 1,,2) dr

< F / HFI T,2,Y, 2 ) Fl(T,xnfl,y,Z)H dr

<—
_F(Oé—i— >H.CE Tn— 1”

1Qonll (1) < H—/t@(my, 2) — Fo(ry 2,y 1,2) dr

= F / HF2 T, L, Y,z ) FQ(Taxayn—bz)H dr (11)
_ﬁﬂy Yn—1]) -

t
1Qanll (¢ H—/O (Fy(r,,9,2) — Fy(m 0, 21)) dr

Frontiers 6
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1 t
< —— F: — F )|l d
< e | 1B = Bz dr
tgs

< — — 11l .
=T(a+1) 2 =zl

By applying recursive pattern, we acquire

an+1

Han (t) H < _m_

¢ an+1

n
g1 r,

HQ% (t) H < _m_

an+1

9ok, (12)

Qs < |

n
v 3
T(ar1y)] 73

At the point ¢1, we have

qn+1

_ "
Han (t) H < _m_

r t 1n+l1
HQQn(t)H < _m_

r t q1n+1
||Q3n(t)|| < _m_

g1k,

9ok, (13)

g3 k.

87 By considering the results of and applying n — oo to both sides, we have ||Q;_ || — 0 Vi =
88 1,2,3.

In the end, we will show that the solution unique for each initial value by utilizing the contradiction
approach. Suppose that there exists another solution of the model (3)) namely 1 (¢), y1(¢), and 21 (t). Then

we have
t
2(t) — 21() = ﬁ/o (Fi(7.2,1, 2) — Fi(7,0n1,9,2)) dr,
1 t
Y= (0) = o /0 (Fo(r 2.y, ) — Bo(r, 21, 2)) dr. (14)
z(t) — z1(t) = ﬁ/o (F3(1,2,9,2) — F3(T, 2,9, 2p—1)) dT.

Applying the norm on both sides, we achieve
1 t
lo) =010l < 775 [ WA(.9.2) = s v, 2] dr

t
() — s (0)] < ﬁ /O |Fa(r, 2,9, 2) — Fo(r, 2, s, )| dr. (15)
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1 t
z(t) — z1(t S—/ Fs3(r,x,y,2) — F3(7, 2,9y, 2n—1)|| dT.
12(2) = z1.(B)] o) o [1E3( ) — F3( )l

By considering [Theorem 1}, we obtain

[(t) — 1 (D) < FL [(t) =z (D]

ly(t) =

12(8) = z1(1)]| < Tla+1)

Therefore, the following equations are obtained.

() — 1 ()]
ly(t) =y ()]l
12(8) = 21 (D)

As results, we achieve ||z(t) — z1(t)||
x(t) = z1(t), y(t) = y1(t), and z(t) =

=0, [ly(t)

(a+1)

92 \y(t) — (o)

()H_m

a—l—)

IN

1291
l— — 0
Mo+ 1))

(
(i)
(

IN

0

12(2) = z1(2)]] -

9

Y

¢
1—i>§0.

F(a+1)

(16)

—y1(t)|| = 0, and ||2(t) — z1(¢)|| = 0 which impact

z1(t). Then, we finally give the following theorem.

THEOREM 3. The Caputo fractional-order predator prey model (3)) has a unique solution.

3 NON-NEGATIVITY AND BOUNDEDNESS

In this section, we will show that for any initial condition in Ri where

R} = {(z,y,2)

the solution not only exists and is unique but also bounded and always in Ri

have the following two theorems.

THEOREM 4. If the initial condition in Ri’_

. . 3
model (3) remain in R3..

cx>0,y>0,2>0, zeR, yeR},

as t — oo. Therefore, we

then both population densities of prey and predator given by

PROOF. To prove this non-negativity condition, we apply reductio ad absurdum (contradiction method)
which also use in [l 20]. We assume that there exists ¢ > 0 such that

z(
z(
z(

~

t
t

)
)
4

)

>

<

0, when 0 < t < ¢,
0, whent =1
0, whent = tT.

(17)
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From the first equation in along with we have

“DR (1)), = 0. (18)

According to Lemma 3.1 in [4], we get () = 0 which contradicts with where z(t*) < 0. This
means that 2:(¢) > 0 for all ¢ € [0, oo]. In similar manner, we can show that y(¢) > 0 and z(¢) > 0 for all
t € [0, 0c]. In a conclusion, we have the non-negative solution for model (3) when the initial values in R‘i.

THEOREM 5. The solution of model (3)) is always bounded in Ri for the initial condition in ]Ri.

PROOF. Since we work the population model, it is natural that the population must be bounded due to
the limitation of their biological resources which also knows as environmental carrying capacity. Thus, the
boundedness of the solution of model (3) is also important to learn and prove. From [Theorem 4] we can
define a positive function as follows.

Nit)=z+—=+—. (19)
For any v > 0, the following fractional-order differential equation holds.

CDEN(E) + AN (1) = “Dfa(t) + ~ODFy() + —CDy(t) + YN (1)

h
= (ra:(l—%>—mxz— ‘ )+%(nwz—ﬁy—(51y—wy2)

c+x
Ty oy2) g T T
n n n
ra? hx Ssimy  wmy?  damz ymy — ymz
= — — — - - - T+ —2 4
K c+z n n n n n
Cpp T Otmy  bmz L ymy | yma
K n n n n
2
re mz
=(r+y)e— o=+ (y=0) =+ (y—02)——
By choosing v < min{dy, d2}, we obtain
C o 7’1’2
DIN(t) + N () < (r+ ) — ==
T xQ_(r—i-v)Kx
K r
_ o (a ENEe (P9 (r+9)’K?
K r 4r2 4r2
|, K 2 (r+9)*K?
K 2r 4r2
T x_(r+7)K 2 (r+7)*K
K 2r 4r
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_ (r+)?K
- 4r

According to Lemma 3 in [26]], we apply the comparison principle and obtain

(r +7)*K

(r+79)%K
4y ’

4yr 20

Nit) < (W0 - ) Futel +

2K

(t) — (r+7)°K
R dyr
initial conditions are confined to {2 where

For ¢t — oo, we achieve which means all solutions of model (3)) with non-negative

2
Q::{(x,y,z)e]Ri:./\/'(t):x(t)—i—mi(t)—i— 4 <aa:%+e,a>0}. @1

4 GLOBAL DYNAMICS

In this section, the global dynamics of model (3)) are investigated. Denote that all biological equilibrium
points, their existence conditions, and their local stability are successfully described in [25]] which can be
rewritten by the following theorem.

THEOREM 6. (i) The origin point £, = (0,0,0) always exists. It is locally asymptotically stable (LAS)
h
ifr < —.
c
h
(ii) The axial point €4 = (,0,0) where  is positive root of > + (¢ — K)x + (— — c) K = 0 which
r

has

h
(a) an equilibrium point if c > —.
r
h
(b) a pair of equilibrium points if c < min {K, — }
r
(c+2)%r (B + 81)02
pn -

(iii) The interior point 1 = (x*,y*, 2*) exist if a;, i = 2, 3 in [25] satisfies the following statements.

Moreover, it is LAS if h < and & <

(a) An equilibrium point in Ri ifaz < 0.
(b) Two equilibrium points in sz’r if ag < 0andas > 0.
The LAS condition of E1 can be seen in Theorem 4 in [25].

Denote that all equilibrium points may attain local asymptotic stability with several biological conditions.
Now, we will identify the biological properties to obtain globally asymptotically stable (GAS) for each
equilibrium point. The analytical results are given by the following three theorems.

THEOREM 7. The origin point £, = (0,0,0) is GAS if r < =
c+o

PROOF. We define the positive definite Lyapunov function as follows.

m mz
Vi(z,y,2) =x+ my + — (22)
n n
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By applying Lemma 3.1 in [29], we compute the c—order derivative of V) (z, y, z) along the solution of
model (3)) as follows.

CD,?Vl(m, y,z) < CDtO‘x + %CDto‘y + %CD?Z

x hax m m
= (r:p (1 — ?> —mxz — ) + E(nxz — By — 01y — wy?) + E(By — 022)

c+x

ra? hx Bmy  oimy  wmy®  Pmy  damz
=rr———mrz— +mxz — — — =+ -

K c+x n n n n n

ra? hx Sty wmy?  damz
=rr- — — —_ J— J—

K c+z n n n

hx oymy  damz

<rzr-— - — .

c+x n n

From[eq. (21)] we have z < ¢ and hence

h ) S
CDOV) (2,y, 2) < 1o — —0 NG 022

c+o n n
( h ) oymy  domz
= — —r|lx— —
c+o n n

Therefore, DV (z,y,2) < 0 forall (z,y,z) € RY if r < . We also find that “D§Vy (z,y, 2) = 0

cto
if (x,7,2) = (0,0,0). This conveys that {£,} is the only invariant set on wich “D¢Vy (x,y,2) = 0.

Obeying Lemma 4.6 in [13], r <

n obviously becomes the biological condition of &, to a reach GAS.
c+o

J
THEOREM 8. The axial point £4 = (2,0,0) is GAS if — < T < =
cr n

PROOF. We construct a positive definite Lyapunov function based on the Volterra equation as follows.

Wo(x,y,2) = (x—i:—:i’lng

m mz
)+
T

— 4= (23)
n n
The a—order derivative of Va(z, y, z) along the solution of model (3)) given by Lemma 3.1 in [29] is given

by

A CPa CPa
r—x m~ D m-D¢z
C,D?VQ(.CC,Z/,Z)S < >CDfsc+ ty—l— t

x n n
T =2 x hx m 9

:( ” ><rm<1—?>—mxz—c+x)+E(nxz—/8y—51y—wy)+

m

— (By — 022)

. re h moy  mwy®  mosz
=(z—2)(r———mz— +mzz — - -
K ct+x n n n

B . r . h(z — ) méry  mwy?  mdaz
= (z x)( K(ac ) + ct (et ) mz) + mxz . - -
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2 2
r h(z—12 mo mw mooz
_ T (—)A+mA _mdiy  mwy”  mdy
K (c+2z)(c+7T) n n n
h(z —32) § 5
< Do MBS, Mo mosz
K cx n n

__(r_h (x—:i“)z—mély— 5—2—£ mz
K cz n n

hK )
Since — < & < —2, we have CDVy(2,y,2) < 0 for all (z,y,2) € R3. It is also clear that
C n

,
CDMVy(2,y, 2) = 0if (z,y,2) = (2,0,0). This confirms that {£4} is the only invariant set on which
CD,?‘VQ(JJ, y,z) = 0. Therefore, £4 is GAS due to Lemma 4.6 in [13]]. This confirms the justifiability of
Theorem 8

* 1 — ma* * _ 2
THEOREM 9. Let {1y := {(1’7% z) < 1= ma")my ng} and h < % The interior point
2

Er = (z*,y*, z%) is GAS in Qx.

(1 + om)my*

PROOF. Consider a positive definite Lyapunov function as follows.

* * T m * * xr 1(2_Z*>2

By appying Lemma 3.1 in [29] and Lemma 1 in [2], we obtain the a—order derivative of V3(x,y, z) as
follows.

_ ¥ _ % 1 X
CDtaVS(xvy7z) < (x ° ) Cptax + @ (y Y ) CD??/‘{‘ - <Z *Z ) CD?Z’
x n Y 02 z

(5 (0 ) e )

n 02
r h(x — z*)
=(rz—2—-——=@—2")—m(z—2") +
( )< K( ) ( ) (c—l—x)(c—l—x*))
o [(Mmxz  mxtzt mw(y —y* (Y z—z*
] e AR F R EE—
Yy Yy n Yy <
"o b mete 4 mats p PEZT) my'az may
= ——=(v—=x mz*r + ma*z - -
K (c+z)(c+ z¥) Y y*
mw(y—y") vz 2y (z—2%)°
e e A
n y* y* ok
Applying we have
2 2
Cyo r_h w2 mwy—y)t  (z—27)
D < (Z_2Yap_o?o _
Vilend) < - (- ) @) . =
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- (1 —mx* — ni—;) z+ (1+om)z*.

(1 =mx*)my* —no

Since — < , we achieve
z (1 + om)my*
CDaV ( ) < r h ( *)2 mw (y_y*)2 (Z_Z*)2
P Vo(x,y,2) < A T —x - o .

2
Thus, D¢V (x,y, 2) < 0 forall (z,y,z) € RS when h < % We also confirm that “ DfVs(x, y, 2) = 0

if (x,y,2) = (2*,y*, z*) and hence {€]} is the only invariant set on which “D®Vs(z, v, z) = 0. Based on
Lemma 4.6 in [13]], the interior point £; is GAS in {2x. This ends the proof.

5 BIFURCATION ANALYSIS

In this section, we will study the occurrence of several phenomena namely transcritical, saddle-node,
backward, and Hopf bifurcations. Two parameters are chosen namely the harvesting rate (h) and the order
of the derivative («) as the memory index. For the analytical purpose, we define the following parameter.

hi = cr,

h*_(c—i—K)zr

274K

*_2

o = —arctan |—|.
7T 1

Next, the following theorem is given for describing the occurrence of transcritical bifurcation driven by the
harvesting rate (h) as the bifurcation parameter.

THEOREM 10. The origin point £, and the axial point £ 4 exchange their stability via transcritical
bifurcation when h passes through hj.

PROOF. Since the axial consists of two equilibrium points, we focus on the axial point nearest to the
origin point. When h = hj, the axial point merge with the origin point & = £4 = (0,0, 0) where the
eigenvalues of the Jacobian matrix are: A\; = 0, Ao = (5 + d1), and A3 = —do. We obtain |arg (A2 3)| =
7 > am/2 while |arg (A1)| = am/2. This means & = €4 = (0,0, 0) is non-hyperbolic. When i} < h <

K 2
%, by applying Theorems 2 and 3 in [25]], £ becomes LAS while the nearest £ 4 becomes a saddle
point. For 0 < h < hj, The origin & becomes unstable and nearest £4 ¢ Ri becomes unstable. This

condition show the existence of transcritical bifurcation where i becomes the bifurcation parameter while
h = hj is the bifurcation point.

Now, the existence of saddle-node bifurcation on axial will be proven by still regarding the harvesting
rate (h) as the bifurcation parameter. As a result, the following theorem is proposed.

h
THEOREM 11. Suppose that ¢ < min ¢ —, K } The axial point € o undergoes saddle-node bifurcation
r

when h passes through the bifurcation point hj.
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PROOF. According to Theorem 1 in [25]], the axial point does not exist when i > h3. When h = h3,

. s . K—c o . . .
a unique equilibrium point £4 = <T’ 0, O) occurs in axial where its Jacobian matrix has three

1
eigenvalues: Ay = 0and Ao 3 = — = [5 + 01+ 02+ \/ B+ —d2)2+ 206n(K — )} Since |arg (A1)| =
am /2, this axial point is non- hyperbohc When h < h* two axial pomts occurs given by &G A (Z4,0,0)

[(h* — - [(h* —
—I— —_ and Tp = € . It is easy
r

to validate that both £ and 521 are in Ri and have different stability. As a consequence, all the given
circumstances express the occurrence of saddle-node bifurcation.

and 5&’1 = (2p,0,0) where z, =

Based on [I'heorems 10jand |1 1} we obtain more global bifurcation namely backward bifurcation given by
the following lemma.

LEMMA 1. The model (3)) undergoes backward bifurcation driven by the harvesting rate (h).

PROOF. From previous theorems, the axial point £9 exists and LAS while &, is unstable when h < h7].
When h] < h < hj, £, becomes LAS, £ still exists and LAS, and unstable 821 occurs. The bistability
condition is held for this interval of h which means that the convergence of the solution is very sensitive to
the initial condition. Finally, those two axial points merge when h = hJ and disappear when h > hj. This
completes the proof.

Finally, we will show that the memory index in this case the order of the derivative («) affects the

dynamical behaviors of model (3) indicated by the appearance of Hopf bifurcation around the interior point
Er.

THEOREM 12. Suppose the characteristic equation of the Jacobian matrix evaluated at E1 can be written
as N2 + E02 4+ &)\ + &3 = 0 which has a pair of complex conjugate eigenvalues A2 = (1 £ iCo where
(1 > 0 and one real negative eigenvalue (A3 < 0). Model undergoes a Hopf bifurcation when the order

of the fractional derivative o crosses out the critical value o* = arctan gz

PROOF. From the earlier assumptions, we have minj<;<3|arg(\;)| = arctan g Therefore, the
solution of m(a*) = o*% — min|arg()\;)| = 0 is only when o* = 2 arctan 5.2 If we check the
transversal condition: d";((l la=a* = 7% which is not equal 0, we can assure that the sign of m(a) is
changes when the bifurcation parameter « passing by «*. It means that the equilibrium point &7 is stable

when « € (0, @*) and is unstable for o* < o < 1.
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5.00

E—stable
o - === &, —unstable
o)
=== £,—unstable
=R 7
& / — &,—stable
_’
0 - —
o ”,a’ ® =005
=" -~ *
g ________ _‘- l l ! B Ah5=0.15125
6.00 0.06 0.12 0.18 0.24

Figure 1. Bifurcation diagram driven by the harvesting rate (h) of model (3) around the axial point using
the parameter values: » = 0.1, K = 5, m = 0.25, ¢ = 0.5, n = 0.01, 8 = 0.06, 6; = 0.05, 63 = 0.05,
w=20.1,and o« = 0.9.

e Initial values W &~ (4812,0,0) T“Q = L

® £ ~(0,0,0) g8
0 /J | | |

—
%)

5 T 006 -
0.008= |
0.12 : : :
-~ n
g‘() \N/O.O()* —
' 4 0.06 i 0-005 200 700 500 500 1000
z(¢) 8 0.00 y(t) t

Figure 2. Phase portrait and time series of model (3) using parameter values: » = 0.1, K = 5, m = 0.25,
c¢=0.5,n=0.01, 8 =0.06, 61 = 0.05, 62 = 0.05, w = 0.1, « = 0.9, and h = 0.02

(3.5,0,0) T 0.6 S

e Initial values

® £,~(0,00)

| | | |
9 0.05 0 200 100 600 800 1000
z(t) 4 0.00 y(t) t

Figure 3. Phase portrait and time series of model (3) using parameter values: » = 0.1, K = 5, m = 0.25,
c¢=0.5,n=0.01, 8 =0.06, 61 = 0.05, 62 = 0.05,w =0.1,« = 0.9, and h = 0.12

6 NUMERICAL SIMULATIONS

In this section, we explore the dynamical behaviors of model (3]) numerically to support analytical findings,
especially the occurrence of bifurcation. The predictor-corrector scheme given by [[7] is employed. All of
the parameters used in these simulations are assumptions matched with the biological conditions given by
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F 0.4
e Initial values ® & ~(0,0,0) . = 9 B
]
0& Il Il Il Il
0.10 , , , ,
s~
02 ) %005 -
0.00 L : - !
0.4 T T T T
SN i
" 0.0 w02
0 0.10 0.0 I | | |
2 0.05 0 200 400 600 300 1000
z(z) 4 0.00 y() t

Figure 4. Phase portrait and time series of model (3)) using parameter values: » = 0.1, K = 5, m = 0.25,
c=0.5,n=0.01, 8 =0.06, 01 = 0.05, 02 = 0.05, w = 0.1, « = 0.9, and h = 0.18

—— Limit-cycle
— & —stable
== = &/ —unstable

@® o ~086

RN
l""'"' \
"

) l]"’;jr’]";’“

0.76 ) 1 Z@\
o 1.00 2

Figure 5. Bifurcation diagram driven by the order of the derivative («) of model (3) around the axial point
&1 using parameter values: r = 0.8, K =5, m = 0.25, h = 0.01, ¢ = 0.08, n = 0.2, § = 0.4, §; = 0.01,
92 = 0.01, 02 = 0.01, and w = 0.1.

the previous analysis results. This decision was taken because this work does not specifically address an
ecological case involving a particular organism.

To show the occurrence of several bifurcations driven by the harvesting rate (h), we first set the parameter
as follows.

r=01, K=5 m=025 c=05, n=0.0l,
B =0.06, 61 = 0.05, 5, = 0.05, w = 0.1, @ = 0.9. (25)

By varying the harvesting rate in the interval 0 < i < 0.24, the bifurcation diagram is portrayed as in
We have three types of dynamic behaviors around the axial point. When 0 < h < h] = 0.05, we
have unstable origin point £, and LAS £ 4. The origin point losses its stability via transcritical bifurcation
when h crosses h} and the unstable axial point £4 occurs simultaneously. These dynamics are maintained
for interval h] < h < hj = 0.15125. On the other hand, the stable branch of axial point £4 is preserved for
0 < h < h5. The LAS point and unstable point of £4 merge into the non-hyperbolic point when h = h3.
The axial point finally disappeared when h passes through h35 while the sign of &£, doesn’t change. Thus we
have saddle-node bifurcation on axial with 3 as the bifurcation point. If we observe from a more global
point of view, these interesting phenomena represent the existence of backward bifurcation marked by
the occurrence of bistability condition. To show these dynamical behaviors, we choose three values of
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harvesting rate in each interval: h = 0.02,0.12,0.18 and portray them as phase portraits and time series.
See to[d] The interesting phenomenon called bistability is portrayed in Two equilibrium
points LAS simultaneously impact the sensitivity of the convergence of the solution to the selection of the
initial value. The two closest initial values are set which converge to the different equilibrium points. One
of them convergent to the origin point and the other solution convergent to the axial point. This means, two
conditions may arrive namely the extinction of all populations and the only prey existence point.

From the biological point of view, these numerical bifurcations describe the possibility for the prey to
extinct or survive due to the change in the harvesting rate while the predator both mature and immature
always extinct (Figure I). Three feasible conditions may happen. First, for any sufficiently small harvesting
rate (0 < h < h] = 0.05), the prey population may maintain its existence in this ecosystem (Figure 2)).
Second, if the harvesting rate increases (h] < h < h3), two possible conditions may occur namely the
extinction of prey or the viability of prey. These circumstances depend on the initial condition where if the
initial condition is quite close to the origin point, the prey will be extinct, and for the initial condition is far
enough from the origin point, the prey can survive extinction (Figure 3)). Third, the harvesting rate is again
increased (h > h3), the population of prey will finally extinct and there are no population again in this

ecosystem (Figure 4)).

The next circumstance occurs in the interior point of model (3) which demonstrates the influence of the
order of the derivative as the memory index to the dynamical behaviors around the interior point. We set
the parameter as follows.

r=0.8, K=5 m=0.25 h=0.01, c=0.08 n=0.2,
B =04, 61 =0.01, 6o =0.01, 2 =0.01, w =0.1. (26)

To identify the dynamical behaviors, we vary the values of « in the interval 0.76 < o < 1. As result,
we obtain the bifurcation diagram given by For o« < o* =~ (.86, the interior point £; is LAS.
To show this condition, we give the phase portraits by selecting &« = 0.81 and o« = (.84 as given by
Figure 6(a,b). Nearby solution oscillates and convergent to £;. When « crosses a* ~ 0.86, £ losses its
stability via Hopf bifurcation which is indicated by the occurrence of periodic signal namely limit-cycle.
The nearby solution stays away from £; and convergent to the limit-cycle. The evolution of the limit-cycle
given by also shows that the diameter of the limit-cycle increases when alpha increases. We
portray the phase portraits in [Figure 6{c,d) to show the dynamics of solutions around £; for @ = 0.87 and
a = 0.9. It is shown that the densities of all populations are oscillated and finally converge to the limit
cycle. The physical interpretations of Hopf bifurcation driven by « are closely related to the influence of
the memory on the change of behaviors around the interior point. The stronger the influence of memory,
the higher the ability of prey and predators to maintain their existence (o < a*). For less memory effect
which is indicated by o > o, all populations lose the ability to stabilize their number of individuals. The
population density fluctuates according to seasonal patterns which indicates by the appearance of a limit
cycle (Figure 6|c.,d)), and the peak of each population also increases for less memory effect (Figure 7).
Although the density for each population can not tend to a constant number, in this case, the memory effect
cannot cause the extinction of every population.
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7 CONCLUSIONS

The dynamics of a predator-prey model incorporating four biological conditions namely age structure,
intraspecific competition, Michaelis-Menten type harvesting, and memory effect have been studied. All
biological validity has been presented such as the existence, uniqueness, non-negativity, and boundedness
of the solution. The dynamics of the model have been explored by showing the global stability conditions
for three equilibrium points namely the origin, the axial, and the interior points. We have shown that three
bifurcations phenomena driven by the harvesting rate occur around the axial point namely transcritical,
saddle-node, and backward bifurcations. The bistability condition exists as the impact of saddle-node
bifurcation which states that the existence of prey depends on the initial condition. A bifurcation driven
by the memory effect also has been shown around the interior point which is called Hopf bifurcation. All
the bifurcation phenomena have an impact on the densities of the population not only may reduce their
densities but also threatening the existence of several populations.
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Gorontalo, Indonesia

The complexity of the dynamical behaviors of interaction between prey
and its predator is studied. The prey and predator relationship involves the
age structure and intraspecific competition on predators and the nonlinear
harvesting of prey following the Michaelis—Menten type term. Some biological
validities are shown for the constructed model such as the existence and
unigueness as well as the non-negativity and boundedness of solutions. Three
equilibrium points, namely the origin, axial, and interior points, are found
including their global dynamics by employing the Lyapunov function along
with the generalized Lassale invariant principle. The changes in dynamical
behaviors driven by the harvesting and the memory effect are exhibited,
including transcritical, saddle-node, backward, and Hopf bifurcations. The
appearance of these interesting phenomena is strengthened by giving
numerical simulations consisting of bifurcation diagrams, phase portraits, and
their time series.

bifurcation, age structure, intraspecific competition, harvesting, memory effect

1. Introduction

Since Lotka and Volterra introduced the classical predator-prey model, theoretical
studies of predation without age structure have attracted the attention of many authors,
for example Deng et al. [1], Huang et al. [2], Tahara et al. [3], and Zeng et al. [4]. However,
in nature, many species of plants and animals could have life histories that can simply be
partitioned into two age stages: immature and mature stages. In each stage, individuals of
species have identical biological characteristics, such as the ability to reproduce, motile,
ingest food, and survive [5]. In particular, there are amphibians, insects, birds, and
mammals with life cycles that can last from only several days or weeks to more than a
century. For this reason, some researchers have developed the predator-prey model by
incorporating age structure either in prey or/and predator population with other factors
that also influence the dynamics of the predator-prey model, mainly restricted to the
classical integer-order, stochastic, or delay equations [6-13].
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In Wang and Chen [14] considered the predator-prey model
with age structure for the predator population using time delays.
If we ignore the effect of time delay, the model can be written
as follows:

dx
dt
Y nxz— py - b1y,
dt

dz
dt

=rx (1 — %) — mxz,
1)
=By — 62z.

Here x(t), y(t), and z(t) represent the population densities
of prey, immature predator, and mature predator, at time ¢,
respectively. Model (Equation 1) assumes that the prey grows
logistically with r as the intrinsic growth rate, K is the carrying
capacity; m is the linear Holling type I functional response, n
is the conversion rate with which captured prey are converted to
new immature predator, 8 is the maturity rate of the predator, §;
and §; are the death rate of the immature and mature predators,
respectively. It is also assumed that only the mature predator can
feed the prey through the term mxz. If we do not consider the
age structure of the predator population, then model (Equation
1) is reduced to the classical Lotka-Volterra model for which
the positive equilibrium or the boundary equilibrium of this
model is globally asymptotically stable. This means that the
model has no periodic solution. On the other hand, Wang and
Chen [14] prove that in the model (Equation 1), there exists
an orbitally asymptotically stable periodic solution around the
interior equilibrium point which suggests that the age structure
can cause periodic oscillation of populations.

From the point of view of human needs, harvesting of
populations generally occurs in wildlife, forestry, and fisheries
management. When harvesting is integrated into the predator—
prey model, there are three types of harvesting, namely
constant harvesting [15], linear harvesting [16], and non-linear
harvesting [17]. In this article, we assume that the predator is
not a commercial species and there is intraspecific competition
among immature predators. Therefore, the predator-prey
model with age structure and intraspecific competition in
predator (Equation 1), where the prey population is subject to
Michaelis—Menten type harvesting, is given by

dx X hx
@i g) e

b = nxz — By — 81y — wy?, (2)
dt

dz

s =By — dz.

An example of prey-predator interactions whose biological
phenomena are described in the model (Equation 2) can be
found in the African wild dog with its prey impala. The African
wild dogs are a social structure that lives in packs. For 3-4
weeks, young African wild dogs were in the den with their
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mother. All adult members of African wild dogs are care for their
young ones and provide food for them. The hunting members
of the pack will return to the den where they regurgitate meat
for the nursing female and young. In some cases, young ones
fail to survive because the hunting member does not bring
back sufficient food for the young, which leads to intraspecific
competition in immature predator [18]. On the other hand, the
prey, impala, even though there are no major threats to their
survival, poaching has become significantly contributed to the
decline in its number [19].

Note that the growth rates of the prey, immature, and mature
predator populations in the model (Equation 2) depend only on
the local state as the left-hand side is the integer-order derivative.
On the other hand, most biological systems have properties
where the current state is affected by all of the past states or it
is called the memory effect. Therefore, modeling with memory
effects can be done by analyzing the system using fractional-
order calculus [20, 21]. The operators of the fractional-order
derivative have non-local properties to make them more suitable
for dynamical systems that have memory influences on their
state variables.

After Riemann and Liouville generalized the concept of
integer-order calculus to the fractional-order calculus over
two decades ago, the studies about the predator-prey models
with fractional-order differential equation have gained much
attention, for example, Rahmi et al. [22], Owolabi [23], Barman
et al. [24], Ghanbari and Djilali [25], Yousef et al. [26], Ghosh
et al. [27], and Panigoro et al. [28]. The fractional-order
derivatives are defined as an integration that provides the ability
to store the whole memory over time, and hence, it could give
an exact description of different ecological phenomena. For this
reason, the new structure for the model (Equation 2) is given in
the following form:

h
CDf‘x(t) =rx (1 — %) — mxz — c—l—ixx = Fi1(x,y,2),

CDEY(t) = nxz — By — 81y — wy? = Fa(x,3,2), G

CD‘t)‘z(l‘) = By — 8z = F3(x,,2).

The existence and local stability of all equilibrium points of
the model (Equation 3) are discussed in Panigoro et al. [29].
However, to the best of our knowledge, the global dynamics and
bifurcation analysis of the model (Equation 3), to this day, have
not been investigated. Here, CD?‘ f(t) is the standard Caputo
derivative for a continuous function f(x) € C([0,400),R),
which is defined as follows:

1 L ofl(o)

Cra _
PIO=va=a ) too®®

4)

where I'(x) is the gamma function, t > 0,and 0 < o < 1is
known as the order of the fractional derivative.

Based on the above discussion, we have organized our work
in several sections: In Section 3, we develop the existence and
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uniqueness solution of the model (Equation 3). To check the
biologically well-posedness of the model, we establish the non-
negativity and boundedness of solutions of the model in Section
3.In Section 4, we derive some sufficient conditions to ensure the
global asymptotic stability of each locally asymptotically stable
equilibrium point by applying the Lyapunov functions. We then
analyze the existing conditions of transcritical, saddle-node,
backward, and Hopf bifurcations in Section 5. Some numerical
simulations of our obtained results are carried out in Section 6.
Finally, the conclusions are given in Section 7.

2. Existence and uniqueness

In this section, we will show that the model (Equation
3) has a unique solution. A similar manner given by Mahata
et al. [30] is adopted. We first take the Riemann-Liouville
integral (Definition 1 in Yavuz and Sene [31]) on both
sides of Equation (3) to achieve the following Volterra-type
integral equations.

t

x(t) — x(0) = ﬁfo Fy(x(1), (1), 2(7)) (t—)* ! dr,
t

W>—y<0>=ﬁ fo Fa(x(0), y(0), 2(2))(t — 1)L dr, (5)
t

200~ 20) = s [ By 0

Now, we will show that the kernels Fj(x,y,z), i =
1,2, 3, satisfy the Lipschitz condition. For ||.|| is the Euclidean
norm, we suppose that Hx(t)” < a, HJ_C(t)H < ap,
| = a |30 = an |20 <
||2(t) || < ag are bounded functions. For x, X, ¥, ¥, z, and Z,

as, and
we have

|1 (x.3,2) = F1 (%3, 2) |

:||r(x—5c)—%(x—k)‘c)(x—)’c)—mz(x—a_c)

e (L) I
c+x)(c+5)

(a1 + ax)r - — 5
——— |Ix =X +asm|lx — x| + — [Ix — x|

<rlx—xl+
=r| I K C

=g lx—xl,

|2 (x.9,2) = F2 (% :2)
= H [nxz — By =961y — wyz] — [nxz — By =481y — a))'zz] H
= [-By =9 -0 -9 -0+ -]
<Bly=7] +51|y—7| + s +aq) |y -]
=@|y-y

>
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|E3 (x.3.2) = F3 (x.3.2) |
= [[By - 622] - [By - 827]|
<glz-zl,

where gy = r BLT92)"

+a5m+§,g2 = B+81+w(az+ay),
and g3 = §,. Therefore, we conclude that Fi(x,y,2), i = 1,2,3,
satisfy the Lipschitz condition. Furthermore, it is clear that if
0 < g < 1, then Fj(x,y,z) are contractions for i = 1,2,3.

Therefore, the following theorem is obtained.

Theorem 1. The kernel Fi(x,y,z), i = 1,2,3 satisfy the
Lipschitz condition and contractions if 0 < g; < 1, i = 1,2, 3.

Next, Equation (5) can be written as follows:

t

(1) = x(0) + —— / Fi(x(t), y(0), )t — )% d,
() Jo
t

2E) = y(0) + —— / Fa(x(o)o (), 2(0))(t — 1) dlr,
(o) Jo

t
z(t) = 2(0) + ﬁ /(; F3(x(2), (), 2(0))(t — 7)* ! d,

Which can be written by the following recursive formula

1 t
Xn() =x(0) + —— [ Fi(xy—1,3,2)(t —7)* 1 dr,

') Jo

1 t
) =50+ s /0 Fa(xoyn1.2)(t — )% L d,

1
zn(t) = 2(0) + m A

t
F3(x,y,2n—1)(t — 0)* 1 dr,

with initial conditions xo(t) = x(0), yo(t) = »(0), and zo(t) =
z(0). Therefore, we have

01,() = xu(t) — x4—1(t)

t
- ﬁ /0 (FiGin—1,302) — FiGn—232)) (t — 1)\ di,
92() = yu(6) = Y1 (0)

t
= ﬁ /(; (Fz(x,}’n—l,Z) - Fz(x,)/n_z,z)) (t — )% dr,
(6)

@3, (t) = zu(t) — zp—1(t)

1 t
= @ ‘/(; (F3(X,}’> Z}’l*l) - F3(X,y, anz)) (t _ T)a_l d‘[,

where x(t) = 3711 ¢1,(8), yn(t) = 311 02,(1), and 24 () =

Z?:l @3, (t). Now, we evaluate the norm of Equation (6). We
achieve

lo1, O] = [xn(t) = xp—1 (1)

1 t
=< %/O ||(F1(xn_1,y,z)
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—Fl(xn72>)’> Z)) (t - T)ail df»
02,0 = [[yn(t) = yn—1(®)

1 t
< m)fo 1 (F26 yn_1,2)
—Fz(x>)’n72»z)) (t - T)ail dT”:

03,0 = ||zn(®) — za—1(1)]|
1 t
_@fo 1 (F3(6 3 2n1)

~F3(x,p,20-2)) (t — D)* L dr|].

%

From Theorem 1, we have that the kernel satisfy the
Lipschitz condition and hence Equation (7) becomes

e (t) — n— l(t)”_l"g(oz) ot — sl (6 — 0,
I = yor 0] = 22 f Dot — 2 (6 = %V dr,

lon(®) — 2018)] < m)/ 2t — 22| (6 — 1)V .

The last inequality gives

t
lon, 0] = % [ o] a.
o0l < & [l én ©
loa, 0] = £ [ oa, ,o] o

Finally, the existence of a solution is given by the following
theorem.

Theorem 2. The solution of model (Equation 3) has a solution
t18i -
I'a+1)

Proof. We assume that x(t), y(f), and z(¢) are bounded and their
kernel F;, i = 1,2, 3 satisfy the Lipschitz condition. According

under the condition if we have t; such that <
1,i=1,2,3.

to Equation (8), we obtain

[t

len 0] = o] | 755 |
- t Tn

le2,®] < [po®)] _r(alig:il)_ ’ ©)
— t n

les, O] = 00| _r(aligfn_ ’

which represent the existence and continuity of the system. To
show that the solution of the model (Equation 3) can be set up
from the functions in Equation (9), we assume

x(t) — x(0) = xn(t) — Q1 (1),

y(£) = y(0) = yn() — Qo, (1), (10)
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z(t) — 2(0) = zp (1) — Q3,,(1).

where Q;,, i = 1,2, 3 are the remaining terms. Furthermore, the
given terms would be demonstrated to hold |Q;, | — 0Vi =
1,2, 3. Denoting that

1Q1all (t) < HF( ) (Fl(x,y,z)—Fl(xn_l,y,z)) dt
< @/O IF1(6,7,2) — Fi(xn_1,7.2)| dr
: % I

1Qaall () < H m ' (Bx(on2) = Fa(xyn1,2) dr

Sm[ |F2(63,2) — Fal, yn1,2)]| dr - (11)

fmu)’ Yn—1] -

1Q3all (1) < H (F3(x.002) = F3(x,p20-1)) dt

< @/0 |F3(5,7.2) — B,y 21)| dr

183 H

=TI~ al

By applying a recursive pattern, we acquire

o0l < [ | et
ool = [t e
Jos 0l < [ | e

At the point 7, we have
o1 = s | st
L 13
1Qs, )] < F(O[“H)H ok

By considering the results of Theorem 1 and applying n —
00 to both sides, we have H Qi H —0Vi=1,2,3.

In the end, we will show that the solution is unique for each
initial value by utilizing the contradiction approach. Suppose
that there exists another solution of the model (Equation 3),
namely x1 (1), y1(t), and z1 (¢). Then, we have

*(t) — x1(f) = F(a)/ (Fi(63,2) — Fy(en_1,32)) d,

2O~ y1(0) = % /0 (F2(x.3:2) — Fa(x,yn—1,2)) dt, (14)
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1 t
dw—mo=ﬁaﬁ(&m%n—&m%%4»w

Applying the norm on both sides, we achieve

t
s =00] < 15 [ IF16na = Ao

t
IOESAG] I= e )/ |F2(x, 3, 2) = Fa(x, yn—1,2)| dr,
(15)

1 t
km—ﬁwnfﬁaﬁnﬁamﬂ—&@%%Awdﬂ

By considering Theorem 1, we obtain

[x® =1 0] = 3 ( ||x(t)
Iy =] < r( IIy(t)
[z() —z1(0)| < ||z(t) -z

Therefore, the following equations are obtained.

b0 =01 (1- ) <o

g2
Hﬂﬂ—m@W(L—ﬁ;IB>§Q (16)

g3
As a result, we achieve | n@| =

0, and ||z(t) —z1(t) || = 0, which impact x(t) = x1(t), y(t) =
y1(8), and z(t) =
theorem.

z1(t). Then, we finally give the following

Theorem 3. The Caputo fractional-order predator—prey model
(Equation 3) has a unique solution.

3. Non-negativity and boundedness

In this section, we will show that for any initial condition is
in Ri_ where

Ri_::{(x,y,z) :x>0,y>0,z2>0, xR, yeR}.
The solution not only exists and is unique but also bounded

and always in R3 3 ast — oo. Therefore, we have the following
two theorems.

Theorem 4. If the initial condition in Ri_ then both population

densities of prey and predator given by model (Equation 3)
remain in Ri.
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Proof. To prove this non-negativity condition, we apply
reductio ad absurdum (contradiction method), which is also
used in Barman et al. [24] and Maji [32]. We assume that there
exists 7 > 0 such that

x(t) > 0, when0 <t < [
x()) = 0, whent=1 (17)
x(tt) < 0, whent = i+,

From the first equation in Equation (3) along with
Equation (17), we have

Cpox (D)l = 0. (18)

According to Lemma 3.1 in Barman et al. [33], we get
x(#t) = 0 which contradicts with Equation (17) where x(th) <
0. This means that x(#) > 0 for all t € [0, o0]. Similarly, we can
show that y(f) > 0 and z(¢) > 0 for all ¢ € [0, co]. In conclusion,
we have the non-negative solution for model (Equation 3) when

the initial values are in ]Ri.

Theorem 5. The solution of model (Equation 3) is always
bounded in Ri for the initial condition in Ri.

Proof. Since we work the population model, it is natural that
the population must be bounded due to the limitation of their
biological resources, which is also known as environmental
carrying capacity. Thus, the boundedness of the solution of the
model (Equation 3) is also important to learn and prove. From
Theorem 4, we can define a positive function as follows:

mz

Nm_x+JH_f (19)

For any ¥ > 0, the following fractional-order differential
equation holds.

CDEN(t) + y N (t)
= CDfx(t) + DO + ZCDE () + y N ()

= (rx (1 - %) — mxz — ch)

+ %(nxz — By — 81y — a)yz)

m m mz
+—(/3y—822)+yx+u+L
n n n
2 2
P2 hx — Simy  omy
K c+x n n
Somz m mz
_Gmz o ymy Y
n n n
rx? Simy  Symz ymy ymz
Srx— — — —— — +yx+—+
K n n n n
2
rx m mz
=(r+ 7= T+ =)+ (y — 8
n n

By choosing ¥ < min{d1, 62}, we obtain
2

CDIN® +yN(t) < (r+y)x— %
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r<2 (r+y)Kx>
= — X - ———

K r
__rfa_ (r+y)Kx  (r+7y)*K2 4+ ¥)2K?
- K r 472 4r2
r (r+9)K\2  (r+y)*K?
= — — X — —
K 2r 472
r (r+y)K\> (r+7)*K
= ——|x- +
K 2r 4r
2
_ i+ y)°K
- 4r

According to Lemma 3 in Panigoro et al. [34], we apply the
comparison principle and obtain

(r+v)*K
4yr

Eq[—yt*] + . (20

2
N < (Nm) - W)

(r+ )’ K

For t — oo, we achieve N (t) — , which means

all solutions of model (Equation 3) with non-negative initial
conditions are confined to €2 where

Q= {(x,y,z) eRi_ : N(t) =x(t)+%(t) + M
2
< ,0’=M+8,8>0 . (21)
4yr
4. Global dynamics
In this section, the global dynamics of model

(Equation 3) are investigated. Note that all biological
equilibrium points, their existence conditions, and their
stability
et al. [29], which can be rewritten by the following theorem.

local are successfully described in Panigoro

Theorem 6. (i) The origin point & = (0,0, 0) always exists.
h
It is locally asymptotically stable (LAS) if r < —.
c

(ii) The axial point £4 = (5(, 0, 0) where X is the positive root

h
of 2 + (c — K)x + <7 - c) K = 0, which has
r

(a) an equilibrium pointifc > —.
r

h
(b) a pair of equilibrium points if ¢ < min {K , = }
r
(c+3%)>2r (B +81)82
pn
(iii) The interior point &1 = (x*,y*,z*) exists, if a;, i = 2,3 in

Moreover, it is LAS if h < and x <

Panigoro et al. [29] satisfies the following statements.

(a) An equilibrium point in Rj_ ifaz < 0.
(b) Two equilibrium points in Ri ifap <0andas > 0.
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The LAS condition of £ can be seen in Theorem 4 in
Panigoro et al. [29].

Note that all equilibrium points may attain local asymptotic
stability with several biological conditions. Now, we will identify
the biological properties to obtain globally asymptotically stable
(GAS) for each equilibrium point. The analytical results are
given by the following three theorems.

h
Theorem 7. The origin point &, = (0,0,0) is GAS ifr < s
c+o

Proof. We define the positive definite Lyapunov function as
follows:

Vil y,z) =x+

m mz
Z, = (22)
n n

By applying Lemma 3.1 in Vargas-De-Ledn [35], we compute
the o—order derivative of V;(x, y,z) along the solution of the
model (Equation 3) as follows:

CDEY| (x,y,2) < CDYx + %CD‘;‘)H— %C'D?Z
x
= |rx (1 — —)
(~(-%

m
+ —(nxz — By — 81y — wy?)

+ %(ﬂy — 822)

x? hx
=1X— — —MXZ — —— + mxz
K c+x

Bmy Simy  womy? 4 Bmy  Symz
n n n n n
rx? hx Simy  wmy*  Symz
=rx— — — - - -
K c+x n n n
h 8 Symz
ey X Bimy  Gymz

c+x n n

From Equation (21), we have x < ¢ and hence

hx Symy  Srmz

Cra
DiVi(x,y,2) <rx —
(V10 2) 1 c+o n n

( h ) Symy  Symz
= — —Tr|Xx— -
c+o n n

Therefore, CD;“Vl (x,9,2) < 0 for all (x,,2) € Ri, if

r < o We also find that CD‘t)‘Vl (%, ,2) = 0,if (x,9,2) =
c+o
(0,0,0). This conveys that {£,} is the only invariant set on which

CDf‘Vl(x,y, z) = 0. Obeying Lemma 4.6 in Huo et al. [20],

r < obviously becomes the biological condition of &, to

c+o
reach GAS.

hK
Theorem 8. The axial point £4 = (%,0,0) is GASif — < X <
cr

82
—

frontiersin.org


https://doi.org/10.3389/fams.2022.1077831
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Panigoro et al.

Proof. We construct a positive definite Lyapunov function
based on the Volterra equation as follows:

my  mz

X
Vs Z) = —x—xIn = — + —. 23
Va(x,9,2) (x x—XxIn >+n+n (23)

X

The a-order derivative of V5 (x, y, z) along the solution of the

model (Equation 3) given by Lemma 3.1 in Vargas-De-Ledn [35]
is given by

meDYy

—% mCD‘t)‘Z

X
DIV (x,p,2) < (T) Cpox +

- () (- ) e )

m
— -4
n(ﬁ)’ 22)
_( A) rx h N
==X (r-% mz x mxz
méry  mwy mérz
n n n
. r . h(x — X) )
=x—Xx)|—k—X)+ —F——F —mz
( )< K( ) (c+x)(c+x)
8 2 ms
+mxz_m1y_ma)y _mzZ
n n
r( A)z h(x—fc)2 i
= ——(x—x —————— + mxz
K (c+x)(c+X)
mé1y ma)y2 méz
n n n
2 h(x—fc)z
< ——(x—3%)"+ =
cx
8 1
o — 2O 0%
n n

)
< —2, we have CDf‘Vz(x,y, z) < 0 for

) hK
Since — < X "
all (x,y,2) € Ri. It is also clear that CD‘t"VZ(x, y,z) = 0if
(x,,2) = (%,0,0). This confirms that {€4} is the only invariant
set on which CD‘t"Vz(x,y, z) = 0. Therefore, £4 is GAS due to
Lemma 4.6 in Huo et al. [20]. This confirms the justifiability of
Theorem 8.

Theorem 9. Let

Z*
{(x,y,z) Tz = (1 4+ om)my*
The interior point &1 = (x*, y*, z*) is GAS in Qx.

Qx:

(1 — mx®)ymy* — no 2

cr
K.

}andh <

Proof. Consider a positive definite Lyapunov function as
follows:

Vi(x,9,2) = (X—x* —x*lni)

x*
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(24)
By applying Lemma 3.1 in Vargas-De-Leén [35] and Lemma

1 in Aguila-Camacho et al. [36], we obtain the «-order derivative
of V3(x, y, z) as follows:

_4¥ gk
DMV, 2) < <u> Cpey 4 ™ (u)
X n y

1 (z—2"\ ¢
- D
52< z* ) tF
x —x* x hx
= 1—- =
( x )(rx( K) c—|—x>
m y—y*> 2
+ — nxz — By — 81y —
( ) ( y— 81y — 0y

1 _ %
+ 5 (z Z*Z )(/3)’—522)

= (x—x¥) (—% (x —x*) — m(z — 2%)

“Dfy+

h(x — x*) >
(c+x)(c+x*)
o [(mxz  mx*z* mw(y—y*))
+ — P — —
v y)< y y* n
N z—z*
*\2 * *

+ S —
(c+ x)(c+ x*)
. my*xz  mx*z*y

y y*
_mol-y) oy 2y
n A
2
*Z+Z**@.
z

Applying Equation (21), we have

r *) 2
Cpa 9, _(r_n —
P V3(xy,2) < <K C2>(x X )

_ mo (v —y*)2 B (z— z*)2
n z*

— <1 — mx* — (m*> z+ (1 +om)z*.
my

(1= mx®)ymy* — no

Since — < , we achieve
z (1 4+ om)my*
CDEV(np2) < — (£ = 1) (x— )
- K 2
mew (y—y*)2 (z—z"‘)2
n zx

Thus, CD?V3(x, »,2z) < 0 forall (x,y,2) € Ri, when

2
h < % We also confirm that CD‘;‘V3 (6, y,2) = 01if (x,5,2) =
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(x*,y*,2*) and hence {&]} is the only invariant set on which
CD‘;‘V3 (x,,2) = 0. Based on Lemma 4.6 in Huo et al. [20], the
interior point &1 is GAS in Qx. This ends the proof.

5. Bifurcation analysis

In this section, we will study the occurrence of several
phenomena namely transcritical, saddle-node, backward, and
Hopf bifurcations. Two parameters are chosen, namely the
harvesting rate (h) and the order of the derivative («), as
the memory index. For the analytical purpose, we define the

following parameter.
hy =cr,
x_ (et K)?r
27 4k
2
o = = arctan | =
7 &

Next, the following theorem is given for describing the
occurrence of transcritical bifurcation driven by the harvesting
rate (h) as the bifurcation parameter.

Theorem 10. The origin point &, and the axial point Ex
exchange their stability via transcritical bifurcation when h
passes through k7.

Proof. Since the axial consists of two equilibrium points, we
focus on the axial point nearest to the origin point. When h =
h}, the axial point merge with the origin point & = a4 =
(0,0, 0) where the eigenvalues of the Jacobian matrix are: A1 = 0,
A = (B + 681), and A3 = —6&,. We obtain ‘arg (A2,3)| =7 >
am /2 while |arg (A1)| = amr/2. This means & = £4 = (0,0,0)

K)2
is non-hyperbolic. When hf < h < e+ K)r

» by applying
Theorems 2 and 3 in Panigoro et al. [29], &y becomes LAS while
the nearest £4 becomes a saddle point. For 0 < h < h¥, The
origin £y becomes unstable and the nearest £4 ¢ Ri becomes
unstable. This condition shows the existence of transcritical
bifurcation, where h becomes the bifurcation parameter while

h = h7 is the bifurcation point.

Now, the existence of saddle-node bifurcation on axial
will be proven by still regarding the harvesting rate (h) as
the bifurcation parameter. As a result, the following theorem
is proposed.

h
Theorem 11. Suppose that ¢ < min { - K } The axial point £4
r
undergoes saddle-node bifurcation when h passes through the
bifurcation point /.
Proof. According to Theorem 1 in Panigoro et al. [29], the
axial point does not exist when i > hj. When h = h3, a

. . . K—c¢ N
unique equilibrium point £4 = —5 0,0 ) occurs in axial
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where its Jacobian matrix has three eigenvalues: A1 = 0 and

—% [ﬁ +81+ 8 + /(B + 81 — 82)2 + 2Bn(K — c)].
Since |arg(k1)| =

A3 =
am /2, this axial point is non-hyperbolic.
When h < h*, two axial points occurs given by £¢ = (5% 0, 0)

R R K — h* — h)K
andé'z = (xb,0,0),wherexa = 3 C+ (

K- W — K
5 ¢ _ ! ) . It is easy to validate that both £4 and
;

Sz are in ]Rz_ and have different stability. As a consequence, all

and x, =

the given circumstances express the occurrence of saddle-node
bifurcation.

Based on Theorems 10 and 11, we obtain more global
bifurcation namely backward bifurcation given by the following

lemma.

Lemma 1. The model (Equation 3) undergoes backward
bifurcation driven by the harvesting rate (h).

Proof. From previous theorems, the axial point Sﬁ exists and is
LAS, while & is unstable when h < h}. When b} < h < h3}, &
becomes LAS, £4 still exists and is LAS, and unstable £ /I; occurs.
The bistability condition is held for this interval of h which
means that the convergence of the solution is very sensitive to
the initial condition. Finally, those two axial points merge when
h = h% and disappear when h > hj. This completes the proof.

Finally, we will show that the memory index in this case, that
is, the order of the derivative («), affects the dynamical behaviors
of the model (Equation 3) indicated by the appearance of Hopf
bifurcation around the interior point £7.

the of
the Jacobian matrix evaluated at & can be written as
A3 4+ £2%2 + 51 + & = 0, which has a pair of complex
conjugate eigenvalues A1 = {1 =+ i¢3, where {1 > 0 and one

Theorem 12. Suppose characteristic ~ equation

real negative eigenvalue (A3 < 0). The model (Equation 3)

undergoes a Hopf bifurcation when the order of the fractional
&

&1

derivative o crosses out the critical value o* = % arctan

Proof. From  the  earlier have

minj<;<3 |arg()ni)| =

assumptions, we

Therefore, the solution

arctan ‘ £
&1

of m(e*) = o*5 — min|arg(;)] = 0 is only when
a* = %arctan ‘% . If we check the transversal condition:
dr;((xa) lg=a* = % which is not equal to 0, we can assure that

the sign of m(«) changes when the bifurcation parameter o
passing by o™. It means that the equilibrium point & is stable
when o € (0,*) and is unstable for o* < o < 1.

6. Numerical simulations

In this section, we explore the dynamical behaviors of the
model (Equation 3) numerically to support analytical findings,
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FIGURE 1

Bifurcation diagram driven by the harvesting rate (h) of the model (Equation 3) around the axial point using the parameter values: r = 0.1, K = 5,
m =0.25,¢c=0.5,n=0.01, 8=0.06, 8 =0.05 8 =005 »=0.1anda =0.9.
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FIGURE 2
Phase portrait and time series of the model (Equation 3) using parameter values: r = 0.1, K =5 m =0.25,c¢ =0.5,n = 0.01, 8 = 0.06, §; = 0.05,
3, =0.05 0=0.1«=0.9 and h =0.02.
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FIGURE 3

Phase portrait and time series of the model (Equation 3) using parameter values: r = 0.1, K =5 m =0.25,c =0.5,n = 0.01, 8 = 0.06, §; = 0.05,
8, =005 0=0.1 =09 and h=0.12.
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Phase portrait and time series of the model (Equation 3) using parameter values: r = 0.1, K =5 m =0.25,c¢ =0.5,n=0.01, 8 = 0.06, §; = 0.05,
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FIGURE 5

Bifurcation diagram driven by the order of the derivative (o) of model (Equation 3) around the axial point & using parameter values: r = 0.8,
K=5m=0.25h=001c=008n=02 =048 =001 =001, =001 and w =0.1.
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especially the occurrence of bifurcation. The predictor-corrector
scheme given by Diethelm et al. [37] is employed. All of
the parameters used in these simulations are assumptions
matched with the biological conditions given by the previous
analysis results. This decision was taken because this work
does not specifically address an ecological case involving a
particular organism.

To show the occurrence of several bifurcations driven by the
harvesting rate (1), we first set the parameter as follows:

r=20.1, K=5,m=0.25 ¢c=0.5 n=0.01,

B =0.06, 1 = 0.05, 6 = 0.05, v = 0.1, « = 0.9. (25)

By varying the harvesting rate in the interval 0 < h < 0.24,
the bifurcation diagram is portrayed as in Figure 1. We have
three types of dynamic behaviors around the axial point. When
0 < h < hf = 0.05, we have unstable origin point & and
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LAS &4. The origin point losses its stability via transcritical
bifurcation when h crosses hj and the unstable axial point
&4 occurs simultaneously. These dynamics are maintained for
0.15125. On the other hand, the

stable branch of axial point £4 is preserved for 0 < h <

interval i} < h < K
5. The LAS point and unstable point of £4 merge into the
non-hyperbolic point when h = h3. The axial point finally
disappeared when h passes through h5 while the sign of &
does not change. Thus, we have saddle-node bifurcation on axial
with h3 as the bifurcation point. If we observe from a more
global point of view, these interesting phenomena represent the
existence of backward bifurcation marked by the occurrence of
bistability condition. To show these dynamical behaviors, we
choose three values of harvesting rate in each interval: h =
0.02,0.12, and 0.18 and portray them as phase portraits and time
series (see Figures 2-4). The interesting phenomenon called
bistability is portrayed in Figure 3. Two equilibrium points LAS
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simultaneously impact the sensitivity of the convergence of the
solution to the selection of the initial value. The two closest
initial values are set which converge to the different equilibrium
points. One of them convergent to the origin point and the
other solution convergent to the axial point. This means, two
conditions may arrive, namely the extinction of all populations
and the only prey existence point. Several references show
that the bistability condition occurs as the consequence of
saddle-node bifurcation, see Adhikary et al. [38] and several
references therein.

From the biological point of view, these numerical
bifurcations describe the possibility for the prey to extinct or
survive due to the change in the harvesting rate while the
predator both mature and immature is always extinct (Figure 1).
Three feasible conditions may happen. First, for any sufficiently
small harvesting rate (0 < h < h} = 0.05), the prey population
may maintain its existence in this ecosystem (Figure 2). Second,
if the harvesting rate increases (b < h < h3), two possible
conditions may occur namely the extinction of prey or the
viability of prey. These circumstances depend on the initial
condition, where if the initial condition is quite close to the
origin point, the prey will be extinct, and for the initial condition
is far enough from the origin point, the prey can survive
extinction (Figure 3). Third, if the harvesting rate is again
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increased (h > k), the population of prey will finally extinct
and there are no population again in this ecosystem (Figure 4).
The next circumstance occurs in the interior point of the
model (Equation 3), which demonstrates the influence of the
order of the derivative as the memory index on the dynamical
behaviors around the interior point. We set the parameter as

follows:

r=08, K=5 m=025 h=001, c=008 n=02,
B =04, 8 =001, 8 = 0.01, 5 = 0.01, = 0.1.  (26)

To identify the dynamical behaviors, we vary the values of
« in the interval 0.76 < «a < 1. As a result, we obtain the
bifurcation diagram given in Figure 5. For ¢ < «* ~ 0.86, the
interior point &5 is LAS. To show this condition, we give the
phase portraits by selecting @ = 0.81 and @ = 0.84 as given
in Figures 6A, B. Nearby solution oscillates and convergent
to £&1. When o crosses o™ =~ 0.86, &1 losses its stability
via Hopf bifurcation which is indicated by the occurrence of
periodic signal namely limit-cycle. The nearby solution stays
away from &5 and convergent to the limit-cycle. The evolution
of the limit-cycle given in Figure 5 also shows that the diameter
of the limit-cycle increases when alpha increases. We portray
the phase portraits in Figures 6C, D to show the dynamics
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t

FIGURE 7

Phase portrait of the model (Equation 3) around interior point & using parameter values from Equation (26).

0.87 and ¢ = 09. It is
shown that the densities of all populations are oscillated and

of solutions around &7 for @« =

finally converge to the limit cycle. The physical interpretations
of Hopf bifurcation driven by « are closely related to the
influence of the memory on the change of behaviors around the
interior point. The stronger the influence of memory, the higher
the ability of prey and predators to maintain their existence
(¢ < ™). For less memory effect which is indicated by « >
o*, all populations lose the ability to stabilize their number
of individuals. The population density fluctuates according to
seasonal patterns which indicates by the appearance of a limit
cycle (Figures 6C, D), and the peak of each population also
increases for less memory effect (Figure 7). Although the density
for each population cannot tend to a constant number, in
this case, the memory effect cannot cause the extinction of
every population.

7. Conclusion

The dynamics of a predator-prey model incorporating
four biological conditions, namely age structure, intraspecific
competition, Michaelis-Menten type harvesting, and memory
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effect, have been studied. All biological validities have been
presented such as the existence, uniqueness, non-negativity,
and boundedness of the solution. The dynamics of the model
have been explored by showing the global stability conditions
for three equilibrium points namely the origin, the axial, and
the interior points. We have shown that three bifurcations
phenomena driven by the harvesting rate occur around the
axial point namely transcritical, saddle-node, and backward
bifurcations. The bistability condition exists as the impact of
saddle-node bifurcation which states that the existence of prey
depends on the initial condition. A bifurcation driven by the
memory effect also has been shown around the interior point
which is called Hopf bifurcation. All the bifurcation phenomena
having an impact on the densities of the population not only
may reduce their densities but also threaten the existence of
several populations.
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