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Bifurcation and Chaos in a Discrete-Time

Fractional-Order Logistic Model with Allee

Effect and Proportional Harvesting

Abstract

The Allee Effect and harvesting always get a pivotal role in studying
the preservation of a population. In this contex, we consider a Caputo
fractional order logistic model with Allee effect and proportional har-
vesting. In particular, we implement the piecewise constant arguments
(PWCA) method to discretize the fractional model. The dynamics of
the obtained discrete-time model is then analyzed. Fixed points and
their stability conditions are established. We also show the existence of
saddle-node and period-doubling bifurcations in the discrete-time model.
These analytical results are then confirmed by some numerical simula-
tions via bifurcation diagram, Cobweb diagram and maximal Lyapunov
exponents. The occurrance of period-doubling bifurcation route to chaos
is also observed numerically. Finally, the occurence of period-doubling
bifurcation is succesfully conrolled using hybrid control strategy.

Keywords: Discrete fractional-order, Logistic map, Allee effect, Harvesting,
Bifurcation, Chaos

MSC Classification: 34A08 , 39A28 , 39A30 , 92D40

1 Introduction

For the last decades, the discrete-time model gets a lot of great attentive-
ness from researchers in mathematical modeling, not only because of its
capability in describing several phenomena such as physics, biomedicine, engi-
neering, chemistry, and population dynamics but also due to the richness of
the given dynamical patterns as well as the occurrence of bifurcations and
chaotic solutions which very difficult to find in their continuous counterpart [1–
6]. Particularly, the discrete-time model is successfully applied in population
dynamics especially in a single logistic growth modeling [7–10], the epidemic
modeling [11–13], and the predator-prey interaction modeling [14–18]. Most
of the models are discretized using Euler scheme [19–21] and nonstandard
finite difference (NSFD) [22–24] which popular for discretization of the model

1



Springer Nature 2022 LATEX template

2 Bifurcation and Chaos in a Discrete-Time Fractional-Order Logistic Model

with first-order derivative as the operator. Furthermore, for the model with
fractional-order derivative, the popular discretization process is given by piece-
wise constant arguments (PWCA) which were proposed by El-Sayed et al. [25]
and applied by other researchers in different biological phenomena [26–30].

In this paper, we study and justify the dynamics of a discrete-time
model constructed using PWCA from a fractional-order logistic growth model
involving Allee effect and harvesting. The model is given by

dN

dt
= rN

(
1− N

K

)
(N −m)− qN, (1)

where N(t) represents the population density at time t with r, K, m and q
are positive parameters represent the intrinsic growth rate, the environmental
carrying capacity, the Allee effect threshold, and the harvesting rate, respec-
tively. Notice that the Allee effect reduces the population growth rate when
the population density is low (i.e., when N < m) as a result of several nat-
ural mechanisms such as intraspecific competition, cooperative anti-predator
behavior, cooperative breeding, limitation in finding mates, and so forth.
The positive growth rate occurs if the population density is in the interval
m < N < K. For further explanation about the Allee effect, see [31–40].

To obtain the fractional-order model, we follow the similar way as in [14].
The first-order derivative at the left-hand side of model (1) is replaced with the
fractional order-derivative CDα

t which denotes the Caputo fractional derivative
operator of order-α defined by

CDα
t f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds, (2)

where α is the order of fractional derivative with α ∈ (0, 1] and Γ(·) is the
Gamma function. Furthermore, by replacing the operator along with equating
the dimensions of time at the right hand-side, the following model is acquired.

CDα
t N = rαN

(
1− N

K

)
(N −m)− qαN. (3)

Model (3) can be written as

CDα
t N = r̄N

(
1− N

K

)
(N −m)− q̄N, (4)

where r̄ = rα and q̄ = qα. Finally, by dropping (̄·), the fractional-order model
for (1) is succesfully obtained as follows.

CDα
t N = rN

(
1− N

K

)
(N −m)− qN, (5)
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As far as we are aware, the discrete-time version of model (5) has not been
introduced and studied. Hence, in this paper, we construct a such discrete-time
model by implementing the PWCA method for model (5), and the dynamics
of the obtained discrete-time model is then investigated. The layout of this
paper is as follows. In Section 2, the model formulation is given by applying
the PWCA method to get a discrete-time model. To support the analytical
process, we provide some basic theoretical results in Section 3. In Section 4,
some analytical results are provided such as the existence of fixed points,their
local stability, the existence of saddle-node, and period-doubling bifurcations.
In Section 5, we present some numerical simulations and show some interesting
phenomena, such as bifurcation, Lyapunov exponent, and Cobweb diagrams
which correspond to the previous theoretical results. We also present numeri-
cally a period-doubling route to chaos. A hybrid control strategy is applied to
delay and eliminate the occurrence of period-doubling bifurcation and chaotic
solution in Section 6. The conclusion of this work is given in Section 7.

2 Model Formulation

By applying a similar procedure as in [25, 26], we discretize model (5) with
the PWCA method as follows

CDα
t N(t) = rN ([t/h]h)

(
1− N ([t/h]h)

K

)
(N ([t/h]h)−m)− qN ([t/h]h) ,

with initial condition N(0) = N0. Let t ∈ [0, h), t/h ∈ [0, 1), then we have

CDα
t N(t) = rN0

(
1− N0

K

)
(N0 −m)− qN0. (6)

The solution of eq. (6) is

N1 = N0 +
tα

Γ(1 + α)

[
rN0

(
1− N0

K

)
(N0 −m)− qN0

]
Next, let t ∈ [h, 2h), t/h ∈ [1, 2). Thus, we obtain

CDα
t N(t) = rN1

(
1− N1

K

)
(N1 −m)− qN1, (7)

where its solution is given by

N2 = N1(h) +
(t− h)α

Γ(1 + α)

[
rN1

(
1− N1

K

)
(N1 −m)− qN1

]
.
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By proceeding the same disretization process, for t ∈ [nh, (n + 1)h), t/h ∈
[n, n+ 1), we have

Nn+1 = Nn(nh)+
(t− nh)α

Γ(1 + α)

[
rNn(nh)

(
1− Nn(nh)

K

)
(Nn(nh)−m)− qNn(nh)

]
.

(8)
For t → (n+1)h, eq. (8) is reduced to a discrete fractional order logistic model
with the Allee effect and proportional harvesting

Nn+1 = Nn +
hα

Γ(1 + α)
Nn

[
r

(
1− Nn

K

)
(Nn −m)− q

]
= f(N). (9)

We remark that if α → 1 then eq. (9) is exactly the same as the Euler
discretization of model (5).

3 Fundamental Concepts

To analyze the dynamical behavior such as the existence of fixed point, the
local stability, and the occurrence of saddle-node and period-doubling bifurca-
tion of the discrete-time model (9), the following definition and theorems are
needed.

Definition 1 [41] Consider the following map

x(n+ 1) = f(x(n)). (10)

A point x∗ is said a fixed point of the map (10) if f(x∗) = x∗. If
∣∣f ′(x∗)∣∣ ̸= 1 then x∗

is called a hyperbolic fixed point, and if
∣∣f ′(x∗)∣∣ = 1 then x∗ is called a nonhyperbolic

fixed point.

Theorem 1 [41] Let x∗ be a hyperbolic fixed point of the map (10) where f is
continuously differentiable at x∗. The following statements then hold true:

(i) If |f ′(x∗)| < 1, then x∗ is locally asymptotically stable.
(ii) If |f ′(x∗)| > 1, then x∗ is unstable.

Theorem 2 [41] Let x∗ is a nonhyperbolic fixed point of the map (10) satisfying
f ′(x∗) = 1. If f ′(x), f ′′(x), and f ′′′(x) are continuous at x∗, then the following
statements hold:

(i) If f ′′(x∗) ̸= 0, then x∗ unstable (semistable).
(ii) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ unstable.
(iii) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ locally asymptotically stable.

Definition 2 [41] The Schwarzian derivative, Sf , of a function f is defined by

Sf(x) =
f ′′′(x)
f ′(x)

− 3

2

[
f ′′(x)
f ′(x)

]2
.
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Particularly, if f ′(x∗) = −1 then

Sf(x∗) = −f ′′′(x∗)− 3

2

[
f ′′(x∗)

]2
.

Theorem 3 [41] Let x∗ is a hyperbolic fixed point of the map (10) satisfying f ′(x∗) =
−1. If f ′(x), f ′′(x), and f ′′′(x) are continuous at x∗, then the following statements
hold:

(i) If Sf(x∗) < 0 then x∗ is locally asymptotically stable.
(ii) If Sf(x∗) > 0 then x∗ is unstable.

Theorem 4 (The existence of Saddle-Node Bifurcation [41]) Suppose that xn+1 =
f(µ, xn) is a C2 one-parameter family of one-dimensional maps, and x∗ is a fixed
point with f ′(µ, x) = 1. Assume further that

∂f

∂µ
(µ∗, x∗) ̸= 0 and

∂2f

∂x2
(µ∗, x∗) ̸= 0.

Then there exists an interval I around x∗ and a C2 map µ = p(x), where p : I → R
such that p(x∗) = µ∗, and f(p(x), x) = x. Moreover, if ∂f

∂µ
∂2f
∂x2 |(µ∗,x∗) < 0, the fixed

points exist for µ > µ∗ and if ∂f
∂µ

∂2f
∂x2 |(µ∗,x∗) > 0, the fixed points exist for µ < µ∗.

Theorem 5 (The existence of period-doubling bifurcation [41]) Suppose that xn+1 =
f(µ, xn) is a C2 one-parameter family of one-dimensional maps, and x∗ is a fixed
point. Assume that

(i) ∂f
∂x (µ

∗, x∗) = −1.

(ii) ∂2f
∂µ∂x (µ

∗, x∗) ̸= 0.

Then there is an interval I about x∗ and a function p : I → R such that fp(x)(x) ̸= x

but f2p(x) = x.

4 Analytical Results

We explore some analytical results here such as the existence of fixed points,
their local stability, and the existence of some bifurcations namely saddle-node
and period-doubling bifurcations. Since the map (9) is constructed by PWCA
with step-size (h), the analytical process is then investigated by considering
the impact of h. Some analytical results also examine the influence of the
harvesting (q) on the dynamics of the given map.

4.1 The Existence of Fixed Point

Based on Definition (1), the fixed point of the map (9) is obtained by solving
the following equation

N = N +
hα

Γ(1 + α)
N

[
r

(
1− N

K

)
(N −m)− q

]
. (11)
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The solutions of eq. (11) is described as follows:

(i) The extinction of population fixed point N∗
0 = 0 which always exists.

(ii) The non-zero fixed points N∗
1,2 which are the positive solutions of the

following quadratic polynomial

N2 − (m+K)N +mK +
qK

r
= 0. (12)

The solutions of eq. (12) are

N∗
1 =

m+K

2
+

√
(q∗ − q)rK

r
,

N∗
2 =

m+K

2
−

√
(q∗ − q)rK

r
,

(13)

where q∗ = (m−K)2r
4K > 0. The existence of non-zero fixed points (13) is

shown by Theorem 6.

Theorem 6 (i) If q > q∗ then the non-zero fixed point of the map (9) does not
exist.

(ii) If q = q∗ then there exists a unique non-zero fixed point N∗ = m+K
2 of the

map (9).
(iii) If q < q∗, then there exist two non-zero fixed points, namely N∗

1,2 of the
map (9).

Proof (i) It is easy to confirm that if q > q∗ then the solutions of eq. (12) are
a pair of complex conjugate numbers.

(ii) For q = q∗, we have N∗ = N∗
1 = N∗

2 = m+K
2 . Hence, N∗ is the only positive

fixed point of the map (9).
(iii) If q < q∗ then N∗

1,2 ∈ R. Because N∗
1N

∗
2 = mK + qK

r > 0 and N∗
1 +N∗

2 =
m+K > 0, then N∗

1 and N∗
2 are obviously positive, showing that there are

two non-zero fixed points.
□

4.2 Local Stability

Now, the dynamical behavior of the map (9) around each fixed point is inves-
tigated. The following Theorems 7 to 10 is presenting to describe the local
dynamics of Fixed points N∗

i , i = 0, 1, 2 and N∗.

Theorem 7 Let’s denote q̂ =
(2m2+3mK+2K2)r

K and h0 = α

√
2Γ(1+α)
mr+q . Then the

following statements hold:

(i) if 0 < h < h0 then N∗
0 is locally asymptotically stable,
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(ii) if h > h0 then N∗
0 is unstable, and

(iii) if h = h0 then N∗
0 is nonhyperbolic fixed point. Furthermore if

(iii.a) q < q̂ then N∗
0 is locally asymptotically stable, and

(iii.b) q > q̂ then N∗
0 is unstable.

Proof By evaluating f ′(N) at N∗
0 , we obtain

f ′(N∗
0 ) = 1− hα(mr + q)

Γ(1 + α)
= 1− 2

(
h

h0

)α

.

(i) If 0 < h < h0 then 0 < (h/h0)
α < 1, which implies |f ′(N∗

0 )| < 1. Based on
Theorem 1, we have a locally asymptotically stable N∗

0 .
(ii) If h > h0 then (h/h0)

α > 1, so that f ′(N∗
0 ) < −1. Theorem 1 states that

N∗
0 is an unstable fixed point.

(iii) For h = h0, we have f ′(N∗
0 ) = −1, i.e., N∗

0 is nonhyperbolic fixed point.
The Schwarzian derivative of map f(N) at N∗

0 is

Sf(N∗
0 ) =

hα

Γ(1 + α)

[
6r

K

]
− 3

2

[
hα

Γ(1 + α)

[
2(m+K)r

K

]]2
=

6rhα

KΓ(1 + α)

[
1− hα

KΓ(1 + α)
(m+K)

2
r

]
=

12r

(mr + q)K

[
1− 2(m+K)2r

(mr + q)K

]
.

If q < q̂ then Sf(N∗
0 ) < 0, and thus N∗

0 is locally asymptotically stable.
On the contrary, if q > q̂ then Sf(N∗

0 ) > 0, showing N∗
0 is unstable. Thus,

Theorem 7 are completely proven.
□

Theorem 8 The non-zero fixed point N∗ is semistable.

Proof The derivative of f(N) at N∗ is

f ′(N∗) = 1 +
hα

Γ(1 + α)

[
−3r

K

(
m+K

2

)2

+
2r(m+K)

K

(
m+K

2

)
−mr − q

]

= 1 +
hα

Γ(1 + α)

[
(m+K)2r − 4mrK

4K
− q

]
= 1 +

hα

Γ(1 + α)

[
q∗ − q

]
.

N∗ exists when q = q∗. Clearly that f ′(N∗) = 1, and therefore N∗ is a nonhyperbolic
fixed point. By direct calculations, we can show that

f ′′(N∗) =
hα

Γ(1 + α)

[
−6rN

K
+ 2

(
1 +

m

K

)
r

]
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=
hα

Γ(1 + α)

[
−6r

K

m+K

2
+

2(m+K)r

K

]
=

hα

Γ(1 + α)

[
−3(m+K)r

K
+

2(m+K)r

K

]
= − (m+K)rhα

KΓ(1 + α)
< 0.

Since f ′′(N∗) ̸= 0, Theorem 2 says that the fixed point N∗ is semistable. □

Theorem 9 Suppose that:

h1 = α

√
2KΓ(1 + α)

2(q∗ − q)K + (m+K)
√

(q∗ − q)rK
,

ĥ =
(m+K)r + 6

√
(q∗ − q)K√

4(q∗ − q)rK + 2r(m+K)
√

(q∗ − q)rK
.

The local stability of N∗
1 is described as follows.

(i) If 0 < h < h1 then N∗
1 is locally asymptotically stable.

(ii) If h > h1 then N∗
1 is unstable.

(iii) If h = h1 and

(iii.a) If ĥ > 1 then N∗
1 is locally asymptotically stable.

(iii.b) If ĥ < 1 then N∗
1 is unstable.

Proof It is obvious to show that

f ′(N∗
1 ) = 1 + hα

Γ(1+α)

[
−
(

3
4K (m+K)2r + 3(q∗ − q) + 3

K (m+K)
√

(q∗ − q)rK
)

+ 1
K (m+K)2r + 2

K (m+K)
√

(q∗ − q)rK − (mr + q)
]

= 1− hα

KΓ(1+α)

[
2(q∗ − q)K + (m+K)

√
(q∗ − q)rK

]
= 1− hα

KΓ(1+α)

[
2KΓ(1+α)

hα
1

]
= 1− 2

(
h
h1

)α
.

Hence, we have the following observations:

(i) For 0 < h < h1, we have |f ′(N∗
1 )| < 1. According to Theorem 1, the

non-zero fixed point N∗
1 is locally asymptotically stable.

(ii) If h > h1 then we get f ′(N∗
1 ) < −1. Thus, N∗

1 is unstable fixed point (see
Theorem 1).

(iii) Clearly that f ′(N∗
1 ) = −1 whenever h = h1, which shows that N∗

1 is non-
hyperbolic fixed point. The Schwarzian derivative of f(N) at N∗

1 is given
by

Sf(N∗
1 ) = hα

Γ(1+α)

[
6r2

K

]
− 3

2

[
− hα

Γ(1+α)

[
(m+K)r

K + 6
K

√
(q∗ − q)K

]]2
= rhα

KΓ(1+α)

[
6r − 3

2K

[
hα

Γ(1+α)

] [
(m+K)r + 6

√
(q∗ − q)K

]2]
.
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We can easily check that if ĥ > 1 then Sf(N∗
1 ) < 1 and if ĥ < 1 then

Sf(N∗
1 ) > 1. Therefore, the stability of the nonhyperbolic fixed point is

explained. Finally, all of the stability conditions of fixed point N∗
1 are

completely determined.
□

Theorem 10 The non-zero fixed point N∗
2 = m+K

2 −
√

(q∗−q)rK
r is always unstable.

Proof To investigate the stability of N∗
2 , we evaluate f ′(N) at N∗

2 :

f ′(N∗
2 ) = 1 +

(q∗ − q)hα

Γ(1 + α)

[
(m+K)

√
r√

(q∗ − q)K
− 2

]
.

By simple algebraic manipulations, we can show that
(m+K)

√
r√

(q∗−q)K
> 2. Thus, f ′(N∗

2 ) is

always a positive constant, which means N∗
2 is always an unstable fixed point. □

4.3 Bifurcation Analysis

From the previous analysis, we have a non-hyperbolic fixed point N∗ when
q = q∗, indicating the possibility of the occurrence of saddle-node bifurca-
tion. Moreover, the occurrence of period-doubling bifurcation is also indicated
around the non-hyperbolic fixed point N∗

1 when h = h1. Thus, in this section,
we study the existence of saddle-node and period-doubling bifurcations.

Theorem 11 The non-zero fixed point N∗ undergoes a saddle-node bifurcation when

q crosses the critical values q∗ =
(m−K)2r

4K .

Proof It was shown previously that N∗ does not exist if q > q∗. When q = q∗ we have
a semistable fixed point N∗; and if q < q∗, then there exists two non-zero fixed points.

By straightforward calculations, we have
∂f(N∗)

∂N = 1,
∂f(N∗)

∂q = − hα

Γ(1+α)
m+K

2 < 0,

and
∂2f(N∗)

∂N2 = − (m+K)rhα

KΓ(1+α)
< 0. Thus, according to Theorem 4, the fixed point N∗

undergoes a saddle-node bifurcation when q crosses the critical values q∗ =
(m−K)2r

4K .

Moreover, the fixed points exist when q ≤ q∗ because
∂f(N∗)

∂q
∂2f(N∗)

∂N2 > 0. □

Theorem 12 The non-zero fixed point N∗
1 undergoes a period-doubling bifurcation

when h crosses the critical value h1 = α

√
2KΓ(1+α)

2(q∗−q)K+(m+K)
√

(q∗−q)rK
.
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Proof From the proof of Theorem 9 we have that if h = h1 then
∂f(N∗

1 )
∂N = −1. By

performing some algebraic calculations, we also have

∂2f(N∗
1 )

∂h∂N
=

αhα−1

Γ(1 + α)

[
r

(
m+K

2
+

√
(q∗ − q)rK

r

)
(
1− 2

K

(
m+K

2
+

√
(q∗ − q)rK

r

)
+

m

K

)]

=− rαhα−1

Γ(1 + α)

(
m+K

2
+

√
(q∗ − q)rK

r

)(
2

K

√
(q∗ − q)rK

r

)
.

(14)

N∗
1 exists if q ̸= q∗ and thus we have

∂2f(N∗
1 )

∂h∂N ̸= 0. According to Theorem 5, there
appears a solution of period-2 when h passes through h1. Hence, the occurrence of
period-doubling bifurcation in the map (9) is completely proven. □

Theorem 12 states that the period-doubling bifurcation in the map (9)
can be achieved by varying the step size h. However such bifurcation can also
be realized by setting a fixed value of h and other parameters while varying
a certain parameter. In the following Section, we give an example of period-
doubling bifurcation which is driven by the constant of harvesting (q).

5 Numerical Results

In this section, we present some numerical simulations of the map (9) to sup-
port the previous analytical findings. Due to the field data limitation, we use
hypothetical parameter values for the numerical simulations. We begin with a
simulation using the following parameter values:

r = 1.45, K = 10, m = 0.1, and α = 0.8. (15)

According to Theorem 6, map (9) with parameter set (15) has critical value
q∗ ≈ 3.5527 such that map (9) does not have non-zero fixed point if q > q∗.
When q = q∗, map (9) has a unique non-zero fixed point N∗ = 5.05 which
is a semistable fixed point, see Theorem 8. Furthermore, if q < q∗, then
there are two non-zero fixed points, namely N∗

1 and N∗
2 . By taking h = 0.4

and using Theorem 9, we can show that N∗
1 is asymptotically stable if q1 =

3.0191 ≲ q < q∗. On the other hand, Theorem 10 states that N∗
2 is always

unstable. Since we take h = 0.4, Theorem 12 states that the fixed point N∗
1

undergoes a period-doubling bifurcation when q crosses q1 from the right. To
see these dynamical behaviors, we plot in fig. 1a the bifurcation diagram of
the map (9) with parameter set (15) and h = 0.4 for 2.415 ≤ q ≤ 3.7. Clearly
that this bifurcation diagram fits perfectly with the results of our previous
analysis. Indeed, fig. 1a shows that N∗ (labelled as [a]) is semistable, see also
the Cobweb diagram shown in fig. 2a. As the value of q decreases from q∗, the
non-zero fixed point is split into two non-zero fixed points where one of them
is stable in the specified interval of q, while the other fixed point is unstable.
Such stability properties can also be seen from the Cobweb diagrams in fig. 2b
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(a) Bifurcation diagram

(b) Maximum Lyapunov exponents

Fig. 1: (a) Bifurcation diagram of the map (9) with parameter set (15), h =
0.4, and 2.415 ≤ q ≤ 3.7 and (b) the corresponding maximum Lyapunov
exponents.

and fig. 2c, which correspond to point [b] and [c] in fig. 1a, respectively. We
also observe numerically the appearance of a period-doubling route to chaos
(flip bifurcation) as q decreases. If we further decrease the value of q, then
there appears a stable solution of period-2 when q passes through q1. The
appearance of a stable period-doubling solution, as well as a solution of period-
3, are clearly seen in fig. 1a (see e.g. point [d], [e] and [f], respectively and
their corresponding diagram Cobweb in fig. 2d, 2e and 2f). The appearance of
the period-3 solution indicates that our system exhibits chaotic dynamics [42].
The existence of chaotic dynamics can also be determined from the Lyapunov
exponent. A system exhibits chaotic dynamics if it has positive maximum
Lyapunov exponents. The maximum Lyapunov exponents which correspond
to fig. 1a is depicted in fig. 1b. It is clearly seen that our system has positive
maximum Lyapunov exponents, showing the existence of chaotic dynamics in
the map (9) which is controlled by the constant of harvesting (q).
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(f) q = 2.6

Fig. 2: Cobweb diagrams of the map (9) with parameter set (15) and h = 0.4.

To describe the existence of period-doubling bifurcation driven by the step-
size h numerically, we perform simulations using the parameter set (15), q =
3.2, and 0.5 ≤ h ≤ 0.985. Map (9) with these parameter values has two
non-zero fixed points, namely N∗

1 ≈ 6.61 and N∗
2 ≈ 3.49. N∗

2 is unstable
while N∗

1 is stable if 0 < h < h1 ≈ 0.553. N∗
1 losses its stability via period-

doubling bifurcation when h crosses h1. These dynamics are clearly seen in
the bifurcation diagram, see fig. 3a. Increasing the value of h may destroy the
stability of N∗

1 and the system is convergent to a stable period-2 solution.
Further increasing the value of h leads to a stable period-4 cycle, and so on. To
give a more detailed view, in fig. 4 we plot Cobweb diagrams which correspond
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(a) Bifurcation diagram

(b) Maximum Lyapunov exponents

Fig. 3: (a) Bifurcation diagram of the map (9) with parameter set (15),
q = 3.2, and 0 ≤ h ≤ 0.92 and (b) the corresponding maximum Lyapunov
exponents.

to some solutions around the fixed points labeled as [g - l] in fig. 3a. When
h = 0.7, we have a stable period-2 cycle near the non-zero fixed point [g],
see fig. 4a. Each of the two solutions splits into two solutions respectively,
and become a stable period-4 solution around fixed point [h] when h = 0.74
(fig. 4b); and consecutively for h = 0.765 we have a stable period-8 cycle
near fixed point [i], see fig. 4c. Moreover, at h = 0.838, 0.883, 0.889 we have
respectively a stable period-5 cycle around fixed point [j], a stable period-3
cycle around fixed point [k], and a stable-period-6 cycle around fixed point [l],
see their Cobweb diagrams in fig. 4d-4f. Hence, the step size h is an important
parameter that significantly affects the dynamics of the map (9). In this case,
the map (9) exhibits a period-doubling bifurcation route to chaos driven by
parameter h. Furthermore, the appearance of positive maximum Lyapunov
exponents depicted in fig. 3b which corresponds to the bifurcation diagram in
fig. 3a clearly shows the existence of chaotic behavior in the system.
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Fig. 4: Cobweb diagrams of the map (9) with parameter set (15) and q = 3.2.

6 Hybrid Control Strategy

In this section, a method namely the hybrid control strategy is presented. This
method is a combination of state feedback and parameter perturbation which
is used for controlling bifurcation in a discrete system [43–46]. We first define
a map (9) as follows.

Nn+1 = f(Nn, ζ), (16)

where N ∈ R is the population density and, F (Nn, ζ) is the right hand side of
map (9) with bifurcation parameter ζ ∈ R. It can be revisited from analytical
and numerical results that when h and q are varies in some range, the map
(9) passes through a series of period-doubling bifurcations where the route to
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(a) Bifurcation diagram
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Fig. 5: Bifurcation diagrams of controlled map (17)

chaos. By obeying state feedback and parameter perturbation to the map (9),
we obtain the control map as follows.

Nn+1 = βf(Nn, ζ) + (1− β)Nn = F (N, β), (17)

where β ∈ [0, 1] denotes the external control parameter for map (17). We
can easily show that the map (9) and (17) have similar fixed points. From
Theorem 12, N∗

1 is the fixed point which undergoes a period-doubling bifurca-
tion. Particularly, From Theorem 1 in [46], the m-periodic orbit of control map
(17) is also similar with the original map (9). Now, we will show that by setting
β and varying h, the occurrence of period-doubling bifurcation can be delayed

or even eliminated. From the control map (17) we have F ′(N∗
1 ) = 1−2β

(
h
h1

)α

and
∂2F (N∗

1 )
∂h∂N =

∂2f(N∗
1 )

∂h∂N < 0. According to Theorem 5, the control map (17)
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also undergoes period-doubling bifurcation for the similar fixed point with
map (9). The difference lies on the bifurcation point where for the map (9)
is h = h1 while the control map (17) is h = h1

α
√
β
. This means if β decreases

then the bifurcation point increase which means the series of periodic solu-
tions are delayed. For example, by setting the parameter values as in eq. (15)
and β = 0.64, 0.76, 0.88, 1, the occurrence of bifurcation delayed and period-
3 solutions disappears. See Figure 5a. We also check the chaotic solution
near the period-3 solution. For h = 0.887, three quite close initial condi-
tions N(0) = 6, 6.001, 6.002 is given and portray the solutions in Figure 5b.
The chaotic interval which occurs for β = 1, becomes a periodic solution for
β = 0.76, 0.88, and finally converge to N∗

1 when β = 0.64.

7 Conclusion

A discrete fractional order logistic model with the Allee effect and propor-
tional harvesting has been constructed and investigated dynamically. The
discrete-time model is derived by applying the PWCA method to the Caputo
fractional order modified logistic model. It was shown analytically that the
obtained discrete-time model exhibits a saddle-node bifurcation as well as
period-doubling bifurcation. The key parameter in such bifurcations is the con-
stant of harvesting (q) or the step size (h). Numerical simulations with varying
parameters q and h confirm our analytical results. Furthermore, the presented
numerical results also showed the existence of period-doubling route chaos.
We then constuct the control based on the hybrid control strategy method. It
is shown that the occurrence of period-doubling can be delayed. The occur-
rence of the chaotic solution is also successfully eliminated when the control
parameter is decreased.
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Fractional-Order Logistic Model with Allee2

Effect and Proportional Harvesting3

Abstract4

The Allee Effect and harvesting always get a pivotal role in studying5

the preservation of a population. In this contex, we consider a Caputo6

fractional order logistic model with the Allee effect and proportional har-7

vesting. In particular, we implement the piecewise constant arguments8

(PWCA) method to discretize the fractional model. The dynamics of the9

obtained discrete-time model are then analyzed. Fixed points and their10

stability conditions are established. We also show the existence of saddle-11

node and period-doubling bifurcations in the discrete-time model. These12

analytical results are then confirmed by some numerical simulations via13

bifurcation, Cobweb, and maximal Lyapunov exponents diagrams. The14

occurrence of period-doubling bifurcation route to chaos is also observed15

numerically. Finally, the occurrence of period-doubling bifurcation is16

successfully controlled using a hybrid control strategy.17

Keywords: Discrete-time fractional-order, Logistic map, Allee effect,18

Harvesting, Bifurcation, Chaos19

MSC Classification: 34A08 , 39A28 , 39A30 , 92D4020

1 Introduction21

For the last decades, the discrete-time model gets a lot of great attentive-22

ness from researchers in mathematical modeling, not only because of its23

capability in describing several phenomena such as physics, biomedicine, engi-24

neering, chemistry, and population dynamics but also due to the richness of25

the given dynamical patterns as well as the occurrence of bifurcations and26

chaotic solutions which very difficult to find in their continuous counterpart [1–27

6]. Particularly, the discrete-time model is successfully applied in population28

dynamics, especially in a single logistic growth modeling [7–10], the epidemic29

modeling [11–13], and the predator-prey interaction modeling [14–18]. Most of30

the models are discretized using Euler scheme [19–21] and nonstandard finite31

difference (NSFD) [22–24] which is popular for the discretization of the model32

1

Manuscript
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with first-order derivative as the operator. Furthermore, for the model with33

fractional-order derivative, we have some numerical schemes to approximate34

the exact solution such in [25–28]. We also have the popular discretization pro-35

cess is given by piecewise constant arguments (PWCA) which were proposed36

by El-Sayed et al. [29] and applied by other researchers in different biological37

phenomena [30–34].38

In this paper, we study and justify the dynamics of a discrete-time
model constructed using PWCA from a fractional-order logistic growth model
involving the Allee effect and harvesting. The model is given by

dN

dt
= rN

(
1− N

K

)
(N −m)− qN, (1)

where N(t) represents the population density at time t and all parameters are39

positive numbers with biological interpretations are given in Table 1.40

Table 1: Biological Interpretation for each Parameter

Parameters Biological Interpretation
r the intrinsic growth rate
K the environmental carrying capacity
m the Allee effect threshold
q the harvesting rate

Notice that the Allee effect reduces the population growth rate when the41

population density is low (i.e., when N < m) as a result of several natu-42

ral mechanisms such as intraspecific competition, cooperative anti-predator43

behavior, cooperative breeding, limitation in finding mates, and so forth.44

The positive growth rate occurs if the population density is in the interval45

m < N < K. For further explanation about the Allee effect, see [35–44].46

To obtain the fractional-order model, we follow a similar way as in [14].
The first-order derivative at the left-hand side of model (1) is replaced with the
fractional order-derivative CDα

t which denotes the Caputo fractional derivative
operator of order-α defined by

CDα
t f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds, (2)

where α is the order of fractional derivative with α ∈ (0, 1] and Γ(·) is the
Gamma function. Furthermore, by replacing the operator with equating the
dimensions of time at the right-hand side, the following model is acquired.

CDα
t N = rαN

(
1− N

K

)
(N −m)− qαN. (3)
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Model (3) can be written as

CDα
t N = r̄N

(
1− N

K

)
(N −m)− q̄N, (4)

where r̄ = rα and q̄ = qα. Finally, by dropping (̄·), the fractional-order model
for (1) is successfully obtained as follows.

CDα
t N = rN

(
1− N

K

)
(N −m)− qN. (5)

As far as we are aware, both the fractional-order model and the discrete-47

time version of eq. (5) have not been introduced and studied. Especially for48

fractional-order model (5), since the stability properties of equilibrium point49

refers to Matignon condition [45], the dynamics of the one dimensional first-50

order and the fractional-order models are qualitatively the same because the51

|arg (λ)| of equilibrium point always in the real line. In the other hand, although52

in the one-dimensional model, the discrete-time model has more possible com-53

plex phenomena such as period-doubling bifurcation and chaotic behaviors54

which do not exist in its continuous ones. This means the one-dimensional55

continuous model has poor dynamics than the discrete-time model. Hence,56

for this case, studying the discrete-time model is more interesting and attrac-57

tive. In this paper, we construct a discrete-time model by implementing the58

PWCA method for the model (5), and the dynamics of the obtained discrete-59

time model are then investigated. The layout of this paper is as follows. In60

Section 2, the model formulation is given by applying the PWCA method to61

get a discrete-time model. To support the analytical process, we provide some62

basic theoretical results in Section 3. In Section 4, some analytical results are63

provided such as the existence of fixed points, their local stability, the exis-64

tence of saddle-node, and period-doubling bifurcations. In Section 5, we present65

some numerical simulations and show some interesting phenomena, such as66

bifurcation, Lyapunov exponent, and Cobweb diagrams which correspond to67

the previous theoretical results. We also present numerically a period-doubling68

route to chaos. A hybrid control strategy is applied to delay and eliminate the69

occurrence of period-doubling bifurcation and chaotic solution in Section 6.70

The conclusion of this work is given in Section 7.71

2 Model Formulation72

By applying a similar procedure as in [29, 30], we discretize model (5) with
the PWCA method as follows

CDα
t N(t) = rN ([t/h]h)

(
1− N ([t/h]h)

K

)
(N ([t/h]h)−m)− qN ([t/h]h) ,
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with initial condition N(0) = N0. Let t ∈ [0, h), t/h ∈ [0, 1), then we have

CDα
t N(t) = rN0

(
1− N0

K

)
(N0 −m)− qN0. (6)

The solution of eq. (6) is

N1 = N0 +
tα

Γ(1 + α)

[
rN0

(
1− N0

K

)
(N0 −m)− qN0

]
Next, let t ∈ [h, 2h), t/h ∈ [1, 2). Thus, we obtain

CDα
t N(t) = rN1

(
1− N1

K

)
(N1 −m)− qN1, (7)

where its solution is given by

N2 = N1(h) +
(t− h)α

Γ(1 + α)

[
rN1

(
1− N1

K

)
(N1 −m)− qN1

]
.

By proceeding the same disretization process, for t ∈ [nh, (n + 1)h), t/h ∈
[n, n+ 1), we have

Nn+1 = Nn(nh)+
(t− nh)α

Γ(1 + α)

[
rNn(nh)

(
1− Nn(nh)

K

)
(Nn(nh)−m)− qNn(nh)

]
.

(8)
For t → (n+ 1)h, eq. (8) is reduced to a discrete-time fractional order logistic
model with the Allee effect and proportional harvesting

Nn+1 = Nn +
hα

Γ(1 + α)
Nn

[
r

(
1− Nn

K

)
(Nn −m)− q

]
= f(N). (9)

We remark that if α → 1 then eq. (9) is exactly the same as the Euler73

discretization of model (5).74

3 Fundamental Concepts75

To analyze the dynamical behavior such as the existence of fixed point, the76

local stability, and the occurrence of saddle-node and period-doubling bifurca-77

tion of the discrete-time model (9), the following definition and theorems are78

needed.79

Definition 1 [46] Consider the following map

x(n+ 1) = f(x(n)). (10)
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A point x∗ is said a fixed point of the map (10) if f(x∗) = x∗. If
∣∣f ′(x∗)∣∣ ̸= 1 then x∗80

is called a hyperbolic fixed point, and if
∣∣f ′(x∗)∣∣ = 1 then x∗ is called a nonhyperbolic81

fixed point.82

Theorem 1 [46] Let x∗ be a hyperbolic fixed point of the map (10) where f is83

continuously differentiable at x∗. The following statements then hold true:84

(i) If |f ′(x∗)| < 1, then x∗ is locally asymptotically stable.85

(ii) If |f ′(x∗)| > 1, then x∗ is unstable.86

Theorem 2 [46] Let x∗ is a nonhyperbolic fixed point of the map (10) satisfying87

f ′(x∗) = 1. If f ′(x), f ′′(x), and f ′′′(x) are continuous at x∗, then the following88

statements hold:89

(i) If f ′′(x∗) ̸= 0, then x∗ unstable (semistable).90

(ii) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ unstable.91

(iii) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ locally asymptotically stable.92

Definition 2 [46] The Schwarzian derivative, Sf , of a function f is defined by

Sf(x) =
f ′′′(x)
f ′(x)

− 3

2

[
f ′′(x)
f ′(x)

]2
.

Particularly, if f ′(x∗) = −1 then

Sf(x∗) = −f ′′′(x∗)− 3

2

[
f ′′(x∗)

]2
.

Theorem 3 [46] Let x∗ is a hyperbolic fixed point of the map (10) satisfying f ′(x∗) =93

−1. If f ′(x), f ′′(x), and f ′′′(x) are continuous at x∗, then the following statements94

hold:95

(i) If Sf(x∗) < 0 then x∗ is locally asymptotically stable.96

(ii) If Sf(x∗) > 0 then x∗ is unstable.97

Theorem 4 (The existence of Saddle-Node Bifurcation [46]) Suppose that xn+1 =
f(µ, xn) is a C2 one-parameter family of one-dimensional maps, and x∗ is a fixed
point with f ′(µ, x) = 1. Assume further that

∂f

∂µ
(µ∗, x∗) ̸= 0 and

∂2f

∂x2
(µ∗, x∗) ̸= 0.

Then there exists an interval I around x∗ and a C2 map µ = p(x), where p : I → R98

such that p(x∗) = µ∗, and f(p(x), x) = x. Moreover, if ∂f
∂µ

∂2f
∂x2 |(µ∗,x∗) < 0, the fixed99

points exist for µ > µ∗ and if ∂f
∂µ

∂2f
∂x2 |(µ∗,x∗) > 0, the fixed points exist for µ < µ∗.100

Theorem 5 (The existence of period-doubling bifurcation [46]) Suppose that xn+1 =101

f(µ, xn) is a C2 one-parameter family of one-dimensional maps, and x∗ is a fixed102

point. Assume that103
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(i) ∂f
∂x (µ

∗, x∗) = −1.104

(ii) ∂2f
∂µ∂x (µ

∗, x∗) ̸= 0.105

Then there is an interval I about x∗ and a function p : I → R such that fp(x)(x) ̸= x106

but f2p(x) = x.107

4 Analytical Results108

We explore some analytical results here such as the existence of fixed points,109

their local stability, and the existence of some bifurcations namely saddle-node110

and period-doubling bifurcations. Since the map (9) is constructed by PWCA111

with step-size (h), the analytical process is then investigated by considering112

the impact of h. Some analytical results also examine the influence of the113

harvesting (q) on the dynamics of the given map.114

4.1 The Existence of Fixed Point115

Based on Definition (1), the fixed point of the map (9) is obtained by solving
the following equation

N = N +
hα

Γ(1 + α)
N

[
r

(
1− N

K

)
(N −m)− q

]
. (11)

The solutions of eq. (11) is described as follows:116

(i) The extinction of population fixed point N∗
0 = 0 which always exists.117

(ii) The non-zero fixed points N∗
1,2 which are the positive solutions of the

following quadratic polynomial

N2 − (m+K)N +mK +
qK

r
= 0. (12)

The solutions of eq. (12) are

N∗
1 =

m+K

2
+

√
(q∗ − q)rK

r
,

N∗
2 =

m+K

2
−

√
(q∗ − q)rK

r
,

(13)

where q∗ = (m−K)2r
4K > 0. The existence of non-zero fixed points (13) is118

shown by Theorem 6.119

Theorem 6 (i) If q > q∗ then the non-zero fixed point of the map (9) does not120

exist.121

(ii) If q = q∗ then there exists a unique non-zero fixed point N∗ = m+K
2 of the122

map (9).123



Springer Nature 2022 LATEX template

Bifurcation and Chaos in a Discrete-Time. . . 7

(iii) If q < q∗, then there exist two non-zero fixed points, namely N∗
1,2 of the124

map (9).125

Proof (i) It is easy to confirm that if q > q∗ then the solutions of eq. (12) are126

a pair of complex conjugate numbers.127

(ii) For q = q∗, we have N∗ = N∗
1 = N∗

2 = m+K
2 . Hence, N∗ is the only positive128

fixed point of the map (9).129

(iii) If q < q∗ then N∗
1,2 ∈ R. Because N∗

1N
∗
2 = mK + qK

r > 0 and N∗
1 +N∗

2 =130

m+K > 0, then N∗
1 and N∗

2 are obviously positive, showing that there are131

two non-zero fixed points.132

□133

4.2 Local Stability134

Now, the dynamical behaviors of the map (9) around each fixed point are135

investigated. The following Theorems 7 to 10 are presenting to describe the136

local dynamics of Fixed points N∗
i , i = 0, 1, 2 and N∗. The complete dynamics137

including local stability, unstable condition, and nonhyperbolic properties for138

each fixed point are studied by employing Theorems 1 to 3. In this respect, all139

dynamical properties are expressed in step-size (h) and harvesting rate (q) to140

simplify the mathematical terms.141

Theorem 7 Let’s denote q̂ =
(2m2+3mK+2K2)r

K and h0 = α

√
2Γ(1+α)
mr+q . Then the142

following statements hold:143

(i) if 0 < h < h0 then N∗
0 is locally asymptotically stable,144

(ii) if h > h0 then N∗
0 is unstable, and145

(iii) if h = h0 then N∗
0 is nonhyperbolic fixed point. Furthermore if146

(iii.a) q < q̂ then N∗
0 is locally asymptotically stable, and147

(iii.b) q > q̂ then N∗
0 is unstable.148

Proof By evaluating f ′(N) at N∗
0 , we obtain

f ′(N∗
0 ) = 1− hα(mr + q)

Γ(1 + α)
= 1− 2

(
h

h0

)α

.

(i) If 0 < h < h0 then 0 < (h/h0)
α < 1, which implies |f ′(N∗

0 )| < 1. Based on149

Theorem 1, we have a locally asymptotically stable N∗
0 .150

(ii) If h > h0 then (h/h0)
α > 1, so that f ′(N∗

0 ) < −1. Theorem 1 states that151

N∗
0 is an unstable fixed point.152

(iii) For h = h0, we have f ′(N∗
0 ) = −1, i.e., N∗

0 is nonhyperbolic fixed point.
The Schwarzian derivative of map f(N) at N∗

0 is

Sf(N∗
0 ) =

hα

Γ(1 + α)

[
6r

K

]
− 3

2

[
hα

Γ(1 + α)

[
2(m+K)r

K

]]2
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=
6rhα

KΓ(1 + α)

[
1− hα

KΓ(1 + α)
(m+K)

2
r

]
=

12r

(mr + q)K

[
1− 2(m+K)2r

(mr + q)K

]
.

If q < q̂ then Sf(N∗
0 ) < 0, and thus N∗

0 is locally asymptotically stable.153

On the contrary, if q > q̂ then Sf(N∗
0 ) > 0, showing N∗

0 is unstable. Thus,154

Theorem 7 is completely proven.155

□156

Theorem 8 The non-zero fixed point N∗ is semistable.157

Proof The derivative of f(N) at N∗ is

f ′(N∗) = 1 +
hα

Γ(1 + α)

[
−3r

K

(
m+K

2

)2

+
2r(m+K)

K

(
m+K

2

)
−mr − q

]

= 1 +
hα

Γ(1 + α)

[
(m+K)2r − 4mrK

4K
− q

]
= 1 +

hα

Γ(1 + α)

[
q∗ − q

]
.

N∗ exists when q = q∗. Clearly that f ′(N∗) = 1, and therefore N∗ is a nonhyperbolic
fixed point. By direct calculations, we can show that

f ′′(N∗) =
hα

Γ(1 + α)

[
−6rN

K
+ 2

(
1 +

m

K

)
r

]
=

hα

Γ(1 + α)

[
−6r

K

m+K

2
+

2(m+K)r

K

]
=

hα

Γ(1 + α)

[
−3(m+K)r

K
+

2(m+K)r

K

]
= − (m+K)rhα

KΓ(1 + α)
< 0.

Since f ′′(N∗) ̸= 0, Theorem 2 says that the fixed point N∗ is semistable. □158

Theorem 9 Suppose that:

h1 = α

√
2KΓ(1 + α)

2(q∗ − q)K + (m+K)
√

(q∗ − q)rK
,

ĥ =
(m+K)r + 6

√
(q∗ − q)K√

4(q∗ − q)rK + 2r(m+K)
√

(q∗ − q)rK
.

The local stability of N∗
1 is described as follows.159

(i) If 0 < h < h1 then N∗
1 is locally asymptotically stable.160

(ii) If h > h1 then N∗
1 is unstable.161
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(iii) If h = h1 and162

(iii.a) If ĥ > 1 then N∗
1 is locally asymptotically stable.163

(iii.b) If ĥ < 1 then N∗
1 is unstable.164

Proof It is obvious to show that

f ′(N∗
1 ) = 1 + hα

Γ(1+α)

[
−
(

3
4K (m+K)2r + 3(q∗ − q) + 3

K (m+K)
√

(q∗ − q)rK
)

+ 1
K (m+K)2r + 2

K (m+K)
√

(q∗ − q)rK − (mr + q)
]

= 1− hα

KΓ(1+α)

[
2(q∗ − q)K + (m+K)

√
(q∗ − q)rK

]
= 1− hα

KΓ(1+α)

[
2KΓ(1+α)

hα
1

]
= 1− 2

(
h
h1

)α
.

Hence, we have the following observations:165

(i) For 0 < h < h1, we have |f ′(N∗
1 )| < 1. According to Theorem 1, the166

non-zero fixed point N∗
1 is locally asymptotically stable.167

(ii) If h > h1 then we get f ′(N∗
1 ) < −1. Thus, N∗

1 is an unstable fixed point168

(see Theorem 1).169

(iii) Clearly that f ′(N∗
1 ) = −1 whenever h = h1, which shows that N∗

1 is non-
hyperbolic fixed point. The Schwarzian derivative of f(N) at N∗

1 is given
by

Sf(N∗
1 ) = hα

Γ(1+α)

[
6r2

K

]
− 3

2

[
− hα

Γ(1+α)

[
(m+K)r

K + 6
K

√
(q∗ − q)K

]]2
= rhα

KΓ(1+α)

[
6r − 3

2K

[
hα

Γ(1+α)

] [
(m+K)r + 6

√
(q∗ − q)K

]2]
.

We can easily check that if ĥ > 1 then Sf(N∗
1 ) < 1 and if ĥ < 1 then170

Sf(N∗
1 ) > 1. Therefore, the stability of the nonhyperbolic fixed point is171

explained. Finally, all of the stability conditions of fixed point N∗
1 are172

completely determined.173

□174

Theorem 10 The non-zero fixed point N∗
2 = m+K

2 −
√

(q∗−q)rK
r is always unstable.175

Proof To investigate the stability of N∗
2 , we evaluate f ′(N) at N∗

2 :

f ′(N∗
2 ) = 1 +

(q∗ − q)hα

Γ(1 + α)

[
(m+K)

√
r√

(q∗ − q)K
− 2

]
.

By simple algebraic manipulations, we can show that
(m+K)

√
r√

(q∗−q)K
> 2. Thus, f ′(N∗

2 ) is176

always a positive constant, which means N∗
2 is always an unstable fixed point. □177
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4.3 Bifurcation Analysis178

From the previous analysis, we have a non-hyperbolic fixed point N∗ when179

q = q∗, indicating the possibility of the occurrence of saddle-node bifurca-180

tion. Moreover, the occurrence of period-doubling bifurcation is also indicated181

around the non-hyperbolic fixed point N∗
1 when h = h1. Thus, in this section,182

we study the existence of saddle-node and period-doubling bifurcations. The183

saddle-node bifurcation is a phenomenon that two fixed points with opposite184

signs of stability merge into a unique semi-stable fixed point and finally dis-185

appear when a parameter is varied, while the period-doubling bifurcation is a186

phenomenon that a single fixed point losses its stability accompanied by the187

emergence of a period-2 solution when a parameter is varied [46]. As results,188

we have Theorems 11 and 12.189

Theorem 11 The non-zero fixed point N∗ undergoes a saddle-node bifurcation when190

q crosses the critical values q∗ =
(m−K)2r

4K .191

Proof It was shown previously that N∗ does not exist if q > q∗. When q = q∗ we have192

a semistable fixed point N∗; and if q < q∗, then there exists two non-zero fixed points.193

By straightforward calculations, we have
∂f(N∗)

∂N = 1,
∂f(N∗)

∂q = − hα

Γ(1+α)
m+K

2 < 0,194

and
∂2f(N∗)

∂N2 = − (m+K)rhα

KΓ(1+α)
< 0. Thus, according to Theorem 4, the fixed point N∗

195

undergoes a saddle-node bifurcation when q crosses the critical values q∗ =
(m−K)2r

4K .196

Moreover, the fixed points exist when q ≤ q∗ because
∂f(N∗)

∂q
∂2f(N∗)

∂N2 > 0. □197

Theorem 12 The non-zero fixed point N∗
1 undergoes a period-doubling bifurcation198

when h crosses the critical value h1 = α

√
2KΓ(1+α)

2(q∗−q)K+(m+K)
√

(q∗−q)rK
.199

Proof From the proof of Theorem 9 we have that if h = h1 then
∂f(N∗

1 )
∂N = −1. By

performing some algebraic calculations, we also have

∂2f(N∗
1 )

∂h∂N
=

αhα−1

Γ(1 + α)

[
r

(
m+K

2
+

√
(q∗ − q)rK

r

)
(
1− 2

K

(
m+K

2
+

√
(q∗ − q)rK

r

)
+

m

K

)]

=− rαhα−1

Γ(1 + α)

(
m+K

2
+

√
(q∗ − q)rK

r

)(
2

K

√
(q∗ − q)rK

r

)
.

(14)

N∗
1 exists if q ̸= q∗ and thus we have

∂2f(N∗
1 )

∂h∂N ̸= 0. According to Theorem 5, there200

appears a solution of period-2 when h passes through h1. Hence, the occurrence of201

period-doubling bifurcation in the map (9) is completely proven. □202
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Theorem 12 states that the period-doubling bifurcation in the map (9)203

can be achieved by varying the step-size h. However such bifurcation can also204

be realized by setting a fixed value of h and other parameters while varying205

a certain parameter. In the following Section, we give an example of period-206

doubling bifurcation which is driven by the constant of harvesting (q).207

5 Numerical Results208

In this section, we present some numerical simulations of the map (9) not only
to support the previous analytical findings but also to show more dynamical
behaviors of the map (9). Numerical simulations are given by considering some
biological and mathematical aspects such as the influence of the harvesting, the
step-size (h), the Allee effect (m), and the order−α. To support the numerical
simulations, a desktop PC is used based on AMD Ryzen 5 3400G 3.7GHz, 16
GB RAM, and AMD Radeon RX580 8GB DDR5 VGA card. We also use an
open source software called Python 3.9 to generate all of the given figures.
Due to the field data limitation, we use hypothetical parameter values for the
numerical simulations. General parameter values are given as follows.

r = 1.45, K = 10, m = 0.1, q = 0.32, α = 0.8, and h = 0.4. (15)

209

5.1 The influence of the Harvesting Rate210

The numerical simulations in this subsection are using parameter set (15) and211

vary the value of the harvesting rate (q). According to Theorem 6, map (9) with212

parameter set (15) has critical value q∗ ≈ 3.5527 such that map (9) does not213

have a non-zero fixed point if q > q∗. When q = q∗, map (9) has a unique non-214

zero fixed point N∗ = 5.05 which is a semistable fixed point, see Theorem 8.215

Furthermore, if q < q∗, then there are two non-zero fixed points, namely N∗
1216

and N∗
2 . By taking h = 0.4 and using Theorem 9, we can show that N∗

1 is217

asymptotically stable if q1 = 3.0191 ≲ q < q∗. On the other hand, Theorem 10218

states that N∗
2 is always unstable. Since we take h = 0.4, Theorem 12 states219

that the fixed point N∗
1 undergoes a period-doubling bifurcation when q crosses220

q1 from the right. To see these dynamical behaviors, we plot in fig. 1a the221

bifurcation diagram of the map (9) with parameter set (15) and h = 0.4 for222

2.415 ≤ q ≤ 3.7. Clearly that this bifurcation diagram fits perfectly with the223

results of our previous analysis. Indeed, fig. 1a shows that N∗ (labeled as [a])224

is semistable, see also the Cobweb diagram shown in fig. 2a. As the value of225

q decreases from q∗, the non-zero fixed point is split into two non-zero fixed226

points where one of them is stable in the specified interval of q, while the227

other fixed point is unstable. Such stability properties can also be seen in228

the Cobweb diagrams in figs. 2b and 2c, which corresponds to points [b] and229

[c] in fig. 1a, respectively. We also observe numerically the appearance of a230

period-doubling route to chaos (flip bifurcation) as q decreases. If we further231
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(a) Bifurcation diagram

(b) Maximum Lyapunov exponents

Fig. 1: Bifurcation diagram and its corresponding maximum Lyapunov expo-
nents of the map (9) with parameter set (15) and 2.415 ≤ q ≤ 3.7

decrease the value of q, then there appears a stable solution of period-2 when232

q passes through q1. The appearance of a stable period-doubling solution, as233

well as a solution of period-3, are seen in fig. 1a (see e.g. point [d], [e], and [f],234

respectively, and their corresponding diagram Cobweb in figs. 2d to 2f). The235

appearance of the period-3 solution indicates that our system exhibits chaotic236

dynamics [47]. The existence of chaotic dynamics can also be determined from237

the Lyapunov exponent. A system exhibits chaotic dynamics if it has positive238

maximum Lyapunov exponents. The maximum Lyapunov exponents which239

correspond to fig. 1a is depicted in fig. 1b. It is clearly seen that our system240

has positive maximum Lyapunov exponents, showing the existence of chaotic241

dynamics in the map (9) which is controlled by the constant of harvesting (q).242
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Fig. 2: Cobweb diagrams of the map (9) with parameter set (15)

5.2 The influence of the Step-Size243

To describe the existence of period-doubling bifurcation driven by the step-244

size h numerically, we perform simulations using the parameter set (15) and245

0.5 ≤ h ≤ 0.985. Map (9) with these parameter values has two non-zero fixed246

points, namely N∗
1 ≈ 6.61 and N∗

2 ≈ 3.49. N∗
2 is unstable while N∗

1 is stable247

if 0 < h < h1 ≈ 0.553. N∗
1 losses its stability via period-doubling bifurcation248

when h crosses h1. These dynamics are seen in the bifurcation diagram, see249

fig. 3a. Increasing the value of hmay destroy the stability of N∗
1 and the system250

is convergent to a stable period-2 solution. Further increasing the value of h251

leads to a stable period-4 cycle, and so on. To give a more detailed view, we252
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(a) Bifurcation diagram

(b) Maximum Lyapunov exponents

Fig. 3: Bifurcation diagram and its corresponding maximum Lyapunov expo-
nents of the map (9) with parameter set (15) and 0 ≤ h ≤ 0.92

plot Cobweb diagrams in fig. 4 which correspond to some solutions around the253

fixed points labeled as [g - l] in fig. 3a. When h = 0.7, we have a stable period-254

2 cycle near the non-zero fixed point [g], see fig. 4a. Each of the two solutions255

splits into two solutions respectively and becomes a stable period-4 solution256

around fixed point [h] when h = 0.74 (fig. 4b); and consecutively for h = 0.765257

we have a stable period-8 cycle near fixed point [i], see fig. 4c. Moreover, at258

h = 0.838, 0.883, 0.889 we have respectively a stable period-5 cycle around259

fixed point [j], a stable period-3 cycle around fixed point [k], and a stable-260

period-6 cycle around fixed point [l], see their Cobweb diagrams in figs. 4d261

to 4f. Hence, the step-size h is an important parameter that significantly affects262

the dynamics of the map (9). In this case, the map (9) exhibits a period-263

doubling bifurcation route to chaos driven by parameter h. Furthermore, the264

appearance of positive maximum Lyapunov exponents depicted in fig. 3b which265

corresponds to the bifurcation diagram in fig. 3a clearly shows the existence266

of chaotic behavior in the system.267
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Fig. 4: Cobweb diagrams of the map (9) with parameter set (15)

5.3 The Influence of the Allee Effect268

To show the influence of the Allee effect, we use the parameter set (15) and269

vary the values of m in the interval 0 ≤ m ≤ 2.5. From Equation (13), we com-270

pute numerically that N∗
1 and N∗

2 exist for interval 0 ≤ m ⪅ 0.6045. Based271

on Theorems 8 to 10, the stability of N∗
1 and N∗

2 has the different sign for272

0 ≤ m < 0.6045 and finally merge into a semi-stable fixed point N∗ ≈ 5.29671273

when m ≈ 0.6045. When m crosses 0.6045, N∗ disappears and N∗
0 becomes274

the only fixed point of the map (9). These phenomena indicate the occur-275

rence of saddle-node bifurcation driven by the Allee effect (m). According to276

Theorem 7, we also have that N∗
0 is locally asymptotically stable for m < 0.467277



Springer Nature 2022 LATEX template

16 Bifurcation and Chaos in a Discrete-Time. . .

(a) Bifurcation diagram

(b) Maximum Lyapunov exponents

Fig. 5: Bifurcation diagram and its corresponding maximum Lyapunov expo-
nents of the map (9) with parameter set (15) and 0 ≤ m ≤ 2.5
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Fig. 6: Cobweb diagrams of the map (9) with parameter set (15)
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(a) Bifurcation diagram

(b) Maximum Lyapunov exponents

Fig. 7: Bifurcation diagram and its corresponding maximum Lyapunov expo-
nents of the map (9) with parameter set (15) and 0 ≤ α ≤ 0.8

and losses its stability via period-doubling bifurcation when m crosses 0.467.278

These complex dynamics are shown in fig. 5a and its corresponding maximum279

Lyapunov exponents are depicted in fig. 5b which confirms the existence of280

chaotic behavior on the map (9). One interesting condition is also shown for281

some values of m. For 0 < m < 0.467, the map (9) passes through a bistabil-282

ity condition. N∗
0 and N∗

1 are locally asymptotically stable simultaneously and283

hence the solution of the map is sensitive to the initial value. See the Cobweb284

diagrams in fig. 6. When m = 0.3, two nearby initial values are convergent to285

different fixed points. When the Allee effect increases to m = 1, the solution286

converges to a period-2 solution around N∗
0 .287

5.4 The Influence of the order-α288

As the impact of the discretization process, we have a parameter α on map289

(9) which is derived from the order of the derivative of the continuous model290
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(a) Bifurcation diagram
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Fig. 8: Bifurcation diagrams of controlled map (17)

as the memory effect. Again, we use the parameter set (15) and varying α.291

As result, we have a bifurcation diagram and maximum Lyapunov exponents292

depicted in Figure 7. The given dynamics are quite similar to the impact of the293

step-size but in different directions. If increasing h may change the dynamics of294

N∗
1 from locally asymptotically stable to periodic solution via period-doubling295

bifurcation, different dynamics direction presented by α where if its value296

increase, the unstable N∗
1 becomes locally asymptotically stable via period-297

doubling bifurcation. Some chaotic behavior indicated by positive Lyapunov298

exponents disappears becomes periodic orbits and is finally convergent to N∗
299

when α crosses 0.5708.300



Springer Nature 2022 LATEX template

Bifurcation and Chaos in a Discrete-Time. . . 19

6 Hybrid Control Strategy301

In this section, a method namely the hybrid control strategy is presented. This
method is a combination of state feedback and parameter perturbation which
is used for controlling bifurcation in a discrete system [48–51]. We first define
a map (9) as follows.

Nn+1 = f(Nn, ζ), (16)

where N ∈ R is the population density and, F (Nn, ζ) is the right hand side of
map (9) with bifurcation parameter ζ ∈ R. It can be revisited from analytical
and numerical results that when h and q are varies in some range, the map
(9) passes through a series of period-doubling bifurcations where the route to
chaos. By obeying state feedback and parameter perturbation to the map (9),
we obtain the control map as follows.

Nn+1 = βf(Nn, ζ) + (1− β)Nn = F (N, β), (17)

where β ∈ [0, 1] denotes the external control parameter for map (17). We302

can easily show that the map (9) and (17) have similar fixed points. From303

Theorem 12, N∗
1 is the fixed point which undergoes a period-doubling bifurca-304

tion. Particularly, From Theorem 1 in [51], the m-periodic orbit of control map305

(17) is also similar to the original map (9). Now, we will show that by setting306

β and varying h, the occurrence of period-doubling bifurcation can be delayed307

or even eliminated. From the control map (17) we have F ′(N∗
1 ) = 1−2β

(
h
h1

)α

308

and
∂2F (N∗

1 )
∂h∂N =

∂2f(N∗
1 )

∂h∂N < 0. According to Theorem 5, the control map (17)309

also undergoes period-doubling bifurcation for the similar fixed point with310

map (9). The difference lies in the bifurcation point where the map (9) is311

h = h1 while the control map (17) is h = h1
α
√
β
. This means if β decreases312

then the bifurcation point increase which means the series of periodic solu-313

tions are delayed. For example, by setting the parameter values as in eq. (15)314

and β = 0.64, 0.76, 0.88, 1, the occurrence of bifurcation is delayed and period-315

3 solutions disappear. See Figure 8a. We also check the chaotic solution316

near the period-3 solution. For h = 0.887, three quite close initial condi-317

tions N(0) = 6, 6.001, 6.002 is given and portray the solutions in Figure 8b.318

The chaotic interval which occurs for β = 1 becomes a periodic solution for319

β = 0.76, 0.88, and finally, converges to N∗
1 when β = 0.64.320

7 Conclusion321

A discrete-time fractional-order logistic model with the Allee effect and pro-322

portional harvesting has been constructed and investigated dynamically. The323

discrete-time model is derived by applying the PWCA method to the Caputo324

fractional order modified logistic model. The local stability for each fixed point325

is successfully investigated completely for hyperbolic and nonhyperbolic fixed326

points by obeying the stability theorem along with the Schwarzian derivative.327

Furthermore, it was shown analytically that the obtained discrete-time model328
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exhibits a saddle-node bifurcation as well as period-doubling bifurcation. The329

key parameter in such bifurcations is the constant of harvesting (q) or the step-330

size (h). Numerical simulations with varying parameters q and h confirm our331

analytical results. The dynamics of the map are also studied numerically by332

varying the Allee threshold (m) and the order−α which also give the saddle-333

node and period-doubling bifurcations. Furthermore, the presented numerical334

results also showed the existence of period-doubling route chaos which is indi-335

cated by the positive Lyapunov exponents and the appearance of period-3336

window. We then construct the control based on the hybrid control strategy337

method. It is shown that the occurrence of period-doubling can be delayed.338

The occurrence of the chaotic solution is also successfully eliminated when the339

control parameter is decreased.340
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Abstract
The Allee effect and harvesting always get a pivotal role in studying the preservation of a population. In this context, we
consider aCaputo fractional-order logisticmodelwith theAllee effect and proportional harvesting. In particular, we implement
the piecewise constant arguments (PWCA) method to discretize the fractional model. The dynamics of the obtained discrete-
time model are then analyzed. Fixed points and their stability conditions are established. We also show the existence of
saddle-node and period-doubling bifurcations in the discrete-time model. These analytical results are then confirmed by
some numerical simulations via bifurcation, Cobweb, and maximal Lyapunov exponent diagrams. The occurrence of period-
doubling bifurcation route to chaos is also observed numerically. Finally, the occurrence of period-doubling bifurcation is
successfully controlled using a hybrid control strategy.
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1 Introduction

For the last decades, the discrete-timemodel gets a lot of great
attentiveness from researchers inmathematicalmodeling, not
only because of its capability in describing several phenom-
ena such as physics, biomedicine, engineering, chemistry,
and population dynamics but also due to the richness of the
given dynamical patterns as well as the occurrence of bifur-
cations and chaotic solutions which very difficult to find in
their continuous counterpart [1–6]. Particularly, the discrete-
time model is successfully applied in population dynamics,
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especially in a single logistic growth modeling [7–10], the
epidemic modeling [11–13], and the predator–prey interac-
tion modeling [14–18]. Most of the models are discretized
using Euler scheme [19–21] and nonstandard finite differ-
ence (NSFD) [22–24] which is popular for the discretization
of the model with first-order derivative as the operator. Fur-
thermore, for the model with fractional-order derivative, we
have some numerical schemes to approximate the exact solu-
tion such in [25–28]. We also have the popular discretization
process is given by piecewise constant arguments (PWCA)
which were proposed by El-Sayed et al. [29] and applied by
other researchers in different biological phenomena [30–34].

In this paper, we study and justify the dynamics of
a discrete-time model constructed using PWCA from a
fractional-order logistic growth model involving the Allee
effect and harvesting. The model is given by

dN

dt
= r N

(
1 − N

K

)
(N − m) − qN , (1)

where N (t) represents the population density at time t and
all parameters are positive numbers with biological interpre-
tations and are given in Table 1.
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Table 1 Biological interpretation for each Parameter

Parameters Biological interpretation

r The intrinsic growth rate

K The environmental carrying capacity

m The Allee effect threshold

q The harvesting rate

Notice that the Allee effect reduces the population growth
rate when the population density is low (i.e., when N < m)
as a result of several naturalmechanisms such as intraspecific
competition, cooperative anti-predator behavior, cooperative
breeding, and limitation infindingmates. Thepositive growth
rate occurs if the population density is in the interval m <

N < K . For further explanation about the Allee effect, see
[35–44].

To obtain the fractional-order model, we follow a similar
way as in [14]. The first-order derivative at the left-hand side
of model (1) is replaced with the fractional-order derivative
CDα

t which denotes the Caputo fractional derivative operator
of order α defined by

CDα
t f (t) = 1

�(1 − α)

∫ t

0

f ′(s)
(t − s)α

ds, (2)

where α is the order of fractional derivative with α ∈ (0, 1]
and �(·) is the Gamma function. Furthermore, by replacing
the operatorwith equating the dimensions of time at the right-
hand side, the following model is acquired.

CDα
t N = rαN

(
1 − N

K

)
(N − m) − qαN . (3)

Model (3) can be written as

CDα
t N = r̄ N

(
1 − N

K

)
(N − m) − q̄ N , (4)

where r̄ = rα and q̄ = qα . Finally, by dropping (·̄), the
fractional-order model for (1) is successfully obtained as fol-
lows.

CDα
t N = r N

(
1 − N

K

)
(N − m) − qN . (5)

As far as we are aware, both the fractional-order model
and the discrete-time version of Eq.5 have not been intro-
duced and studied. Especially for fractional-order model
(5), since the stability properties of equilibrium point refers
to Matignon condition [45], the dynamics of the one-
dimensional first-order and the fractional-order models are
qualitatively the same because the |arg (λ)| of equilibrium
point always in the real line. On the other hand, although

in the one-dimensional model, the discrete-time model has
more possible complex phenomena such as period-doubling
bifurcation and chaotic behaviors which do not exist in its
continuous ones. This means the one-dimensional continu-
ous model has poor dynamics than the discrete-time model.
Hence, for this case, studying the discrete-time model is
more interesting and attractive. In this paper, we construct
a discrete-time model by implementing the PWCA method
for the model (5), and the dynamics of the obtained discrete-
time model are then investigated. The layout of this paper
is as follows. In Sect. 2, the model formulation is given by
applying the PWCAmethod to get a discrete-time model. To
support the analytical process, we provide some basic the-
oretical results in Sect. 3. In Sect. 4, some analytical results
are provided such as the existence of fixed points, their local
stability, and saddle-node and period-doubling bifurcations.
In Sect. 5, we present some numerical simulations and show
some interesting phenomena, such as bifurcation, Lyapunov
exponent, and Cobweb diagrams which correspond to the
previous theoretical results. We also present numerically a
period-doubling route to chaos. A hybrid control strategy
is applied to delay and eliminate the occurrence of period-
doubling bifurcation and chaotic solution in Sect. 6. The
conclusion of this work is given in Sect. 7.

2 Model formulation

By applying a similar procedure as in [29,30], we discretize
model (5) with the PWCA method as follows

CDα
t N (t) = r N ([t/h] h)

(
1 − N ([t/h] h)

K

)

× (N ([t/h] h) − m) − qN ([t/h] h) ,

with initial condition N (0) = N0. Let t ∈ [0, h), t/h ∈
[0, 1), then we have

CDα
t N (t) = r N0

(
1 − N0

K

)
(N0 − m) − qN0. (6)

The solution of Eq.6 is

N1 = N0 + tα

�(1 + α)

[
r N0

(
1 − N0

K

)
(N0 − m) − qN0

]
.

Next, let t ∈ [h, 2h), t/h ∈ [1, 2). Thus, we obtain

CDα
t N (t) = r N1

(
1 − N1

K

)
(N1 − m) − qN1, (7)
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where its solution is given by

N2 = N1(h) + (t − h)α

�(1 + α)[
r N1

(
1 − N1

K

)
(N1 − m) − qN1

]
.

By proceeding the same disretization process, for t ∈
[nh, (n + 1)h), t/h ∈ [n, n + 1), we have

Nn+1 = Nn(nh) + (t − nh)α

�(1 + α)[
r Nn(nh)

(
1 − Nn(nh)

K

)
(Nn(nh) − m) − qNn(nh)

]
.

(8)

For t → (n + 1)h, Eq. 8 is reduced to a discrete-time
fractional-order logistic model with the Allee effect and pro-
portional harvesting

Nn+1 = Nn + hα

�(1 + α)
Nn[

r

(
1 − Nn

K

)
(Nn − m) − q

]
= f (N ). (9)

We remark that if α → 1 then Eq.9 is exactly the same as
the Euler discretization of model (5).

3 Fundamental concepts

To analyze the dynamical behavior such as the existence of
fixed point, the local stability, and the occurrence of saddle-
node and period-doubling bifurcation of the discrete-time
model (9), the following definition and theorems are needed.

Definition 1 [46] Consider the following map

x(n + 1) = f (x(n)). (10)

A point x∗ is said a fixed point of themap (10) if f (x∗) = x∗.
If

∣∣ f ′(x∗)
∣∣ �= 1, then x∗ is called a hyperbolic fixed point,

and if
∣∣ f ′(x∗)

∣∣ = 1, then x∗ is called a nonhyperbolic fixed
point.

Theorem 1 [46] Let x∗ be a hyperbolic fixed point of the
map (10) where f is continuously differentiable at x∗. The
following statements then hold true:

(i) If
∣∣ f ′(x∗)

∣∣ < 1, then x∗ is locally asymptotically stable.
(ii) If

∣∣ f ′(x∗)
∣∣ > 1, then x∗ is unstable.

Theorem 2 [46] Let x∗ is a nonhyperbolic fixed point of the
map (10) satisfying f ′(x∗) = 1. If f ′(x), f ′′(x), and f ′′′(x)
are continuous at x∗, then the following statements hold:

(i) If f ′′(x∗) �= 0, then x∗ unstable (semistable).
(ii) If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ unstable.
(iii) If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ locally asymp-

totically stable.

Definition 2 [46] The Schwarzian derivative, S f , of a func-
tion f is defined by

S f (x) = f ′′′(x)
f ′(x)

− 3

2

[
f ′′(x)
f ′(x)

]2
.

Particularly, if f ′(x∗) = −1 then

S f (x∗) = − f ′′′(x∗) − 3

2

[
f ′′(x∗)

]2
.

Theorem 3 [46] Let x∗ is a hyperbolic fixed point of the map
(10) satisfying f ′(x∗) = −1. If f ′(x), f ′′(x), and f ′′′(x) are
continuous at x∗, then the following statements hold:

(i) If S f (x∗) < 0, then x∗ is locally asymptotically stable.
(ii) If S f (x∗) > 0, then x∗ is unstable.

Theorem 4 (The existence of Saddle-Node Bifurcation [46])
Suppose that xn+1 = f (μ, xn) is a C2 one-parameter fam-
ily of one-dimensional maps, and x∗ is a fixed point with
f ′(μ, x) = 1. Assume further that

∂ f

∂μ
(μ∗, x∗) �= 0 and

∂2 f

∂x2
(μ∗, x∗) �= 0.

Then there exists an interval I around x∗ and a C2 map
μ = p(x), where p : I → R such that p(x∗) = μ∗, and
f (p(x), x) = x. Moreover, if ∂ f

∂μ
∂2 f
∂x2

|(μ∗,x∗) < 0, the fixed

points exist for μ > μ∗, and if ∂ f
∂μ

∂2 f
∂x2

|(μ∗,x∗) > 0, the fixed
points exist for μ < μ∗.

Theorem 5 (The existence of period-doubling bifurcation
[46]) Suppose that xn+1 = f (μ, xn) is a C2 one-parameter
family of one-dimensional maps, and x∗ is a fixed point.
Assume that

(i) ∂ f
∂x (μ∗, x∗) = −1.

(ii) ∂2 f
∂μ∂x (μ∗, x∗) �= 0.

Then there is an interval I about x∗ anda function p : I → R

such that f p(x)(x) �= x but f 2p(x) = x.
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4 Analytical results

We explore some analytical results here such as the existence
of fixed points, their local stability, and the existence of some
bifurcations, namely saddle-node and period-doubling bifur-
cations. Since the map (9) is constructed by PWCAwith step
size (h), the analytical process is then investigated by consid-
ering the impact of h. Some analytical results also examine
the influence of the harvesting (q) on the dynamics of the
given map.

4.1 The existence of fixed point

Based on Definition (1), the fixed point of the map (9) is
obtained by solving the following equation

N = N + hα

�(1 + α)
N

[
r

(
1 − N

K

)
(N − m) − q

]
. (11)

The solutions of Eq.11 are described as follows:

(i) The extinction of population fixed point N∗
0 = 0 which

always exists.
(ii) The nonzero fixed points N∗

1,2 which are the positive solu-
tions of the following quadratic polynomial

N 2 − (m + K )N + mK + qK

r
= 0. (12)

The solutions of Eq.12 are

N∗
1 = m + K

2
+

√
(q∗ − q)r K

r
,

N∗
2 = m + K

2
−

√
(q∗ − q)r K

r
,

(13)

where q∗ = (m−K )2r
4K > 0. The existence of nonzero

fixed points (13) is shown by Theorem 6.

Theorem 6 (i) If q > q∗, then the nonzero fixed point of the
map (9) does not exist.

(ii) If q = q∗, then there exists a unique nonzero fixed point
N∗ = m+K

2 of the map (9).
(iii) If q < q∗, then there exist two nonzero fixed points,

namely N∗
1,2 of the map (9).

Proof (i) It is easy to confirm that if q > q∗ then the solu-
tions of Eq.12 are a pair of complex conjugate numbers.

(ii) For q = q∗, we have N∗ = N∗
1 = N∗

2 = m+K
2 . Hence,

N∗ is the only positive fixed point of the map (9).
(iii) Ifq < q∗, then N∗

1,2 ∈ R. Because N∗
1 N

∗
2 = mK+ qK

r >

0 and N∗
1 + N∗

2 = m + K > 0, then N∗
1 and N∗

2 are
obviously positive, showing that there are two nonzero
fixed points.

�	

4.2 Local stability

Now, the dynamical behaviors of the map (9) around each
fixed point are investigated. Theorems 7,10 are presenting to
describe the local dynamics of fixed points N∗

i , i = 0, 1, 2,
and N∗. The complete dynamics including local stability,
unstable condition, and nonhyperbolic properties for each
fixed point are studied by employing Theorems 1,2,3. In
this respect, all dynamical properties are expressed in step
size (h) and harvesting rate (q) to simplify the mathematical
terms.

Theorem 7 Let’s denote q̂ = (2m2+3mK+2K 2)r
K and h0 =

α

√
2�(1+α)
mr+q . Then the following statements hold:

(i) if 0 < h < h0, then N∗
0 is locally asymptotically stable,

(ii) if h > h0, then N∗
0 is unstable, and

(iii) if h = h0, then N∗
0 is nonhyperbolic fixed point. Fur-

thermore, if

(iii.a) q < q̂ , then N∗
0 is locally asymptotically stable, and

(iii.b) q > q̂ , then N∗
0 is unstable.

Proof By evaluating f ′(N ) at N∗
0 , we obtain

f ′(N∗
0 ) = 1 − hα(mr + q)

�(1 + α)
= 1 − 2

(
h

h0

)α

.

(i) If 0 < h < h0, then 0 < (h/h0)α < 1, which implies∣∣ f ′(N∗
0 )

∣∣ < 1. Based on Theorem 1, we have a locally
asymptotically stable N∗

0 .
(ii) If h > h0, then (h/h0)α > 1, so that f ′(N∗

0 ) < −1.
Theorem 1 states that N∗

0 is an unstable fixed point.
(iii) For h = h0, we have f ′(N∗

0 ) = −1, i.e., N∗
0 is nonhy-

perbolic fixed point. The Schwarzian derivative of map
f (N ) at N∗

0 is

S f (N∗
0 ) = hα

�(1 + α)

[
6r

K

]

− 3

2

[
hα

�(1 + α)

[
2(m + K )r

K

]]2

= 6rhα

K�(1 + α)

[
1 − hα

K�(1 + α)
(m + K )2 r

]

= 12r

(mr + q)K

[
1 − 2(m + K )2r

(mr + q)K

]
.

If q < q̂ , then S f (N∗
0 ) < 0, and thus, N∗

0 is locally
asymptotically stable. On the contrary, if q > q̂ then
S f (N∗

0 ) > 0, showing N∗
0 is unstable. Thus, Theorem 7

is completely proved.
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�	

Theorem 8 The nonzero fixed point N∗ is semistable.

Proof The derivative of f (N ) at N∗ is

f ′(N∗) = 1 + hα

�(1 + α)[
−3r

K

(
m + K

2

)2

+ 2r(m + K )

K

(
m + K

2

)
− mr − q

]

= 1 + hα

�(1 + α)

[
(m + K )2r − 4mrK

4K
− q

]

= 1 + hα

�(1 + α)

[
q∗ − q

]
.

N∗ exists when q = q∗. Clearly that f ′(N∗) = 1, and
therefore, N∗ is a nonhyperbolic fixed point. By direct cal-
culations, we can show that

f ′′(N∗) = hα

�(1 + α)

[
−6r N

K
+ 2

(
1 + m

K

)
r

]

= hα

�(1 + α)

[
−6r

K

m + K

2
+ 2(m + K )r

K

]

= hα

�(1 + α)

[
−3(m + K )r

K
+ 2(m + K )r

K

]

= − (m + K )rhα

K�(1 + α)
< 0.

Since f ′′(N∗) �= 0, Theorem 2 says that the fixed point N∗
is semistable. �	

Theorem 9 Suppose that:

h1 = α

√
2K�(1 + α)

2(q∗ − q)K + (m + K )
√

(q∗ − q)r K
,

ĥ = (m + K )r + 6
√

(q∗ − q)K√
4(q∗ − q)r K + 2r(m + K )

√
(q∗ − q)r K

.

The local stability of N∗
1 is described as follows.

(i) If 0 < h < h1, then N∗
1 is locally asymptotically stable.

(ii) If h > h1, then N∗
1 is unstable.

(iii) If h = h1 and

(iii.a) if ĥ > 1, then N∗
1 is locally asymptotically stable,

and
(iii.b) if ĥ < 1, then N∗

1 is unstable.

Proof It is obvious to show that

f ′(N∗
1 ) = 1 + hα

�(1+α)

[
−

(
3
4K (m + K )2r + 3(q∗ − q)

+ 3
K (m + K )

√
(q∗ − q)r K

)
+ 1

K (m + K )2r + 2
K (m + K )

√
(q∗ − q)r K − (mr + q)

]
= 1 − hα

K�(1+α)

[
2(q∗ − q)K + (m + K )

√
(q∗ − q)r K

]
= 1 − hα

K�(1+α)

[
2K�(1+α)

hα
1

]

= 1 − 2
(

h
h1

)α
.

Hence, we have the following observations:

(i) For 0 < h < h1, we have
∣∣ f ′(N∗

1 )
∣∣ < 1. According

to Theorem 1, the nonzero fixed point N∗
1 is locally

asymptotically stable.
(ii) If h > h1, then we get f ′(N∗

1 ) < −1. Thus, N∗
1 is an

unstable fixed point (see to Theorem 1).
(iii) Clearly that f ′(N∗

1 ) = −1 whenever h = h1,
which shows that N∗

1 is nonhyperbolic fixed point. The
Schwarzian derivative of f (N ) at N∗

1 is given by

S f (N∗
1 ) = hα

�(1+α)

[
6r2
K

]
− 3

2

[
− hα

�(1+α)

[
(m+K )r

K

+ 6
K

√
(q∗ − q)K

]]2
= rhα

K�(1+α)

[
6r − 3

2K

[
hα

�(1+α)

]
[(m + K )r

+6
√

(q∗ − q)K
]2]

.

We can easily check that if ĥ > 1 then S f (N∗
1 ) < 1 and

if ĥ < 1 then S f (N∗
1 ) > 1. Therefore, the stability of

the nonhyperbolicfixedpoint is explained. Finally, all of
the stability conditions of fixed point N∗

1 are completely
determined.

�	
Theorem 10 The nonzero fixed point N∗

2=m+K
2 −

√
(q∗−q)r K

r
is always unstable.

Proof To investigate the stability of N∗
2 , we evaluate f ′(N )

at N∗
2 :

f ′(N∗
2 ) = 1 + (q∗ − q)hα

�(1 + α)

[
(m + K )

√
r√

(q∗ − q)K
− 2

]
.

By simple algebraic manipulations, we can show that
(m+K )

√
r√

(q∗−q)K
> 2. Thus, f ′(N∗

2 ) is always a positive constant,

which means N∗
2 is always an unstable fixed point. �	

4.3 Bifurcation analysis

From the previous analysis, we have a nonhyperbolic fixed
point N∗ when q = q∗, indicating the possibility of the
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occurrence of saddle-node bifurcation. Moreover, the occur-
rence of period-doubling bifurcation is also indicated around
the nonhyperbolic fixed point N∗

1 when h = h1. Thus,
in this section, we study the existence of saddle-node and
period-doubling bifurcations. The saddle-node bifurcation
is a phenomenon that two fixed points with opposite signs
of stability merge into a unique semistable fixed point and
finally disappear when a parameter is varied, while the
period-doubling bifurcation is a phenomenon that a single
fixed point losses its stability accompanied by the emergence
of a period-2 solution when a parameter is varied [46]. As
results, we have Theorems 11, 12.

Theorem 11 The nonzero fixed point N∗ undergoes a saddle-
node bifurcation when q crosses the critical values q∗ =
(m−K )2r

4K .

Proof It was shown previously that N∗ does not exist if
q > q∗. When q = q∗, we have a semistable fixed point
N∗; if q < q∗, then there exists two nonzero fixed points. By
straightforward calculations, we have ∂ f (N∗)

∂N = 1, ∂ f (N∗)
∂q =

− hα

�(1+α)
m+K
2 < 0, and ∂2 f (N∗)

∂N2 = − (m+K )rhα

K�(1+α)
< 0. Thus,

according to Theorem 4, the fixed point N∗ undergoes a
saddle-node bifurcation when q crosses the critical values

q∗ = (m−K )2r
4K . Moreover, the fixed points exist when q ≤ q∗

because ∂ f (N∗)
∂q

∂2 f (N∗)
∂N2 > 0. �	

Theorem 12 The nonzero fixed point N∗
1 undergoes a period-

doubling bifurcation when h crosses the critical value h1 =
α

√
2K�(1+α)

2(q∗−q)K+(m+K )
√

(q∗−q)r K
.

Proof From the proof of Theorem 9, we have that if h = h1
then

∂ f (N∗
1 )

∂N = −1. By performing some algebraic calcula-
tions, we also have

∂2 f (N∗
1 )

∂h∂N
= αhα−1

�(1 + α)

[
r

(
m + K

2
+

√
(q∗ − q)r K

r

)
(
1 − 2

K

(
m + K

2
+

√
(q∗ − q)r K

r

)
+ m

K

)]

= − rαhα−1

�(1 + α)

(
m + K

2
+

√
(q∗ − q)r K

r

)
(
2

K

√
(q∗ − q)r K

r

)
.

(14)

N∗
1 exists if q �= q∗, and thus, we have ∂2 f (N∗

1 )

∂h∂N �= 0. Accord-
ing to Theorem5, there appears a solution of period-2when h
passes through h1. Hence, the occurrence of period-doubling
bifurcation in the map (9) is completely proved. �	

Theorem 12 states that the period-doubling bifurcation
in the map (9) can be achieved by varying the step size h.
However, such bifurcation can also be realized by setting a

fixed value of h and other parameters while varying a certain
parameter. In the following section, we give an example of
period-doubling bifurcation which is driven by the constant
of harvesting (q).

5 Numerical results

In this section, we present some numerical simulations of
the map (9) not only to support the previous analytical find-
ings but also to show more dynamical behaviors of the map
(9). Numerical simulations are given by considering some
biological and mathematical aspects such as the influence of
the harvesting, the step size (h), the Allee effect (m), and
the order α. To support the numerical simulations, a desktop
PC is used based on AMD Ryzen 5 3400G 3.7GHz, 16 GB
RAM, and AMD Radeon RX580 8GB DDR5 VGA card.
We also use an open-source software called Python 3.9 to
generate all of the given figures. Due to the field data limita-
tion, we use hypothetical parameter values for the numerical
simulations. General parameter values are given as follows.

r = 1.45, K = 10, m = 0.1, q = 0.32, α = 0.8,

and h = 0.4. (15)

5.1 The influence of the Harvesting Rate

The numerical simulations in this subsection are using
parameter set (15) and vary the value of the harvesting
rate (q). According to Theorem 6, map (9) with parame-
ter set (15) has critical value q∗ ≈ 3.5527 such that map
(9) does not have a nonzero fixed point if q > q∗. When
q = q∗, map (9) has a unique nonzero fixed point N∗ = 5.05
which is a semistable fixed point, see Theorem 8. Further-
more, if q < q∗, then there are two nonzero fixed points,
namely N∗

1 and N∗
2 . By taking h = 0.4 and using The-

orem 9, we can show that N∗
1 is asymptotically stable if

q1 = 3.0191 � q < q∗. On the other hand, Theorem 10
states that N∗

2 is always unstable. Since we take h = 0.4,
Theorem12 states that the fixed point N∗

1 undergoes a period-
doubling bifurcation when q crosses q1 from the right. To
see these dynamical behaviors, we plot in Fig. 1a the bifur-
cation diagram of the map 9 with parameter set (15) and
h = 0.4 for 2.415 ≤ q ≤ 3.7. Clearly that this bifurca-
tion diagram fits perfectly with the results of our previous
analysis. Indeed, Fig. 1a shows that N∗ (labeled as [a]) is
semistable, see also the Cobweb diagram shown in Fig. 2a.
As the value of q decreases from q∗, the nonzero fixed point
is split into two nonzero fixed points where one of them is
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Fig. 1 Bifurcation diagram and
its corresponding maximum
Lyapunov exponents of the map
(9) with parameter set (15) and
2.415 ≤ q ≤ 3.7

(a) Bifurcation diagram

(b) Maximum Lyapunov exponents

stable in the specified interval of q, while the other fixed point
is unstable. Such stability properties can also be seen in the
Cobweb diagrams in Fig. 2b, c, which corresponds to points
[b] and [c] in Fig. 1a, respectively. We also observe numer-
ically the appearance of a period-doubling route to chaos
(flip bifurcation) as q decreases. If we further decrease the
value of q, then there appears a stable solution of period-
2 when q passes through q1. The appearance of a stable
period-doubling solution, as well as a solution of period-3,
is shown in Fig. 1a (see, e.g., point [d], [e], and [f], respec-
tively, and their corresponding diagram Cobweb in Fig. 1d,
e, and bif1f). The appearance of the period-3 solution indi-
cates that our system exhibits chaotic dynamics [47]. The
existence of chaotic dynamics can also be determined from
the Lyapunov exponent. A system exhibits chaotic dynamics
if it has positive maximum Lyapunov exponents. The max-
imum Lyapunov exponents which correspond to Fig. 1a are
depicted in Fig. 1b. It is clearly seen that our system has pos-
itive maximum Lyapunov exponents, showing the existence

of chaotic dynamics in the map (9) which is controlled by
the constant of harvesting (q).

5.2 The influence of the step size

To describe the existence of period-doubling bifurcation
driven by the step size h numerically, we perform simula-
tions using the parameter set 15 and 0.5 ≤ h ≤ 0.985. Map
(9) with these parameter values has two nonzero fixed points,
namely N∗

1 ≈ 6.61 and N∗
2 ≈ 3.49. N∗

2 is unstable while N∗
1

is stable if 0 < h < h1 ≈ 0.553. N∗
1 losses its stability

via period-doubling bifurcation when h crosses h1. These
dynamics are seen in the bifurcation diagram, see Fig. 3a.
Increasing the value of h may destroy the stability of N∗

1 , and
the system is convergent to a stable period-2 solution. Further
increasing the value of h leads to a stable period-4 cycle, and
so on. To give a more detailed view, we plot Cobweb dia-
grams in Fig. 4 which correspond to some solutions around
the fixed points labeled as [g - l] in Fig. 3a.When h = 0.7, we
have a stable period-2 cycle near the nonzero fixed point [g],
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Fig. 2 Cobweb diagrams of the
map (9) with parameter set (15)
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(f) q = 2.6

see Fig. 4a. Each of the two solutions splits into two solutions,
respectively, and becomes a stable period-4 solution around
fixed point [h] when h = 0.74 (Fig. 4b); consecutively, for
h = 0.765 we have a stable period-8 cycle near fixed point
[i], see Fig. 4c. Moreover, at h = 0.838, 0.883, 0.889 we
have, respectively, a stable period-5 cycle around fixed point
[j], a stable period-3 cycle around fixed point [k], and a sta-
ble period-6 cycle around fixed point [l], see their Cobweb

diagrams in Fig. 4d, e, and f. Hence, the step size h is an
important parameter that significantly affects the dynamics
of the map (9). In this case, the map (9) exhibits a period-
doubling bifurcation route to chaos driven by parameter h.
Furthermore, the appearance of positivemaximumLyapunov
exponents depicted in Fig. 3b which corresponds to the bifur-
cation diagram in Fig. 3a clearly shows the existence of
chaotic behavior in the system.
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Fig. 3 Bifurcation diagram and
its corresponding maximum
Lyapunov exponents of the map
(9) with parameter set (15) and
0 ≤ h ≤ 0.92

(a) Bifurcation diagram

(b) Maximum Lyapunov exponents

5.3 The influence of the Allee effect

To show the influence of the Allee effect, we use the param-
eter set (15) and vary the values of m in the interval 0 ≤
m ≤ 2.5. From Eq.13, we compute numerically that N∗

1 and
N∗
2 exist for interval 0 ≤ m � 0.6045. Based on Theorems

8,9,10, the stability of N∗
1 and N∗

2 has the different sign for
0 ≤ m < 0.6045 and finally merge into a semistable fixed
point N∗ ≈ 5.29671 when m ≈ 0.6045. When m crosses
0.6045, N∗ disappears and N∗

0 becomes the only fixed point
of the map (9). These phenomena indicate the occurrence
of saddle-node bifurcation driven by the Allee effect (m).
According to Theorems 7, we also have that N∗

0 is locally
asymptotically stable for m < 0.467 and losses its stability
via period-doubling bifurcationwhenmcrosses 0.467. These
complex dynamics are shown in Fig. 5a and its corresponding
maximumLyapunov exponents are depicted in Fig. 5b which
confirms the existence of chaotic behavior on the map (9).
One interesting condition is also shown for some values of
m. For 0 < m < 0.467, the map (9) passes through a bista-

bility condition. N∗
0 and N∗

1 are locally asymptotically stable
simultaneously, and hence, the solution of the map is sensi-
tive to the initial value. See the Cobweb diagrams in Fig. 6.
When m = 0.3, two nearby initial values are convergent
to different fixed points. When the Allee effect increases to
m = 1, the solution converges to a period-2 solution around
N∗
0 .

5.4 The influence of the order˛

As the impact of the discretization process, we have a param-
eter α on map (9) which is derived from the order of the
derivative of the continuous model as the memory effect.
Again, we use the parameter set (15) and varying α. As
result, we have a bifurcation diagram and maximum Lya-
punov exponents depicted in Fig. 7. The given dynamics are
quite similar to the impact of the step size but in differ-
ent directions. If increasing h may change the dynamics of
N∗
1 from locally asymptotically stable to periodic solution

via period-doubling bifurcation, different dynamics direction
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Fig. 4 Cobweb diagrams of the
map (9) with parameter set (15)
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(c) h = 0.765
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(f) h = 0.889

presented by α where if its value increases, the unstable N∗
1

becomes locally asymptotically stable via period-doubling
bifurcation. Somechaotic behavior indicatedbypositiveLya-
punov exponents disappears becomes periodic orbits and is
finally convergent to N∗ when α crosses 0.5708.

6 Hybrid control strategy

In this section, a method, namely the hybrid control strategy,
is presented. This method is a combination of state feed-
back andparameter perturbationwhich is used for controlling
bifurcation in a discrete system [48–51].Wefirst define amap
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Fig. 5 Bifurcation diagram and
its corresponding maximum
Lyapunov exponents of the map
(9) with parameter set (15) and
0 ≤ m ≤ 2.5

(a) Bifurcation diagram

(b) Maximum Lyapunov exponents

Fig. 6 Cobweb diagrams of the
map (9) with parameter set (15)
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Fig. 7 Bifurcation diagram and
its corresponding maximum
Lyapunov exponents of the map
(9) with parameter set (15) and
0 ≤ α ≤ 0.8

(a) Bifurcation diagram

(b) Maximum Lyapunov exponents

(9) as follows.

Nn+1 = f (Nn, ζ ), (16)

where N ∈ R is the population density and F(Nn, ζ ) is the
right-hand side of map (9) with bifurcation parameter ζ ∈ R.
It can be revisited from analytical and numerical results that
when h and q are varies in some range, the map (9) passes
through a series of period-doubling bifurcations where the
route to chaos. By obeying state feedback and parameter
perturbation to the map (9), we obtain the control map as
follows.

Nn+1 = β f (Nn, ζ ) + (1 − β)Nn = F(N , β), (17)

where β ∈ [0, 1] denotes the external control parameter for
map (17). We can easily show that the map (9) and (17) have
similar fixed points. From Theorem 12, N∗

1 is the fixed point
which undergoes a period-doubling bifurcation. Particularly,
from Theorem 1 in [51], the m-periodic orbit of control map
(17) is also similar to the originalmap (9). Now,wewill show

that by setting β and varying h, the occurrence of period-
doubling bifurcation can be delayed or even eliminated. From

the control map (17), we have F ′(N∗
1 ) = 1 − 2β

(
h
h1

)α

and

∂2F(N∗
1 )

∂h∂N = ∂2 f (N∗
1 )

∂h∂N < 0. According to Theorem 5, the con-
trol map (17) also undergoes period-doubling bifurcation for
the similar fixed point with map (9). The difference lies in
the bifurcation point where the map (9) is h = h1 while
the control map (17) is h = h1

α
√

β
. This means if β decreases

then the bifurcation point increase which means the series of
periodic solutions are delayed. For example, by setting the
parameter values as inEq.15 andβ = 0.64, 0.76, 0.88, 1, the
occurrence of bifurcation is delayed and period-3 solutions
disappear. See Fig. 8a. We also check the chaotic solution
near the period-3 solution. For h = 0.887, three quite close
initial conditions N (0) = 6, 6.001, 6.002 is given and por-
tray the solutions inFig. 8b.The chaotic intervalwhichoccurs
for β = 1 becomes a periodic solution for β = 0.76, 0.88,
and finally, converges to N∗

1 when β = 0.64.
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(a) Bifurcation diagram
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(b) Solutions for h = 0.877

Fig. 8 Bifurcation diagrams of controlled map (17)

7 Conclusion

Adiscrete-time fractional-order logisticmodelwith theAllee
effect and proportional harvesting has been constructed and
investigated dynamically. The discrete-timemodel is derived
by applying thePWCAmethod to theCaputo fractional-order
modified logistic model. The local stability for each fixed
point is successfully investigated completely for hyperbolic
and nonhyperbolic fixed points by obeying the stability the-
orem along with the Schwarzian derivative. Furthermore, it
was shown analytically that the obtained discrete-timemodel
exhibits a saddle-node bifurcation as well as period-doubling
bifurcation. The key parameter in such bifurcations is the
constant of harvesting (q) or the step size (h). Numerical
simulations with varying parameters q and h confirm our

analytical results. The dynamics of the map are also stud-
ied numerically by varying the Allee threshold (m) and the
order α which also give the saddle-node and period-doubling
bifurcations. Furthermore, the presented numerical results
also showed the existence of period-doubling route chaos
which is indicated by the positive Lyapunov exponents and
the appearance of period-3 window. We then construct the
control based on the hybrid control strategy method. It is
shown that the occurrence of period-doubling can be delayed.
The occurrence of the chaotic solution is also successfully
eliminated when the control parameter is decreased.
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