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Bifurcation and Chaos in a Discrete-Time
Fractional-Order Logistic Model with Allee
Effect and Proportional Harvesting

Abstract

The Allee Effect and harvesting always get a pivotal role in studying
the preservation of a population. In this contex, we consider a Caputo
fractional order logistic model with Allee effect and proportional har-
vesting. In particular, we implement the piecewise constant arguments
(PWCA) method to discretize the fractional model. The dynamics of
the obtained discrete-time model is then analyzed. Fixed points and
their stability conditions are established. We also show the existence of
saddle-node and period-doubling bifurcations in the discrete-time model.
These analytical results are then confirmed by some numerical simula-
tions via bifurcation diagram, Cobweb diagram and maximal Lyapunov
exponents. The occurrance of period-doubling bifurcation route to chaos
is also observed numerically. Finally, the occurence of period-doubling
bifurcation is succesfully conrolled using hybrid control strategy.

Keywords: Discrete fractional-order, Logistic map, Allee effect, Harvesting,
Bifurcation, Chaos

MSC Classification: 34A08 , 39A28 , 39A30 , 92D40

1 Introduction

For the last decades, the discrete-time model gets a lot of great attentive-
ness from researchers in mathematical modeling, not only because of its
capability in describing several phenomena such as physics, biomedicine, engi-
neering, chemistry, and population dynamics but also due to the richness of
the given dynamical patterns as well as the occurrence of bifurcations and
chaotic solutions which very difficult to find in their continuous counterpart [1-
6]. Particularly, the discrete-time model is successfully applied in population
dynamics especially in a single logistic growth modeling [7-10], the epidemic
modeling [11-13], and the predator-prey interaction modeling [14-18]. Most
of the models are discretized using Euler scheme [19-21] and nonstandard
finite difference (NSFD) [22-24] which popular for discretization of the model
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with first-order derivative as the operator. Furthermore, for the model with
fractional-order derivative, the popular discretization process is given by piece-
wise constant arguments (PWCA) which were proposed by El-Sayed et al. [25]
and applied by other researchers in different biological phenomena [26-30].

In this paper, we study and justify the dynamics of a discrete-time
model constructed using PWCA from a fractional-order logistic growth model
involving Allee effect and harvesting. The model is given by

where N (t) represents the population density at time ¢ with », K, m and ¢
are positive parameters represent the intrinsic growth rate, the environmental
carrying capacity, the Allee effect threshold, and the harvesting rate, respec-
tively. Notice that the Allee effect reduces the population growth rate when
the population density is low (i.e., when N < m) as a result of several nat-
ural mechanisms such as intraspecific competition, cooperative anti-predator
behavior, cooperative breeding, limitation in finding mates, and so forth.
The positive growth rate occurs if the population density is in the interval
m < N < K. For further explanation about the Allee effect, see [31-40].

To obtain the fractional-order model, we follow the similar way as in [14].
The first-order derivative at the left-hand side of model (1) is replaced with the
fractional order-derivative “D§* which denotes the Caputo fractional derivative
operator of order-a defined by

R S (O I

where « is the order of fractional derivative with o € (0,1] and I'(+) is the
Gamma function. Furthermore, by replacing the operator along with equating
the dimensions of time at the right hand-side, the following model is acquired.

N
CDEN =N (1 - K) (N —m) —¢*N. (3)
Model (3) can be written as
Cpha = N =
DN =rN 1_E (N —m) —gN, (4)

where 7 = r®* and ¢ = ¢®. Finally, by dropping (+), the fractional-order model
for (1) is succesfully obtained as follows.

DN =rN <1 — Z) (N —m) —gN, (5)
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As far as we are aware, the discrete-time version of model (5) has not been
introduced and studied. Hence, in this paper, we construct a such discrete-time
model by implementing the PWCA method for model (5), and the dynamics
of the obtained discrete-time model is then investigated. The layout of this
paper is as follows. In Section 2, the model formulation is given by applying
the PWCA method to get a discrete-time model. To support the analytical
process, we provide some basic theoretical results in Section 3. In Section 4,
some analytical results are provided such as the existence of fixed points,their
local stability, the existence of saddle-node, and period-doubling bifurcations.
In Section 5, we present some numerical simulations and show some interesting
phenomena, such as bifurcation, Lyapunov exponent, and Cobweb diagrams
which correspond to the previous theoretical results. We also present numeri-
cally a period-doubling route to chaos. A hybrid control strategy is applied to
delay and eliminate the occurrence of period-doubling bifurcation and chaotic
solution in Section 6. The conclusion of this work is given in Section 7.

2 Model Formulation

By applying a similar procedure as in [25, 26], we discretize model (5) with
the PWCA method as follows

DN (e) = rV (/) (1= UG )V (/1) = ) = ¥ i/ ),

with initial condition N(0) = Ny. Let ¢ € [0, h), t/h € [0, 1), then we have

CDEN(t) = rNy (1 - ]I\?) (No —m) — ¢Np. (6)

The solution of eq. (6) is

to No
Nl—N0+m |:T'N0 (1K) (N()*m)*qNO

Next, let ¢ € [h,2h), t/h € [1,2). Thus, we obtain

CD?N(t):TN]_ (1—]},\7{1) (Nl—m)—qu, (7)

where its solution is given by

Ny = Ni(h) + ét(l_f):) {TNI (1 - ]j{l) (Ny —m) — gy
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By proceeding the same disretization process, for ¢t € [nh,(n + 1)h), t/h €
[n,n + 1), we have

(t —nh)>

N,.1 =N,
nt1 = Na(nh)+ T(1+a)

[an(nh) (1 - N";:h)) (Nyu(nh) — m) — gNn (nh)
(8)

For t — (n+1)h, eq. (8) is reduced to a discrete fractional order logistic model
with the Allee effect and proportional harvesting

he N,
Npy1=Np+ =———N, 1—— ) (N, — —q| = f(N). 9
=Nyt s [ (1= 32 ) (=) = o] = 5. @
We remark that if @« — 1 then eq. (9) is exactly the same as the Euler
discretization of model (5).

3 Fundamental Concepts

To analyze the dynamical behavior such as the existence of fixed point, the
local stability, and the occurrence of saddle-node and period-doubling bifurca-
tion of the discrete-time model (9), the following definition and theorems are
needed.

Definition 1 [41] Consider the following map
a(n+1) = f(z(n)). (10)

A point z* is said a fixed point of the map (10) if f(z*) = ™. If | f'(2*)| # 1 then z*
is called a hyperbolic fixed point, and if ‘f’(m*)‘ = 1 then z* is called a nonhyperbolic
fixed point.

Theorem 1 [}1] Let z* be a hyperbolic fized point of the map (10) where f is
continuously differentiable at x*. The following statements then hold true:

(i) If | f'(x*)| < 1, then x* is locally asymptotically stable.
(ii) If | f'(x*)| > 1, then x* is unstable.

Theorem 2 [41] Let x* is a nonhyperbolic fized point of the map (10) satisfying
fl(z*) = 1. If f'(x), f"(z), and f""(x) are continuous at =*, then the following
statements hold:

(i) If f"(x*) # 0, then x* unstable (semistable).
(i) If f"(z*) =0 and f"(x*) > 0, then =* unstable.
(111) If f"(z*) =0 and f"(x*) < 0, then z* locally asymptotically stable.

Definition 2 [41] The Schwarzian derivative, Sf, of a function f is defined by

53117

Sf(x)
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Particularly, if f'(z*) = —1 then

St =~ -

5 [f"(x*)}

2

Theorem 3 [41] Let x* is a hyperbolic fived point of the map (10) satisfying f'(z*) =
—1. If f'(z), f"(x), and f"(x) are continuous at x*, then the following statements
hold:

(i) If Sf(x*) < 0 then x* is locally asymptotically stable.
(i) If Sf(x*) > 0 then x* is unstable.

Theorem 4 (The ezxistence of Saddle-Node Bifurcation [41]) Suppose that x,+1 =
flu,zn) is a c? one-parameter family of one-dimensional maps, and x* is a fized
point with f'(u,x) = 1. Assume further that

of  « & f . .
O 5%y 0 and Ok ) 0.

Then there exists an interval I around z* and a C? map p=p(x), wherep: I - R
2
such that p(x*) = p*, and f(p(x),z) = x. Moreover, if %ﬁ%'(#*yr*) < 0, the fized
2
points exist for u > p* and if %ﬁ%'(u*vw*) > 0, the fized points exist for u < p*.

Theorem 5 (The existence of period-doubling bifurcation [41]) Suppose that xpy1 =
f(p,zn) is a c? one-parameter family of one-dimensional maps, and x* is a fized
point. Assume that

(i) GE(u,2") = —1.

(ii) e (u*,2%) # 0.
Then there is an interval I about z* and a function p : I — R such that fp(x)(x) #*x
but fz(m) = .

4 Analytical Results

We explore some analytical results here such as the existence of fixed points,
their local stability, and the existence of some bifurcations namely saddle-node
and period-doubling bifurcations. Since the map (9) is constructed by PWCA
with step-size (h), the analytical process is then investigated by considering
the impact of h. Some analytical results also examine the influence of the
harvesting (g) on the dynamics of the given map.

4.1 The Existence of Fixed Point

Based on Definition (1), the fixed point of the map (9) is obtained by solving
the following equation
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The solutions of eq. (11) is described as follows:

(i) The extinction of population fixed point Nj = 0 which always exists.
(ii) The non-zero fixed points Ny, which are the positive solutions of the
following quadratic polynomial

K
N2 — (m+ K)N +mK + = = 0. (12)
T

The solutions of eq. (12) are

. m+K (¢ —-qgrK
N = + (4 rq) )

’ (13)
. m+K \J(¢r—qrKk
N} = - :
2 r
where ¢* = % > 0. The existence of non-zero fixed points (13) is

shown by Theorem 6.

Theorem 6 (i) If ¢ > ¢* then the non-zero fized point of the map (9) does not

exist.
i) If ¢ = ¢* then there exists a unique non-zero fized point N* = 2EE of the
2
map (9).
i) If g < q*, then there exist two non-zero fized points, namely N{ 5 of the
1,2
map (9).

Proof (1) It is easy to confirm that if ¢ > ¢* then the solutions of eq. (12) are
a pair of complex conjugate numbers.
(ii) For ¢ = ¢*, we have N* = N = N5 = # Hence, N* is the only positive
fixed point of the map (9).
(iii) If ¢ < ¢* then Ny, € R. Because Ny N5 = mK + % >0 and Ny + Ng =
m+ K > 0, then NJ and NJ are obviously positive, showing that there are

two non-zero fixed points.
O

4.2 Local Stability

Now, the dynamical behavior of the map (9) around each fixed point is inves-
tigated. The following Theorems 7 to 10 is presenting to describe the local
dynamics of Fixed points N, 1 =0,1,2 and N*.

2 2
Theorem 7 Let’s denote § = w and hg = § 21;,571013). Then the

following statements hold:

(i) if 0 < h < hg then N is locally asymptotically stable,
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(i) if h > ho then N§ is unstable, and

(iii) if h = hqo then N§ is nonhyperbolic fized point. Furthermore if
(#ii.a) q < q then N is locally asymptotically stable, and

(#i3.b) q > G then N§ is unstable.

Proof By evaluating f'(N) at N, we obtain

J— h*(mr + q) h\“
roi == M = -2(5)
(i) If 0 < h < hg then 0 < (h/hg)® < 1, which implies |f'(N§)| < 1. Based on
Theorem 1, we have a locally asymptotically stable Ng.
(i) If h > ho then (h/ho)® > 1, so that f'(N) < —1. Theorem 1 states that
Ny is an unstable fixed point.
(i) For h = hg, we have f'(Ng) = —1, i.e., N§ is nonhyperbolic fixed point.
The Schwarzian derivative of map f(N) at N is

S10%) ~rr ey | %)~ 3 | Fies [Q(m;K)THZ

(63

_ brh”

T KT(1+0) [ - KI(1+a)

_ lor [ ~ 2(m+ K)Qr}
(mr +q) K (mr+q)K

(m+K)2r]

If ¢ < ¢ then Sf(Ng) < 0, and thus N is locally asymptotically stable.
On the contrary, if ¢ > § then Sf(Ng) > 0, showing N is unstable. Thus,

Theorem 7 are completely proven.
O

Theorem 8 The non-zero fized point N* is semistable.

Proof The derivative of f(N) at N* is

oY 2
f/(N*):1+r(1h+a) _3% <m-2u(> . 2r(mK+K) (m—;—K) _mr_q]
_ he (m + K)?r — 4mrK
_1+F(1+a)[ 4K _q]
e
=i

N* exists when ¢ = ¢*. Clearly that f'(N*) = 1, and therefore N* is a nonhyperbolic
fixed point. By direct calculations, we can show that

FINT) = F(lhi—oiia) {— GTKN +2(1+ %) 7']
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_h® {_gm—i—f( 2(m+K)r]

T T(l4a) | K 2 K
_ h® 73(m+K)r+2(m+K)r
T T(1l+4a) K K
_ (m+ K)rh®
ST RMO+a) %
Since f"(N*) # 0, Theorem 2 says that the fixed point N* is semistable. |

Theorem 9 Suppose that:

hy - T/ 2KT(1 + ) 7
2q* =K + (m + K)\/(¢" = g)rK
i (m+ K)r+6/(¢* —q)K .
\/4(q* —qQrK +2r(m+ K)+/(¢* — q)rK
The local stability of Ny is described as follows.

(i) If 0 < h < hy then N7y is locally asymptotically stable.
(i) If h > hy then Ny is unstable.
(i) If h = hy and
(iti.a) If h > 1 then Ny is locally asymptotically stable.
(#i.b) If h < 1 then N7 is unstable.

Proof It is obvious to show that
PN = 1+ ity [ (e m+ KO +3(a° = 0) + (m + K) /(@ — oK)
-l-%(m—l—K)zr—l— #(m+K)\/(¢* — rK — (mr + q)]

= 1*#1@ 2(q" —q)K + (m + K) (Q**Q)TK]

—1_ R 2K1"(1+a)]
KT'(14«) h

— Iz
= 1-2(#)

Hence, we have the following observations:

(i) For 0 < h < hy, we have |f'(Ny)| < 1. According to Theorem 1, the
non-zero fixed point N is locally asymptotically stable.
(ii) If h > hy then we get f'(INy) < —1. Thus, Ny is unstable fixed point (see
Theorem 1).
(iii) Clearly that f/(Ny) = —1 whenever h = hy, which shows that N7 is non-
hyperbolic fixed point. The Schwarzian derivative of f(NN) at Ny is given
by

SEN) = ey [%] 3 [ ety [880r 4 8 9K ]|

- it [~ ok [ [ K o=
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We can easily check that if A > 1 then Sf(Nf) < 1 and if A < 1 then
Sf(NT) > 1. Therefore, the stability of the nonhyperbolic fixed point is
explained. Finally, all of the stability conditions of fixed point N are

completely determined.
]

Theorem 10 The non-zero fized point N5 = mgK — (q*;q)TK is always unstable.

Proof To investigate the stability of N3, we evaluate f'(N) at Nj:

* @
Fl+a) |/(¢" - 9K
By simple algebraic manipulations, we can show that % > 2. Thus, f/(Nz*) is
always a positive constant, which means N3 is always an unstable fixed point. O

4.3 Bifurcation Analysis

From the previous analysis, we have a non-hyperbolic fixed point N* when

q = ¢, indicating the possibility of the occurrence of saddle-node bifurca-

tion. Moreover, the occurrence of period-doubling bifurcation is also indicated
around the non-hyperbolic fixed point Ni when i = h;. Thus, in this section,
we study the existence of saddle-node and period-doubling bifurcations.

Theorem 11 The non-zero fized point N* undergoes a saddle-node bifurcation when

) * (me)2r
q crosses the critical values ¢° = “—"—.

Proof It was shown previously that N* does not exist if ¢ > ¢*. When ¢ = ¢* we have

a semistable fixed point N*; and if ¢ < ¢*, then there exists two non-zero fixed points.
By straightforward calculations, we have 6%% ) — 1, Of(BJ;I ) — _F({L-T-a) m-gK <0,

2 * @
and 2 gl(ng ) — _ (gff(fl(_)i_rj) < 0. Thus, according to Theorem 4, the fixed point N*
(m—K)?r

undergoes a saddle-node bifurcation when ¢ crosses the critical values ¢* = 3

* 2 *
Moreover, the fixed points exist when ¢ < ¢* because 6fg;7 ) % > 0. (]

Theorem 12 The non-zero fized point Ni undergoes a period-doubling bifurcation
N 2KT(1+0a)
2(q* =) K+(m+K)\/(¢*—q)rK

when h crosses the critical value hq =
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Proof From the proof of Theorem 9 we have that if h = h; then % = —1. By
performing some algebraic calculations, we also have

82f(Nf) B ah®1 m+K (¢*—qrK
ohoN T(lra |\ 2 T -

(1_2(m+K+\/(q*;q)rK)+m>} (14)

K 2 K
. rah®~1 <m+K n W) (2 (q* Q)TK>
Il +a) 2 r K r .

2 *
Ni exists if ¢ # ¢* and thus we have 882(81\1]\}) # 0. According to Theorem 5, there
appears a solution of period-2 when h passes through h;. Hence, the occurrence of

period-doubling bifurcation in the map (9) is completely proven. ]

Theorem 12 states that the period-doubling bifurcation in the map (9)
can be achieved by varying the step size h. However such bifurcation can also
be realized by setting a fixed value of h and other parameters while varying
a certain parameter. In the following Section, we give an example of period-
doubling bifurcation which is driven by the constant of harvesting (q).

5 Numerical Results

In this section, we present some numerical simulations of the map (9) to sup-
port the previous analytical findings. Due to the field data limitation, we use
hypothetical parameter values for the numerical simulations. We begin with a
simulation using the following parameter values:

r=145, K =10, m=0.1, and a =0.8. (15)

According to Theorem 6, map (9) with parameter set (15) has critical value
q* ~ 3.5527 such that map (9) does not have non-zero fixed point if ¢ > ¢*.
When ¢ = ¢*, map (9) has a unique non-zero fixed point N* = 5.05 which
is a semistable fixed point, see Theorem 8. Furthermore, if ¢ < ¢*, then
there are two non-zero fixed points, namely Ny and NJ. By taking h = 0.4
and using Theorem 9, we can show that N7 is asymptotically stable if ¢; =
3.0191 < ¢ < ¢*. On the other hand, Theorem 10 states that Ny is always
unstable. Since we take h = 0.4, Theorem 12 states that the fixed point Ny
undergoes a period-doubling bifurcation when ¢ crosses ¢; from the right. To
see these dynamical behaviors, we plot in fig. 1a the bifurcation diagram of
the map (9) with parameter set (15) and h = 0.4 for 2.415 < ¢ < 3.7. Clearly
that this bifurcation diagram fits perfectly with the results of our previous
analysis. Indeed, fig. 1a shows that N* (labelled as [a]) is semistable, see also
the Cobweb diagram shown in fig. 2a. As the value of ¢ decreases from ¢*, the
non-zero fixed point is split into two non-zero fixed points where one of them
is stable in the specified interval of ¢, while the other fixed point is unstable.
Such stability properties can also be seen from the Cobweb diagrams in fig. 2b
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—=~ unstable fixed point
—— stable fixed point

F
2.415 2.600 2.800 2.900 3.200 3.553
q

(a) Bifurcation diagram

Y™y

IR YWk 'nuN
o | /\

q

Maximum Lyapunov Exponents

(b) Maximum Lyapunov exponents
Fig. 1: (a) Bifurcation diagram of the map (9) with parameter set (15), h =
0.4, and 2415 < ¢ < 3.7 and (b) the corresponding maximum Lyapunov
exponents.

and fig. 2c, which correspond to point [b] and [c] in fig. 1a, respectively. We
also observe numerically the appearance of a period-doubling route to chaos
(flip bifurcation) as ¢ decreases. If we further decrease the value of ¢, then
there appears a stable solution of period-2 when ¢ passes through ¢;. The
appearance of a stable period-doubling solution, as well as a solution of period-
3, are clearly seen in fig. la (see e.g. point [d], [e] and [f], respectively and
their corresponding diagram Cobweb in fig. 2d, 2e and 2f). The appearance of
the period-3 solution indicates that our system exhibits chaotic dynamics [42].
The existence of chaotic dynamics can also be determined from the Lyapunov
exponent. A system exhibits chaotic dynamics if it has positive maximum
Lyapunov exponents. The maximum Lyapunov exponents which correspond
to fig. 1a is depicted in fig. 1b. It is clearly seen that our system has positive
maximum Lyapunov exponents, showing the existence of chaotic dynamics in
the map (9) which is controlled by the constant of harvesting (q).

11
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Fig. 2: Cobweb diagrams of the map (9) with parameter set (15) and h = 0.4.

To describe the existence of period-doubling bifurcation driven by the step-
size h numerically, we perform simulations using the parameter set (15), ¢ =
3.2, and 0.5 < h < 0.985. Map (9) with these parameter values has two
non-zero fixed points, namely Ny ~ 6.61 and Nj ~ 3.49. Nj is unstable
while NV is stable if 0 < h < hy = 0.553. Ny losses its stability via period-
doubling bifurcation when h crosses hi. These dynamics are clearly seen in
the bifurcation diagram, see fig. 3a. Increasing the value of h may destroy the
stability of Ny and the system is convergent to a stable period-2 solution.
Further increasing the value of h leads to a stable period-4 cycle, and so on. To
give a more detailed view, in fig. 4 we plot Cobweb diagrams which correspond



Springer Nature 2022 B TEX template

Bifurcation and Chaos in a Discrete- Time Fractional-Order Logistic Model

- R 3
= <& 1 ¢
, l¢] [h] [1]
e e - -—— > ———
w .
P
© - £ £
= { 4
i <
£ N
o ) .
&\{\\
o | -
2 &
<«
o | === unstable fixed point i
< stable fixed point e
T T T T T T —
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
h
(a) Bifurcation diagram
i
E
can YAl
2 ;fv\/"”‘ n LN
3 2 !

—0.5

Maximum Lyapunov Exponents
-1.0

=25 -20 -15

0.50 (l.v"\f) l).;i(l (l.}iﬁ l).l7(l U."Tﬁ l).;{(l li.'&r\ li.;]l)
h
(b) Maximum Lyapunov exponents
Fig. 3: (a) Bifurcation diagram of the map (9) with parameter set (15),
g =32,and 0 < h < 0.92 and (b) the corresponding maximum Lyapunov
exponents.

to some solutions around the fixed points labeled as [g - 1] in fig. 3a. When
h = 0.7, we have a stable period-2 cycle near the non-zero fixed point [g],
see fig. 4a. Each of the two solutions splits into two solutions respectively,
and become a stable period-4 solution around fixed point [h] when h = 0.74
(fig. 4b); and consecutively for h = 0.765 we have a stable period-8 cycle
near fixed point [i], see fig. 4c. Moreover, at h = 0.838,0.883,0.889 we have
respectively a stable period-5 cycle around fixed point [j], a stable period-3
cycle around fixed point [k], and a stable-period-6 cycle around fixed point [1],
see their Cobweb diagrams in fig. 4d-4f. Hence, the step size h is an important
parameter that significantly affects the dynamics of the map (9). In this case,
the map (9) exhibits a period-doubling bifurcation route to chaos driven by
parameter h. Furthermore, the appearance of positive maximum Lyapunov
exponents depicted in fig. 3b which corresponds to the bifurcation diagram in
fig. 3a clearly shows the existence of chaotic behavior in the system.

13
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Fig. 4: Cobweb diagrams of the map (9) with parameter set (15) and ¢ = 3.2.

6 Hybrid Control Strategy

In this section, a method namely the hybrid control strategy is presented. This
method is a combination of state feedback and parameter perturbation which
is used for controlling bifurcation in a discrete system [43-46]. We first define
a map (9) as follows.

Npt1 = f(Nn, (), (16)
where N € R is the population density and, F(N,, () is the right hand side of
map (9) with bifurcation parameter ¢ € R. It can be revisited from analytical
and numerical results that when h and ¢ are varies in some range, the map
(9) passes through a series of period-doubling bifurcations where the route to
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Fig. 5: Bifurcation diagrams of controlled map (17)

chaos. By obeying state feedback and parameter perturbation to the map (9),
we obtain the control map as follows.

Nn+1 :ﬂf(Nna<)+(lfﬂ)Nn:F(Naﬂ)v (17)

where 5 € [0,1] denotes the external control parameter for map (17). We
can easily show that the map (9) and (17) have similar fixed points. From
Theorem 12, Ny is the fixed point which undergoes a period-doubling bifurca-
tion. Particularly, From Theorem 1 in [46], the m-periodic orbit of control map
(17) is also similar with the original map (9). Now, we will show that by setting
[ and varying h, the occurrence of period-doubling bifurcation can be delayed

or even eliminated. From the control map (17) we have F'(N7) = 1-24 (h%)

PF(NY) _ 82f(Ny)

o = —anon < 0. According to Theorem 5, the control map (17)

and
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also undergoes period-doubling bifurcation for the similar fixed point with
map (9). The difference lies on the bifurcation point where for the map (9)
is h = hy while the control map (17) is h = f—\/lg This means if § decreases
then the bifurcation point increase which means the series of periodic solu-
tions are delayed. For example, by setting the parameter values as in eq. (15)
and 8 = 0.64,0.76,0.88, 1, the occurrence of bifurcation delayed and period-
3 solutions disappears. See Figure 5a. We also check the chaotic solution
near the period-3 solution. For h = 0.887, three quite close initial condi-
tions N(0) = 6,6.001,6.002 is given and portray the solutions in Figure 5b.
The chaotic interval which occurs for 5 = 1, becomes a periodic solution for
B8 =0.76,0.88, and finally converge to Ny when 5 = 0.64.

7 Conclusion

A discrete fractional order logistic model with the Allee effect and propor-
tional harvesting has been constructed and investigated dynamically. The
discrete-time model is derived by applying the PWCA method to the Caputo
fractional order modified logistic model. It was shown analytically that the
obtained discrete-time model exhibits a saddle-node bifurcation as well as
period-doubling bifurcation. The key parameter in such bifurcations is the con-
stant of harvesting (¢) or the step size (h). Numerical simulations with varying
parameters g and h confirm our analytical results. Furthermore, the presented
numerical results also showed the existence of period-doubling route chaos.
We then constuct the control based on the hybrid control strategy method. It
is shown that the occurrence of period-doubling can be delayed. The occur-
rence of the chaotic solution is also successfully eliminated when the control
parameter is decreased.
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The Allee Effect and harvesting always get a pivotal role in studying
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vesting. In particular, we implement the piecewise constant arguments
(PWCA) method to discretize the fractional model. The dynamics of
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Abstract

The Allee Effect and harvesting always get a pivotal role in studying
the preservation of a population. In this contex, we consider a Caputo
fractional order logistic model with the Allee effect and proportional har-
vesting. In particular, we implement the piecewise constant arguments
(PWCA) method to discretize the fractional model. The dynamics of the
obtained discrete-time model are then analyzed. Fixed points and their
stability conditions are established. We also show the existence of saddle-
node and period-doubling bifurcations in the discrete-time model. These
analytical results are then confirmed by some numerical simulations via
bifurcation, Cobweb, and maximal Lyapunov exponents diagrams. The
occurrence of period-doubling bifurcation route to chaos is also observed
numerically. Finally, the occurrence of period-doubling bifurcation is
successfully controlled using a hybrid control strategy.

Keywords: Discrete-time fractional-order, Logistic map, Allee effect,
Harvesting, Bifurcation, Chaos

MSC Classification: 34A08 , 39A28 , 39A30 , 92D40

1 Introduction

For the last decades, the discrete-time model gets a lot of great attentive-
ness from researchers in mathematical modeling, not only because of its
capability in describing several phenomena such as physics, biomedicine, engi-
neering, chemistry, and population dynamics but also due to the richness of
the given dynamical patterns as well as the occurrence of bifurcations and
chaotic solutions which very difficult to find in their continuous counterpart [1-
6]. Particularly, the discrete-time model is successfully applied in population
dynamics, especially in a single logistic growth modeling [7-10], the epidemic
modeling [11-13], and the predator-prey interaction modeling [14-18]. Most of
the models are discretized using Euler scheme [19-21] and nonstandard finite
difference (NSFD) [22-24] which is popular for the discretization of the model
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with first-order derivative as the operator. Furthermore, for the model with
fractional-order derivative, we have some numerical schemes to approximate
the exact solution such in [25-28]. We also have the popular discretization pro-
cess is given by piecewise constant arguments (PWCA) which were proposed
by El-Sayed et al. [29] and applied by other researchers in different biological
phenomena [30-34].

In this paper, we study and justify the dynamics of a discrete-time
model constructed using PWCA from a fractional-order logistic growth model
involving the Allee effect and harvesting. The model is given by

where N (t) represents the population density at time ¢ and all parameters are
positive numbers with biological interpretations are given in Table 1.

Table 1: Biological Interpretation for each Parameter

Parameters  Biological Interpretation

the intrinsic growth rate

the environmental carrying capacity
the Allee effect threshold

the harvesting rate

Q I X3

Notice that the Allee effect reduces the population growth rate when the
population density is low (i.e., when N < m) as a result of several natu-
ral mechanisms such as intraspecific competition, cooperative anti-predator
behavior, cooperative breeding, limitation in finding mates, and so forth.
The positive growth rate occurs if the population density is in the interval
m < N < K. For further explanation about the Allee effect, see [35—44].

To obtain the fractional-order model, we follow a similar way as in [14].
The first-order derivative at the left-hand side of model (1) is replaced with the
fractional order-derivative D¢ which denotes the Caputo fractional derivative
operator of order-a defined by

C o _ 1 K f/(S) s
R el e )

where a is the order of fractional derivative with o € (0,1] and T'(+) is the
Gamma function. Furthermore, by replacing the operator with equating the
dimensions of time at the right-hand side, the following model is acquired.

CDEN =N <1 — I]\é) (N —m) —¢“N. (3)
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Model (3) can be written as

DN =FN <1 - ];) (N —m) — gN, (4)

where 7 = r* and ¢ = ¢*. Finally, by dropping (%), the fractional-order model
for (1) is successfully obtained as follows.

CDEN =rN (1 - g) (N —m) —gN. (5)

As far as we are aware, both the fractional-order model and the discrete-
time version of eq. (5) have not been introduced and studied. Especially for
fractional-order model (5), since the stability properties of equilibrium point
refers to Matignon condition [45], the dynamics of the one dimensional first-
order and the fractional-order models are qualitatively the same because the
larg (A\)| of equilibrium point always in the real line. In the other hand, although
in the one-dimensional model, the discrete-time model has more possible com-
plex phenomena such as period-doubling bifurcation and chaotic behaviors
which do not exist in its continuous ones. This means the one-dimensional
continuous model has poor dynamics than the discrete-time model. Hence,
for this case, studying the discrete-time model is more interesting and attrac-
tive. In this paper, we construct a discrete-time model by implementing the
PWCA method for the model (5), and the dynamics of the obtained discrete-
time model are then investigated. The layout of this paper is as follows. In
Section 2, the model formulation is given by applying the PWCA method to
get a discrete-time model. To support the analytical process, we provide some
basic theoretical results in Section 3. In Section 4, some analytical results are
provided such as the existence of fixed points, their local stability, the exis-
tence of saddle-node, and period-doubling bifurcations. In Section 5, we present
some numerical simulations and show some interesting phenomena, such as
bifurcation, Lyapunov exponent, and Cobweb diagrams which correspond to
the previous theoretical results. We also present numerically a period-doubling
route to chaos. A hybrid control strategy is applied to delay and eliminate the
occurrence of period-doubling bifurcation and chaotic solution in Section 6.
The conclusion of this work is given in Section 7.

2 Model Formulation

By applying a similar procedure as in [29, 30], we discretize model (5) with
the PWCA method as follows

Do) =¥ (/) (1= L) v o) = ) — ¥ g,
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with initial condition N(0) = Ny. Let ¢ € [0, h), t/h € [0,1), then we have

N
CDEN(t) = rNy (1 — K°> (No —m) — qNp. (6)
The solution of eq. (6) is
to No
Ni=No+ ————— |rNo(1—— ) (No — — qN,
1 0+F(1_~_a){7" 0( K)(o m) — qNo

Next, let t € [h,2h), t/h € [1,2). Thus, we obtain

CDEN(t) = rN; (1 - ZIV;) (N, —m) — gy, (7)

where its solution is given by

Ny = Ny(h) + ét(l_f):) {er <1 - ZIV(I) (Ny —m) — qu] .

By proceeding the same disretization process, for ¢ € [nh,(n + 1)h), t/h €
[n,n 4+ 1), we have

Npsoy = Nn(nh)+m {an(nh) (1 - N"I(?h)) (N, (nh) —m) — an(nh)} .
(8)

For ¢ — (n+1)h, eq. (8) is reduced to a discrete-time fractional order logistic
model with the Allee effect and proportional harvesting

Moot = Not s |7 (1= 32 ) 0= m) = o] = 1), @

We remark that if o« — 1 then eq. (9) is exactly the same as the Euler
discretization of model (5).

3 Fundamental Concepts

To analyze the dynamical behavior such as the existence of fixed point, the
local stability, and the occurrence of saddle-node and period-doubling bifurca-
tion of the discrete-time model (9), the following definition and theorems are
needed.

Definition 1 [46] Consider the following map
w(n+1) = Fla(n)). (10)
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A point z* is said a fixed point of the map (10) if f(z*) = ™. If | f/(z*)| # 1 then z*
is called a hyperbolic fixed point, and if |f/(:1c*)| = 1 then z* is called a nonhyperbolic
fixed point.

Theorem 1 [}6] Let z* be a hyperbolic fized point of the map (10) where f is
continuously differentiable at x*. The following statements then hold true:

(i) If |f'(z*)| < 1, then a* is locally asymptotically stable.
(i) If | f'(x*)| > 1, then x* is unstable.

Theorem 2 [/6] Let x* is a mnonhyperbolic fized point of the map (10) satisfying
f'(x*) = 1. If f'(x), f"(z), and " (x) are continuous at x*, then the following
statements hold:

(i) If f"(x*) # 0, then x* unstable (semistable).
(i5) If f"(z*) =0 and f"(x*) > 0, then x* unstable.

o (i) If f"(x*) =0 and f"'(z*) < 0, then x* locally asymptotically stable.

93

94

95

96

©

7

98

99

100

101

102

103

Definition 2 [46] The Schwarzian derivative, Sf, of a function f is defined by

53117

Sf(x)

Particularly, if f/(z*) = —1 then

SF@") = ")~ 5 [1"@")]

2
Theorem 3 [46] Let x* is a hyperbolic fized point of the map (10) satisfying f'(z*) =

—1. If f'(z), f"(x), and f"(x) are continuous at x*, then the following statements
hold:

(i) If Sf(x*) < 0 then x* is locally asymptotically stable.
(i) If Sf(x*) > 0 then x* is unstable.

Theorem 4 (The existence of Saddle-Node Bifurcation [46]) Suppose that xn,+1 =
flu,zn) is a C? one-parameter family of one-dimensional maps, and z* is a fized
point with f'(u, ) = 1. Assume further that

f | « Pl s
L e 20 and GG £0.

Then there exists an interval I around z* and a C? map 1 = p(x), wherep: I — R
2
such that p(z*) = p*, and f(p(z),z) = x. Moreover, if g—ﬁ%mﬁ’x*) < 0, the fized
2
points exist for u > p* and if %ﬁ%'(u*@*) > 0, the fized points exist for u < p*.

Theorem 5 (The ezistence of period-doubling bifurcation [46]) Suppose that xp 1 =
flu,zn) is a C? one-parameter family of one-dimensional maps, and x* is a fizred
point. Assume that
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104 (Z) 81 (p, T ) —1.

105 (Z’L) 6#890( , L ) 7& 0.

ws  Then there is an interval I about x* and a function p : [ — R such that fp(z)(x) #x
w07 but f;s(a:) =u.

« 4 Analytical Results

10 We explore some analytical results here such as the existence of fixed points,
o their local stability, and the existence of some bifurcations namely saddle-node
w  and period-doubling bifurcations. Since the map (9) is constructed by PWCA
2 with step-size (h), the analytical process is then investigated by considering
us  the impact of h. Some analytical results also examine the influence of the
us  harvesting (¢q) on the dynamics of the given map.

uws 4.1 The Existence of Fixed Point

Based on Definition (1), the fixed point of the map (9) is obtained by solving
the following equation

N:N+P(1hj_a)N{r<l—g>(N—m)—q]. (11)

us  The solutions of eq. (11) is described as follows:

ur (i) The extinction of population fixed point N§ = 0 which always exists.
(ii) The non-zero fixed points Ny, which are the positive solutions of the
following quadratic polynomial

K
N2 — (m+K)N +mK + 1= = 0. (12)
T

The solutions of eq. (12) are

. m+K *—qrK
N =R (¢ —q)
(13)
. m+K (¢* —grK
Ny = —
2
118 where ¢* = % > 0. The existence of non-zero fixed points (13) is
119 shown by Theorem 6.

o Theorem 6 (i) If ¢ > q* then the non-zero fized point of the map (9) does not
121 exist.

w (#) If ¢ = q* then there exists a unique non-zero fixed point N* = mgK of the
123 map (9)
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wa (ii3) If ¢ < q*, then there exist two non-zero fized points, namely Ny o of the

125

map (9).

Proof (i) Tt is easy to confirm that if ¢ > ¢* then the solutions of eq. (12) are
a pair of complex conjugate numbers.
(ii) For ¢ = ¢*, we have N* = N} = N3 = ™tX Hence, N* is the only positive
fixed point of the map (9).

wo (iii) If ¢ < ¢* then N7, € R. Because Ny Ny = mK + % > 0and Ny + Ny =

131

132

133

134

135

136

137

138

139

140

141

142

143

144

1

~

5

m+ K > 0, then NJ and N are obviously positive, showing that there are
two non-zero fixed points.
|

4.2 Local Stability

Now, the dynamical behaviors of the map (9) around each fixed point are
investigated. The following Theorems 7 to 10 are presenting to describe the
local dynamics of Fixed points N, ¢ = 0,1,2 and N*. The complete dynamics
including local stability, unstable condition, and nonhyperbolic properties for
each fixed point are studied by employing Theorems 1 to 3. In this respect, all
dynamical properties are expressed in step-size (h) and harvesting rate (¢) to
simplify the mathematical terms.

2 2
Theorem 7 Let’s denote § = w and ho =y %i;)' Then the
following statements hold:

(i) if 0 < h < hg then N§ is locally asymptotically stable,
(i) if h > ho then N§ is unstable, and

s (111) if h = hg then N is nonhyperbolic fized point. Furthermore if

147

148

149

150

151

152

(iii.a) q < q then N is locally asymptotically stable, and
(#i.b) q > ¢ then N§ is unstable.

Proof By evaluating f'(N) at N, we obtain
h*(mr + q) h\“
!/ *
No)=1——F—=1-2— .
£ (No) I'l+a) ho

(i) If 0 < h < hg then 0 < (h/hg)® < 1, which implies |f'(N§)| < 1. Based on
Theorem 1, we have a locally asymptotically stable Ng.

(ii) If h > ho then (h/hg)* > 1, so that f'(Nj) < —1. Theorem 1 states that
Ny is an unstable fixed point.

(iii) For h = hg, we have f'(N§) = —1, i.e., N§ is nonhyperbolic fixed point.

The Schwarzian derivative of map f(N) at N is

Sf(Ng) —F(lhj_a) [([ﬂ ’% [F(lhj— ) [Q(m;K)THQ




Springer Nature 2022 B TEX template

8 Bifurcation and Chaos in a Discrete-Time. . .
6rh® h® 2
= 1- K
KT(1+a) [ Ko ™+ T]
o 12r [ B 2(m—|—K)27l
C(mr+q)K (mr+q)K

153 If ¢ < ¢ then Sf(Ng) < 0, and thus N§ is locally asymptotically stable.
154 On the contrary, if ¢ > § then Sf(Ng) > 0, showing N is unstable. Thus,

155 Theorem 7 is completely proven.
156 O

157 Theorem 8 The non-zero fized point N* is semistable.

Proof The derivative of f(N) at N* is

a 2
f/(N*):l—ﬁ-ﬁ _%(m—;—K) +2r(mK+K) (m;K)—mr—q]
_ h* (m + K)?r — 4mrK
_1+I‘(1+a)[ 4K 7q]
h* *
=g

N* exists when ¢ = ¢*. Clearly that f'(N*) = 1, and therefore N* is a nonhyperbolic
fixed point. By direct calculations, we can show that

h* [ 6rN m
1! * _ v e
IO = s TR —|—2(1+K)r]
_ kY [ 6rm4+K | 2(m+4K)r
T T(l4+a) | K 2 K
_ h® __S(m—i—K)r_’_Z(m—i—K)r
T+ | K K
_ (m+ K)rh®
= T RT(ta) %
158 Since f/(N*) # 0, Theorem 2 says that the fixed point N* is semistable. d

Theorem 9 Suppose that:

hy - ((/ 2KT(1 + o)
2(¢* — K + (m+ K)\/(¢* —q)rK’
i (m+ K)r+6(q¢* —q)K

R \/4(q* — K + 20(m + K) /(" — 9K

150 The local stability of N{ is described as follows.

wo (1) If 0 < h < hy then Ny is locally asymptotically stable.
w1 (1) If h > hy then Ny is unstable.



Springer Nature 2022 B TEX template

Bifurcation and Chaos in a Discrete-Time. . . 9

162 (ZZ’L) Ifh = h1 and

163

164

165

166

167

168

170

171

172

173

174

175

176

177

(ii.a) If}:L > 1 then N7 is locally asymptotically stable.
(#i.b) If h <1 then N7 is unstable.

Proof It is obvious to show that
POV = 1+ ey [~ (4K<m+K> r43(¢" - ) + - (m+ K) V(@ — k)
+%(m+K)r+ (m+ K)\/(¢* —qrK — mr—i—q}

= 1— grtrray |206" — QK + (m+ K)\/(¢* — o7K]
—1_ _h 2KF(1+a)]
RT(1+a) I

=1-2 (
Hence, we have the following observations:

(i) For 0 < h < hy, we have |f'(Ny)| < 1. According to Theorem 1, the
non-zero fixed point N is locally asymptotically stable.

(ii) If A > hy then we get f/(Ny) < —1. Thus, Ny is an unstable fixed point
(see Theorem 1).

(iii) Clearly that f'(Ny) = —1 whenever h = hy, which shows that N7 is non-

hyperbolic fixed point. The Schwarzian derivative of f(NN) at Ny is given
by

2

o

SFNT) = ity |5 ) - 3 |- [ + £ V@ - 0E ||

e [67«_23}({(1“!)} ((m+ K)r +6\/(¢" = K| }

We can easily check that if b > 1 then Sf(Nf) < 1 and if h < 1 then
Sf(NT) > 1. Therefore, the stability of the nonhyperbolic fixed point is
explained. Finally, all of the stability conditions of fixed point Ny are

completely determined.
0

Theorem 10 The non-zero fized point N5 = m;K — Y (q*ZQ)TlK is always unstable.

Proof To investigate the stability of N3, we evaluate f'(N) at N3:

* «@
Fi+a) | Vie"— oK
By simple algebraic manipulations, we can show that % > 2. Thus, f'(N3) is

always a positive constant, which means N3 is always an unstable fixed point. O
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4.3 Bifurcation Analysis

From the previous analysis, we have a non-hyperbolic fixed point N* when
q = ¢*, indicating the possibility of the occurrence of saddle-node bifurca-
tion. Moreover, the occurrence of period-doubling bifurcation is also indicated
around the non-hyperbolic fixed point N when h = h;. Thus, in this section,
we study the existence of saddle-node and period-doubling bifurcations. The
saddle-node bifurcation is a phenomenon that two fixed points with opposite
signs of stability merge into a unique semi-stable fixed point and finally dis-
appear when a parameter is varied, while the period-doubling bifurcation is a
phenomenon that a single fixed point losses its stability accompanied by the
emergence of a period-2 solution when a parameter is varied [46]. As results,
we have Theorems 11 and 12.

Theorem 11 The non-zero fized point N* undergoes a saddle-node bifurcation when

. « _ (m—K)?r
q crosses the critical values ¢* = “—"—.

Proof Tt was shown previously that N* does not exist if ¢ > ¢*. When ¢ = ¢* we have

a semistable fixed point N*; and if ¢ < ¢*, then there exists two non-zero fixed points.
8f(N*)_1 8f(N*)__ h m+K<O
oN T & Jq - I'(l+a) 2 ’

< 0. Thus, according to Theorem 4, the fixed point N*

2
undergoes a saddle-node bifurcation when q crosses the critical values ¢* = %.

Af(N*) D> F(N*)

By straightforward calculations, we have

82f(N*) _ (m+K)rh™
nd =5 = KT (14a)

a;

Moreover, the fixed points exist when ¢ < ¢* because INZ

Theorem 12 The non-zero fized point Ni undergoes a period-doubling bifurcation
N 2KT(1+a)
2(q* ~q) K+(m+K)\/(¢* —a)rK

when h crosses the critical value hq =

Proof From the proof of Theorem 9 we have that if h = h; then afa(%l*) = —1. By

performing some algebraic calculations, we also have

PFINT) _ ah™ ! , <m+K N V(g* —Q)TK>
T

OhON T(1+a) 2

(1_2(m+K+\/(q*rq)rK)+m>} 1)

K 2 K

_orah®t (m+ K (et —orK )\ (2 /(¢*—rK
T T(4a) 2 " r K 7 ’
N* exists i x . P2F(NY) -
1 exists if ¢ # ¢* and thus we have —5r53~ # 0. According to Theorem 5, there
appears a solution of period-2 when h passes through hj. Hence, the occurrence of
period-doubling bifurcation in the map (9) is completely proven. O
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Theorem 12 states that the period-doubling bifurcation in the map (9)
can be achieved by varying the step-size h. However such bifurcation can also
be realized by setting a fixed value of h and other parameters while varying
a certain parameter. In the following Section, we give an example of period-
doubling bifurcation which is driven by the constant of harvesting (q).

5 Numerical Results

In this section, we present some numerical simulations of the map (9) not only
to support the previous analytical findings but also to show more dynamical
behaviors of the map (9). Numerical simulations are given by considering some
biological and mathematical aspects such as the influence of the harvesting, the
step-size (h), the Allee effect (m), and the order—«. To support the numerical
simulations, a desktop PC is used based on AMD Ryzen 5 3400G 3.7GHz, 16
GB RAM, and AMD Radeon RX580 8GB DDR5 VGA card. We also use an
open source software called Python 3.9 to generate all of the given figures.
Due to the field data limitation, we use hypothetical parameter values for the
numerical simulations. General parameter values are given as follows.

r=145 K =10, m =0.1, ¢ =0.32, « =0.8, and h = 0.4. (15)

5.1 The influence of the Harvesting Rate

The numerical simulations in this subsection are using parameter set (15) and
vary the value of the harvesting rate (¢). According to Theorem 6, map (9) with
parameter set (15) has critical value ¢* ~ 3.5527 such that map (9) does not
have a non-zero fixed point if ¢ > ¢*. When ¢ = ¢*, map (9) has a unique non-
zero fixed point N* = 5.05 which is a semistable fixed point, see Theorem 8.
Furthermore, if ¢ < ¢*, then there are two non-zero fixed points, namely Ny
and N3. By taking h = 0.4 and using Theorem 9, we can show that Ny is
asymptotically stable if ¢; = 3.0191 < ¢ < ¢*. On the other hand, Theorem 10
states that N5 is always unstable. Since we take h = 0.4, Theorem 12 states
that the fixed point N undergoes a period-doubling bifurcation when ¢ crosses
q1 from the right. To see these dynamical behaviors, we plot in fig. la the
bifurcation diagram of the map (9) with parameter set (15) and h = 0.4 for
2.415 < q < 3.7. Clearly that this bifurcation diagram fits perfectly with the
results of our previous analysis. Indeed, fig. 1a shows that N* (labeled as [a])
is semistable, see also the Cobweb diagram shown in fig. 2a. As the value of
q decreases from ¢*, the non-zero fixed point is split into two non-zero fixed
points where one of them is stable in the specified interval of ¢, while the
other fixed point is unstable. Such stability properties can also be seen in
the Cobweb diagrams in figs. 2b and 2c, which corresponds to points [b] and
[c] in fig. 1a, respectively. We also observe numerically the appearance of a
period-doubling route to chaos (flip bifurcation) as ¢ decreases. If we further
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—=~ unstable fixed point
—— stable fixed point

F
2.415 2.600 2.800 2.900 3.200 3.553
q

(a) Bifurcation diagram

Y™y

DRI VN2 "N
i "'\q ]
+ | /\
.

q

Maximum Lyapunov Exponents

(b) Maximum Lyapunov exponents
Fig. 1: Bifurcation diagram and its corresponding maximum Lyapunov expo-
nents of the map (9) with parameter set (15) and 2.415 < ¢ < 3.7

decrease the value of ¢, then there appears a stable solution of period-2 when
q passes through ¢;. The appearance of a stable period-doubling solution, as
well as a solution of period-3, are seen in fig. la (see e.g. point [d], [e], and [f],
respectively, and their corresponding diagram Cobweb in figs. 2d to 2f). The
appearance of the period-3 solution indicates that our system exhibits chaotic
dynamics [47]. The existence of chaotic dynamics can also be determined from
the Lyapunov exponent. A system exhibits chaotic dynamics if it has positive
maximum Lyapunov exponents. The maximum Lyapunov exponents which
correspond to fig. la is depicted in fig. 1b. It is clearly seen that our system
has positive maximum Lyapunov exponents, showing the existence of chaotic
dynamics in the map (9) which is controlled by the constant of harvesting (g).
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(a) ¢ = 3.553 (b) ¢ =3.2
4.0 8.00
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364 [c] 750 1
3.4 e [d
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= 7.004
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N

6.75 1

6.50 4

2.84
6.25

269 : : : : 6.00 . .

30 32 34 36 38 40 6.0 6.5 7.0 75 8.0
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8.5 9

8.0
s

C ‘

o 7

:‘: 7.0 in
< 65 = 64

6.0
54

5.5 1

5.0 . . : 4 . . . .

5 6 7 8 4 5 6 7 8 9
N, Ny
(e) g =12.8 (f) ¢g=2.6

Fig. 2: Cobweb diagrams of the map (9) with parameter set (15)

5.2 The influence of the Step-Size

To describe the existence of period-doubling bifurcation driven by the step-
size h numerically, we perform simulations using the parameter set (15) and
0.5 < h <0.985. Map (9) with these parameter values has two non-zero fixed
points, namely N7 =~ 6.61 and N =~ 3.49. N3 is unstable while N7 is stable
if 0 < h < hy = 0.553. Ny losses its stability via period-doubling bifurcation
when h crosses hi. These dynamics are seen in the bifurcation diagram, see
fig. 3a. Increasing the value of h may destroy the stability of N7 and the system
is convergent to a stable period-2 solution. Further increasing the value of h
leads to a stable period-4 cycle, and so on. To give a more detailed view, we
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=1
, l¢] [h]
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o 4 &K{\K\
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| === unstable fixed point TRy
< stable fixed point 4‘\_
0.50 (l.v"\f) l).;i(l (l.}iﬁ 0.70 (],"75 l).;i(l 1'.'85 U.;)l)
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(a) Bifurcation diagram
s /\f”\r/’.‘ ™ A

—0.5 0.0
A
—

Maximum Lyapunov Exponents
-1.0

=25 -20 -15

0.50 (l.v"h') l).;i(l (l.}iﬁ l).l7(l U."Tﬁ l).;{(l li.'&'\ li.;]l)
h
(b) Maximum Lyapunov exponents
Fig. 3: Bifurcation diagram and its corresponding maximum Lyapunov expo-
nents of the map (9) with parameter set (15) and 0 < h < 0.92

plot Cobweb diagrams in fig. 4 which correspond to some solutions around the
fixed points labeled as [g - 1] in fig. 3a. When h = 0.7, we have a stable period-
2 cycle near the non-zero fixed point [g], see fig. 4a. Each of the two solutions
splits into two solutions respectively and becomes a stable period-4 solution
around fixed point [h] when h = 0.74 (fig. 4b); and consecutively for h = 0.765
we have a stable period-8 cycle near fixed point [i], see fig. 4c. Moreover, at
h = 0.838,0.883,0.889 we have respectively a stable period-5 cycle around
fixed point [j], a stable period-3 cycle around fixed point [k], and a stable-
period-6 cycle around fixed point [l], see their Cobweb diagrams in figs. 4d
to 4f. Hence, the step-size h is an important parameter that significantly affects
the dynamics of the map (9). In this case, the map (9) exhibits a period-
doubling bifurcation route to chaos driven by parameter h. Furthermore, the
appearance of positive maximum Lyapunov exponents depicted in fig. 3b which
corresponds to the bifurcation diagram in fig. 3a clearly shows the existence
of chaotic behavior in the system.
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Fig. 4: Cobweb diagrams of the map (9) with parameter set (15)

5.3 The Influence of the Allee Effect

To show the influence of the Allee effect, we use the parameter set (15) and
vary the values of m in the interval 0 < m < 2.5. From Equation (13), we com-
pute numerically that N; and NJ exist for interval 0 < m < 0.6045. Based
on Theorems 8 to 10, the stability of N{ and N5 has the different sign for
0 < m < 0.6045 and finally merge into a semi-stable fixed point N* ~ 5.29671
when m = 0.6045. When m crosses 0.6045, N* disappears and INj becomes
the only fixed point of the map (9). These phenomena indicate the occur-
rence of saddle-node bifurcation driven by the Allee effect (m). According to
Theorem 7, we also have that N§ is locally asymptotically stable for m < 0.467
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Fig. 5: Bifurcation diagram and its corresponding maximum Lyapunov expo-
nents of the map (9) with parameter set (15) and 0 < m < 2.5
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Fig. 6: Cobweb diagrams of the map (9) with parameter set (15)
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T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
«

(a) Bifurcation diagram

0.5

PN
VR

0.0
T

Maximum Lyapunov Exponents

-25 -20 -15 -1.0 -05

0.0 l).‘l [].I2 l)iii l)f4 (l.‘5 l).‘()' (].‘7 0.8
[e%
(b) Maximum Lyapunov exponents
Fig. 7: Bifurcation diagram and its corresponding maximum Lyapunov expo-
nents of the map (9) with parameter set (15) and 0 < « < 0.8

and losses its stability via period-doubling bifurcation when m crosses 0.467.
These complex dynamics are shown in fig. 5a and its corresponding maximum
Lyapunov exponents are depicted in fig. 5b which confirms the existence of
chaotic behavior on the map (9). One interesting condition is also shown for
some values of m. For 0 < m < 0.467, the map (9) passes through a bistabil-
ity condition. Ng and N7 are locally asymptotically stable simultaneously and
hence the solution of the map is sensitive to the initial value. See the Cobweb
diagrams in fig. 6. When m = 0.3, two nearby initial values are convergent to
different fixed points. When the Allee effect increases to m = 1, the solution
converges to a period-2 solution around NVj.

5.4 The Influence of the order-a

As the impact of the discretization process, we have a parameter « on map
(9) which is derived from the order of the derivative of the continuous model
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as the memory effect. Again, we use the parameter set (15) and varying a.
As result, we have a bifurcation diagram and maximum Lyapunov exponents
depicted in Figure 7. The given dynamics are quite similar to the impact of the
step-size but in different directions. If increasing h may change the dynamics of
Ny from locally asymptotically stable to periodic solution via period-doubling
bifurcation, different dynamics direction presented by « where if its value
increase, the unstable N becomes locally asymptotically stable via period-
doubling bifurcation. Some chaotic behavior indicated by positive Lyapunov
exponents disappears becomes periodic orbits and is finally convergent to N*

when « crosses 0.5708.
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6 Hybrid Control Strategy

In this section, a method namely the hybrid control strategy is presented. This
method is a combination of state feedback and parameter perturbation which
is used for controlling bifurcation in a discrete system [48-51]. We first define
a map (9) as follows.

Nn+1 :f(Nn’C)’ (16)
where N € R is the population density and, F'(N,, () is the right hand side of
map (9) with bifurcation parameter ¢ € R. It can be revisited from analytical
and numerical results that when h and ¢ are varies in some range, the map
(9) passes through a series of period-doubling bifurcations where the route to
chaos. By obeying state feedback and parameter perturbation to the map (9),
we obtain the control map as follows.

Nn+1 :ﬂf(Nn7C)+(1_ﬁ)Nn:F(Nvﬁ)v (17)

where 8 € [0,1] denotes the external control parameter for map (17). We
can easily show that the map (9) and (17) have similar fixed points. From
Theorem 12, Ny is the fixed point which undergoes a period-doubling bifurca-
tion. Particularly, From Theorem 1 in [51], the m-periodic orbit of control map
(17) is also similar to the original map (9). Now, we will show that by setting
[ and varying h, the occurrence of period-doubling bifurcation can be delayed

or even eliminated. From the control map (17) we have F'(N7) = 1-24 (h%)

and a;igj\i}*) = 622(81\5) < 0. According to Theorem 5, the control map (17)

also undergoes period-doubling bifurcation for the similar fixed point with
map (9). The difference lies in the bifurcation point where the map (9) is
h = hy while the control map (17) is h = ﬁ—\/lﬁ This means if 8 decreases

then the bifurcation point increase which means the series of periodic solu-
tions are delayed. For example, by setting the parameter values as in eq. (15)
and 8 = 0.64,0.76,0.88, 1, the occurrence of bifurcation is delayed and period-
3 solutions disappear. See Figure 8a. We also check the chaotic solution
near the period-3 solution. For h = 0.887, three quite close initial condi-
tions N(0) = 6,6.001,6.002 is given and portray the solutions in Figure 8b.
The chaotic interval which occurs for 8 = 1 becomes a periodic solution for
B =0.76,0.88, and finally, converges to Ny when = 0.64.

7 Conclusion

A discrete-time fractional-order logistic model with the Allee effect and pro-
portional harvesting has been constructed and investigated dynamically. The
discrete-time model is derived by applying the PWCA method to the Caputo
fractional order modified logistic model. The local stability for each fixed point
is successfully investigated completely for hyperbolic and nonhyperbolic fixed
points by obeying the stability theorem along with the Schwarzian derivative.
Furthermore, it was shown analytically that the obtained discrete-time model
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exhibits a saddle-node bifurcation as well as period-doubling bifurcation. The
key parameter in such bifurcations is the constant of harvesting (¢q) or the step-
size (h). Numerical simulations with varying parameters ¢ and h confirm our
analytical results. The dynamics of the map are also studied numerically by
varying the Allee threshold (m) and the order—« which also give the saddle-
node and period-doubling bifurcations. Furthermore, the presented numerical
results also showed the existence of period-doubling route chaos which is indi-
cated by the positive Lyapunov exponents and the appearance of period-3
window. We then construct the control based on the hybrid control strategy
method. It is shown that the occurrence of period-doubling can be delayed.
The occurrence of the chaotic solution is also successfully eliminated when the
control parameter is decreased.
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Abstract

The Allee effect and harvesting always get a pivotal role in studying the preservation of a population. In this context, we
consider a Caputo fractional-order logistic model with the Allee effect and proportional harvesting. In particular, we implement
the piecewise constant arguments (PWCA) method to discretize the fractional model. The dynamics of the obtained discrete-
time model are then analyzed. Fixed points and their stability conditions are established. We also show the existence of
saddle-node and period-doubling bifurcations in the discrete-time model. These analytical results are then confirmed by
some numerical simulations via bifurcation, Cobweb, and maximal Lyapunov exponent diagrams. The occurrence of period-
doubling bifurcation route to chaos is also observed numerically. Finally, the occurrence of period-doubling bifurcation is

successfully controlled using a hybrid control strategy.

Keywords Discrete-time fractional-order - Logistic map - Allee effect - Harvesting - Bifurcation - Chaos

Mathematics Subject Classification 34A08 - 39A28 - 39A30 - 92D40

1 Introduction

For the last decades, the discrete-time model gets a lot of great
attentiveness from researchers in mathematical modeling, not
only because of its capability in describing several phenom-
ena such as physics, biomedicine, engineering, chemistry,
and population dynamics but also due to the richness of the
given dynamical patterns as well as the occurrence of bifur-
cations and chaotic solutions which very difficult to find in
their continuous counterpart [ 1-6]. Particularly, the discrete-
time model is successfully applied in population dynamics,
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especially in a single logistic growth modeling [7-10], the
epidemic modeling [11-13], and the predator—prey interac-
tion modeling [14-18]. Most of the models are discretized
using Euler scheme [19-21] and nonstandard finite differ-
ence (NSFD) [22-24] which is popular for the discretization
of the model with first-order derivative as the operator. Fur-
thermore, for the model with fractional-order derivative, we
have some numerical schemes to approximate the exact solu-
tion such in [25-28]. We also have the popular discretization
process is given by piecewise constant arguments (PWCA)
which were proposed by El-Sayed et al. [29] and applied by
other researchers in different biological phenomena [30-34].

In this paper, we study and justify the dynamics of
a discrete-time model constructed using PWCA from a
fractional-order logistic growth model involving the Allee
effect and harvesting. The model is given by

dN—Nl N N N 1
E—V <_E>( —m)—gN, (D

where N (t) represents the population density at time ¢ and
all parameters are positive numbers with biological interpre-
tations and are given in Table 1.

@ Springer
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Table 1 Biological interpretation for each Parameter

Parameters Biological interpretation

r The intrinsic growth rate

K The environmental carrying capacity
m The Allee effect threshold

q The harvesting rate

Notice that the Allee effect reduces the population growth
rate when the population density is low (i.e., when N < m)
as aresult of several natural mechanisms such as intraspecific
competition, cooperative anti-predator behavior, cooperative
breeding, and limitation in finding mates. The positive growth
rate occurs if the population density is in the interval m <
N < K. For further explanation about the Allee effect, see
[35-44].

To obtain the fractional-order model, we follow a similar
way as in [14]. The first-order derivative at the left-hand side
of model (1) is replaced with the fractional-order derivative
CD;" which denotes the Caputo fractional derivative operator
of order « defined by

LS

“Df f1) = N

ds, 2)

' —ow)

where « is the order of fractional derivative with @ € (0, 1]
and I'(-) is the Gamma function. Furthermore, by replacing
the operator with equating the dimensions of time at the right-
hand side, the following model is acquired.

N
CDYN = r*N (1_E> (N —m) —g*%N. (3)
Model (3) can be written as
Cra = N =~
DN =rN 1—? (N —m)—gN, “4)

where ¥ = r® and g = ¢“. Finally, by dropping (*), the
fractional-order model for (1) is successfully obtained as fol-
lows.

CDYN =rN (1—%) (N —m) —gN. 5)

As far as we are aware, both the fractional-order model
and the discrete-time version of Eq.5 have not been intro-
duced and studied. Especially for fractional-order model
(5), since the stability properties of equilibrium point refers
to Matignon condition [45], the dynamics of the one-
dimensional first-order and the fractional-order models are
qualitatively the same because the |arg (1)| of equilibrium
point always in the real line. On the other hand, although

@ Springer

in the one-dimensional model, the discrete-time model has
more possible complex phenomena such as period-doubling
bifurcation and chaotic behaviors which do not exist in its
continuous ones. This means the one-dimensional continu-
ous model has poor dynamics than the discrete-time model.
Hence, for this case, studying the discrete-time model is
more interesting and attractive. In this paper, we construct
a discrete-time model by implementing the PWCA method
for the model (5), and the dynamics of the obtained discrete-
time model are then investigated. The layout of this paper
is as follows. In Sect.2, the model formulation is given by
applying the PWCA method to get a discrete-time model. To
support the analytical process, we provide some basic the-
oretical results in Sect.3. In Sect.4, some analytical results
are provided such as the existence of fixed points, their local
stability, and saddle-node and period-doubling bifurcations.
In Sect. 5, we present some numerical simulations and show
some interesting phenomena, such as bifurcation, Lyapunov
exponent, and Cobweb diagrams which correspond to the
previous theoretical results. We also present numerically a
period-doubling route to chaos. A hybrid control strategy
is applied to delay and eliminate the occurrence of period-
doubling bifurcation and chaotic solution in Sect.6. The
conclusion of this work is given in Sect.7.

2 Model formulation

By applying a similar procedure as in [29,30], we discretize
model (5) with the PWCA method as follows

“DYN(t) = rN ((t/h1h) (1 - w)

K
X (N ([t/h1h) —m) —gqN ([t/h]h),

with initial condition N(0) = Ny. Lett € [0, h), t/h €
[0, 1), then we have

C o NO
DIN(@)=rNo|1—- a (No — m) — gNp. (6)
The solution of Eq. 6 is
Ny = Not No (1= 22 (o = m) — g
= —|r - — —m) — .
1 0 F(l +O!) 0 K 0 qiNo
Next, let t € [h, 2h), t/h € [1, 2). Thus, we obtain

N
CDYN(t) =rN, (1 — 71) (N1 —m) — gNy, (7
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where its solution is given by

_ (t = h)®
No = Ni) + oy

v(1- N oy N
|:I’ 1( —?>( 1 —m)—gq 1]-

By proceeding the same disretization process, for ¢ €
[nh, (n + 1h),t/h € [n,n + 1), we have

Nys1 = Nu(nh) + w
n+1 = Np(n F(1+(X)
[an(nh) (1 — @) (Np(nh) —m) — qN,,(nh)] .
)]
For t — (n 4 1)h, Eq.8 is reduced to a discrete-time

fractional-order logistic model with the Allee effect and pro-
portional harvesting

h(x
Npy1 = Ny + ml\’n
Nn
[V<1—7>(Nn—m)—fI}=f(N)- )

We remark that if « — 1 then Eq.9 is exactly the same as
the Euler discretization of model (5).

3 Fundamental concepts

To analyze the dynamical behavior such as the existence of
fixed point, the local stability, and the occurrence of saddle-
node and period-doubling bifurcation of the discrete-time
model (9), the following definition and theorems are needed.

Definition 1 [46] Consider the following map

x(n+1) = fx(n)). (10)
A point x* is said a fixed point of the map (10) if f(x*) = x*.
If | f/(x*)| # 1, then x* is called a hyperbolic fixed point,
and if | f ’(x*)| = 1, then x* is called a nonhyperbolic fixed
point.

Theorem 1 [46] Let x* be a hyperbolic fixed point of the
map (10) where f is continuously differentiable at x*. The
following statements then hold true:

(i) If|f/(x*)| < 1, then x* is locally asymptotically stable.
(ii) If|f/(x*)| > 1, then x* is unstable.

Theorem 2 [46] Let x* is a nonhyperbolic fixed point of the
map (10) satisfying f'(x*) = 1. If ' (x), f"(x), and f" (x)
are continuous at x*, then the following statements hold:

(i) If f""(x*) # 0, then x* unstable (semistable).
(i) If f"(x*) =0and f" (x*) > 0, then x* unstable.

(iii) If f"(x*) = 0and f" (x*) < 0, then x* locally asymp-

totically stable.

Definition 2 [46] The Schwarzian derivative, Sf, of a func-
tion f is defined by

Sf(x) =

f///(x) B é [f//(x):r
fr 2L @]

Particularly, if f'(x*) = —1 then

3
Sfet) = —f"6") = 3 (£ o]

Theorem 3 [46] Let x* is a hyperbolic fixed point of the map
(10) satisfying f'(x*) = =1L If f'(x), f"(x), and f"'(x) are

continuous at x*, then the following statements hold:

(i) If Sf (x*) < O, then x* is locally asymptotically stable.
(it) If Sf (x*™) > 0, then x* is unstable.

Theorem 4 (The existence of Saddle-Node Bifurcation [46])
Suppose that x,+1 = f (i, x,) is a C* one-parameter fam-
ily of one-dimensional maps, and x* is a fixed point with
f'(i, x) = 1. Assume further that

— (", x¥) #0and —5 (u*, x™) # 0.
o dx2

Then there exists an interval I around x* and a C* map

uw = p(x), where p : I — R such that p(x*) = u*, and
3 f 9

f(p(x), x) = x. Moreover, lf%#“m,x*) < 0, the fixed

points exist for i > u*, and if%%km’x*) > 0, the fixed

points exist for u < w*.

Theorem 5 (The existence of period-doubling bifurcation
[46]) Suppose that x,+1 = f (L, X,) isa Cc? one-parameter
family of one-dimensional maps, and x* is a fixed point.
Assume that

(i) Fr(u* x%) = —1.
(ii) g (", x%) # 0.

Then there is an interval I about x* and afunctionp : I — R
such that fp(x)(x) # x but f;%(x) = x.

@ Springer
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4 Analytical results

We explore some analytical results here such as the existence
of fixed points, their local stability, and the existence of some
bifurcations, namely saddle-node and period-doubling bifur-
cations. Since the map (9) is constructed by PWCA with step
size (h), the analytical process is then investigated by consid-
ering the impact of 4. Some analytical results also examine
the influence of the harvesting (¢) on the dynamics of the
given map.

4.1 The existence of fixed point

Based on Definition (1), the fixed point of the map (9) is
obtained by solving the following equation

N =N s N 1 N N 11
=Vt | (1-F) w-m-d] v

The solutions of Eq. 11 are described as follows:

(i) The extinction of population fixed point Nj = 0 which
always exists.

(ii) The nonzero fixed points N, which are the positive solu-
tions of the following quadfatic polynomial

2 gk
N°—(m+ K)N +mK + — =0. (12)
r
The solutions of Eq. 12 are
K J(@*—q)rkK
Nz +K V@t —ark
Nr ™ +K  J@gr—qrkK
2 ) P ’
* (me)zr .
where ¢* = “——p— > 0. The existence of nonzero

fixed points (13) is shown by Theorem 6.

Theorem 6 (i) Ifq > q*, then the nonzero fixed point of the
map (9) does not exist.
(it) If ¢ = q*, then there exists a unique nonzero fixed point
N* = # of the map (9).
(iii) If g < q%, then there exist two nonzero fixed points,
namely N , of the map (9).

Proof (i) It is easy to confirm that if ¢ > g* then the solu-
tions of Eq. 12 are a pair of complex conjugate numbers.

(ii) For g = ¢*, we have N* = N = N = # Hence,
N* is the only positive fixed point of the map (9).

(iii) Ifg < g*,then Ny, € R.Because NfNj = mK—i—g >
0 and N{ + NJ —m+K > 0, then N} and Nj are
obviously positive, showing that there are two nonzero
fixed points.
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i
4.2 Local stability

Now, the dynamical behaviors of the map (9) around each
fixed point are investigated. Theorems 7,10 are presenting to
describe the local dynamics of fixed points Nl.*, i=0,1,2,
and N*. The complete dynamics including local stability,
unstable condition, and nonhyperbolic properties for each
fixed point are studied by employing Theorems 1,2,3. In
this respect, all dynamical properties are expressed in step
size (h) and harvesting rate (¢) to simplify the mathematical
terms.

. 2 2
Theorem 7 Let’s denote § = w and hy =

by %ﬁ;). Then the following statements hold:

(i) if0 < h < hg, then N[ is locally asymptotically stable,
(ii) if h > ho, then N§ is unstable, and
(iii) if h = ho, then N§ is nonhyperbolic fixed point. Fur-
thermore, if

(iti.a) q < g, then N is locally asymptotically stable, and
(iii.b) q > q, then N{ is unstable.

Proof By evaluating f'(N) at Njj, we obtain

M_1_2<£)“
rd+a ho)

(1) If0 < h < hg, then 0 < (h/ho)* < 1, which implies
|f’(N6")| < 1. Based on Theorem 1, we have a locally
asymptotically stable N

(ii) If b > ho, then (h/ho)* > 1, so that f'(N§) < —1.
Theorem 1 states that N is an unstable fixed point.

(iii) For i = ho, we have f'(Nj) = —1, i.e., N§ is nonhy-
perbolic fixed point. The Schwarzian derivative of map
f(N) at Ny is

h¢ 6r
I +a) [E}

3 h” 2m + K)r7?
_§|:F(l+a)|: K ﬂ

FN =1~

Sf(Ng) =

__ orh® [1— - (m+K)2r]
KT +a) KT(1+a)

12 2(m + K)?*r
‘(mr+q>1<[ - (mr+q>1<]

If ¢ < g, then Sf(N§) < 0, and thus, Nj is locally
asymptotically stable. On the contrary, if ¢ > ¢ then
Sf(Ng) > 0, showing N[ is unstable. Thus, Theorem 7
is completely proved.
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Theorem 8 The nonzero fixed point N* is semistable.

Proof The derivative of f(N) at N* is

o

+ r'+a)

{ 3r <m+K)2 2r(m + K) <m+K) }
- + —mr —q
K 2 K 2

(N =1

h* (m + K)*r —4mrK
r(+a) 4K
IR
I(l+a) '

N* exists when ¢ = ¢*. Clearly that f'(N*) = 1, and
therefore, N* is a nonhyperbolic fixed point. By direct cal-
culations, we can show that

f(N*) = " _—6rN+2<1+ﬁ)r]

''l+ao)[ K K

ke [ 6rm+K 2m+ K)r

T T+ | K 2 K }
h¢ [ 3m+K)r 2m+K)r

“Ti+o | kK T «x }
(m + K)rh*

CKT(+a)

Since f”(N*) # 0, Theorem 2 says that the fixed point N*
is semistable. O

Theorem 9 Suppose that:

b= / 2KT(1 + )
2(q* — K + (m + K)/(gF—q)rK’
P (m+ K)yr+6(q*—q¢K .
Vag* — @rK +2r(m + K)J(q¢* — 9)rK

The local stability of N is described as follows.

(i) If0 < h < hy, then N7 is locally asymptotically stable.
(ii) If h > hy, then N is unstable.
(iii) If h = hy and

(iii.a) lffl > 1, then N{
and
(iii.b) if h < 1, then Ny is unstable.

is locally asymptotically stable,

Proof Tt is obvious to show that

FOND =1+ g [ (Feon + K02 +36@ - )
+%(m+1<>m)
+11<(m+K)2r+Iz((m—f—K)W—(mr—i-q)]

= 1 — xrirey 2" — 9K + (n + K)V@* = 9)rK]

- _h® 2KT (14a)
= KT (Ifa) he

h o
:1_2(H> .

Hence, we have the following observations:

(i) For 0 < h < hy, we have |f/(Ni“)| < 1. According
to Theorem 1, the nonzero fixed point N is locally
asymptotically stable.

(i) If & > hy, then we get f'(N}) < —1. Thus, N{ is an
unstable fixed point (see to Theorem 1).

(iii) Clearly that f’(N{) = —1 whenever h = hj,
which shows that N} is nonhyperbolic fixed point. The
Schwarzian derivative of f(N) at N{' is given by

SFND) = F(?—jm) [%] -3 I:_F(ilia) [(mJ;(K)r
+£ JW]]Z
= e [6r = s [ty | L0n + KOr
+67/@" — K]’

We can easily check that if h > 1then S f(N}) < land
if h < 1then S f(N{) > 1. Therefore, the stability of
the nonhyperbolic fixed point is explained. Finally, all of
the stability conditions of fixed point N are completely
determined.

[}

Theorem 10 The nonzero fixed point Ny = - @

is always unstable.

m+K
2

Proof To investigate the stability of N3, we evaluate f'(N)
at N3

fI(N3) =1+

(¢* — q)h* [(er K)Jr _2]
Frd+ao LJ@"— 9K '

By simple algebraic manipulations, we can show that

% > 2. Thus, f'(N3) is always a positive constant,

which means Nj is always an unstable fixed point. O
4.3 Bifurcation analysis

From the previous analysis, we have a nonhyperbolic fixed
point N* when ¢ = ¢*, indicating the possibility of the

@ Springer



H.S. Panigoro et al.

occurrence of saddle-node bifurcation. Moreover, the occur-
rence of period-doubling bifurcation is also indicated around
the nonhyperbolic fixed point Nj when & = hy. Thus,
in this section, we study the existence of saddle-node and
period-doubling bifurcations. The saddle-node bifurcation
is a phenomenon that two fixed points with opposite signs
of stability merge into a unique semistable fixed point and
finally disappear when a parameter is varied, while the
period-doubling bifurcation is a phenomenon that a single
fixed point losses its stability accompanied by the emergence
of a period-2 solution when a parameter is varied [46]. As
results, we have Theorems 11, 12.

Theorem 11 The nonzero fixed point N* undergoes a saddle-

node bifurcation when q crosses the critical values q* =
(mfk)zr
4K -

Proof 1t was shown previously that N* does not exist if
q > q*. When ¢ = ¢*, we have a semistable fixed point
N*;if g < g*, then there exists two nonzero fixed points. By

straightforward calculations, we have afa(g*) =1, af gf]\’ D —

_ (m+K)rh®
Y E = — Kty < 0. Thus,

according to Theorem 4, the fixed point N* undergoes a
saddle-node bifurcation when ¢ crosses the critical values

a a2 *
i miK 0 and LLO

2
q* = (’”Z%. Moreover, the fixed points exist wheng < ¢*
f(N*) 8% f(N*)
because 3q sy > 0. O

Theorem 12 The nonzero fixed point N undergoes a period-

doubling bifurcation when h crosses the critical value hy =

C/ 2KT (1+a)
2(q* =) K+(m+K)/(qF—q)rK’

Proof From the proof of Theorem 9, we have that if 7 = h

then afa(ll\\,/r) = —1. By performing some algebraic calcula-

tions, we also have

N ah®!

|:r <m+ K n J(g* —q)rK)
r

AN ~ T'(l+aw) 2
( 2<m—|—K «/(g*—q)rK) m)]
1-= + +—
K 2 r K (14)
rah®! <m+K W)
=— +
I'(l+a) 2 r
(3«/(4* — q)rK)
K r ’

2 *
N existsif g # ¢*, and thus, we have % # 0. Accord-

ing to Theorem 5, there appears a solution of period-2 when £
passes through /1. Hence, the occurrence of period-doubling
bifurcation in the map (9) is completely proved. O

Theorem 12 states that the period-doubling bifurcation
in the map (9) can be achieved by varying the step size h.
However, such bifurcation can also be realized by setting a
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fixed value of & and other parameters while varying a certain
parameter. In the following section, we give an example of
period-doubling bifurcation which is driven by the constant
of harvesting (g).

5 Numerical results

In this section, we present some numerical simulations of
the map (9) not only to support the previous analytical find-
ings but also to show more dynamical behaviors of the map
(9). Numerical simulations are given by considering some
biological and mathematical aspects such as the influence of
the harvesting, the step size (&), the Allee effect (m), and
the order «. To support the numerical simulations, a desktop
PC is used based on AMD Ryzen 5 3400G 3.7GHz, 16 GB
RAM, and AMD Radeon RX580 8 GB DDR5 VGA card.
We also use an open-source software called Python 3.9 to
generate all of the given figures. Due to the field data limita-
tion, we use hypothetical parameter values for the numerical
simulations. General parameter values are given as follows.

r=145 K =10, m =0.1, ¢ =0.32, « =0.8,
and h = 0.4. (15

5.1 The influence of the Harvesting Rate

The numerical simulations in this subsection are using
parameter set (15) and vary the value of the harvesting
rate (g). According to Theorem 6, map (9) with parame-
ter set (15) has critical value ¢* ~ 3.5527 such that map
(9) does not have a nonzero fixed point if ¢ > ¢*. When
g = ¢*, map (9) has a unique nonzero fixed point N* = 5.05
which is a semistable fixed point, see Theorem 8. Further-
more, if ¢ < ¢*, then there are two nonzero fixed points,
namely N{ and Nj. By taking 2 = 0.4 and using The-
orem 9, we can show that N{ is asymptotically stable if
g1 = 3.0191 < g < ¢*. On the other hand, Theorem 10
states that N2* is always unstable. Since we take h = 0.4,
Theorem 12 states that the fixed point N{* undergoes a period-
doubling bifurcation when g crosses ¢g; from the right. To
see these dynamical behaviors, we plot in Fig. 1a the bifur-
cation diagram of the map 9 with parameter set (15) and
h = 0.4 for 2.415 < g < 3.7. Clearly that this bifurca-
tion diagram fits perfectly with the results of our previous
analysis. Indeed, Fig. la shows that N* (labeled as [a]) is
semistable, see also the Cobweb diagram shown in Fig. 2a.
As the value of ¢ decreases from ¢g*, the nonzero fixed point
is split into two nonzero fixed points where one of them is
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Fig.1 Bifurcation diagram and

its corresponding maximum 9
Lyapunov exponents of the map
(9) with parameter set (15) and 8
2415 <q <3.7

=== unstable fixed point

stable fixed point

i ;
2.800  2.900 3.200 3.553

q

(a) Bifurcation diagram

ﬁj—\ﬂ*\-\

Maximum Lyapunov Exponents

o ! IV\‘M

Nﬁ =

2.6

stable in the specified interval of g, while the other fixed point
is unstable. Such stability properties can also be seen in the
Cobweb diagrams in Fig. 2b, ¢, which corresponds to points
[b] and [c] in Fig. 1a, respectively. We also observe numer-
ically the appearance of a period-doubling route to chaos
(flip bifurcation) as g decreases. If we further decrease the
value of ¢, then there appears a stable solution of period-
2 when ¢ passes through ¢g;. The appearance of a stable
period-doubling solution, as well as a solution of period-3,
is shown in Fig. 1a (see, e.g., point [d], [e], and [f], respec-
tively, and their corresponding diagram Cobweb in Fig. 1d,
e, and biflf). The appearance of the period-3 solution indi-
cates that our system exhibits chaotic dynamics [47]. The
existence of chaotic dynamics can also be determined from
the Lyapunov exponent. A system exhibits chaotic dynamics
if it has positive maximum Lyapunov exponents. The max-
imum Lyapunov exponents which correspond to Fig. 1a are
depicted in Fig. 1b. It is clearly seen that our system has pos-
itive maximum Lyapunov exponents, showing the existence

2.8 3.0 3.2 3.4 3.6
q

(b) Maximum Lyapunov exponents

of chaotic dynamics in the map (9) which is controlled by
the constant of harvesting (g).

5.2 The influence of the step size

To describe the existence of period-doubling bifurcation
driven by the step size & numerically, we perform simula-
tions using the parameter set 15 and 0.5 < h < 0.985. Map
(9) with these parameter values has two nonzero fixed points,
namely Ni &~ 6.61 and N5 ~ 3.49. N; is unstable while N}
is stable if 0 < 7 < hy ~ 0.553. Ny losses its stability
via period-doubling bifurcation when 4 crosses /. These
dynamics are seen in the bifurcation diagram, see Fig.3a.
Increasing the value of & may destroy the stability of N7, and
the system is convergent to a stable period-2 solution. Further
increasing the value of & leads to a stable period-4 cycle, and
so on. To give a more detailed view, we plot Cobweb dia-
grams in Fig.4 which correspond to some solutions around
the fixed points labeled as [g - 1] in Fig. 3a. When & = 0.7, we
have a stable period-2 cycle near the nonzero fixed point [g],
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Fig.2 Cobweb diagrams of the

6.0

map (9) with parameter set (15) 6.70
9.9 7 665 i
i D
¥+ 5.0 i
Zﬁ [a} Z‘E 6.60
4.5
6.55
4.0
[ J
: : . i 6.50 . . .
4.0 45 5.0 5.5 6.0 6.50 6.55 6.60 6.65 6.70
NIL NTL
(a) ¢ = 3.553 (b) ¢ =3.2
4.0 8.00
3.8 7.75
3.6 [c] 7.50
—~ 3.4 e [d
+ +
e = 7.00 1
=, 32 Z.
6.75
3.0
6.50
2.8 1
6.25
261 T T T T 6.00 , , ,
3.0 3.2 3.4 3.6 3.8 4.0 6.0 6.5 7.0 7.5 8.0
Nn, N’l’?
(c) g =3.2 (d) g =29
8.5 9
8.0
8-
7.5 [e
J 7
‘E 7.0 ‘E
= 651 Z 6
6.0
5 -
5.0 : : : 4 : : : :
5 6 7 8 4 5 6 7 8 9
N’L NTL
(e) g =12.8 (f) ¢ =2.6

see Fig. 4a. Each of the two solutions splits into two solutions,
respectively, and becomes a stable period-4 solution around
fixed point [h] when & = 0.74 (Fig.4b); consecutively, for
h = 0.765 we have a stable period-8 cycle near fixed point
[i], see Fig.4c. Moreover, at h = 0.838, 0.883, 0.889 we
have, respectively, a stable period-5 cycle around fixed point
[j1, a stable period-3 cycle around fixed point [k], and a sta-
ble period-6 cycle around fixed point [1], see their Cobweb
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diagrams in Fig.4d, e, and f. Hence, the step size & is an
important parameter that significantly affects the dynamics
of the map (9). In this case, the map (9) exhibits a period-
doubling bifurcation route to chaos driven by parameter 4.
Furthermore, the appearance of positive maximum Lyapunov
exponents depicted in Fig. 3b which corresponds to the bifur-
cation diagram in Fig.3a clearly shows the existence of
chaotic behavior in the system.
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Fig.3 Bifurcation diagram and

its corresponding maximum
Lyapunov exponents of the map
(9) with parameter set (15) and
0<h<092
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(b) Maximum Lyapunov exponents

5.3 The influence of the Allee effect

To show the influence of the Allee effect, we use the param-
eter set (15) and vary the values of m in the interval 0 <
m < 2.5. From Eq. 13, we compute numerically that N{" and
N; exist for interval 0 < m é 0.6045. Based on Theorems
8,9,10, the stability of N and N3 has the different sign for
0 < m < 0.6045 and finally merge into a semistable fixed
point N* ~ 5.29671 when m ~ 0.6045. When m crosses
0.6045, N* disappears and N;j becomes the only fixed point
of the map (9). These phenomena indicate the occurrence
of saddle-node bifurcation driven by the Allee effect (m).
According to Theorems 7, we also have that N is locally
asymptotically stable for m < 0.467 and losses its stability
via period-doubling bifurcation when m crosses 0.467. These
complex dynamics are shown in Fig. 5a and its corresponding
maximum Lyapunov exponents are depicted in Fig. 5b which
confirms the existence of chaotic behavior on the map (9).
One interesting condition is also shown for some values of
m. For 0 < m < 0.467, the map (9) passes through a bista-

bility condition. Nj and N are locally asymptotically stable
simultaneously, and hence, the solution of the map is sensi-
tive to the initial value. See the Cobweb diagrams in Fig. 6.
When m = 0.3, two nearby initial values are convergent
to different fixed points. When the Allee effect increases to
m = 1, the solution converges to a period-2 solution around
N

5.4 The influence of the order a

As the impact of the discretization process, we have a param-
eter « on map (9) which is derived from the order of the
derivative of the continuous model as the memory effect.
Again, we use the parameter set (15) and varying «. As
result, we have a bifurcation diagram and maximum Lya-
punov exponents depicted in Fig. 7. The given dynamics are
quite similar to the impact of the step size but in differ-
ent directions. If increasing # may change the dynamics of
N} from locally asymptotically stable to periodic solution
via period-doubling bifurcation, different dynamics direction
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Fig.4 Cobweb diagrams of the

map (9) with parameter set (15) 2 5
7004 —%
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6.75
[g] o5 [h]
7650 1 i
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5.0 1
5.0 1
4.5
4.5 1
4.0 : : . : : .
4 5 6 7 5 6 7
Nn Nn
(e) h =0.883 (f) h =0.889
presented by o where if its value increases, the unstable N 6 Hybrid control strategy
becomes locally asymptotically stable via period-doubling
bifurcation. Some chaotic behavior indicated by positive Lya- In this section, a method, namely the hybrid control strategy,
punov exponents disappears becomes periodic orbits and is  is presented. This method is a combination of state feed-
finally convergent to N* when « crosses 0.5708. back and parameter perturbation which is used for controlling
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bifurcation in a discrete system [48—51]. We first define a map
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Fig.5 Bifurcation diagram and
its corresponding maximum
Lyapunov exponents of the map
(9) with parameter set (15) and
0<m<25

Fig.6 Cobweb diagrams of the
map (9) with parameter set (15)
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Fig.7 Bifurcation diagram and

its corresponding maximum
Lyapunov exponents of the map
(9) with parameter set (15) and
0<a<0.38
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(9) as follows.

Nuy1 = f(Nu. 0), (16)

where N € R is the population density and F(N,, ¢) is the
right-hand side of map (9) with bifurcation parameter ¢ € R.
It can be revisited from analytical and numerical results that
when & and ¢ are varies in some range, the map (9) passes
through a series of period-doubling bifurcations where the
route to chaos. By obeying state feedback and parameter
perturbation to the map (9), we obtain the control map as
follows.

Nuy1 = Bf(Np, &) + (1 = B)N, = F(N, B), 7

where 8 € [0, 1] denotes the external control parameter for
map (17). We can easily show that the map (9) and (17) have
similar fixed points. From Theorem 12, N} is the fixed point
which undergoes a period-doubling bifurcation. Particularly,
from Theorem 1 in [S1], the m-periodic orbit of control map
(17) is also similar to the original map (9). Now, we will show
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(b) Maximum Lyapunov exponents

that by setting 8 and varying h, the occurrence of period-
doubling bifurcation can be delayed or even eliminated. From

the control map (17), we have F'(N}) =1 —28 (%)a and

2 * a2 *
8 3%1;(,') =0 3{1%‘) < 0. According to Theorem 5, the con-

trol map (17) also undergoes period-doubling bifurcation for
the similar fixed point with map (9). The difference lies in
the bifurcation point where the map (9) is h = h; while
the control map (17)is h = %h/—IB This means if B decreases

then the bifurcation point increase which means the series of
periodic solutions are delayed. For example, by setting the
parameter values asin Eq. 15and 8 = 0.64, 0.76, 0.88, 1, the
occurrence of bifurcation is delayed and period-3 solutions
disappear. See Fig.8a. We also check the chaotic solution
near the period-3 solution. For 2 = 0.887, three quite close
initial conditions N (0) = 6, 6.001, 6.002 is given and por-
tray the solutions in Fig. 8b. The chaotic interval which occurs
for B = 1 becomes a periodic solution for 8 = 0.76, 0.88,
and finally, converges to N when 8 = 0.64.
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Fig.8 Bifurcation diagrams of controlled map (17)

7 Conclusion

A discrete-time fractional-order logistic model with the Allee
effect and proportional harvesting has been constructed and
investigated dynamically. The discrete-time model is derived
by applying the PWCA method to the Caputo fractional-order
modified logistic model. The local stability for each fixed
point is successfully investigated completely for hyperbolic
and nonhyperbolic fixed points by obeying the stability the-
orem along with the Schwarzian derivative. Furthermore, it
was shown analytically that the obtained discrete-time model
exhibits a saddle-node bifurcation as well as period-doubling
bifurcation. The key parameter in such bifurcations is the
constant of harvesting (g) or the step size (k). Numerical
simulations with varying parameters g and 4 confirm our

analytical results. The dynamics of the map are also stud-
ied numerically by varying the Allee threshold (/) and the
order o which also give the saddle-node and period-doubling
bifurcations. Furthermore, the presented numerical results
also showed the existence of period-doubling route chaos
which is indicated by the positive Lyapunov exponents and
the appearance of period-3 window. We then construct the
control based on the hybrid control strategy method. It is
shown that the occurrence of period-doubling can be delayed.
The occurrence of the chaotic solution is also successfully
eliminated when the control parameter is decreased.
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