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Abstract. In this paper, the dynamics of a fractional-order Leslie-Gower model with Allee
effect in predator is investigated. Firstly, we determine the existing condition and local stability
of all possible equilibrium points. The model has four equilibrium points, namely both prey
and predator extinction point, the prey extinction point, the predator extinction point, and
the interior point. Furthermore, we also show the dynamic changing around the interior point
due to the changing of the order of the fractional derivative, namely the Hopf bifurcation. In
the end, some numerical simulations are demonstrated to illustrate the dynamics of the model.
Here we show numerically the local stability, the oceurrence of Hopf bifurcation, and the impact
of the Allee effect to the prey and predator densities.

1. Introduction

In 1931, an American ecologist, W. C. Allee [1] introduced a biological gfenomenon, namely
the Allee effect. It is referred to a condition at lower population density, the per capita growth
rate and population density correlate positively. Allee effect occurs when species depends on
cooperative behaviour among conspecifics during foraging, environmental conditioning, anti-
predator tactics, bree@§g, or locating and mate finding problem at low-density [2]. In the
predator-prey model, the Allee effect may occur in prey population [3, 4, 5, 6, 7], predator
population [8, 9], and both population [10]. Because the predator population is more prone than
their prey [8], we are interested to observe the influence of Allee effect in predator population.
For example, the spotted owls (Striz occidentalis) with mating limitation behavior due to its
habitat loss [11] and the African wild dogs (Lycaon pictus) with cooperative hunting behavior
during their foraging activities [12]. We adopt the modified Leslie-Gower model proposed by
Feng and Kang [10] and assume that the Allee effect exists only in predator with the predation
behavior following Beddington-DeAngelis functional response [13]. The model is given as follows:
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where N (?and P(t) are the density of prey and predator, 1'a€pectivemat time ¢. All parameters
in the model (1) are real positive constants. In particular, parameter r is the intrinsic growth rate
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@J!ey, K is the carrving capacity of prey, ¢ is the magnitude of interference@mng predators, s
is the intrinsic growth rate of the predator, n is the Allee effe nstant, e is the maximum value
which per capita reduction rate of the predator can attain, & 1s the environment protection to
the predator, and b and ¢ measures the effect of capture rate and handling time by the predator
to the predation rate, respectively. The term % denotes thgghllee effect function. This term is
also known as the weak Allee effect [9], since at low density, the per capita growth rate is lower
than at higher density but remains positive. ! represents the Beddington-DeAngelis
furFiona.l response [3].

n this paper, the dynamics of model (1) at fractional-order is investigated. The 1'easor%0
use the fractional-order instead of the integer order derivative is because in many situation the
growth rates of prey and predator depend not only on the current state but also on the history
of variable or its memory effect [4, 14, 15, 16]. There are several definitions for fractional-
order derivative, but we are interesting in applying the Caputo fractional derivative since its
convenient in application. By replacing the left hand sides of the model (1) with the Caputo
fractional-order derivative, we obtain

1+cN+gP
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where D represents the Caputo fractional-ordggderivative of a real valued function f which is

defined by .
o 1 f'(r)
Dac f(r) = r(l - Ct') /{; (t . T)ﬂ: dT'

with I'(+) is Gamma function and e € (0,1] [17].
In order to simplify model (2), we introduce the following nondimensional model:

(a3 :r;y
Dix=x(1-2)- ———F
vz =z( z) w + GBx + dy
y y (3)
Dly =oy - ;
(y+9 n+m)
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is paper is organized as follo In Section 2, the existence of equilibrium points and

their local stability are investigated. The occurrence of Hopf biggrcation driven by the order of
the fractional derivative is studied in Section 3. In Section 4, some numerical simulations are
presented to validate analytical results such as the local stability, the Hopf bifurcation, and the
influence of Allee effect. The paper ends with several conclusions.

2. Equilibrium Point and Local Stability
To explore the dynamical behavior, we need the following theorem.

Theorem 1. (Matignon condition [18]) Consider a Caputo fractional-order system with initial
value

DeE= ft. %), (0) =, (&
where © € R™ and 0 < a < 1. If ¥* satisfies f(t,f*) = 0, then T is an equilibrium point
all eigenvalues Ai, i = 1,...,n of the Jacobian matrix J(Z*) satisfy |arg(Xi)| > % then the

equilibrivm points T* is locally asymptotically stable.
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Based on Theorem 1, the equilibrinm point of the model (3) is obtained by solving Dz =
D2y = 0. Thus we have
(1) Both prey and predator extinction point Ey = (0,0) which is always exists,
(2) The prey extinction point £y = (0,7 — #) which is exists if n > 9
(3) The predator extinction point £y = (1,0) which is always exists, and
(

4) The interior point E* = (a*,y") where y* = 2" +n— 60, 2* > 0 — n, and =" are all positive
roots of the quadratic equation

”‘1)=0‘ L (wH b -0) - (B+5-1)

.2 . 1 6 -
+ar—|la+1+ 513

8+4
13
The existence of interior point £° for model (3) is established by the following theorem.

Theorem 2. Let x* = — 5, then the following statements hold.
(1) If (a+2)? <4 (%E—o), then there is no positive interior point.
2 a+2)2 =4 2LEL) 4pn

(2) If (a+2)* =4 (52 and

(i) If @ < M, then there is no positive inlerior point.

(i) If 6 > M, then there exists a positive interior point.
h a+2)? > Y an.
3) 1 2)? >4 (B2 and

(i) If 6 > M, then there exists a positive interior point.

(i) If 6 < min {(1 +n)—(1+a)8 - 5}‘%—(53@}! then there exist two positive
interior point.

Proof. Since x* > # — n, y" is always positive. Furthermore, from eq. (5) we have

3 14n—0
@ 4( G+d )

. a

Tlp= gt (6)

(1) Let (a +2)% < 4 (%) Thus eq. (6) are a pair of complex conjugate numbers, which
means F* is not exist@g

(2) When (a + 2)? = 4(1—35—9), we have z} = o = —&. If § < 20 C8) then ¢ > 0.

Hence, x] , are not biologically feasible. Otherwise, if # > M we have z7, € R™.

aherefore, BE* = (-4, =% 4+ n— #) is unique equilibrinm point in interior.

2
(3) If (a + 2)% > 4(1_,—.43'1_5—0), then x7, € R. Furthermore, if & > M, then
rizi < 0 which means z] and zj have different sign. Therefore, z] = -5 +
e-1(550)
~————— > 0 and E* is the only interioraoint. On the other hand, if ¢ <

min {{1 +n)—(1+a)(3—8), M} then xf + 3 > 0 and zjz5 > 0, and hence

x1, € RT. Thus, £} and Ej are biologically equilibrium points.
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The local stability analysis can be done by using ﬁ linearization technique around each
equilibrium point. The Jacobian matrix J of the model (3) at any point (x,y) is followed by:

. (w 4+ dy)y x(w + fx)
-2 ————————— e
J(x,y) = (w+ fz + dy) (w+ fx + dy) -
o oy’ oly+20)y  20(n+2)y
(n+2) WtoR  (n+ao)p

Theorem 3. Ey = (0,0) is always unstable.

Proof. By substituting Ep to eq. (7), we obtain the Jacobian matrix,
10
J(Ey) = [ 00 ] (8)

ﬁnerefare, the eigenvalues of (8) are A1 = 1 and A2 = 0. Because |arg(\)] =0 < 5. then Ej
is always unstable.
Theorem 4. The prey extinction point Ey = (0,n — 8) is locally asymptotically stable if
w< (1=48)(n—0).

Proof. If E is subtituted to eq. (7), we have

(=9
wen d(n — 1
J(Ey) = 7] s ) ) (9)
an—19) AUE))
n? n?
_ , , B (n—18) _ on-0?
From eq. (9) we obtain the eigenvalues A\; = 1 — ot 3 —0) and Ay = — FrR Because

|arg(Ap)] = m > SF, the stability of E; depends on A;. If w < (1 = §)( — 6) then
|arg(A1)| =7 > 5F, and hence E is locally asymptotically stable.

Theorem 5. Ey = (1,0) is a non-hyperbolic point.

Proof. By evaluating E2 at eq. (7), we acquire

1
J(E)=|  w+B8 |. (10)
0 0
Thus, the eigenvalues of eq. (10) are Ay = —1 and Ay = 0. Since |arg(A)| = 5, Ep is a
non-hyperbolic point.
Theorem 6. Suppose that
. P ¥ 2 e 2
x1=1— |i2:;_‘.*+[w+6y )a —27) +o Ll ) j|
y* + T*
a * %2 % ! 4 2 £y #2
2 =——7 (W 5 wx Jx 1—x%)" —(1-2z")
X2 =gz [y +0y™ +wa” + 52" (1 =2 = )™
2 Ayeo — (v1)2
ot =2 a1 Y92 — ()
m X1

E* = (x*,y*) is locally asymptotically stable if
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Figure 1. Phase portrait of model (3) with parameter values: w =0.1, 3 =08, § =0.3, ¢ =
0.6, #=03,7=10.5, and « = 0.9

(i) X% >4x2, x1 <0, and x2 > 0.

(ii) x? <4x2, and if y1 <0, or xy1 >0 and a < a”.

Proof. By using eq. (7) at interior equilibrium point £* = (a*,y") we obtain

(w + oy )(1 — a*)? a*(w + Bx*)(1 —a*)?
y y*Z

3 2 y* B
(75%) - (77)
n+a* n+x*

The Jacobian matrix (11) has polynomial characteristic A — x1A 4 x2 = 0. By using the
Routh-Hurwitz eriterion for Caputo fractional-order [19], the stability condition is completely
proven.

1—2x* —

*

J(E*) = (11)

g Hopf Bifurcation

Hopf bifurcation on a fractional-order system acm's when a pair of complex eigenvalues belong
to that syste d there is a limit cycle when the stability of that system changes. According to
Theorem (6), the stability of the interior equilibrium point is influence by the order of derivative
when x? < 4y2 and y; > 0. Thus, we can take the order of the derivative of a model (3) as the
bifurcation parameter. Therefore, the following theorem is achieved.

Theorem 7. (Erxistence of Hopf bifurcation) Let x% < dyo and x1 = 0. E* undergoes o Hopf
bifurcation when « crosses o,

Proof. Based on Theorem 6, when x% < 4yo and y; > 0, the eigenvalues of model (3) at £*
are a pair of complex conjugate numbers with the real parts are positive. We also confirm that
m(af)= 0 and “’ZL“}IH» # 0 where m(a) = af — minj<;<y |arg(A;)|. Based on Theorem 3 in
[20], the equilibrium point E* undergoes a Hopf bifurcation when a passes through a~.
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gigure 2. Phase portrait of model (3) with parameter values: w = 0.1, 3 =08, § =0.3, ¢ =
0.6, # =04, and np =05
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Figure 3. Time series of model (3) with parameter values: w = 0.1, 3 = 0.8, § = 0.3, 0 =
0.6, 4 = 0.6, and n = 0.5

4. Numerical Simulations
Numerical simulation is given to illustrate the dynamics of model (3) which corresponds to
several results in Section 2 and 3. We apply the predictor-corrector scheme for fractional-order
system developed by Diethelm et al. [21]. In our work, we choose the parameter values by
considering the previous stability condition. We set w = 0.1, 3 = 0.8, § = 0.3, ¢ = 0.6, 8 =
0.3,n = 0.5, and & = 0.9. Therefore, we have two unstable equilibrium points £y = (0,0) and
Ea = (1,0), and a locally asymptotically stable £y = (0,0.2). According to Theorem 2, there is
no equilibrium point in the interior of the model (3). Hence, £ is a unique stable equilibrium
point. We give its phase portrait in Figure 1.

Next, we increases the parameter ## to (0.4. Based on Theorem 2, an equilibrium point £*
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Figure 4. Time series of model (3) with parameter values: w = 0.1, 4 =08, § = 0.3, ¢ =
0.6, =105, and o = 0.6

occurs in interior. If we set o = 0.7, E* becomes locally asymptotically stable as in Figure 2(a)
and when o = 0.74, E* loses its stability as in Figure 2(b). Notice that, when o = 0.74 the
equilibrium point and nearby solutions are isolated by limit cycles and all solutions convergent
to the periodic signal, see Figure 2(b). This phenomenon is called a Hopf bifurcation which
corresponds to Theorem 7.

To show the influence of the order of derivative, we plot the time series of the solution by
varving «. We set the parameters as follows: w = 0.1, 3 = 0.8, § =03, ¢ = 0.6, § = 0.6,
n = 0.5, and gives the simulation in re 3. The time series shows that for o« = 0.7,0.8,0.9,
all solutions oscillates and convergent to the interior equilibrium point. It is observed that the
greater the order of derivative, the faster the solution convergent towards the equilibrium point.
This means the order of the derivative is directly proportional to the convergence rate.

Next, we show the impact of the Allee effect on populations density both predator and prey.
We use previous parameter values, a = 0.6 and varying the Allee effect constant #. In Figure 4,
it is shown that when # increases, the rlensityaf predator decreases, and the density of prey
increases. This means the Allee effect constant inversely proportional to the density of predator
and direetly proportional to the density of prey.

Conclusions

e dynamics of the fractio der Leslie-Gower model with Allee effect in predator have
been studied. We present the existence of equilibrium points and their local stability. We also
show the existence of a Hopf bifurcation driven by the order of the derivative both analytically
and numerically. By using numerical simulation, we show that by decreasing the order of the
derivative, the slower the convergence of the solution to the equilibrium point will be. Finally, we
conclude that numerically the Allee effect constant has a positive relationship with the density
of prey and a negative relationship with the density of predators.
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