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Abstract. Harvesting policy is an important issue in mainlainirme existence of a population. This paper is focused on studying
the effects of continuous predator threshold harvesting policy on the dynamical behavior of a fractional-order Gause-type predator-

system. This policy is applied to ensm.hal harvesting does not occur when the population density is less than a specified
3}&0[{1_ The dynamical analysis is done to study the local stability of equilibrium points and the existence of Hopf bifurcation.
By using a fractional-order predictor-corrector method, the numerical results are shown to illustrate the analytical result.
Keywords: Fractional-Owder, Predator-Prey, Threshold Harvesting

INTRODUCTION

The predator-prey relationship is a dominant topic in ecology and applied mathematics, especially in studying the
existence of both populations due to their interaction [1, 2]. The interaction between predator and prey is modeled by
assuming that the population density are time-dependent as the result of growth rate, death rate, and predation rate.
Suppose that the interaction between predator and prey follows the Gause-type predator-prey model [1, 3], where the
prey grows logistically and the predation rate i;&neeu: This model is given by

j_::rx(l—i) -, (1)

d
?J: =nxy—dy

where x(f) and y(r) represent the density of prey and predator, respectively, r is the intrinsic growth rate of prey, K is
the environmental carrying capacity of prey, m is the attack rate of predator on prey, n is the conversion efficiency of
predation, and d is the natural death rate of predator. On some ecological systems, the population density is threatened
due to harvesting, see [4, 5, 6]. This harvesting must be managed to maintain the existence of population. One of the
most popular harvesting management is continuous lhrmjld harvesting policy [4, 7] defined by:

0 ,ify<T
Hy)=q Ab=1) o o (2)
{‘—(V—T) t g =

where h, T, and ¢ are harvesting rate, harvesting threshold, and half saturation constant, respectively. The continuous
threshold harvesting means that the harvesting occurs only when the population density is greater then the threshold
level T.

Recently, Lv et.al [4] proposed a Gause-type predator-prey model with Holling type-II functional response and
continuous threshold harvesting in predator

dt K

dy  nxy dy—H(y) (3)
sl —dy—HI(y

dt  a+x ’

Note that all the models mentioned above are in the form of a first order differential equation system, which means
that the growth rate of each population depends only on the current state. In fact, the growth 1'emlso depends on all
previous states (known as memory effects). To include such memory effects, researchers apply a system of fractional
differential equations due to the nonlu@lily of the fractional derivative operator. Some examples of the application of
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fractional differential equations for modeling population dynamics can be seen in [8, 9, 10, 11, 12, 13]. In this paper
we revisit system (3). Here we assume that the prey and predator growth rates depend on all previous states and prey
is available in abundance so that the bilinear functional response is applied. Thus, we arrive at the following system
of fractional differential equations

X
D% =r (1——)— Xy
X X K ”IY},
Dy =nxy —dy— H(y)

@)

where DY represents the Caputo fractional derivative of order-¢ [14] with & € (0, 1], and defined by

oy 1 t )
D"'fm_l"(l—a)/ﬂ (x—r)“df'

22

gfar as we know, the dynamical analysis of model (4) has not been studied. Hence, we propose and investigate a
fractional order Gause-type predator-prey model with conlm)us threshold harvesting policy. In the next section, we
discuss the dynamical behavior of the system (4) including the stability of equilibrium point and the existence of Hopt
bifurcation. Some numerical simulations that supports the analytical results are also presented.

EQUILIBRIUM POINT AND LOCAL STABILITY

The locally dynamical behavior that consists of equilibrium point and its stability is defined by
Theorem 1. (See [14]) Consider the ﬁlpnm Jfractional differential equation

D¥%(1) :d'(f(x)), x(0) =xo, a € (0,1], x(t) € R/, (5)

The equilibrium point X* of (5) is local asymptotically stable if all eigenvalues A; of its Jacobian matrix J = %ﬁ

X
evaluated at X* satisfy |arg(4;)| > am /2.

To analyze the dynamical behavior of system (4), we consider two conditions, namely y < T and y = T. Based on
Theorem 1, the dynamics of system (4) is identified as follow.
Equilibrium points wheny < T

In this condition, the equilibrium points are obtained by solving the following equations.
rx
r——— m\-‘) x =0,
( K ’ ) (6)
(nx—d)y=0.

If x = 0, equations (6) only has one solution namely the origin Ey = (0,0). If r — & — my = 0, then the solution of

equations (6) are E; = (K,0) and E» = (:_: "U’;ﬁ;ﬂ}), By observing the biological condition, the solution of equations
(6) is called equilibrium points of system (4) if (x,y) € Ri,
Themg1 2. 1. The origin Ey = (0,0) is a saddle point.

2. The predator-free point E) = (K ,0) is local asymptotically stable if K < %

d rinkK—d)
n' mnk

3. The co-existence point E; = ( ) exists if K > % and it is always local asymptotically stable.

Proof. 1. By evaluating the Jacobian matrix at the point E; we obtain

J(Ep) = [6 _Od}-

where its cigdllues are A; = r and A2 = —d. It is clear that |arg(41)| =0 < L and |arg(A2)| = > 4.
Therefore, Ej; is a saddle-point.
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2. The Jacobian matrix evaluated at E; is

—r —mK
IE) = [ 0 nK—d} -‘
Where its eigenvalues are A = —r and Ay = nK — d. Notice that if K < % then |arg(A,2)| =m > %,
3. It is clear that if 0 < "(",:E;” < T then E> € Ri For E; = (:—‘: "(-’,:::;I,‘F;'), we obtain the Jacobian matrix define
by
dr dm
IE,) = nkK n
r(inK—d) 0
mK
The eigenvalues of J(E,) are solutions of characteristic polynomial A2 + ::—'kl + ‘“'“ﬂ,—‘“ =0, namely
. —dr+ \/dr(dr +4dnK — (2nK)?)
12 = 2nkK '
If d < %ﬂ% then Re(A») < 0. Hence |arg(A,2)| > %, Ifd = %ﬂ% we have A; + 4, = —::—'k <0and L, A, =
‘ﬂ’::\,—_‘u > 0. Hence A1» < 0 and |arg(A)2)| =7 > %, This proves that E5 is always local asymptotically
stable.
O
Equilibrium points wheny > T
The equilibrium points in this condition are identified by solving the following equations.
rx
—— —my| x =0,
[r X m),] x =0, o
h(y—T
nxy —dy — 1y ) =0.

c+(y-T)

If x = 0 then the solution of (7) is not in Ri If r— % — im: 0, then we have the other co-existence equilibrium
point which is defined by E* = (x*,y") with x* = w
equation,

and y* is the real positive solution of the following cubic

dr+cmnK —(mT +r)nK , ., ((nKT +cd+h)—(ecnK+dT))r , T
072+ Y o =0
mnk mnk mnk

0)* +

Theorem 3. Suppose that:

rat ) ch
R L —
& X nx ety -T2
U i ch
=mnxV 4+ — d—-mx* —— |,
& =mnxy K ( nx ({-_}_-*_T)z) ?
L2 \,452—512
o =—tan —
T €1

The co-existence point E* exists if T < y* < -, and it is local asymptotically stable if,

L& =486, & >0and& >0, or
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2 & <4l anda < a.

Proof. T <y* < L thenx* >0 and y* > T, thus E* € [R%. We compute the Jacobian matrix at the point E* and
receive
rxt .
—nx
JEY=| K oh
ny nx' —d+ m

This Jacobian matrix gives quadratic polynomial 2% + & A + & = 0, thus we get the eigenvalues: A2 = ISV T ‘;;‘__4‘;2
Hence, the stability of co-existence point E* is achieved if it satisfies:
1. IfE2 > 4, then 4 5 € R. Further if 1) 5 < 0 then |arg(4,,)| > & This condition holds if 1) 4; = & >0 and
A1+ =—& < 0. Thus if & > 0and & > 0 then the local asymptotically stability of E* is achieved.
2. If €7 < 4&; then E* is local asymptotically stable if

an
|arg(A12)] >—

Y% 48— 512 o

tan” " | ———— >
= 2
Y 48— 512 an
tan

1] 2

2 [ He-E

tan — | U
€1}

o <o’

EXISTENCE OF HOPF BIFURCATION

An equilibrium point undergoes a Hﬂfbifurcalion if its stability changes and limit cycle occurs simultaneously when
a parameter value is variated. On the integer-order system, an equilibrium point undergoes a Hopf bifurcation if
its Jacobian matrix gives a pair of complex conjugate eigenvalues and the sign of its real part changes when such
a parameter is variated [ Several references stated that this bifurcation also occurs if the order of derivatives is
variated [16, 17, 18, 19], as shown in the following theorem.

11

Theorem 4. (See [17, 19]; Existence of Hopf Bifurcation) Consider the following Caputo fractional differential
equation

DIX(t) = f(¥(1)), x(1) e R*, a€(0,1]. (8
If an equilibrium point ¥* satisfies the following conditions:

(i) Its Jacobian matrix gives a couple of complex conjugate eigenvalues Ay » = a £ib, with {a,b} € R and a > 0,

(iig"here exists o such thatm(a™) = % —|arg(A12)| = 0 and ml #0,
o=t

deot

then the system (8) undergoes a Hopf bifurcation at the equilibrium point X* when a crosses the critical value a”.
Particularly, o and a* are called bifurcation parameter and bifurcation point, respectively.
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Notice that when 512 < 4&, and @ passes through a critical value @*, the stable co-existence point E* changes
to unstable where indicated the occurance of Hopf bifurcation. Therefore, we represent the Hopf bifurcation at the
co-existence point E* of system (4) by the following theorem.

g N . . .
Theorem 5. Suppose that a = —%. b= ﬁ '3 12 < 4& and & < 0. A Hopf bifurcation occurs at co-existence

: T S . ¥ _ 241 (b
point E* = (x*,y*) when @ crosses o* = 4 tan (“).

Proof. Since 512 < 4§g and §J < (), then we achieve a couple of complex eigenvalues A1 > = a +ib where a > 0, so that

the condition of Theorem 4(i) is satisfied. Now, we determine m(a* ) and ‘%(aﬂ: to ensure the second condition
a=ot*

in Theorem 4.

oot Y
m(a’) ===~ Jlgflggldlg(h)l
=tan"! ((0) tan ! ((0)
a Z] Z]
:0,
dm(a): :E#O,
do |, . 2
thus Theorem 4(ii) holds. According to Theorem 4, a Hopf bifurcation occurs on E* = (x*,y") when ¢ is variated
around ¢¢*. Thus, this theorem is clearly proven. A
NUMERICAL SIMULATIONS

To confirm our previous theoretical results, we perform some numerical simulations using the predictor-corrector
method for fractional-order differential equations [20]. We first set parameter values r =6, K =45, m = 1.5, n =0.02,
d=1and o =0.9. Based on Theorem 2.{ii), we have a saddle point Ej; and the local asymptotically stable equilibrium
point E} in system (8). This numerical simulation shows that all solutions are going to E| which implies the predator
will become extinct when r — oo, see Figure 1.

3.0 4
£ 154
>
31
0.0 4
T T T
10.0 7.5 45.0

x(t)

Figure 1. The phaseportrait when predator is not harvested by using parameter values r = 6,
K=45m=15n=002,d=1and o =0.9

Next, we increase the conversion efficiency of predation to the birth rate to n = 1.2. Here, the equilibrium point E;
become unstable while the stability of E2 is achieved, see Figure 2a. Furthermore, if the predator is harvested with
parameter i =7, T = 2, and ¢ = 0.5 then the stability of the co-existence equilibrium point is still maintained. It is
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8 8
E*
5 5
= =
E;
2 T 2 T
] 2 4 ] 2 4
x(t) x(t)
(a) Predator is not harvested with parameter (b) Predator is harvested with parameter @ = 0.9,
a=109 h=7,T=2andc=05

Figure 2. The phaseportrait by using parameter values r =6, K =45, m=1.5, andd = 1.

8 8
E; *
E
s s
= =
2 T 2 T
0 2 4 0 2 4
x(t) x(t)
(a) Predator is not harvested with parameter (b) Predator is harvested with parameter a = (.96,
o =10.96 h=7T=2andc=035

Figure 3. The phaseportraits by using parameter values r =6, K =45, m= 1.5, and d = 1.

shown that the harvesting doesn’t significantly influence the density of predators, but only increases the density of
prey. see Figure 2b.

To see the impact of the order of the derivative, we increase the derivative order to @ = 0.96. Based on Theorem
2.(iii), the co-existence point of the model without harvesting on the predator is still stable (Figure 3a). However, ac-
cording to Theorem 3, E* becomes unstable focus. This condition also shows the Hopf bifurcation occurs. According
to Theorem 5, the local asymptotically stable co-existence point E* (Figure 2b) changes to unstable equilibrium point
(Figure 3b) when o passes through o == 0.95566, and continue oscillating as ¢ — oo. It is also shown that the stable
limit-cycle appears and isolates the co-existence point E*.

Finally, if we increase the attack rate to m = 3.5, based on Theorem 3, there exists an asymptotically stable co-
existence point when the predator is not harvested (Figure 4a). Furthermore, when the predator is harvested, the
co-existence point exists only below the threshold level. For t — oo, If the predator density above the threshold level,
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2.6 26

E; Ep
, /
10 10
= =
12 T 12 T
0.0 0.7 14 0.0 0.7 14
x(t) x(t)
(a) Predator is not harvested with parameter (b) Predator is harvested with parameter @ = 0.9,
a=109 h=7,T=2andc=05

Figure 4. The phaseportraits by using parameter values r =6, K =45, m=3.5,and d = 1.

its density decreases and when crosses the threshold level, it is oscillating and then goes to the co-existence point E3.
It is showed that although the population density of predator is decreasing causes by harvesting, the predator density
is maintained due to the threshold predator harvesting, see Figure 4b.

CONCLUSIONS

The impact of continuous predator threshold harvesting in a Caputo fractional predator-prey model has been studied.
It is analyzed that this model has two possible conditions of the equilibrium points, which are three equilibrium points
when the predator density is beloe threshold harvesting and a co-existence point when predator density is above
the threshold harvesting. When the carrying capacity of prey is larger than the ratio of death rate and predation
conversion rate of predator (K > %) both species able to maintain the existence of their population. We also show
numerically that the solution around the co-existence point in the harvested system (4) is oscillating through the time,
thus the existence of population is still maintained. In the end, we have shown that the population density of predator
is still maintained due to the threshold harvesting policy.
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