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pact of Fear and Strong Allee Effects )
on the Dynamics of a Fractional-Order
Rosenzweig-MacArthur Model

Hasan S. Panigoro and Emli Rahmi

Abstract This paper discusses @impact of fear and st Allee on the dynamical
behaviors of the prey and predator relationship following the Rosenzweig-MacArthur
model using fractional-order derivative as the operator. As results, four equilibrium
points are identified namely the origin point, a pair of axial points, and the interior
point. The origin is always locally asymptotically stable while others are condition-
ally asymptotically stable. The occurrence of transcritical bifurcation around the axial
and Hopf bifurcation in the interior are also successfully investigated. The numerical
simulations are conducted to support analytical findings. Some interesting dynamics
such as forward bifurcation and bistability condition are also provided numerically.

Keywords Fractional-order + Rosenzweig-MacArthur - Allee effect - Fear effect

1 Introduction

Food chain schemes are always found in nature. Every organism may become a
predator to others due toits need for food. Asaresult, each organismhas achance togo
extinct as an impact of this ecological mechanism. Therefore, studying the existence
of organisms that have prey and predator relationship always be a crucial issue for
researchers. One of the much-publicized ways is using mathematical modeling.

In 1963, a mathematical model 1s developed by Rosenzweilg and MacArthur based
on the Lotka-Volterra predator-prey model which assumes that the population of prey
grows logistically and its hunting by the predator for foods following Holling type-
IT as the predator functional response [1]. Nowadays, the Rosenzweig-MacArthur
model becomes an attractive reference to establish a novel predator-prey model by
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Table 1 ﬂe biological interpretation of variables and parameters

Variables and parameters | Biolgmmal interpretation

x The density of prey

¥ Density of predator

r Intrinsic growth rate of prey
m Level of fear

K Environmental carrying capacity of prey
b Allee threshold

m Predation rate

a Half saturation constant of predation

] Predator growth rate which converted from the predation process
d Predator death rate

involving some ecological components associated with real phenomena in nature.
For example, see [2, 3] and rences therein.

In this paper, we assume that the growth rate of prey is influenced by the indirect
impact of the predator through the fear effect [4]. We also assume that this intrinsic
growth rate could also decrease by the mtraspecific competition and difficulty in
finding mates 1s known as the Allee effect [5]. Thus, we have the following model.

dx rx X mxy

— = (1-2)a—hn-—=.

dt 1 +ky K a+x (1)
dy Xy

—_ - _d}r‘

dt a—+x

See Table 1 ibrgbio]ﬂgica] interpretation of variables an ameters. The term
(x — b) represents the Allee effect where for b < 0 called w llee effect and
b = 0 called strong Allee effect. In our work, we assume that the intrinsic growth
rate of prey affected by strong Allee effect. Due to biological pu1e, other param-
eters also positive constant and both x(z) and v(r) satisfy (x,y) € Ri where
Ri:={{x,y) lx =0, y=0, xeR, veR}L

Since the current state of both prey and predator depends on all of their previ-
ous conditions, using fractional-order derivative 1s considered more appropriate in
expressing the model better than classical integer-order derivative [3, 6, 7]. Follow-
ing a similar way with [3, 7] such as replacing the first-order with fractional-order
derivative and scaling the time dimension, we obtain the new model as follows.

c rx X mxy
Dix = Il ——)(x—bh) — .
1 ¥ ]+k}-‘( K){r ) a—+x 2)
Dy = b dy,

i«
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where © D is Caputo fractional-order derivative defined by

AL

Caytr _
DI =ra—n ), t=o "

23
o € (0, 1]1s the order of the derivative and I'(-) is Euler Gamma function [8].

In Sasmal [9], the predator-prey model involving fear and Allee effects has been
studied. Sasmal’s model is quite similar to ours both in assumptions and the deter-
ministic model. The big difference which becomes the novelty of our works lies in
the predator functional response and the operator of the model. In our works, the
Michaelis-Menten type 1s used as the predator functional response which 1s consid-
ered more realistic than bilinear ones. The fractional-order derivative 1s also used to
rc;ﬁ.‘e the first-order derivative as the operator to cover the memory effect.

e rest of the paper is arranged as follows. In Sect. 2, the feasibility and local
stability of equilibrium points are veri Furthermore, the existence of transcritical
and Hopf bifurcations are examined 1n Sect. 3. Several numerical simulations are
explored in Sect. 4 not only to support the analytical findings but also to show other
dynamical behaviors such as the occurrence of forward bifurcation and bistability
conditions. We finally end our work by giving a conclusion in Sect. 5.

27
2 Feasibility gd Stability of Equilibrium Points

The feasible equilibrium points of model (2) are acquired by finding the the positive
solution of the following equations.

rix —b) X my
[ | + ky (1 B E) 4 +_‘£'i|x =0,

nx
{ - d} y =0.
a—+ X

Therefore, four equilibrium points are identified as follows.

(1) The origin E; = (0, 0) which represents the extinction of both populations.
(11) A pair of axial points E; = (b, 0) and £, = (K. 0) which represent the exis-
tence of prey and the extinction of predator.
(i11) The interior point E-_;m[_fﬁ v) which represents the existence of both popula-

PR o r = ad | 2 B s : T . ] ;
tions where X = - and y is the positive solution respect to y of the following
equation.

5 ¥ Ul
Vi+ -+ —— =0, 3
: k  4kim 3)
where 3m = 4“'i_xli'i;j’1";+"lk’. Since E; € B2 Vi =0 , then they always exist.

Furthermore, the existence condition of £ 1s given by the following theorem.
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Theorem 1 Ifn > dand(i)m < m then the interior point does not exist; (ii)m > m
then there exists an interior point.

Proof Since n > d then ¥ is always positive. Thus, the existence of E; depends on
the positive solution of quadratic equation (3). If m < m then the solution of equation
(3) 1s a pair of complex conjugate numbers and hence the interior point does not exist.
When m = m, we have vy = —L = 0, and hence E4 also does not exist. For m > 7,

2k
the only positive solution of equation (3) is given by v = —ﬁ (1 —y 1= %) This
cc}lﬁ)letes the proof. U
ow, we discuss the local stability for each equilibrium point. The following

theorems are presented. .
34
Theorem 2 The origin Ey = (0, 0) is always locally asymptotically stable.

Proof The linearization around E; gives the Jacobian matrix as follows.

—br 0
TGyl = [ 0 _d]

The eigenvalues of 7 (x, y)|g, are 4y = —br and A3 = —d which give |arg | =
m=an/2¥i = 1, 2. According to the Matignon condition [10], Eq 1s always locally
asymptotically stable. O

Theorem 3 The axial point £, = (b, 0) is locally asymptotically stable if b = K

andn < —""J;M“r.

Proof For the axial point E;, we have the Jacobian matrix

_b—=KWr  _ bm
LT{-ra }r]lb] = { {-}K b Eribd} B (4:'
at+b
. . . i} . h—Kbr | bt e b . -
whichgive eigenvalues i, = ——F—and 4, = 75 — d. Based on Matignon condi-

tion [10], the local asymptotic stability condition are satisfied when A; < 0, i = 1,2

which are givenby b = K and n < —(":‘”“‘_ 0

eorem 4 The axial point E; = (K, 0) is locally asymptotically stable if b < K
and n <«
K

Proof The Jacobian matrix evaluated at E5 is given by

bh— K)yr —uk
J{-re- ,}r)lﬁg = { ) n.'{"r-’_x ® (S)
0 = —d
a+ K
where the eigenvalues are 4; = (b — K)r and A, = ;:-Kx —d. Ifb<K and n <

% then |arg (A;)| =7 = ax /2, i = 1,2 that obeys the Matignon condition

[10]. L
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Theorem 5 The interiorpoint E5 = (X, ¥) is locally asvmptotically stable if (i) & <

e 2 - ey B -2b+K)E+BK ) ami
0, or (ii) & = 0, & < 4&,, and « < @, where & = EvEITS i
{14+ 2k ad” mi - 31 [ A
£y = ————— anda = =tan — |
= (1+k Ve b £
Proof At E;, we have
E _.ITc?g.iLE
Jx, g = oo i) (6)
. 3 ad” i
nx? 0

Therefore, the polynomial characteristic 1s obtained as follows.
M —Eh+E=0. (7)

Since & = 0, by obeying Proposition 1 in [11], the stability conditions given in
Theorem 5 are proven. U

3 Bifurcation Analysis

In this section, we give two types of bifurcations phenomena namely transcritical
and Hopf bifurcations by following theorems.

(a+b)d  (a+K)d
[ K
exchange their stability via transcritical bifurcation when b crosses K.

Theorem 6 Suppose that n < min l I Two axial points E| and E-

latbld g+ K)d
b7 K
Jacobian matrix (4) and (5). Therefore, the stability of £, and E, depend on
the sign of A;. When b < K, |arg (A1) = m = eax /2 for Jacobian matrix (5) and
larg (A;)| = 0 < am/2 for Jacobian matrix (4). Hence, E; is a saddle point while
E> 1s locally asyoticall}* stable. When b = K, E| = E; and |arg (A)| = aw /2
which represents a non-hyperbolic equilibrium point. For b > K the sign of |arg (A1)|
for Jacobian matrices (4) and (5) are switched which indicates the stability of £, and
E> changes. According to those circumstances, the transcritical bifurcation occurs
driven by the Allee threshold (b). Ll
21
Theorem 7 LetE, = OandE ]1 < 4., Agpszﬁtrmrian occurs around the interior

point E3 = (X, V) when « passes through a.

Proof Since n = min . we have |arg (A:)| = m = amx/2 for each

Proof From (7), the appropriated eigenvalues are given by

1

.JL]‘J=—
-2

S
(El + & — 4«51) - (8)
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Since &; = 0 and E]E < 4&5, the eigenvalues (8) are a pair of complex conjugate num-
bers with positivereal parts. Itis also validthat m (@) = am/2 — ming-;-; |arg (4;)| =

0 and d‘j}:“ _ # 0. According to Theorem 4.6 in [12], Hopf bifurcation occurs
O =L

around E3 driven by & with & is the critical point. U

4 Numerical Simulation

Some numerical simulations are demonstrated using a generalized predictor-corrector
scheme given by Diethelm et al. [13]. This scheme 15 applied to numerical software
ed Python-3 to produce some figures such as bifurcation diagrams and time seri#s.
n this paper, we study numerically the influence of the Allee threshold (/) and the
order of the derivative («) to the dynamical behaviors of model (2). Since the model
does not discuss a specific case, all parameter values are chosen hypothetically by
considering the previous analytical results. We first set the parameter as in Table 2
and varying the Allee threshold (b) in interval [0.4, 2.4], see Fig. 1.

From the bifurcation diagram given by Fig. la, when b 1s varied i the interval
[0.4, 2.4], the dynamical behaviors change two times. For 0.4 < b < 1, we have a
locally asymptotically stable equilibrium point £, and an unstable point E;. The
stability of both £ and E» change sign when b crosses b1 = 1 which confirm the
existence of transcritical bifurcation given by Theorem 6. This dynamical behaviors
are maintained for 13] < b {ﬁfh = 1.8. Denote tﬂhat the interior point E dommt
exist for interval 0.4 < b < b,. When b passes b,, the axial point E; again losses
its stability, and a locally asymptotically stable point E5 emerges which indicates
the existence of forward bifurcation. This conditions are preserved for f}g =h=24
Remember that £y 1s always locally asymptotically stable and hence the bistability
condition always occurs for each case when the dynamical behaviors change. We
perform the phase portraits by picking the values of b = (1.5, 1.5, 2.3, which presents
the dynamical behavior for each interval. See Fig. 1b, ¢, d. The stability shifts from
E>to Ey and finally to £4 while Eq always locally asymptotically stable. This means,
the bistability condition always exists for [0.4, 2.4] except in every bifurcation point.
This means that the existence of populations depends on the initial values. From those
phase portraits, we show that for the given two close initial values, the solutions tend
to distinct equilibrium points. Both populations could be extinct or only the existence
of prey is preserved.

The next simulation aims to show the influence 9 the order of the derivative
(cr) to the dynamical behaviors of model (2). The parameter values are chosen as

Elﬂ 2 Parameter values for numerical simulations given in Fig. 2

Parameters r k K m I i Il o
Values 04 (.8 1 0.3 0.9 0.15 0.1 09
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(a) Bifurcation diagram driven by the Allee threshold b
J# Initial values ® E.={(0,0) B Ei=(0.50) 4 Ex=(110) B E:=(18 0855
] T = T 2 T
=1 =3 (4_.4
b 1 Sar 4 Swnf .
=2 =2 =o
o . | 4 o 4 B 4 o |
2 0.8 16 o 1 3 © 13 76
w(t) ®(t) x(t)
ihyb=0.5 c)b=1.5 (dyb=2.3

Fig.1 Bifurcation diagram and phase portraitsgmodcl (2) with parameter values as in Table 2

T T T T T T
¥ Initial values 4 E;=(1.0) limit-cycle B E;=(0.2.0)
a2 @ Eg=10,0) W E:=(08 022 | =0 & nitial values o Ey=(1,0} 7
B £ =(0.2.0] @ Eq.=i0,0) B Ey=1{0.60.22)
= =
e - i -
= =
.
>
C? .‘ 1 "_ ‘3. 1 1_
= 0.0 0.5 1.0 =00 0.5 1.0
®(t) x(t)
{a) o = 0.8 (b) @ = 0.9

Fig. 2 Phase portraits of model (2) with parameter values as in Table 3
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Table 3 Parameter values for numerical simulations given in Fig. 2

Parameters r k K b m a n d
Values 04 (.8 1 0.2 0.3 0.6 0.2 0.1

in Table 2. Based on Theorem 5, The Jacobian matrix (6) has a pair of complex
conjugate cigcnvalla with positive real parts. Thus, from Theorem 7, the interior
point E3 undergoes a Hopf bifurcation when & passes through the critical point b. By
using these parameter values, we confirm that the critical point is & = (.84304. To
show this condition, we pick @ = 0.8 and @ = (.9 and the numerical results given
by the phase portraits in Fig.2. When o = (0.8, two locally asymptotically stable
equilibrium points occur i.e. Ey = (0, 0) and E5 == (0.6, 0.22). As the impact, the
model (2) leads to bistability condition. For two close initial values, the solutions
convergent to different equilibrium points namely Ey and E5. When o is increased
to 0.9, E; losses its stability and nearby solution convergent to a periodic signal
namely limit-cycle. Although the interior point 1s unstable, both populations are still
preserved periodically around the interior point. This ends our numerical simulations.

5 Conclusion

ﬁc dynamical behaviors of afractional-order Rosen@ggig-MacArthur model involv-
ing fear and strong Allee effects have been studied. The model has four equilibrium
points namely the origin, a pair in axial, and a unique interior point. Those two equi-
librium points in the axial may exchange their stabil? via transcritical bifurcation.
For the interior point, the stability may change via Hopf bifurcation driven by the
order of the derivative. To support the analytical findings, numerical simulations
are provided including a bifurcation diagram and phase portraits. We have found
numerically that the model undergoes transcritical bifurcation, forward bifurcation,
Hopf bifurcation, and bistability conditions. From the biological viewpoint, these
circumstances mean that the existence of both prey and predator are threatened due
to predation mechanism, fear, and allee effects.
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