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Abstract.  Allee effect and harvesting are two imp@l objects in the ecological system since lhe)m directly connected to
the existence of biuluga resources. Here, we study the impact of the strong Allee effect in prey and Michaelis-Menten lyp
harvesting in predators on the dynamics of a Gause-type predala‘ey model. To involve the influence of the memory effect, the
Caputo fractional-order derivative is applied. As a preliminary analysis, we obtain three types of equilibrium points namely the
origin point, a pair of @edak}r extinction points, and the co-existence point. Some interesting dynamics are shown such as
local stability for each equilibrium point, the existence of transcritical bifurcali(a:imund the predator extinction points, and the
occurrence of Hopf bifurcation around the co-existence point. Furthermore, some numerical simulations are performed to reinforce
the theoretical findings.
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INTRODUCTION

Mathematical modeling is consistently considered a powerful scientific tool to explicate complex dynamics of prey
and predator interaction [1, 2]. Various ecological components are heretofore involved in predator-prey modeling
to approach the actual cil‘cumslancﬂn nature. In this respect, we are inquisitive about the influence of two famous
ecological components namely the Allee effect arme harvesting on the dynamics of the predator-prey model. Allee
effect is introduced by W. C. Allee (1931) which proposed that the per capita growth rate declines at low population
densities [3]. This phenomenon occurs as a result of several mechanisms such as social thermoregulation, mating
limitation, cooperative hunting, antipredator vigilance, and so forth:; see [4, 5, 6, 7] and related references therein.
On the other side, harvesting exists as a consequence of human needs for biological resources &h as livestock and
fisheries [8, 9]. In our works, we assume that the prey and predator relationship following the Gause-type predator-
prey model (see [10]), the Allee effect occurs in prey using the multiplicative form as in [7], and the predator is
harvested following Michaelis-Menten type [9]. For example, the prey and the predator relationship between cod
(Gadus Morhua) and shark, where cod is exposed by Allee effect due to its difficulties in finding a mate at low
population dealy, and shark is hunted by humans for its fin [11, 12]. Consequently, we have a two-dimensional
predator-prey model as follows.

W _n(1-Y)w NP,

I_r K (N—m)—aNP, &
dP "EP

N &1 _ap,

dt kE+ kP
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ﬁcﬂc N(t) = 0 and P(t) > 0 are prey and predator densities. !K .da, b, e, E, and d positive constants which

represent the intrinsic growth rate of prey, the clm)nmcntal carrying capacity of prey, the prey capture rate by their

predators, the conion efficiency from prey to predator, the catchability coefficient, the effort applied to harvest the
species, and the death rate of the predator, respectively. k) and k» are suitable constants of the harveslingﬂle

ﬁ:meler m represents the Allee threshold. The term (N —m) known as the multiplicative Allee effect since its*efm

N
1s multiplied with the growth function g(N) =rN (1 — E) (N — m) which satisfies g(0) = 0 and g’(0) = 0 whenever

m < 0 while g(0) =0 and g'(0) < 0 whenever m > 0 [7]. Theref(mwe have two types of the Allee effect i.e weak
Allee effect when m < 0, and strong Allee effect when m > 0. In this paper, we focus to study the impact of strong
Allee effect (m > 0) to the dynamics of model (1), thus the use of the words Allee effect below refers to the strong
one.

To make the model (1) more easier to analyze, we perform some variables scaling i.e. x = N/K, y = aP/rK, and
f = rKt. This process is to simplify model (1) by maintaining its dynamical behaviors qualitatively. Therefore, we
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achieve a nondimensional model as follows.

L (10— B)

ol
dy . hy 5y 2)
&= gy

where B =m/K, ) = b/r, h = acE /*k:K?, © = ak\E [rkoK, and § = d /rK. We note the number of parameters are
reduced from ten to five, which means model (2) is simpler than model (1).

In the current development of biological modeling, the first-order model is considered insufficient in describing
a more realistic circumstance since the next state of the biological condition depends only on the current state [13,
14]. Therefore, we need a better mathematical operator to include all previous biological conditions in expressing
the current condition which is known as the memory effects. The precise operator for this purpose is given by the
fractional-order derivative [6, 13, 15, 16]. The most used operator is Caputo fractional-order derivative C{-E,“ defined

by

o t ()
-gr f(f) - (1 —a) L (r—1)* .

where o € (0, 1] is the order of the derivative and I'(-) is Euler Gamma function [17]. Now, the first-order derivatives
at the left-hand side of model (2) are replaced by the Caputo fractional-order derivative. The following model is
achieved.

7% = x(1—-x)(x— B) —xy,

hy (3

Coty _ o y &
D'y = flxy — ———oy.
+y

Since the derivatives at the left-hand side of model (3) have dimensions time™® while some parameters at the right-
hand side of model (3) have dimensions time ™!, we have inconsistency in using time unit here. Hence, we modify the
parameters in model (3) to rectify this incasislency as follows.

€P% = x(1—x)(x— B)—xy,
ey . “@

s a—fx}__l
w+y

Ce - —
2y =10""xy -

Now, to make more simpler parameters form, we take n =)~ %, h = fr‘“._ and § = 6, Thus, the model becomes

€ =x(1-x)(x— B) —xy = Fi(x,y),
5)

i hy
Cf?ra}’ = nxy— (o——w, —8y=P(x.y).

By considering all of the advges possessed by the fractional-order operator as described above, we prefer to
study the dynamical behaviors of the model (5) including the local asymptotic stability, the occurrence of transcritical
and Hopf bifurcations, and some numerical simulations which support the analytical results such as the bifurcation
diagram driven by the Allee threshold, the related phase portraits, and their time series.

DYNAMICAL ANALYSIS
In this section, we investigate the dynamical behaviors of model (5) involving the existence of equilibrium points,
their loﬂilabilily._ and the occurrence of bifurcations. We first identify the equilibrium point and their existence by
solving Fy(x,y) = F>(x,y) = 0. Thus, we have

x=0, or (6)

(1-x)(x—pB)—y=0, and; (7

v=0, or (8)

n—— _5—0. 9)
w+y
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From eqs. (6) and (8), we obtain the origin point Ey = (0,0) which describes the extinction of both prey and preda-
tor. Moreover, by solving egs. (6) and (9) we achieve y = —(h+ d®),/6 < 0 which contradicts with the biological
condition. This means, there is no equilibrium point here. Now, we find out the existence of equilibrium point given
by egs. (7) and (8). By substituting eq. (8) to eq. (7), we achieve (1 —x)(x — ) = 0 and hence we have x = 1 or
x = . Therefore, we acquire two axial equilibrium points E; = (1,0) and E; = (,0). These equilibrium points
express the pr@ﬂr extinction point. Denotes these three equilibrium points E;, i = 1,2, 3 are always exist. Finally,
we investigate the existence of equilibrium point given by eqs. (7) and (9). From eq. (7), we have

y=(1-x)(x—B). (10)
By substituting eq. (10) to (9), we obtain a cubic equation
F 38 +36x+E=0 (1
where
_ n+pn+é ., (Bn+Bs+é)—no _h+8w—-ps
&= 3 o= I ;and &3 = —a

Thus, we acquire the co-existence point given by Ey = (&, ¥) where = (1 — £)(¥— ) and ¥ is a positive solution
of eq. (11). The interior point represents the existence of both prey and predator. To identify its existence condition,
from eq. (10), the interior point E3 exists if # > 0 and; f < & < 1 or | < ¥ < 3. Now, by the transformation 7 = x—ﬁj._
we have

P 43pr+g=0, (12)

where p = & — E7, and g = & — 3 & + 2&7. Following the Cardano’s method as in [18], we have the following
lemma.

Lemra 1. Equation (12) has n

(i) a positive root if: (a) g < 0 (single), or (b) g =0 and p < 0 (unique), or (¢) g >0, p< 0, and g°+4p* =0
(multiplicity two).

(ii) two posiriﬁom ifg=>0,p<0, and g* +4p* < 0.

Furthermore, the local stability of those equilibrium points are investigated. By applying linearization to model (5),
we have the Jacobian matrix as follows.

3 4+2(1+B)x—y—p —x

J(xy) = nl mo 95| (13)

local stability for each equilibrium point utilizing the Jacobian matrix (13) given by the following theorems.
Theorem 1. The origin point Ey = (0,0) is always locally asymptotically stable.

Proof. By evaluating Jacobian matrix (13) at Ep, we obtain

_,8 0
J(-ny)'f‘] = |i 0 _h—a(ﬂ :| )

[0}
o h+éo . .
which gives eigenvalues A} = —ff and Ao = — . Since all parameter are positive, we have A; < 0, i = 1,2,
which means |arg(A;)| > am/2_4=1,2. Therefore, Ey is always locally asymptotically stable. |

~ h+dw
Theorem 2. Let § =

(i) Ifmax{1,B} <,8mrd

. The local dynamics of the axial equilibrium points are given as follows.
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(i.i) B < 1then E| is locally asymptotically stable and E, is a saddle point.

(i.ii) B =1then E| Eg = (1.0) is non-hyperbolic.

(i.iii) B > 1 then E> is locally asymptotically stable and E) is a saddle point.
(ii) IfB =1 m’B = P then E| or E> is non-hyperbolic respectively.
(iii) Ifmin{1,B} = B then both axial equilibrium points are unstable.

Proof. When E| = (1,0) and E> = (J3,0), the Jacobian matrix (13) becomes

B=1 =1
1€ =| "o (i-p)n |- (14)

and
-1 B
e =| To " (p—f)n | (15)
where each Jacobian matrices give eigenvalues: A, = — 1 and 4, = (1 —B) N: Ay =—(f—1)p and Az, =

(,3 — B) 1. respectively.

(i) When max{1,5} < B._ we confirm that the second eigenvalues of both (14) and (15) are negative and hence
larg(Azaop)| = @ > om/2. When B < 1, we get 4, < 0 and Ay, > 0. Thus, |arg(A,)| =7 > an/2 and
larg(Ajp)| = 0 < am/2. Hence, E; is locally asymptotically stable and E; is a saddle point. Furthermore,
when § = 1, E| and E» merge to a single predator extinction point Ey2 = (1,0) which gives d1415 = 0 and
larg(A41p)| = am/2. Thus, E| » is a non-hyperbolic point. At last, when > 1, we easily confirm that the
stability of E| and E; have the opposite sign with § < 1.

(i1) For,é = land B = B, we have |arg(A2,)| = an/2 and |arg( Ay, )| = am/2, respectively. Thus, E; or E2 becomes
non-hyperbolic points.

(iii) When min {1, } > B._ we achieve Az, > 0 and Ay,. Hence, |arg(A;)| =0 < anr/2, i = 2a,2b. Therefore, both
E| and E5 are unstable point.

|
Theorem 3. Suppose that one of the following statements hold.
(i) @ < 0and @y =0, or;
(ii) @F < 4@, @1 >0, and & < &,

where

then the co-existence point Ey = (X,V) is locally asymptotically stable.
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Proof. By evaluating the Jacobian matrix (13) at E5, we achieve

(I+p)-280)x =%
J(Xry)|53 = Tll\: h,"?‘

. . L) . . ol +
which gives characteristic polynomial equation A~ — @ A + @ = 0 and eigenvalues

P V‘PF_4(P21 P V(pf—él(pg
T T R

2 2

Therefore, A, 7 could be real or complex numbers depend on the sign of ¢7 — @y. If @ < and @ > 0 then |arg(4;)| >

am
- i=1,2 for every sign of (,DJ2 — . Furthermore, if (,‘DJ2 < 4¢ and @) > 0, we have a pair of complex conjugate

> c . . . . anm .
eigenvalues A > with positive real parts. Hence, since & < &, we obtain |arg(4;)| > - i= 1,2. Thus, Theorem 3

is completely proven. |

The interesting dynamics are shown by Theorems 2 and 3. In Theorem 2(i), there exists a condition such that the
local stabilities of E| and E> have the opposite sign and exchange their stability when the Allee threshold f is varied.
Furthermore, from Theorem 3, we also have a condition that the dynamical behavior around Ez changes when the
order (o) is varied. These circumstances lead to the occurrence of two bifurcations namely transcritical and Hopf
bifurcations. We give the following theorems to show their existence.

Theorem 4. Let f* = 1 and max {15} < B E| and E, switched their stability via transcritical bifurcation when [3
crosses B

o}
> max {1, }, the Jacobian matrix for gh E) and E5 have a negative eigenvalue such as
29
am
larg(Az )| = - for each Jacobian matrix (14) and (15). Therefore, the stability of both equilibrium points depend on

. 1
Proof. Denote when

the others eiggnvalues, According to Theorem 2, when < B*, E| is locally asymptotically stable while E; becomes
a saddle point. For B = §*, E» merges with E| and the equilibrium point becomes non-hyperbolic. Finally, when
B > B*. E| becomes a saddle point while E> becomes locally asymptotically stable. This ends the proof. O

Theorem 5. Suppose that 97 < 4@, and @) > 0. The interior point Ez = (£,%) changes its stability via Hopf bifurca-
tion when o passes through €.
e I 3

Proof. According to Theorem 3, since (,‘Dl2 < 4@y and @) > 0, the Jacobian matrix (13) evaluated at E3 has a pair of
complex conjugate eigenvalues with positive real parts. Furthermore, we can easily show that

- am .
m(d) = —~ — min |arg(A;)]|

2 1=is2
2 / — 2 2 / — w2
=Ztan~! VAR =97\ Ztan~! Vip -9 =0, and
T L] T L]
dm(a): :E#O.
do |, 5 2
Therefore, all conditions given by Theorem 4 in [13] are satisfied. Hence, E3 losses its stability via Hopf bifurcation,
where ¢ is the bifurcation parameter and o* is the bifurcation point. O
NUMERICAL SIMULATIONS

Now, we will show numerically the dynamical behaviors of model (5) based on the analytical results including the
bifurcation diagram and the local stability. To obtain the numerical solution, the predictor-corrector scheme for
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(c) Phase portrait when § = 1.5 (d) Phase portrait when § =2.5
Figure 1. The bifurcation diagram and phase portraits using parameter values 1 = 0.5, § = 0.1,
h=0.1, w=0.1,and ¢ =0.9.
frac l-order differential equation proposed by Diethelm is applied [19]. We divide the simulations into two parts

impact of the Allee effect and the order of the derivative to lhalynamical behaviors around the predator
extinction point and the co-existence point, respectively. First, to show the impact of the Allee effect, we fix some
parameters as follows.

n=05,8=01 h=0.1, and, ®=0.1. (16)

We ensure that the co-existence point does not exist. From Theorems 1 and 2, we also confirm that the stability of
E;, 1=0,1,2 does not depend on ¢. We choose o = (0.9 as the order of the derivative. Furthermore, to aesligale the
changes in dynamical behavior of model (5) driven by the Allee threshold, we vary B in interval [0, 3]. We obtain the
bifurcation diagram as in Figure 1(a). There are two points which cause the change in behavior of model (5) namely
p* =1 and ,8 =2.2. When 0 < B < B*, E; is asymptotically stable while E; is unstable. After B crosses §*, E;
and E> exchange their stability via trascritical bifurcation. These circumstances confirm Theorems 2 and 4. The local
dynamics around E| and E> are maintained in interval §* < f§ < ,8 Next, when f crosses ,8._ bolhand E5 become
unstable. We present the phase portrait of those conditions in Figure 1(b) to 1(d). In addition, in Figure 1(b) and
1{c), model (5) undergoes the bistability conditions which describe the sensitivity of solution based on their initial
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(a) Bifurcation diagram in (o, x)— plane (b) Bifurcation diagram in (o, y)— plane

Figure 2. The bifurcation diagram driven by the order of the derivative (&) using parameter values
B=04n=050=0.1h=0.1,and @ = 0.3.

conditions. We have a pair of fairly close initial conditions that convergent to the distinct equilibrium points. This
means, if the ratio between prey and predator does not large enough, both populations will emlcl,

Finally, we will show the influence of the order-a to the stability of co-existence point. The following parameter
values are setted.

B=04.1n1=05 8=01h=0.1, and @ =0.1. (17)

Therefore, all types of equilibrium points exist. According to Theorems 1 to 3, We have an always locally asymptot-
ically stable Ejy, a pair of unstable predator extinction points E| and E», and a conditionally stable co-existence point
E3 which depends on the value of ¢. Since the stability of E3 is determined by the order-or, we portray the bifurcation
diagram of model (5) driven by @ in interval [0.8,1]. See Figure 2. For 0.8 < a < a*, o = 0.902, E; is locally
asymptotically stable. When o crosses a*, E3 losses its stability via Hopf bifurcation and nearby solution convergent
to a periodic signal. The Figure 3 is given to provide the corresponding phase portrait and time series. Apart from
Hopf bifurcation, we also have two types of bistability conditions here which are shown by Figure 3(a) to 3(d). When
o = (.89, the bistability condition exists as an impact of two locally asymptotically stable equilibrium points i.e. Ey
and E3. The bistability condition is still maintained when o = 0.98 but involving a locally asymptotically stable Eq
and a stable limit-cycle that occurs via Hopf bifurcation. This means for the initial condition nearby the co-existence
point, the existence of both populations are maintained in two ways ie. (i) convergent to a constant value (ii) eventu-
ally change periodically, which depend on how strong the effect of memory affects their growth rate. Nevertheless,
as a result of the Allee effect, both populations may be extinct for some initial conditions although the co-existence
point or the limit-cycle is stable.

CONCLUSION

We have completely investigated the dynamical behaviors of a predator-prey model with strong Allee effect in prey
and Michaelis-Menten type of predator harvesting with Caputo fractional order derivative. Four equilibrium points are
obtained namely an origin point, a pair of the predator extinction points, and the co-existence point. The origin point
1s always locally asymptotically stable while others are condially asymptotically stable. Some interesting phe-
nomena also have been found in addition to their local stability such as the existence of transcritical bifurcation, Hopf
bifurcation, and bistability condition. We strengthen the analytical results by providing some numerical simulations.
We also have shown numerically that although the co-existence point is unstable, the existence of both populations is
still maintained periodically.
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Figure 3. The phase portraits and time series using parameter values § = 0.4, 1 =0.5,6 = 0.1,
h=0.1, and @ = 0.3.

In this paper, some important results are not investigated such as the global dynamics, the sensitivity of ¢, and the
difference between the fractional-order model with the integer ones. Thus, investigating these dynamical behaviors
will be interesting for the next research.
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