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Abstract

In this paper. a dynamicmm]ysis of a fractional-order predator-prey model with infectious diseases in
prey is perforniggll. First, we prove the existence, unigueness, non-negativity, and boundedness of the solution.
We also show that the model has at most five equilibrium points, namely the orm the infected prey and
predator extinction point, the infected prey extinction poin predator extinction point, and the co-existence
point. For the first four equilibrium points, we show that the local stability properties of the fractional-order
system are the same as the first-order system, but for the co-existence point, we have different local stability
properties. We also present the global stability of each ecnibrium points except for the origin point. We observe
an interesting phenomenon, namely the occurrence of Hopf bifurcation around the co-existence ibrium
point driven by the order of fractional derivative. Moreover, we show some numerical simulations based on a
predictor-corrector scheme to illustrate the result of our dynamical analysis.
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1. INTRODUCTION

Study of fractional-order differential equation becomes a popular research topic in science and engineering
since various nonlinear phenomena can be described almost precisely by its ability [2], [5], [7], [10], [11],
[14], [16]. [31]. The main reason is that the fractional differential equation has capability to present the current
state as a process that involves the history of the past states (or called the memory effects) [11], [8], [17],
[23], [25]. [27]. [18]. Therefore, the fractional-order differential equation is gaining enormous enthusiasm
from most researchers, especially in biological modeling such as ecological and epidemiological models or
a combination of both which is called eco-epidemiological models [16], [18], [21], [22], [3]. [20], [24].
[26]. Here, we consider an eco-epidemiological model that studies the interaction between population of prey
and its predator, where the prey population is assumed to grow logistically and may be infected by some
microbiological organism such as pathogen or parasite. Due to the infectious diseases, we classify the prey
into two compartments, namely susceptible and infected prey where the disease transmission between them
obeys a bilinear incident rate. In several references, predator attacks only infected prey due to its natural
instinct as in [16], [20]. But in this paper, we assume that the predator consumes bo{flsbf preys because in
some cases, it is difficult for predator to distinguish lhesceplible and infected prey. We use Holling type-I
as the predator func@ml response. We also consider that the growth raof both prey and predator not
only depend on the current state but also on all previous states, and thus we consider the following system
of fractional order differential equations.

Dz, = rr.(l- i%t) — AT T; — MTLY
f_)(*‘ I = rgri — (’7:1‘.‘,' — nriy N (1)
Dy = cry+dry—ey
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where D'« denotes the C:?lto fractional derivative of order &« which will be introduced in the next section.
Here, z,(f), x;(f), and y(t) denote the dens of susceptible prey population, infected prey population
and predator population, respectively. Prey is growing logistically with intrinsic growth rate r and carrying
acity K. Parameter a, b, m, n, ¢, d and e are positive constant where a is the prey infection rate, b is
death rate of infected prey, m is plmlion rate on susceptible prey, n is predation rate on infected prey,
e, d are ratio of biomass conversion of susceptible and infected prey and e is predator death rate. Next, we

x

simplify system (1) by variable scaling (S, 1, P,t) — (7(— % %"",rﬂ and obtained

DS = (1-S—-(1+3)1-pP)S
Dyl = (fS—6—puP)! , (2)
DepP = pS+wl-¢)P

where 7 = “;- , 0= %. o= %. = i. w= %. and ¢ = ;— Note that the simplification has transformed

the system (1) into a non-dimensionallsyslem (2). This means that the scale of each population density of
system (2) are different from system (1), but the dynamics of system (2) are qualitatively the same as the
system (1). We can also conﬁélhal the number of parameters has been reduced so the dynamical analysis
of system (2) is simpler than the previous one.

In this paper, we use Caputo fractional-order (CFO) operator with o € (0,1] as the fractional-order
derivative. Due to its biological nature, i.e. the density of population is always positive, we are interested to
study the solution of system (2) only in B3 for all £ > 0. This paper aims to explain the dynamics of the
system (2), which are arranged as follows. We first present several lemmas and theorems on fractional-order
differential equation in section 2. In sections 3 and 4, we prove that the solution of the model exists and
unique. We also show that the solutions are uniformly bounded and non-mllive, In sections 5, 6, and 7, we
investigate the equilibrium points, their existence, their local and global stability, and the existence of Hopf
bifurcation. To illustrate the result from the previous section, we do some numerical simulations in section
8. We end this work with the conclusion in section 9.

2. PRELIMINARIES

To support the theoretical study, we introduce several materials about the fractional-order differential
equation that consists of definitions, lemmas, and tum:ms as follows.

Definition 1. (See [19]). The CFO derivative with e € (n — 1,n| of f(t), £ > 0 is defined by

t
DYf(t) == m[ (t—s)" = f O (s)ds,
. 0

where ") represents the nth order derivative of f(#), n = [a], and I' is a Gamma function. Particularly,
when e € (0,1], we have

1 t
D(.\ )= — t_(—(_\ﬂ'ldll
2F0= e [ €9 s
Theorem 2.1. (See [15]). Consider the following CFO system
DeE(t) = f(E(t), zeR”, neN, £(0) >0, and o € (0,1]. (3)

m'm T that satisfies f () = 0 is called the equilibrium point. It is locally asymptotically stable if its
Jacobian matrix J = % evaluated at T provide the eigenvalues that satisfy |arg(A;)| > 5 for all j € n.
Lemma 2.2, (See @]J. Consider the following CFO system

Dgz(t) = f(t,z), z(0) =0, a € (0,1], f:[0, 00442 — R", Qe R" 4)
Then there exists a unique solution of system (4) on [0,00) x Q if f(t,z) satisfies the locally Lipschitz
condition with respect to .
Lemma 2.3. (See [11]). Let u(t) be a continuous function on [0,+00) and satisfy

Doult) < —Xu(t) +p, (A,p) € RE A#0, u(0) =uy =0, and a € (0,1]. (5)
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Then the solution of (5) has the form

f‘ o
‘U.(f) S (‘U.[} - X) n[ At ]

Lemma 2.4. (See [28]). Let x(t) € R, be a continuous and derivable ﬁmrtion Then, for any time instant
t>to

- ¥

Do |z(t) —z* —2* In 'r(f)} < (1 — ) z* € Ry, Va e (0,1).
xr ;r(t)

Lemma 2.5. (See [9]). Suppose D is a bounded closet set. Every solution of D®z(t) = f(x) starts from

a point in D and remains in D all time, If V(z) : D — R with continuous first partial derivatives

satisfies DS < 0. Let E = {z|DJV =0} and M be the largest invariant set of E. Then every solution x(t)

originating in D tends to M as t — oc. Particularly, when M = {0}, then © — 0, t — nc.

3. EXISTENCE AND UNIQUENESS m

In this section, we prove that the solution of system (2) is exists and unique, which is shown by the
following theorem.

Theorem 3.1. Consider system (2) with initial condition Sy, > 0, Iy, = 0 P, = 0 and o € (0, 1]

[ [to,00) x 2y — R, where Qy := {(S,1,P) € R} : max{|S|, |I| |P| < AI}} for sufficiently !arge
M. This system (2) IVP has a mﬁe solution.

Proof: Consider a mapping H(Z) = (H,(Z), H:(Z), H3(Z)) with

Hi(Z) = 1-S—(1+8)1-P)S
Hy(Z) = (BS—6—puP)l . (6)
Hy(Z) = (hS+wl—-Q)P

For any Z = (S_.ﬁ’), Z = (S‘,I,P) Z,Z € Qyy, it follows from (6) that

|H(Z) - HZ)|| = |H(@3-Hi(Z)|+|Ho(2) - Hy(Z)| + |Hy(2) — Hy(Z)|

= [(S-8)—(5*-8%) - (1+8)(SI—SI)— (SP-S5P)|+

[B(ST—SI)—6(I —1T)—p(IP —1IP)|+
[n(SP — SP) +w(IP — IP) - {(P — P)|
[S—5|+1|8* - 8% +(1+p8)|SI - SI|+|SP—SP|+
B|SI—S8I|+6|I—1I|+p|IP—1IP|+n|SP—SP|+
w|IP-IP|+¢|P - P|
< (1+4M +28M +nqM)|S =S|+ (1 +28+p+w)M +6) |1 - 1|

((1—;;—;;—@‘)411— )| P —P|
< Llz-Z]

I/

where L = max {1+ (4+23+n)M,0+(1+28+p+w)M,(+ (1 +n+ p+w)M}. Thus, the Lips-
chitz condition with (.l to Z is satisfied by H(Z). According to Lemma 2.2, that there exists a unique

solution Z(f) € €ps of system (2) with initial condition Z;, = (Ss,, I, P, ). |
4. BOUNDEDNESS AND NON-NEGATIVITY

Now, we will prove that the solutions of system (2) with the initial values start in R? are bounded and
non-negative to ensure that the biological significance 1s reached.

Theorem 4.1. Consider system (2) with initial condition S;, = 0, I, > 0 Py, = 0. Then all solutions are
uniformly bounded and non-negative.
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Proof: First, we prove that if the initial condition of system (2) is non-negative then all solutions are

uniformly bounded. Define a function V' (t) = (% + %) S+ 21+ EP, then we have
DOV () + EV(t) = (L—’ + %) (1-S—(1+8)I—P)S+2(8S—38—uP)I

+E (S +wl— Q)P+ (g + 22 ) €S + 26T + Eep
—2ESP — pIP +2(6 — 8) + (€ - Q)LP.
Choose £ < min{d, ¢} then

D2V (1) + £V (1)

I I
= e
g e[E
poEE o
e =S
Nl SN

5
By Lemma (2.3), we have

1/ p 23 1+£)? 1/ p 23 W 2
e (V(O)_E(%_l+ﬁ)( 2%) )‘5 [_5(”“]_3(%_1—3) (%E) |

2 2 . - - . EOEPE LR -
Notice that V' (t) — % (ﬂ 4 2B ) ( - ) for t = oo. Therefore, for non-negative initial condition involve

w 148 2
all solutions of system (2) are confined to the region (2, where
. 1y 28 1+¢6\°
Q=L (S.L.LP)eR} : V(t)<-|—+ —— ) +ez.2>0,. 7
{(..)E+ ()_g(w =) (= &> )
Next we prove that if the initial condition is non-negative, then all solutions are non-negative. From inequality
(7) we have that
2
un 23 7 1 (un 23 1+¢
—+ S+2l+=-P< - —+ . 8
( w 14 f w T Ef\w 14 £ 2 ®
Based on equation (2) and inequality (8) we get
2 2 2
o 1 {1+ 1+ LT 253 14 w LT 253 1+
Dys = 1—3(7{) —W(%—m) (T{L) —E(':—m) (_z{) }S

- (b (B 2) (2+ ) (l_r{ﬂ °

2
— - _ 1 1+4 w n 23 1+
= oS5, where oy =1 — (f + (T + E) (% + m)) (_z{)

From the standard comparison theorem for fractional-order differential equation [4] and the positivity of
Mittag-Leffler function E, ; (f) > 0 [29], we get S(f) = S, Eq1(o1t), thus we get

S(t) = 0. 9

Next, from the second equation in system (2), inequality (8) and (9) we obtain

2
Iy w [ o 23 1+
o3 22+ 22) (2]
2
Iy w [ 23 1+£
(e ) (5]

g 2
—o3d, where oy =46 + 3 (ﬂ + %) (%{)

w

Dol

I

I
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Therefore I(t) = Iy, En 1(—o2t™), thus we have
I(t) = 0.
Last, from the third equation in system (2), inequality (9) and (10) we obtain

DiP > (nS+wl—Q)P
> P '

Therefore P(t) = Py E, 1(—(t*), thus we have P, > 0, and Theorem 4.1 is completely proven.

5. EQUILIBRIUM POINTS AND THEIR LOCAL STABILITY

(10)

To investigate the dynamical behavior of system (2), we identify the equilibrium points, their existence
and analyze their stability. According to the Theorem (2.1), the equilibrium points is obtained by solving the

simultaneous equations:

(1-5—-(1+81-P)S = 0
(BS—6—puP)I = 0.
S +wl —C)P = 0

From equations (11), wawe five equilibrium points for system (2) as follows:

(i) The origin point Ey = (0,0,0) which always exists.

(ii) The predator and infected prey extinction point £y = (1,0,0), which always exists.
£ o=t
Nt

(iii) The infected prey extinction point Ey = n ) which exists if p > (.

(iv) The predator extinction point £y = (%, ﬁ_ﬂ) which exists if 7 = 4.

ey gl tene i o (—Ih-" ] . — (ptdjw—(1+8)ug
(v) The co-exsistence point E* = |, T ) where ¢ = (e o= (L B o which exists if 5

W< £ > and w > p(l+ ) mfu{“ié “_M} or w < (1 + F)min {ﬁ“'—_:_r}
The local Ealdblllly of these equilibrium points are explained in the following Theorems.
Theorem 5.1. (i) The origi ) is always a saddle point.
(i) fp<d and n <t 1 is locally asymptotically stable.

(i) I > “ 6( then Ej is Iggly asymptotically stable.
(iv) Ifw< W then E3 is locally asymptotically stable.

Proof:
(i) Firstly, we identify the Jacobian matrix .J(E}) and acquired
1 0 0
J(Eq) = |i 0 -4 0
0 0 =<

(1n

and gives eigenvalues: m: 1, A2 = —§ and A3 = —(. Thus |arg(A1)| = 0 < 5F and |arg(As3)| =

(\1r

m > —-. Therefore £y 1s always a saddle point.
(i1)  We Lompule the Jacobian matrix .J{E7) and obtain

-1 —(1+§)
,;(El):{o ) ?]

0 0 n—C
where its eigenvalues are A\ = —1, Ao = F—4 and A3 = 17— (. note that for Ay gives|arg(\i)| =7 >
S obut |arg(Aog)| =7 > 5F if § < d and 5 < (. Consequently, £} become locally asymptotically
sldble
(iii) Now, we determine the Jacobian matrix .J{£;) and achieve
_< (148X _<
JE)=| o feobon

n

n—_ % 0
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. . A —dn—1{n— R e T »
The corresponding eigenvalues are A} = w and Ao 5 — w, Note that if

2n
n > :‘;2( then |arg(M )| = m > SF. It is also clear that Ay3 always satisfy [arg(Az3)] > 5.

Hence, we have Theorem 5.1.(iii).
(iv) Lastly, we investigate J(E'3) and get

_8 (488 _4
i} ] 3
Sy 8= pd—48)
J(E3) = | I3 0 e
0 0 Sn—B¢ | w(B—8)
7 B(115)
. _ wl B — 0t/ —a(A—8)35 1. (1+4) (3¢ —6n)
where its eigenvalues are \; = % + H and Ay 3 = ; r;‘ 2w < ‘l+b}r}‘f§ =
then |arg(\;)| = m > 7. Furthermore, it can be easily be proven that |arg(hs 3)| > - is always

fullfilled.

We can observe that the eigenvalues of J(Ej) and J(E)) are always real numbers. Therefore, the order-o
has no effect to their stability. Furthermore, if the stability conditions for E; and E'y are satisfied, then the
Jacobian matrices J(E2) and J(E3) have always eigenvalues where their real parts are negatives. Hence,

eigenvalues always satisfy |arg(A)| > 5, Vo € (0, 1]. We conclude that the stability properties of these
equilibrium points are exactly the same as for the case of integer-order model. n

Theorem 5.2. Suppose that:

* . w | Be—4 AC—(14+8)ne
H = 3\ ) \ et e—am
¢ _ (Be—f)nuwe+ (1480 {—ne)fue
sl - e
& (= me)(Be—d){w—nu)fe
Hw . . . .
D(P) = 18p&i& + (p6)* —4&(p)° — 4(&)% — 27(&)?

28
E* is called gaﬂ}-‘ asymptotically stable if one of the following statements is satisfied.
(1) D(P)=>0and p* < p< f or;
(i) D(FP) < 0 and:
(iia) p <% and0<a< 2.
(iLb) p=p*

Proof: By computing the Jacobian matrix .J(£* ), we obtain

-y =1+ Py —p
" (C—np) 3 (C—neip
J’(E): {(;J 0 _{(JJJ
m m

This Jacobian matrix gives polynomial characteristic: P = A\*+ pA? + £, A+ & = 0. By using Routh-Hurwitz
condition for fractional-order dynamical system (see Proposition 1 in [1]), the local stability condition of
co-existence point £* is proven. n

6. GLOBAL STABILITY
This section presents about the global stability of equilibrium points which are described by these folowing
theorems.

. . . . . 0 (147 un
The(mn 6.1. E, is globally asymptotically stable if w < %

. 3 <4, and 1 < C.
Proof: We first define a Lyapunov function as follows.
1+3 1
I+ =P
! n

V(S,I,P)=(S—1—InS)+
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For the initial analysis, we investigate that V' (£ ) = 0, so that the first requirement is satisfied. Furthermore,
by applying Lemma 2.4 we obtain
Dev(s1,P) < (S-1)(1-S-(1+3){—-P)+ ﬂ(@‘; — 86— puP)I ——(n‘:" wl —(C)P
= —(S—1P+(1+p/I+P- 1+"¢1 ~HBuIP 4 2P — fp

= s (5-1)as iu—(——ﬂf—(ﬁﬁﬁ—%fp
0

<
By fcmving Lemma 2.5, thus every non-negative solution tends to £} which means that the equilibrium
point £ is globally asymptotically stable. n
Theorem 6.2. E, is globally asymptotically stable if - }( 6” < {l+'f,m < M.

Proof: To proof the global stability of E5, we _construct a Lyapunov function

i"’(s,.{,.l}):(S—f—?—glnﬁ)_l—i_ﬁ_{—l(fJ—n_C—n_Cln T}fJ )

noC 3 n n n -

We can confirm that V' (E5) = 0 which indicates the first condition is fulfilled. Now, by using Lemma 2.4
we show that

DoV(S,1.P) < (S——)(l—q (1+8)] — P) + (85 — 5 — uP)I
+1 (13— n- ()(qq—m—c)

- (=) )= (5= (=)

+1+p)sr - WP UtPupp

_(13_%)34(13 I?I()..ulr (13_%)%

2 ( L A ¥ (1431 .
_ (g _ g) _ (m—Z(Ju _ EAE- em) I (uﬁ}m B j—j) P

n 1y 4
=
According to Lemma 2.5, it is found that every non-negative solution tends to E5 so that the globally
asymptotically stable of equilibrium point £ is achieved. n
fw

Theorem 6.3. E3 is globally asymptotically stable if m <1 < T
Proof: A Lyapunov function is defined as
§d 6. S 1+ 3—46 3—4 % 3)1 1
VS,LP)=(S-%-2 S (- _ gk R PEHAIN 1,
3 Bl+p) B1+48) B—4 n

6 ﬁ d
We check that V' (E3) = 0 so that the Lyapunov function suitable with the expected conditions. We apply
Lemma 2.4 to the Lyapunov function and obtain

DeV(S,I,P) < (S—%)(1—8—(1—{&)!—1’)—%”(I—ﬁ)(fiS—eE—,u.P)
+1(nS % wl — QP

(5=8)" 00 (1= ) 5-9) < (5-4)

+(1- 755) (1+p)s — W28 _ 4adep) 4 gp 2P - Cp

B(1+73)

- (S - %)z - (% _ {:3—esr}u;+:m) P ({1+r;3;“ _ Iﬁa) P

By using Lemma 2.5, we conclude that every non-negative solution tends to £5 so that the globally asymp-
totically stable of equilibrium point E3 is accomplished. n
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Theorem 6.4. Suppose that:

0< & < min{d(}
P _L(ﬂ_ Qrfj(l_ﬂ_)z
T g\ w 1+3 2 ]
2({—ne)(fe—6) s (1+8)un
2{—ne)0+(Fp—a)0 < w < [E]
then the co-existence point E* is globally asymptotically stable.

Proof: Suppose that E* = (S*, I*, P*) is the co-existence point. We define a Lyapunov function by

S I P
V(S,1,P) = (S— §*—S"In q*) +ay (1 — = 1*1nF) +az (13— P*—P'ln p*) .

It is clear that V(E") = 0. Now, by using Lemma 2.4 we have

DV(S,I.P) < (S—S8*)1—S8—(1+8)—P)+ai(I—1I)BS 35— uP)
+as(P — P*)(nS +wl
= (S-S5 -5S"+(1+8{I-I")+(P-P"))

+ay(I=1%)(B(S — $*) — u(P = P*)
+oa(P  Pr)(0(S = 57+l —1%)

(S — 82— (1+B)(S— 8 — ') — (S — §*)(P — P*)
+a1B(S = S*) (I —I") —ayp(I = I")(P — P*)
Sagn(S — V(P — P*) + agw(I — I*)(P — P*)

—(8 - 9*) — 1—3)—a“i](S—S*)(I—I*)
—(1—am)(§ =S*) P —-P")—(a1p —apw) (I = I")(P — P*)

Choose a; = 1-!;:3 and a, = %; then we get:

.
DeV(S,1,P) < —(S—57)2— (L —2) (1) (P— P")
{l+B-’3Ju —2) (I = 1) (P - P*)
{1+;}JH “\rp+ {]-+:;3JH _w\p
f f n

I/
|

o (O+8e £) PHI— ({l+.’3 oo E) I*p*
Ji} n 1] n

(1+3)un
B

Because w < , we have

DeV(S,1,P) < (%ﬁ— n?I*P+(i"M— )13*1 (i;”ﬁ—gf“f”

r (12)
= B (M _ ',—?) (I'P* — I'P — P*I)
From inequality (8) we obtain [ < % and P < '“‘:TH so that the inequality (12) becomes
1+ ) o f
DeV(S,I,P) < — AP @\ (ppe _p Op) (13)
ﬁ L 2
n f
By Subtituting E* = (1,-9_. % r}f%é) into inequality (13), we obtain
1+ ) —ne)(Fp—4 2(C — )b + (Fe — 68
DOV(S. 1, P) < — (I+8)p  w) ((C—ne)Be—0d) 2(C—ne)b + (B —d) <0, a4
3 n pw 2

By using the same manner with Huo et al, we apply Lemma 2.5 to confirm that every non-negative solution
tends to £* so that we completely proof that E* is globally asymptotically stable. n
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EXISTENCE OF HOPF BIFURCATION

Now we will demonstrate that there exists a Hopf bifurcation in system (2) at the co-existence equilibrium
point £* where « is the bifurcation parameter. This bifurcation arises if a stable focus equilibrium point
changes to unstable focus and the limit cycle occurs simultaneously when a bifurcation parameter is variated.
From the Jacobian matrix .J{E*), we have polynomial characteristic A% + A2 + & A + &, = 0. By applying
Cardano’s formula [30], we obtain the eigenvalues defined by Ay = U + T — 1,: and Ay = # &+ wi where

go= -Ur_ ¢ w = —LbyEi
~ wha D wie
(U— 3 31—y
wo = ‘ : ) Q = 15} ’
. slp AT _ 961p—2T6-2°
U = wi/R R Q°, R = B4 ,

T w2/ R — /RT+ (3.
3(U+T)
2

Suppose that {U/,T} € Rand 3(U +T) < ¢ < — so that the eigenvalues are A1 < 0 and g

air of
complex conjugate Az 3 = f &+ wi where # > 0. It is easy to confirm that m (a*) = 0 and d’:j+"] =z
with m(a) = %5 — minj<; <3 |arg(A;)]| and o* = %|arg(}\g‘3)|. Based on Theorem 3 in [12], a Hopf
bifurcation occurs around the equilibrium point E* when o passes through o*. Consequently, we have the
following theorem:

; . 3(UA4T)
Theorem 7.1. Suppose that U € R, T' € Rand 3(U+7T) < p < ——F5—

i p— i} o 2 o
undergoes a Hopf bifurcation when « passes through o* = = |arg(Az 3.

. The equilibrium point E*

agay 2003

(a) np = 0.13 (b) 3 = 0.65

Figure 1: 3-D Phaseportraits of system (2) with parameter: 5 = (.51, 4 = 0.52, p = 0.01,
w=10.92, (=044, o = 0.8 and time step At = 0.1

8. NUMERICAL SIMULATIONS

To verify the previous theoritical results, numerical simulations are performed by using predictor-corrector
approach of fractional-order differential equation [6]. Since the field data is not available, we use hypothetical
parameter values which are satisified the stability conditions from the previous analytical studies. We first
set the parameter values as follows: 3 = 0.51, § = 0.52, p = 0.01, n = 0.13, w = 0.92, ¢ = 0.44 and
a = ().8. Here, we only have two equilibrium point, i.e. a saddle point £y = (0,0, 0) and an asymptotically
(both locally and globally) stable £y = (1,0,0) (see Figure la). When the ratio of biomass conversion of
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susceptible prey is raised to n = (.65, the stable infected prey point E» = (0.677,0,0.323) appears, and the
£ becomes a saddle point, which fit to Theorem 2.1(ii) and 6.2. This shows that the susceptible prey and
predator population are maintained, and the disease infection in prey is stopped. See Figure 1b.

g2 063 amg 03

(a) w = 0.55 (b) w = 0.92

Figure 2: 3-D Phaseportraits of system (2) with parameter: 3 = 0.51, § = 0.01, g = 0.01,
7 =013 ¢ =044, o« = (0.8 and time step At = 0.1

—_—g=]l —— =03 — a=0f — =07 a=06

@ e

0 s 0 13 ]

Figure 3: Time series of system (2) with various of o values by using parameter: 5 = (.51,
=052 p=0011n=013 w=0.92, { =0.44, o = 0.8 and time step At =0.1

Now, we set the parameter values as follows: 7 = 0.51, § = 0.01, p = 0.01, » = 0.13, w = 0.55,
¢ = 0.44 and o« = 0.8. Thus we have three equilibrium points i.e. two saddle points Ej; and £} and a
predator extinction point £y = (0.020,0.649,0). According to the Theorem 2.1.(iii) and 6.3, equilibrium
point E'3 is asymptotically stable, both locally and globally, see Figure 2a. Now, we increase the ratio of
biomass conversion of susceptible prey parameter w to w = (.92, the asymptotically stable focus co-existence
equilibrium point E* = (0.025,0.475,0.258) appears (see Theorem 5.2), and E3 becomes a saddle point
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as shown in the Figure 2b. This condition shows that the predator population becomes extinct, and both of
infected and susceptible prey populations exist. For the next simulation, we take parameters as in the first
simulation, and show that when the order-ov approaches to o = 1, the solution of CFO system approaches
the solution of the first order system, see Figure 3.

i T

olen 03 alsp 03

(a) o = (.82 (b) o = (.84

Figure 4: 3-D Phaseportraits of system (2) with parameter 7 = 0.51, 4 = 0.01, p = 0.01,
7 =013 w=10.92, { = 0.44 and time step At = 0.1

31
Next, we show numerically that g stability of equilibrium point is also influenced by order of fractional
derivative. For that, we choose parameter values as follows: 3 = 0.51, § = 0.01, p = 0.01, n = 0.13,
w =092 and { = 0.44. If o« = (.82 is replaced by o = (.84, the locally asymptotically stable point
E* = (0.025,0.475,0.258) changes its stability and a stable limit cycle occurs simultaneously (see Figure
4b). This phenomenon is called Hopf bifurcation where the bifurcation point is a* = (.84257.

9. CONCLUSI

We have discussed an eco-epidemiological fractional-order model that describes the interaction between
predator and prey population with infectious diseases in prey. We have shown that this eco-epidemiological
model has at most five biological equilibrium points, where the local and the global stability are completely
analyzed. One of the expected conditions is that the extinction of infected prey population is achieved if the
ratio of biomass conversion of susceptible prey is greater than the death rate of predator, and n > ”'H}C

it
(locally stable) or I}E:g” < Hi—ﬁm <y (globally stable). We also prove that there is a condition when
the fractional-order of derivative is varied, the stable focus co-existence point becomes unstable focus and
isolated by a stable limit cycle, which is called a Hopf bifurcation. It means that all populations still exist
along t — oo, but the density changes periodically. To illustrate the analytical results, we pnl numerical
simulations using hypothetical parameter values. The application of our model to real data can be an interesting
topic for future research.
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