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Abstract
The Allee effect and harvesting always get a pivotal role in studying the preservation of a population. In this context, we
consider a Caputo fractional-order logistic model with the Allee effect and pl‘()pﬁmal harvesting. In particular, we implement
the piecewise constant arguments (PWE ) method to discretize the fractional model. The dynamics of the obtained discrete-
e model are then analyzed. Fixed points and their stability conditions are established. We also show the existence of
saddle-node and period-doubling bifurcations in the discrete-time model. These analytical results are then conﬁrw by
some numerical simulations via bifurcation, Cobweb, and maximal Lyapunov exponent diagrams. The occurrefig3 of period-
doubling bifurcation route to chaos is also observed numerically. Finally, the occurrence of period-doubling bifurcation is

successfully controlled using a hybrid control strategy.
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1 Introduction

Forthe last decades, the discrete-time model gets a lotof great
attentiveness fromresearchers in mathematical modeling, not
only because of its capability in describing several phenom-
ena such as physics, biomedicine, engineering, chemistry,
and population dynamics but also due to the richness of the
given dynamical pattems as well as the occurrence of bifur-
cations and chaotic solutions which very difficult to find in
their continuous counterpart [ 1-6]. Particularly, the discrete-
time model is successfully applied in population dynamics,
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especially in a single logistic growth modeling [7-10], the
epidemic modeling [11-13], and the predator—prey interac-
tion modeling [14-18]. Most of the models are discretized
using Euler scheme [19-21] and nonstandard finite differ-
ence (NSFD) [22-24] which is popular for the discretization
of the model with first-order derivative as the operator. Fur-
thermore, for the model with fractional-order derivative, we
have some numerical schemes to approximate the exact solu-
tion such in [25-28]. We also have the popular discretization
process is w by piecewise constant arguments (PWCA)
which were proposed by El-Sayed et al. [29] and applied by
()llmeseau‘chers in different biological phenomena [30-34].

In this paper, we study and justify the dynamics of
a discrete-time model constructed using PWCA from a
fractional-order lt)gis?mwlh model involving the Allee
effect and harvesting. The model is given by

v "N |1 al N N 1
T_’ (_E)( —m) —gN, (1)
where N (r) represents the population density at time ¢ and
all parameters are positive numbers with biological interpre-
tations and are given in Table 1.
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Table 1 Biological interpretation for each Parameter

Parameters Biological interpretation

r The intrinsic growth rate

K The environmental carrying capacity
m The Allee effect threshold

g The harvesting rate

Notice that the Allee effect reduces@population growth
gt when the population density is low (i.e., when N < m)
as aresult of several natural mechanisms such as intraspecific
competition, cooperative anti-predator behavior, coojfERtive
breeding, and limitationin finding mates. The positive growth
rate occurs if the population density is in the interval m <
N < K. For further explanation about the Allee effect, see
[35-44].

To obtain llmaclimml-()rder model, we follow a similar
way as in [14]. The first-order derivative at the left-hand side
of model (1) is rcplm:l with the fractional-order derivative
CDf which denotes the Caputo fractional derivative operator
of order o defined by

N B L )
PO =50"0 Jy t=0e™ @

where « is the order of fractional derivative with @ € (0, 1]
and I'(-) is the Gamma function. Furthermore, by replacing
the operator withequating the dimensions of time at the right-
hand side, the following model is acquired.

N
CD,“N::-“N(I—E) (N —m)—qg*N. (3)
Model (3) can be written as
oo = N -
DN =rN I—E (N —m)—gN, 4

where r = r* and ¢ = ¢“. Finally, by dropping (*), the
fractional-order model for (1) is successfully obtained as fol-
lows.

CDeN =¥ (1—%) (N —m) —gN. (5)

As far as we are aware, b()lh@ fractional-order model
and the discrete-time version of Eq. 5 have not been intro-
duced and studied. Especially for fractional-order model
(5), since the stability properties of equilibrium pom'efers
to Matignon condition [45], the dynamics of the one-
dimensional first-order and the fractional-order models are
qualitatively the same because the |arg (A)| of equilibrium
point always in the real line. On the other hand, although
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in the one-dimensional model, the discrete-time model has
more possible complex phenomena such as period-doubling
bifurcation and chaotic behaviors which do not exist in its
continuous ones. This means the oggglimensional continu-
ous model has poor dynamics than the discrete-time model.
Hence, for this case, studying discrete-time model 1s
more interesting and attractive. In this paper, we construct
a discrete-time model@gg implementing the PWCA method
for the model (5), and the dynamics of the ()med discrete-
time model are then investigated. The layout of this paper
is as follows. In Sect. 2, the model formulation is given by
applying the PWCA method to get a discrete-time model. To
support the analytical process, we provide some basic the-
oretical resu 1 Sect.3. In Sect.4, some analytical results
are provided such as the existence of fixed points, their local
stability, and saddle-node and period-doubling bifurcations.
In Sect. 5, we present some numerical simulations and show
some interesting phenomena, such as bifurcation, Lyapunov
exponent, and Cobweb diagrams which correspond to the
previous theoretical results. We %pl‘esem numerically a
period-doubling route to chaos. ybrid control strategy
is applied to delay and eliminate the ()ccurlaé of period-
doubling bifurcation and chaotic solution in Sect. 6. The
conclusion of this work is given in Sect. 7.

2 Model formulation

By applying a similar procedure as in [29,30], we discretize
model (5) with the PWCA method as follows

CDEN(t) = rN ([t/h]h) (1 — M)

K
X (N ([t/h]1h) —m) —gN ([t /h]h).

58
with initial condition N(0) = Ny. Letr € [0,h), t/h €
[0, 1), then we have

No
CDEN(t) =rNy (1 - ?) (No — m) — g Np. (6)
The solution of Eq. 6 is
“ N()
Ni=Nog+———|rNy| 1l —— ) (Ny —m) —gNy|.
1 T Firw {! 0( K)( o—m)—gq 0}
Next, let t € [h, 2h), t/h € [1. 2). Thus, we obtain

CDfN(r):rM(l—%) (N1 —m)—qN, (7
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where its solution is given by

(t — h)®
(1l +a)

N
{:-Nl (1 — ?1) (Ny —m) — qu} ,

By proceeding the same disretization process, for ¢t €
[nh, (n+ 1)h),t/h € [n,n + 1), we have

Ng = Nl(h) +

(t —nh)=
il +a)

Ny (nh
I::'Nn{nh) (l — nj: !}) (Ny(nh) —m) — an{nh}],

Nu+1 = Ny(nh) +

(8

E’ t — (n+ 1)h, Eq.8 is reduced to giscrctc-timc
fractional-order logistic model with the Allee effect and pro-
portional harvesting

h*
Npy1 = Ny + mNn
NH
{!' (1 —?) (N —m)—Q} = f(N). (9)

We remark that if @ — 1 then Eq.9 is exactly the same as
the Euler discretization of model (5).

3 Fundamental concepts

To analyze the dynamical behavior such as the exis
fixed point, the local stability, and the occurrence of saddle-
node and period-doubling bifurcation of the discrete-time
model (9), the following definition and theorems are needed.

e of

45
Definition 1 [46] Consider the following map

x(n+1)= flx(n)).
A point x* is said a fixed point of the map (10)if f(x™) = x*.
If | €E§*)| # 1. then x* is called a hyperbolic fixed point,
and if |f’(x*)| = 1, then x* is called a nonhyperbolic fixed
point.

(10)

Theorem §)46] Let x* be a hyperbolic fixed point of the
map (10) where f is continuously differentiable at x*. The
following statements then hold true:

(i) If
(ii) If

F(x*)
Fx")

< 1, then x* is locally asymptotically stable.

= 1, then x* is unstable.

Theorem 2 [46] Let x* is a nonhyperbolifgghed point of the
map (10) satisfying fg§") = L. If f'(x), f"(x), and f"'(x)

are continuous at x*, then the following statements hold:

(i) If f"(x*) # 0, then x* unstable (semistable).
(ii) If f"(x*) = 0and f"'(x*) = 0, then x* unstable.
(iii) If f"(x*) = 0 and "' (x*) < O, then x* locally asymp-
totically stable.

Defi n2 [46] The Schwarzian derivative, Sf, of a func-
tion f 1s defined by

') gl @7
S = — &3 |
f(x) 70 f’(x)]
Particularly, if f'(x*) = —1 then
* 1 * 3 L * 2
Sfa®) = =" — S [Fan]

-
N

Theorem 3 [46] Let x* is a hyperbolicggld point of the map
(10) satisfying f' @) = —1.If f'(x), f"(x), and " (x) are

continuous at x*, then the following statements hold:

(i) If Sf(x*) = 0, then x* is locally asymptotically stable.
(i) If Sf(x™) = 0, then x* is unstable.

Theorem 4 (The existence of Saddle-Node Bifurcation [46])
Stqaase that x,41 = f(pu.x,) isaC 2 one-parameter fam-
ily of one-dimensional maps, and x* is a fixed point with
[, x) = 1. Assume further that

af 3 f
E{“*’X*) # 0 and 922

(u*, x%) #0.

Then there exists an interval [Egound x* and a C* map
u = p(x), where p : I — & such that p(x*) = p* gwmd
fip(x), x) = x. Moreover, ff%%hm,_;*; < 0, rhegd

points exist for . = p*, and ffﬂi%hu*.-t*) = 0, the yreed

i
points exist for . < .

Theorem 5 (The existence of peri{)d-d{mb!a bifurcation
[46]) Suppose that xp 11 = f(i.xn)isaC 2 one-parameter

family of one-dimensional maps, and x* is a fixed point.
Assume that

(i) L. x) = 8
(ii) g (u*.x7) # 0.

Thenthereis an interval I about x* anda functionp : I — R
such that fpic)(x) # x but f;(r} —
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4 Analytical results

We explore some analytical results here such ilSEﬁ existence
of fixed points, their local stability, and the existence of some
bifurcations, namely saddle-node and period-doubling bifur-
cations. Since the map (9) is constructed by PWCA with step
size (), the analytical process is then investigated by consid-
ering the impact of . Some analytical results also examine
the influence of the harvesting (g) on the dynamics of the
given map.

4.1 The existence of fixed point

78
Based ()l?ﬁniﬁ(m (1), the fixed point of the map (9) is
i

obtained by solving the following equation

N L N|i‘(1 N) N i| 11
+m "\ x (N—m)—gq|. (1D

The solutions of Eq.11 are described as follows:

N =

(1) The extinction of population fixed point Nj = 0 which
always exists.

(ii) The nonzero fixed points Ny , which are the positive solu-
tions of the following quadratic polynomial

5 9K
N —(m+ K)N+mK + — =0. (12)
r
The solutions of Eq. 12 are
Nt = m -: K + A g* —‘q)rK’
2 l (13)
m+K gt —girkK
N3 = - .
- 2 r
where ¢* = w = (). The existence of nonzero

fixed points (13) is shown by Theorem 6.

Theorem6 (i) If ¢ = g*, then the nonzero fixed point of the

map (9) dfgB}ot exist.

(it) If g = q*, then there exists a unique nonzero fixed point
N* ="K of the map (9).
(iii) If ¢ < q*, then there exist two nonzero fixed points,

namely N{  of the map (9).

Proof (imis easy to confirm that if ¢ = ¢* then the solu-
tions of Eq. 12 are a pair of complex conjugate numbers.

(i1) F()r@: g*, we have N* = Ni" = Ni" = % Hence,
N™ 1s the only positive fixed point of the map (9).

(iii) Ifg < g*,thenN{', € K. Because N{' N = mz"(+5fr£ =
0 and Ni" + Ni" =m+ K = 0, then Ni" and Ni" are
obviously positive, showing that there are two nonzero
fixed points.
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o
4.2 Local stability

Now, the dynamical behaviors of the map (9) around each
fixed poifgire investigated. Theorems 7,10 are presenting to
describe the local dynamics of fixed points Ni*’ =012,
and N*. The complete dynamics including local stability,
unstable condition, and nonhyperbolic properties for each
fixed point are studied by employing Theorems 1.2,3. In
this respect, all dynamical properties are expressed in step
size (h) and harvesting rate (g) to simplify the mathematical

terms.
, - 2m*+3ImK+2K)r
Theorem 7 Let's denote § = w and hy =
/2 - .
i ‘“_H'“). Then the following statements hold.:
V  mr+g h

(i) if0 < h < hq, then N is locally asymptotically stable,
(it) if h = ho, then N(’;‘ is unstable, and
(iii) if h = hg, then Ny is nonhyperbolic fixed point. Fur-
thermore, if

(iii.a) q < §, then N} is locally asymptotically stable, and
(iii.b) q = g, then Nj is unstable.

Proof By evaluating f'(N) at N, we obtain

N =1 — —— = 1-2| —
F(No) I'(l+a) ho

h®(mr + q) h )“

(i) 0 < h < hp, then 0 < (h/hp)® < 1, which implies

j"(N{’;‘)| < 1. Based on Theorem 1, we have a locally
asymptotically stable Nj.

(ii) If h = hg, then (h/hy)® = 1, so that f'(Nj) < —1.
Theorem 1 states that Nj is an unstable fixed point.

(iii) For h = hg, we have f'(N}) = —1, i.e., N is nonhy-
perbolic fixed point. The Schwarzian derivative of map
F(N) at Nj is

he 6r
I'(l+a) {?}

3_¢4 2m + K)yr 7P
_§|il"(1+a){ K H

Sf(Ng) =

L U S S
KT(1+a) Kr(l+a)
12r 2(m + K)2r
_(mr+q)K (mr+q)K |

If g < 4, then Sf(Nj) < 0, and thus, N is locally
asymptotically stable. On the contrary, if g = § then
Sf(Ng) = 0, showing Njj is unstable. Thus, Theorem 7
is completely proved.
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Theorem 8 The nonzero fixed point N* is semistable.
Proof The derivative of f(N) at N* is

h*

r(1+a)

[ (m+K) +°:(m+K)( 2;{)_””‘_‘?}

(m+K) r—4mrK
){ ‘?}

FINT) =

r(1 +a
— *

= r(1 +a’) 4" 4]

N* exists when ¢ = g*. Clearly that f'(N*) = 1, and

therefore, N* is a nonhyperbolic fixed point. By direct cal-
culations, we can show that

" h* 6rN m
Y =0 {_ 2(“?)’1
_ h* 6rm+ K 2m+ K)r
T TI(l+a) {_f 2 K }
h 3m+K)yr  2(m+ K)r
(e (e Sy o
(m + K)rh*
=~%ra+o -

Since f"(N*) # 0, Theorem 2 says that the fixed point N*
is semistable. O

Theorem 9 Suppose that:

f!1={/

]’}:

2KT(1+ )

2@— @K+ (m+K)g —qrkK’
(m+ K)r + ()W

VI — K +2rm + K)J G —qrK

The local stability of N is described as follows.

79
(i) If0 < h < hy, then Nf Eocally asymptotically stable.
(ii) If h = hy, then Ni" is unstable.
(iii) If h = hy and
.
(ifi.a) if h = 1, then Ny is locally asymptotically stable,
and

(iii.b) if h < 1, then N} is unstable.

Proof 1t is obvious to show that

FNFy =1+ n{!—;«) [— (T‘X{m + K)2r + 3(g* — q)
+%{m + K)(g* — q}rK)
L{m + K)2r + ;{m + K)J(g* = girK — (mr + q}]

=1- J\n1+a)[ (g* —g)K + (m + K)/(g* —g)/rK
=1 - h" 2KT(14a)
- KT({T+a) hY

_ h
=1- (ﬁ[) :
Hence, we have the following observations:

(i) For 0 <= h < hy, we have |j"(Ni")| < 1. According
to Theorem 1, the nonzero fixed point Ny is locally
asymptotically stable.

(ii) If h > hi, then we get f'(N7) < —1. Thus, N} is an
unstable fixed point (see to Theorem 1).

(ii1) Clearly that j"(Ni") = —1 whenever h =y,
which shows that N is nonhyperbolic fixed point. The
Schwarzian derivative of f(N) at N is given by

: _ ar? 3 " +K)r
SPN) = 1"(1!+0') [ 5 } Tz [_ 1"(1!+0') [wa K i
2
+& /G —q)K]

rh® .
KT (11a) [(” - u\ r‘lw)} [on + K)r

+63/1q" — K]’

We can easily check that if /i > 1then 9@;‘) < 1 and
if i < 1 then Sf (N"‘) = 1. Therefore, the stability of
@nonhypcrbolic fixed point is explained. Finally, allof
the stability conditions of fixed point N|" are completely
determined.

]

) . VT gk
Theorem 10 The nonzero fixed point Ny = —M

is always unstable.

m+K
2

Proof To investigate the stability of N, we evaluate f'(N)
at N¥:

, F—g)h® [ (m+ K)Jr
Fh =149 -9 {( )f_z]
2 Tl+a) [V -9k
By simple algebraic manipulations, we can show that
(m+l\)f

= 2. Thus, f (N53) is always a positive constant,
m f ( ‘J) ¥ Pc ;
which means N3 is always an unstable fixed point. 0

4.3 Bifurcation analysis

From the previous analysis, we have a nonhyperbolic ﬁﬂ]
point N* when ¢ = ¢", indicating the possibility of the
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occurrence of saddle-node bifurcation. Moreover, the occur-
rence of period-doubling bifurcation is also indicated around
@ nonhyperbolic fixed point N{* when hy. Thus,
in this section, we study the existence of saddle-node and
period-doubling bifurcations. The saddle-node bifurcation
is a phenomenon that two fixed points with opposite signs
of stability merge into a unique semistable fixed point and
finally disappear when a parameter is varied, while the
period-doubling bifurcation is a phenomenon that a single
fixed point losses its stability accompanied by the emergence
of a period-2 solution when a parameter is varied [46]. As
results, we have Theorems 11, 12.

Theorem 11 The nonzero fixed point N* undergoes a saddle-

node bif'mc‘mi(m when g crosses the critical values g% =
(m— l\) r
1K

Proof It was shown previously that N* does not exist if

g = g*. When ¢ = ¢*, we have a semistable fixed point
N*;if ¢ < ¢", then there exists two nonzero fixed points. By

. - i 1 *

straightforward calculations, we have r”;,:,{ ANT) =1, AN
h m+K a2 SN (m+l\)rh .
T 0, and aNT KT(1+a) i,

according to Theorem 4, the fixed point N* undergoes a
saddle-node bifurcation when g crosses the critical values

* (m—K)2r
4 = —Ix

because

. Moreover, the fixed points exist wheng < ¢*
AFINT) B2F N
i T =

Theorem 12 The nonzero fixed point N undergoes a period-

doubling bifurcation when h crosses the critical value hy =
of KT (1+a)

V 2g* —g) K +Hm+K) g —qrK "

Proof From the proof of Theorem 9, we have that if 1 = /|

afNG) . .
then - T —1. By performing some algebraic calcula-

tions, we ‘11‘;() have

Bz‘f'(Ni") ah g NS —q)JK
dhaN ~ (1l +a) |i ( )
2 fm+K (g* —girkK m
(-3 (5 ) )

K
reh®! /fm4+ K g* —qirk (9
()

Tl +a) B r
(3«/(‘?* —q)rK)
K r ’

q FiaE

Nl* exists if g # g™, and thus, we have % = (. Accord-
ing to Theorem 5, there alp@s a solution of period-2 when /1
passes through /1. Hence, the occurrence of period-doubling

bifurcation in the map (9) is completely proved. 0

Theorem 12 states that the period-doubling bifurcation
in the map (9) can be achieved by varying the step size h.
However, such bifurcation can also be realized by setting a
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fixed value of /i and other parameters while varying a cerla
parameter. In the following section, we give an example of
period-doubling bifurcation which is driven by the constant
of harvesting (g).

5 I‘lumerical results

In this sectip) we present some numerical simulations of
the map (9) not only to support the previous analytical find-
ings but also to show more dynamical behaviors of the map
(9). Numerical simulations are given by considering some
biological and mathematical aspe
the harvesting, the step size (),

such as the influence of
e Allee effect (m), and
the order . To support the numerical simulations, a desktop
PC is used based on AMD Ryzen 5 3400 G 3.7GHz, 16 GB
RAM, and AMD Radeon RX580 8GB DDRS5 VGA card.
We also use an open-source software called Python 3.9 to
generate all of the given figures. Due to the field data limita-
tion, we use hypothetical parameter values for the numerical
simulations. General parameter values are given as follows.

r=145 K=10, m=0.1, ¢ =032, o = 0.8,
and h = 0.4. (15)

5.1 The influence of the Harvesting Rate

The numerical simulations in this subsection are using
parameter set (15) and vary the value of the harvesting
rate (g). According to Theorem 6, map (9) with parame-
ter set (15) has Clmll value g* = 3.5527 such that map
(9) does not halm nonzero fixed point if g > g*. When
g = q*, map (9) has a unique nonzero fixed point N* = 5.05
which is a semistable fixed point, see Theorem 8. Further-
more, if ¢ < ¢*, then there are two nonzero fixed points,
namely N and N3. By taking # = 0.4 and using The-
orem 9, we can show that N[ is asymptotically stable if
g1 = 3.0191 = g < g"*. On the other hand, Theorem 10
states that N; 15 alwa mstable. Since we take h = 0.4,
Theorem 12 states that the fixed point N{ undergoes a period-
doubling bifurcation when g crosses g from the right. To
see these dynamical behaviors, we plot in Fig. 1a the bifur-
cation diagram of the map 9 with parameter set (15) and
h =04for 2415 = g = 3. early that this bifurca-
tion diagram fits perfectly with the results of our previous
analysis. Indeed, Fig. la shows that N* (labeled as [a]) is
semistable, see also the Cobweb diagram shown in Fig. 2a.
As the value of g decreases from g*, the nonzero fixed point
is split into two nonzero fixed points where one of them is
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Fig. 1 ﬁlmmion diagram and

its corresponding maximum
Lyapunov exponents of the map
(9) with parameter set (15) and
2415 =g = 3.7

=== unstable fixed point

—— stahle fixed point

-
2.415 2600 2800 2.000 3,200 3.553
q
(a.E Bifurcation diagram
Y Ty
Be W
= ] \ S
2 - |
& ]
I
L-I-;l \
= e
g9
B
=0
3
27 \
=
= ' v T ' v '
2.6 2.8 3.0 5.2 3.4 3.6

stable in the specified interval of g, while the other fixed point
is unstable. Such stability properties can also be seen in the
Cobweb diagrams in Fig. 2b, ¢, which corresponds to points
[b] and [c] in Fig. la, respe ly. We also observe numer-
ically the appearance of a period-doubling route to chaos
(flip bifurcation) as g decreases. If we further decrease the
value of g, then there appears a stable solution of period-
2 when g passes through g;. The appearance of a stable
period-doubling solution, as well as a solution of period-3,
is shown in Fig.la (see, e.g., point [d], [e], and [f], respec-
tively, and their corresponding diagram Cobweb in Fig. 1d,
e, and bif1f). The appearance of the period-3 solution indi-
cates that our system exhibits chaotic dynamics [47]. The
existence of chaotic dynamics can also be determined from
the Lyapunov exponent. A system exhibits chaotic dynamics
if it has positive maximum Lyapunov exponents. The max-
imum Lyapunov exponents which correspond to Fig. la are
depicted in Fig. 1b. It is clearly seen that our system has pos-
itive maximum Lyapunov exponents, showing the existence

(b) Maximum Lyapunov exponents

of chaotic dynamics in the map (9) which is controlled by
the constant of harvesting (g ).

5.2 The influence of the step size

To describe the existence of period-doubling bifurcation
driven by the step size i numerically, we perform simula-
tions using the parameter set 15 and 0.5 = i < 0.985. Map
(9) with these parameter values has two nonzero fixed points,
namely N = 6.61 and NJ ~ 3.49. NJ is unstable while N
1s stable if 0 = h = h; = 0.553. Ni" losses its stability
via period-dom]g bifurcation when 5 crosses f1). These
dynamics are seen in the bifurcation diagram, see Fig. 3a.
Increasing the value of & may destroy the stability of N{, and
the system is convergent to a stable period-2 solution. Further
increasing the value of /1 leads to a stable period-4 cycle, and
so on. To give a more detailed view, we plot Cobweb dia-
grams in Fig. 4 which correspond to some solutions around
the ﬁpcinls labeled as [g-1] inFig. 3a. When /i = 0.7, we
have a stable period-2 cycle near the nonzero fixed point [g],
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Fig.2 Cobweb diagrams of the

. 6.0 T
map (9) with parameter set (15) ' 670
5.5
.65
[b]
T a0 i
= [a] REIE
= =
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see Fig. 4a. Each of the two solutions splits into two solutions,
respectively, and becomes a stable period-4 solution around
fixed point [h] when i = 0.74 (Fig.4b): consecutively, for
h = 0.765 we have a stable period-8 cycle near fixed point
[i], see Fig.4c. Moreover, at i = 0.838, 0.883, 0.889 we
have, respectively, a stable period-5 cycle around fixed point
[1]. a stable period-3 cycle around fixed point [k], and a sta-
ble period-6 cycle around fixed point [1], see their Cobweb

@ Springer

diagrams in Fig.4d, e, and f. Hence, the step size /i is an
important parameter that significantly affects the @ffamics
of the map (9). In this case, the map (9) exhibits a period-
doubling bifurcation route to chaos driven by parameter /1.
Furthermore, the appearance of positive maximum Lyapunov
exponents depicted in Fig. 3b which cm‘resp?s to the bifur-
cation diagram in Fig.3a clearly shows the existence of
chaotic behavior in the system.
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5.3 The influence of the Allee effect

To show the influ@e of the Allee effect, we use the param-
eter set (15) and vary the values of m in the interval 0 <
m = 2.5.From Eq. 13, we compute numerically that N|" and
N. ; exist for interval 0 < m é 0.6045. Based on Theorems
8.9,10, the stability of Ni" and Ni" has the different sign for
0 < m < 0.6045 and finally merge into a semistable fixed
point N* 2 5.29671 when m = 0.6045. When m crosses
0.6045, N* disappears and Nj becomes the cﬂy fixed point
of the map (9). These phenomena indicate the occurrence
of saddle-node bifurcation driven by the Allee effect (m).
According to Theorems 7, we also have that Ny is locally
asymptotically stable for m < 0.467 and losses its stability
via period-doubling bifurcation when m crosses (0.467. These
complex dynamics are shown in Fig. 5a and its corresponding
maximum Lyapunov exponents are depicted in Fig. 5b which
confirms the existence of chaotic behavior on the map (9).
One interesting condition is also shown for some values of
m. For 0 = m < 0.467, the map (9) passes through a bista-

(b) Maximum Lyapunov exponents

bility condition. NJ and N are locally asymptotically stable
simultaneously, and hence, the solution of the map is sensi-
tive to the initial value. See the Cobweb diagrams in Fig. 6.
When m = 0.3, two nearby initial values are convergent
to different fixed points. When the Allee effect increases to
m = 1, the solution converges to a period-2 solution around
N*

0

5.4 The influence of the order a

As the impact of the discretization process, we have a param-
eter @ on map (9) which is derived from the order of the
derivative of the continuous model as the memory effect.
Again, we use lhlmmeler set (15) and varying . As
result, we have a bifurcation diagram and maximum Lya-
punov exponents depicted in Fig.7. The given dynamics are
quite similar to the impact of the step size but in differ-
ent directions. If increasing i may change the dynamics of
N from locally asymptotically stable to periodic solution
via period-doubling bifurcation, different dynamics direction

@ Springer
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Fig.4 Cobweb diagrams of the
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presented by o where if its value increases, the unstable Ny
becomes locally asymptotically stable via period-doubling
bifurcation. Some chaotic behaviorindicated by positive Lya-
punov exponents disappears becomes periodic orbits and is
finally convergent to N* when « crosses 0.5708.

@ Springer

6 Hybrid control strategy

In this section, a mmd, namely the hybrid control strategy,
is presented. This method is a combination of state feed-
back and parameter perturbation which is used for controlling
bifurcationin a discrete system [48-51]. We firstdefine a map
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Fig. 7 Bifurcation diagram and
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(9) as follows. that by setting § and varying /1, the occurrence of period-
doubling bifurcation can be delayed or eveneliminated. From
Nn+1 =f(Nne€)e (16)

42

gcrc N € R is the population density and F(N,, ¢) is the
right-hand side of map (9) with bifurcation parameter { € IR,
It can be revisited from analytical and numerical results that
mtn h and g are varies in some range, the map (9) passes
through a series of period-doubling bifurcations where the
route to chaos. By obeying state feedback and parameter
perturbation to the map (9), we obtain the control map as
follows.

62

Npp1 = Bf(Np. £) + (1 = BNy = F(N, f). (a7

where § € [0, 1] denotes the external control parameter for
map (17). We can easily show that the map (9) and (17) have
similar fixed points. From Theorem 12, N is the fixed point
which undergoes a period-doubling bifurcation. Particularly,
from Theorem 1 in [51], the m-periodic orbit of control map
(17) 1s also similar to the original map (9). Now, we will show

@ Springer

the control map (17), we have F'(Nl*) =1-28 (!‘:—’l)a and
%ﬁ = WL_ < (. According to Theorem 5, the con-
trol map (17) also undergoes period-doubling bifurcation for
the similar fixed point with map (9). The difference lies in
the bifurcation point where the map (9) is i = h; while
the control map (17) is h = % This means if B decreases
then the bifurcation point increase which memﬂhe series of
periodic solutions are delayed. For example, by setting the
parameter values asin Eq. 15and 8 = 0.64, 0.76, 0.88, 1, the
occurrence of bifurcation is delayed and period-3 solutions
disappear. See Fig. 8a. We also check the chaotic solution
near the period-3 solution. For i = (.887, three quite close
initial conditions N(0) = 6, 6.001, 6.002 is given and por-
tray the solutionsin Fig. 8b. The chaotic interval which occurs
for § = 1 becomes a periodic solution for § = 0.76, 0.88,
and finally, converges to N|" when § = 0.64.

B2FINE)
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Fig. 8 Biturcation diagrams of controlled map (17)

7 Conclusion

A discrete-time fractional-order logistic model with the Allee
effect and proportional harvesting has been constructed and
investigated dynamically. The discrete-time model is derived
by applying the PWCA method to the Caputo fractional-order
modified logistic model. The local stability for each fixed
point is successfully investigated completely for hyperbolic
and nonhyperbolic fixed points by obeying the stability the-
orem along with the Schwarzian derivative. Furthermore, it
was shown analytically that the obtained discrete-time model
exhibits a saddle-node bifurcation as well as period-doubling
bifurcation. The key parameter in such bifurcations is the
constant of harvesting (g) or the step size (/). Numerical
simulations with varying parameters ¢ and /i confirm our

|
o O 10 20 an 40 Lit}]

s for h = 0.877

analytical results. The dyn@$fs of the map are also stud-
ied numerically by Vill"\'il]g Allee threshold (m) and the
order & which also give the saddle-node and period-doubling
bifurcations. lherm()re, the presented numerical results
also showed the existence of period-doubling route chaos
which is indicated by the positive Lyapunov exponents and
the appearance of period-3 window. We then construct the
control b;l on the hybrid control strategy method. It is
shown that the occurrence of period-doubling can be delayed.
The occurrence of the chaotic solution is also successfully
eliminated when the control parameter is decreased.

ﬁhor Contributions All authors contributed equally to this article.
They read and approved the final manuscript.

@ Springer




H.S.Panl‘garagal.

Funding The work of Hasan 8. Panigoro was funded by LPPM-UNG
via PNBP-Universitas Negeri Gorontalo according to DIPA-UNG No.

023,

The

17.2.677521/2021,u
work of A gus Suryanto was funded by FMIPA via PNBP-University
rawijayaaccording to DIPA-UB No. DIPA-023.17.2.677512/2020,

uger contract No. 1 2ZUN10.FI9/PN/2020.

Data availability Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest All authors declare that they have no conflict of
interest.

References

b

10.

. Huang J, Liu S, Ruan 8, Xiao D (2018) Bifurcations in a dis-

crete predator-prey model with nonmonotonic functional response.
J Math Anal Appl 464(1):201-230. https://doi.org/ 10.1016/j.jmaa.
2018.03.074

. Santra PK, Mahapatra GS (2020) Dynamical study of discrete-tme

prey-predator model with constant prey refuge under imprecise
biological parameters. J Biol Syst 28(03):68 1-699. https://dol.org/
10.1142/502183390205001 14

. Singh A, Deolia P (2020) Dynamical analysis and chaos control in

discrete-time prey-predator model. Commun Nonlinear Sci Numer
Simul 90:10531 3. https://doi.org/10.1016/j .cnsns.2020.105313

. Ackleh AS, Hossain MI, Veprauskas A, Zhang A (2020) Long-

term dynamics of discrete-time predator-prey models: stability of
equilibria, cycles and chaos. J Differ Equ Appl. https://doi.org/10.
10BO/10236198 2020, 1786818

. Alzabut J, Selvam AGM, Dhakshinamoorthy V, Mohammadi H,

Rezapour 8§ (2022) On chaos of discrete time fractional order
host-immune-tumor cells interaction model. J Appl Math Comput.
https://doi.org/10.1007/512190-022-01715-0

. Kartal S, Gurcan F (2019) Discretization of conformable frac-

tional differential equations by a piecewise constant approximation.
Int J Comput Math 96(9):1849-1860. https://doi.org/10. 1080/
00207160.2018.1536782

. Nosrati K, Shafiee M (201 8) Fractional-order singular logistic map:

stability, bifurcation and chaos analysis. Chaos Solitons Fractals
115:224-238. https://doi.org/10.1016/j chaos. 2018.08.023

. Wu GC, Baleanu D (2014) Discrete fractional logistic map and its

chaos. Nonlinear Dyn 75(1-2):283-287. https://dol.org/10.1007/
s11071-013-1065-7

. Ji YD, Lai L, Zhong SC, Zhang L {2018) Bifurcation and chaos

of a new discrete fractional-order logistic map. Commun Nonlin-
ear Sci Numer Simul 57:352-358. https://doLorg/ 10.1016/j.cnsns.
2017.10.009

Munkhammar J (2013) Chaos in a fractional order logistic map.
Fract Calc Appl Anal 16(3):511-519. https://dol.org/10.2478/
s13540-013-0033-8

. Panigoro HS, Rahmi E (2021) The dynamics of a discrete

fractional-order logistic growth model with infections dis-
ease. Contemp Math Appl 3(1):1-18. https://dol.org/10.20473/
conmatha.v3il.26938

. Allen LIS (1994) Some discrete-time S5I, SIR, and SIS epi-

demic models. Math Biosci 124(1):83-105. https://doi.org/10.
1016/0025-5564(94)90025-6

@ Springer

ntract No. B/176/UN47.DI/PT.01.03/2022.

13.

20.

30.

. Ernawati

ShiR, Chen L (2007) Stage-structured impulsive SI model for pest
management. Discret Dyn Nat Soc. https://dol.org/10.1155/2007/
08
igoro HS, Rahmi E, Achmad N, Mahmud SL, Resmawan R,
a AR A discrete-time fractional-order R welg-Macarthur
predator-prey model involving prey refuge. Commun Math Biol
Neurosci. https://doi.org/10.28919/cmbn/63586
arti 1 (2015) Stability analysis of the euler dis-
zation for the harvesting Leslie-Gower predator-prey model.
J Pure Appl Math 105(2):213-221. https://doi.org/10.12732/
ijpam.v105i2.8

. Yousef F, Semmar B, Al Nasr K (2022) Dynamics and simulations

of discretized Caputo-conformable fractional-order Lotka-Volterra
models. Nonlinear Eng 11(1):100-111. https://dol.org/10.1515/
nleng-2022-0013

. Shabbir MS, Din Q, Alabdan R, Tassaddiq A, Ahmad K (2020)

Dynamical complexity in a class of novel discrete-time predator-
prey interaction with cannibalism. IEEE Access 8: 100226-100240.
https://doi.org/ 10.1 109/ ACCESS.2020.2995679

. Zhao M, Xuan Z, Li C (2016) Dynamics of a discrete-time

predator-prey system. Differ Equ. https://doi.org/10.1186/513662-
016-0903-6

. Hu D, Cao H (2015) Bifurcation and chaos in a discrete-time

predator-prey system of holling and leslie type. Commun Nonlin-
ear Sci Numer Simul 22(1-3):702-715. https://dol.org/ 10.1016/].
cnsns.2014.09.010

Parsamanesh M, Erfanian M, Mehrshad S (2020) Stability and
bifurcations in a discrete-time epidemic model with vaccination
and vital dynamics. BMC Bioinform 21(1):1-15. https://doi.org/
10.1186/s12859-020-03839-1

. Santra PK (2021) Fear effect in discrete prey-predator model

incorporating square root functional response. Jambura J Biomath
2(2):51-57. https://doi.org/10.34312/jjbm.v2i2. 10444

. Tassaddig A, Shabbir MS, Din Q, Ahmad K, Kazi S (2020} A ratio-

dependent nonlinear predator-prey model with certain dynamical
results. IEEE Access 8:1-1. https://dol.org/10.1109/access. 2020.
3030778

. Suryanto A, Darti I (2017) Stability analysis and nonstandard

Griinwald-Letnikov scheme for a fractional order predator-prey
model with ratio-dependent functional response. In: AIP confer-
ence proceedings, vol 1913, https://doi.org/ 10.1063/1.50 16645

. Dang QA, Hoang MT (2019) Nonstandard finite difference

schemes for a general predator-prey system. J Comput Sci
36:101015. https://doL.org/ 10.1016/).jocs.2019.07.002

. Diethelm K, Ford NI, Freed AD (2002) A predictor-corrector

approach for the numerical solution of fractional differential equa-
tions. Nonlinear Dyn 29(1-4):3-22. https://doi.org/ 10.1023/A:
1016592219341

. Arciga-Alejandre MP, Sanchez-Ortiz J, Ariza-Hernandez FI,

Catalan-Angeles G (2019) A multi-stage homotopy perturba-
tion method for the fractional Lotka-Volterra model. Symmetry
11(11):1-9. https://doi.org/10.3390/sym11111330

. Atta AG, Youssri YH (2022) Advanced shifted first-kind Cheby-

shev collocation approach for solving the nonlinear time-fractional
partial integro-differential equation with a weakly singular kernel.
Comput Appl Math 41(8):381. https://dol.org/ 10.1007/540314-
022-02006-7

. Abd-Elhameed WM, Youssri YH (2022) Spectral tau solution of

the linearized time-fractional KdV-Type equations. AIMS Math
T(8):15138-15158. https://doi.org/10.3934/math. 2022830

. El-Sayed AMA, Salman SM (2013) On a discretization process

of fractional order Riccati ditferential equation. J Fract Cale Appl
4(2):251-259

Agarwal RP, El-Sayed AMA, Salman 5M (2013) Fractional-order
Chua’s system: discretization, bifurcation and chaos. Adv Differ-




Bifurcation and chaos in a discrete-time...

3L

33.

34.

35.

36.

37.

38.

39.

40.

41.

ence Equ 2013(1):320. https://doi.org/10.1 186/ 1687-1847-2013-
320

Kartal 8, Gurcan F (2015) Stability and bifurcations analysis of a
competition model with plecewise constant arguments. Math Meth-
ods Appl Sci 38(9):1855-1866. https://dot.org/10.1002/mma.3 196

. El-Shahed M, Ahmed AM, Abdelstar IME (2017} Stability and

bifurcation analysis in a discrete-time predator-prey dynamics
model with fractional order. TWMS 1. Pure Appl. Math. 83—
96(1):83-96

El-Shahed M, Nieto 1], Ahmed A, Abdelstar I (2017) Fractional-
order model for biocontrol of the lesser date moth in palm trees
and its discretization. Adv Difference Equ 2017(1):295. htps://
doi.org/10.1186/513662-017-1349-1

Abdeljawad T, Al-Mdallal QM, Jarad F (2019) Fractional logistic
models in the frame of fractional operators generated by con-
formable derivatives. Chaos Solitons Fractals 119:94-101. hitps://
doi.org/10.1016/j.chaos. 2018.12.015

Berec L, Angulo E, Courchamp F (2007) Multiple Allee effects and
population management. Trends Ecol Evol 22(4): 185-191. https://
doi.org/10.1016/]j.tree. 2006.12.002

Dennis B (1989) Allee effects: population growth, critical density,
and the chance of extinction. Nat Resour Model 3(4):481-538.
https://doi.org/10.1111/j.1939-7445. 1989.tb001 19.x

Abbas S, Banerjee M, Momani S (2011) Dynamical analysis
of fractional-order modified logistic model. Comput Math Appl
62(3):1098—1104. https://doi.org/ 10.1016/j.camwa.2011.03.072
Liu X, Fan G, Zhang T (2019) Evolutionary dynamics of single
species model with Allee effect. Phys A Stat Mech Appl. hitps://
doi.org/10.1016/j.physa.2019.04.010

Boukal DS, Berec L {2002) Single-species models of the Alee
effect: extinction boundaries, sex ratios and mate encounters.
J Theor Biol 218(3):375-394. https://doi.org/10.1006/jtbi.2002.
3084

Suryanto A, Darti I, Anam § (2017) Stability analysis of a frac-
tional order modified leslie-gower model with additive Allee effect.
Int J Math Math Sci 2017(0):1-9. https://doi.org/10.1155/2017/
8273430

Allee WC (1931) Animal aggregations, a study in general sociol-
ogy. The University of Chicago Press, Chicago

. Courchamp F, Berec L, Gascoigne J(2008) Allee effects in ecology

and conservation. Oxford University Press, New York

43,

45.

47.

48.

49,

50.

51,

Panigoro HS, Rahmi E (2022) Impact of fear and strong
Allee effects on the dynamics of a fractional-order Rosenzweig-
Macarthur model. In: Banerjee S, Saha A (eds) Nonlinear dynamics
and applications. Springer, Cham, pp 611-619

. Panigoro HS, Rahmi E, Suryanto A, Darti I (2022) A fractional

order predator-prey model with strong allee effect and michaelis-
menten type of predator harvesting. In: AIP conference proceedings
vol 2498(1), p 020018 https:/aip scitation.org/doi/pdt/ 10.1063/5.
0082684, https://dol.org/ 10.1063/5.0082684

Matignon D( 1996) Stability results for fractional differential equa-
tions with applications to control processing. In: Computational
engineering in systems applications, p 963-968

. Elaydi SN (2007 Discrete chaos: with applications in science and

engineering, 2nd edn. Chapman and Hall/CRC, Boca Raton
LiT-Y, Yorke JA (1975) Period three implies chaos. Am Math Mon
B2(10):985. https://doi.org/10.2307/2318254

Chakraborty P, Sarkar S, Ghosh U (2021) Stability and bifurcation
analysis of a discrete prey-predator model with sigmoid functional
response and Allee effect. Rend del Circ Mat di Palermo 70(1):253—
273, hitps://doi.org/10.1007/512215-020-00495-5

Yuan LG, Yang QG (2015) Biturcation, invariant curve and hybrid
control in a discrete-time predator-prey system. Appl Math Model
39(8):2345-2362. https://doi.org/ 10.1016/j.apm.2014.10.040

Lin Y, Din @, Rafagat M, Elsadany AA, Zeng Y (2020)
Dynamics and chaos control for a discrete-time Lotka-Volterra
model. IEEE Access 8:126760-126775. https://doi.org/10.1109/
ACCESS.2020.3008522

Luo XS, Chen G, Wang BH, Fang JQ (2003) Hybrid control of
period-doubling bifurcation and chaos in discrete nonlinear dynam-
ical systems. Chaos Solitons Fractals 18(4):775-783. https://doi.
org/ 10 1016/50960-0779(03 )00028-6

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer




Bifurcation and chaos in a discrete-time fractional-order

logistic model with Allee effect and proportional harvesting

ORIGINALITY REPORT

21+ 8« 196 Ay

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Qamar Din, Waqas Ishaque, Muhammad Asad
Igbal, Umer Saeed. "Modification of
Nicholson-Bailey model under refuge effects
with stability, bifurcation, and chaos control”,
Journal of Vibration and Control, 2021

Publication

T

Submitted to Athens University of Economics

and Business
Student Paper

T

"Bifurcations", Textbooks in Mathematical
Sciences, 1996

Publication

(K

Hasan S. Panigoro, Emli Rahmi, Resmawan
Resmawan. "Bifurcation analysis of a
predator-prey model involving age structure,
intraspecific competition, Michaelis-Menten
type harvesting, and memory effect",
Frontiers in Applied Mathematics and
Statistics, 2023

Publication

T




www.slideshare.net
Internet Source <1 0/0
res.mdpi.com
H InternetSouE)ce <1 %
core.ac.uk
Internet Source <1 %
B Submitted to Chester College of Higher <1 )
. %
Education
Student Paper
n Albert C. J. Luo. "Regularity and Complexity in <1 )
H ] H H /0
Dynamical Systems", Springer Science and
Business Media LLC, 2012
Publication
Kshirod Sarkar, Biswajit Mondal. "Dynamic <1
. . %
analysis of a fractional-order predator-prey
model with harvesting", International Journal
of Dynamics and Control, 2022
Publication
Submitted to University of Readin
Student Paper y g <1 %
Chaos, 1994.
Publication <1 %
Feras Yousef, Billel Semmar, Kamal Al Nasr. <1 o

"Dynamics and simulations of discretized
Caputo-conformable fractional-order Lotka-
Volterra models", Nonlinear Engineering, 2022



Publication

Maya Rayungsari, Agus Suryanto, Wuryansari <1 y
Muharini Kusumawinahyu, Isnani Darti. ’
"Dynamical Analysis of a Predator-Prey Model
Incorporating Predator Cannibalism and
Refuge", Axioms, 2022
Publication
Submitted to Universidad EAN

Student Paper <1 %
Irfan Ali, Umer Saeed, Qamar Din. "Bifurcation

: . . , <l%
analysis and chaos control in a discrete - time
plant quality and larch budmoth interaction
model with Ricker equation", Mathematical
Methods in the Applied Sciences, 2019
Publication
Zai-Yin He, Abderrahmane Abbes, Hadi

o Y < | %
Jahanshahi, Naif D. Alotaibi, Ye Wang.
"Fractional-Order Discrete-Time SIR Epidemic
Model with Vaccination: Chaos and
Complexity", Mathematics, 2022
Publication
www.scilit.net

Internet Source <1 %
einstein.drexel.edu

Internet Source <1 %

Hasan S. Panigoro, Resmawan Resmawan, <1 %

Amelia Tri Rahma Sidik, Nurdia Walangadi,



Apon Ismail, Cabelita Husuna. "A Fractional-
Order Predator-Prey Model with Age
Structure on Predator and Nonlinear
Harvesting on Prey", Jambura Journal of
Mathematics, 2022

Publication

Qamar Din, Muhammad Arfan Zulfigar. <1 o
"Qualitative behavior of a discrete predator- ’
prey system under fear effects", Zeitschrift fur
Naturforschung A, 2022
Publication

Xiaojun Liu, Dafeng Tang. "Bifurcation and <1 o
synchronization of a new fractional-order ’
system", International Journal of Dynamics
and Control, 2021
Publication
mdpi.com

InternE)tSource <1 %
Www.iaees.or

Internet Source g <1 %
"Nonlinear Dynamical Systems with Self-

| | - < 1w
Excited and Hidden Attractors", Springer
Science and Business Media LLC, 2018
Publication

Yiheng Wei, Qing Gao, Da-Yan Liu, Yong Wang. <1 %

"On the series representation of nabla
discrete fractional calculus", Communications



in Nonlinear Science and Numerical
Simulation, 2019

Publication

archive.or
Internet Source g <1 %
"Advances in Memristors, Memristive Devices <']
: . . %
and Systems", Springer Science and Business
Media LLC, 2017
Publication
Hossglnjafarl, Nematollgh Kad'khoda, <'] o
Dumitru Baleanu. "Fractional Lie group
method of the time-fractional Boussinesq
equation", Nonlinear Dynamics, 2015
Publication
Kehui Sun, Shaobo He, Huihai Wang. "Solution <1 o
and Characteristic Analysis of Fractional- ’
Order Chaotic Systems", Springer Science and
Business Media LLC, 2022
Publication
Mengya Geng, Dawei Ding, Han Wang, Jinyang <1 o

Huang, Jingwei w, Haiyan Wang. "Hybrid
Control of Bifurcation and Chaos in Dynamic
Model of Compound TCP under RED",
International Journal of Computer and
Communication Engineering, 2016

Publication




Sayooj Aby Jose, Raja Ramachandran, Dumitru <1 o
Baleanu, Hasan S. Panigoro, Jehad Alzabut, ’
Valentina E. Balas. "Computational dynamics
of a fractional order substance addictions
transfer model with Atangana - Baleanu -

Caputo derivative", Mathematical Methods in

the Applied Sciences, 2022

Publication

faculty.up.edu 1

Internet S%)/urceP < %
journals.itb.ac.id /

-Ilnternet Source < %

Adyan M. Malik, Osama H. Mohammed. "Two <'I

. : : %
efficient methods for solving fractional Lane-
Emden equations with conformable fractional
derivative", Journal of the Egyptian
Mathematical Society, 2020
Publication

Hasan S. Panigoro, Emli Rahmi. "Chapter 50 <1 o
Impact of Fear and Strong Allee Effects on the ’
Dynamics of a Fractional-Order Rosenzweig-
MacArthur Model", Springer Science and
Business Media LLC, 2022
Publication

Mahmoud A. M. Abdelaziz, Ahmad Izani <'I o

Ismail, Farah A. Abdullah, Mohd Hafiz Mohd.
"Discrete-Time Fractional Order SIR Epidemic



Model with Saturated Treatment Function",
International Journal of Nonlinear Sciences
and Numerical Simulation, 2020

Publication

Submitted to Xianjiatong-Liverpool Universit
Student Paper J g p y <1 %
Alexander |. Smirnov, Vladimir D. Mazurov. <1 y
"Chapter 13 Conditions fortheFixed Points ’
Existence ofLocally Indecomposable
Subhomogeneous Maps", Springer Science
and Business Media LLC, 2022
Publication
Shien Wang, Zedong Zheng, Chi Li, Lie Xu, Kui <1 o
Wang, Yongdong Li. "Accurate frequency- ’
domain analysis and hybrid control method
for isolated dual active bridge series resonant
DC/DC converters", IET Power Electronics,
2019
Publication
cmde.tabrizu.ac.ir
Internet Source <1 %
Fiaz M Taylor. "Allee effects in biological <1 o
invasions", Ecology Letters, 8/2005
Publication
Hasan S. Panigoro, Agus Suryanto, <1 %

Wuryansari Muharini Kusumawinahyu, Isnani
Darti. "Dynamics of an Eco-Epidemic



Predator-Prey Model Involving Fractional
Derivatives with Power-Law and Mittag-
Leffler Kernel", Symmetry, 2021

Publication

Sahar Mohammad A. Abusalim. "SOLUTIONS <1 o
OF FRACTIONAL HYBRID DIFFERENTIAL 0
EQUATIONS VIA FIXED POINT THEOREMS AND
PICARD APPROXIMATIONS", Advances in
Differential Equations and Control Processes,

2022
Publication
backend.orbit.dtu.dk

Internet Source <1 %
edepot.wur.nl

InterneFt)Source <1 %
orca.cf.ac.uk

Internet Source <1 %
unsworks.unsw.edu.au

Internet Source <1 %

AZMY S. ACKLEH, Md. Istiag Hossain, Amy <1 o

Veprauskas, Aijun Zhang. "Chapter 6
Persistence of a Discrete-Time Predator-Prey
Model with Stage-Structure in the Predator",
Springer Science and Business Media LLC,
2020

Publication




Amy N. Langyville, Carl D. Meyer. "Who's #17", <1 o
Walter de Gruyter GmbH, 2012 ’
Publication

Anatasya Lahay, Muhammad Rezky Friesta <1 o
Payu, Sri Lestari Mahmud, Hasan S Panigoro, ’
Perry Zakaria. "Dynamics of a predator-prey
model incorporating infectious disease and
quarantine on prey", Jambura Journal of
Biomathematics (J)JBM), 2022
Publication

Md Ramjan Ali, Santanu Raut, Susmita Sarkar, <'] o
Uttam Ghosh. " Unraveling the combined
actions of a Holling type predator - prey
model incorporating Allee response and
memory effects ", Computational and
Mathematical Methods, 2020
Publication

Miao Peng, Zhengdi Zhang, C. W. Lim, Xuedi <1 o
Wang. "Hopf Bifurcation and Hybrid Control of ’
a Delayed Ecoepidemiological Model with
Nonlinear Incidence Rate and Holling Type Il
Functional Response", Mathematical
Problems in Engineering, 2018
Publication

Ofir Gorodetsky, Zahi Hazan. "On certain <1 o

degenerate Whittaker Models for cuspidal
representations of $${\mathrm{GL}_{k \cdot



n}\mathbb {F}_q)}$$GLk-n(FQq)",
Mathematische Zeitschrift, 2018

Publication

ouci.dntb.gov.ua
Internet Source g <1 %
WWW.twmsj.az
Internet Source J <1 %
i'Bifurce.ations of Fixed. Points of Maps", Texts <1 o
in Applied Mathematics, 2003
Publication
"Dynamical Systems, Bifurcation Analysis and
N . . . <l%
Applications", Springer Science and Business
Media LLC, 2019
Publication
Agus Suryanto, Isnani Darti, Syaiful Anam.
- . . <l%
"Stability Analysis of a Fractional Order
Modified Leslie-Gower Model with Additive
Allee Effect", International Journal of
Mathematics and Mathematical Sciences,
2017
Publication
E Aytul Gokge. "A dynamic interplay between <1 o

Allee effect and time delay in a mathematical
model with weakening memory", Applied
Mathematics and Computation, 2022

Publication




Eduardo Gonzalez-Olivares, Alejandro Rojas- <1 o
Palma. "Multiple Limit Cycles in a Gause Type ’
Predator-Prey Model with Holling Typelll
Functional Response and Allee Effect on
Prey", Bulletin of Mathematical Biology, 2010
Publication

Hgaping Huqng, Kastriot .Z,otof Zoran .D. <1 o
Mitrovi¢, Stojan Radenovic. "Fixed Point
Results for Generalized F-Contractions in b-

Metric-like Spaces", Fractal and Fractional,
2022
Publication

L?k:clsartglsciplinary Applied Mathematics, 2016. <1 o

Kou, Haijiang, angl Huiqun Yuar.w. "Rub-induced <1 o
non-linear vibrations of a rotating large
deflection plate", International Journal of Non-

Linear Mechanics, 2013.
Publication
Lacitignola, D.. "Time-dependent regimes of a

. . . <l%
tourism-based social-ecological system:
Period-doubling route to chaos", Ecological
Complexity, 201003
Publication

m Mourad E. H. Ismail, Zeinab S. I. Mansour. "g- <1 o

Analogs of Lidstone expansion theorem, two-
point Taylor expansion theorem, and



Bernoulli polynomials", Analysis and
Applications, 2019

Publication

Qamar Din, A. A. Elsadany, Hammad Khalil. <1 o
"Neimark-Sacker Bifurcation and Chaos
Control in a Fractional-Order Plant-Herbivore
Model", Discrete Dynamics in Nature and
Society, 2017
Publication

@ Qamar Din, Umer Saeed. "Bifurcation analysis <'I o
and chaos control in a host-parasitoid model",
Mathematical Methods in the Applied
Sciences, 2017
Publication

E Senada Kalabusic, Esmir Pilav. "The behavior <1 o
of a host-parasitoid model with host logistic ’
growth and proportional refuge",
International Journal of Biomathematics, 2023
Publication

Sheu, L.J.. "Chaotic dynamics of the <1 o
fractionally damped Duffing equation", Chaos, ’
Solitons and Fractals, 200705
Publication

Ufuktepe, Unal, Sinan Kapcak, and Olcay <1 o

Akman. "Stability and invariant manifold for a
predator-prey model with Allee effect",
Advances in Difference Equations, 2013.

Publication




Submitted to Universitas Brawijaya <1 o

Student Paper

Yeon-Pun Chang, Shoou-Chian Jen, Shun-Hsu <1 o
Tu, Shyh-Shyong Shyr, Yuan Kang. "Mode-
Locking, Quasi-Period and Chaos of Rotors
Mounted on Nonlinear Bearings",
International Journal of Rotating Machinery,
2000
Publication
Yongbao Liu, Qiang Wang, Huidong Xu. <1 o

"Analytical determination of bifurcations of
periodic solution in three-degree-of-freedom
vibro-impact systems with clearance", Chaos,
Solitons & Fractals, 2017

Publication

Z. He. "Bifurcation and chaotic behaviour of a ']

. . . . < | %
discrete-time variable-territory predator-prey
model", IMA Journal of Applied Mathematics,

12/01/2011
Publication
Zhanybai T. Zhusubaliyev. "Chaos in Pulse- <1
. %
Width Modulated Control Systems”,
Handbook of Chaos Control, 10/10/2007
Publication
cris.maastrichtuniversity.nl
Internet Source y <1 %

lipn.univ-paris13.fr



Internet Source

<1 %
WWWw.aimspress.com
Internet Source p <1 %
WWW.SCirp.or
E InternetSourcep g <1 %
E.H. Abed. "Robust control of period doubling <1
. . : — %
bifurcations and implications for control of
chaos", Proceedings of 1994 33rd IEEE
Conference on Decision and Control CDC-94,
1994
Publication
Emli Rahmi, Isnani Darti, Agus Suryanto, <1
. . e . %
Trisilowati. "A Modified Leslie-Gower Model
Incorporating Beddington-DeAngelis
Functional Response, Double Allee Effect and
Memory Effect", Fractal and Fractional, 2021
Publication
G MIANO. "Qualitative Analysis of an Ideal <1 o
Two-Conductor Line Connected to Nonlinear ’
ResistorsPeriodic Solutions, Bifurcations, and
Chaos", Transmission Lines and Lumped
Circuits, 2001
Publication
¥ He, Z.. "Bifurcation and chaotic behavior of a <1 o

discrete-time predator-prey system",



Nonlinear Analysis: Real World Applications,
201102

Publication

Josep Sardanyes, Regina Martinez, Carles <1 o
Simo. "Trans-heteroclinic bifurcation: a novel ’
type of catastrophic shift", Royal Society Open
Science, 2018
Publication

E Smith, H.L.. "Cooperative systems of <1 o
differential equations with concave ’
nonlinearities", Nonlinear Analysis, 198610
Publication

Zhusubaliyev, . "ON THE DYNAMICS OF <1 y
NONLINEAR SYSTEMS", World Scientific Series ’
on Nonlinear Science Series A, 2003.

Publication

A.E. Aroudi, B. Robert. "Stability Analysis of a <1 y
Voltage Mode Controlled Two-Cells DC-DC ’
Buck Converter", IEEE 36th Conference on
Power Electronics Specialists, 2005., 2005
Publication

E Ali Hasan Nayfeh. "The Method of Normal <'I o
Forms", Wiley, 2011 ’
Publication

m De la Sen, M., and A. Ibeas. "Asymptotically <'] o

0

non-expansive self-maps and global stability
with ultimate boundedness of dynamic



systems", Applied Mathematics and
Computation, 2013.

Publication

Kamrun Nahar Keya, Md. Kamrujjaman, Md. <1 o
Shafiqul Islam. "The influence of density in ’
population dynamics with strong and weak
Allee effect", Journal of the Egyptian
Mathematical Society, 2021
Publication

Mohammed Fathy Elettreby, Aisha Khawagi, <1 o
Tamer Nabil. "Dynamics of a Discrete Prey-

Predator Model with Mixed Functional
Response", International Journal of Bifurcation
and Chaos, 2019

Publication

P. K. Santra, Hasan S. .Panigorof G. S. | <1 %
Mahapatra. "Complexity of a Discrete-Time
Predator-Prey Model Involving Prey Refuge
Proportional to Predator", Jambura Journal of
Mathematics, 2022
Publication

Svetlin G. Georgiev. "Fuzzy Dynamic <1 o

Equations, Dynamic Inclusions, and Optimal
Control Problems on Time Scales", Springer
Science and Business Media LLC, 2021

Publication




Exclude quotes On Exclude matches Off

Exclude bibliography On



