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ifurcation analysis of a
predator—prey model involving
age structure, intraspecific
competition, Michaelis—Menten
type harvesting, and memory
effect

Hasan S. Panigoro*, Emli Rahmi and Resmawan Resmawan

lomathematics Research Group, Department of Mathematics, Universitas Negeri Gorontalo,
Gorontalo, Indonesia

The complexity of the dynamical behaviors of interaction between prey
and its predator is studied. The prey and predator relationship involves the
age structure and intraspecific competition on predators and the nonlinear
harvesting of prey following the Michaelis— Menten type term. Some biologe
validities ar own for the constructed model such as the existence and
unigueness as well as the non-negativity and boundedness of solutions. Three
equilibrium points, namely the origin, axial, and interior points, are found
including their global dynamics by employing the Lyapunov function along
with the generalized Lassale invariant principle. The changes in dynamical
behaviors driven by the harvesting and the memory effect are exhibited,
including transcritical, saddle-node, backward, and Hopf bifurcations. The
ppp earance of these interesting phenomena is strengthened by giving
numerical simulations consisting of bifurcation diagrams, phase portraits, and
their time series.
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1. Introduction

Since Lotka and Volterra introduced the cassical predator-prey model, theoretical

ies of predation without age structure have attracted the attention of many authors,
?:xample Dengetal. [1], Huang etal. [2], Taharaetal. [3], and Zenget al. [4]. However,
in nature, many species of plants and animals could have life histories that can simply be
partitioned into two age stages: immature and mature stages. In each stage, individuals of
species have identical biological characteristics, such as the ability to reproduce, motile,
ingest food, and survive [5]. In particular, there are amphibians, insects, birds, and
mammals with life cycles that can last from only several d r weeks to more than a
century. For this reason, some researchers have developed the predator-prey model by
incorporgeme age structure either in prey or/and predator population with other factors
that alsoﬁ

classical integer-order, stochastic, or delay equations [6-13].

uence the dynamics of the predator-prey model, mainly restricted to the
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63
In Wang and Chen [14] considered lhep!dator—preynmdel
for the predator population usimc delays.
e effect of time delay, the model can be written

with age struj
If we ignore

as follows:
E =rx(l - %) — MIXZ,
dy
= = — By — 81y, 1)
& nxz — By 1y (
= — By — 8oz
% By — &2z

Here %,y(r), and z(t) represent the population densities
of prey, immature predator, and mature predator, at time ¢,
respectively. Model
logistically with r as

1ation 1) assumes that the prey grows
€ intrinsic rate, K is the carrying
capacity; m is the linear Holling type I functional response, n
is the conversion rate withgssich captured prey are converted to

new immature predator, B 1sthe maturity rate| epredator, 8
and 43 are the death rate of the immature and mature predators,
respectively. It is also assumed that only the ire predator can
feed the prey through the term mxz. If we ﬁlot consider the
age structure of the predator population, then model (Equation
1) is reduced to the classical Lotka—Volter adel for which
the positive equilibrium or the boundary equilibrium of this
model is globally asymptotically stable. This means that the
model has no periodic solution. On the other han
Chen [14] prove that in the model (Equation 1),

an orbitally asymptotically stable periodic solution around the

ng and
ere exists

interior equilibrium point which suggests that the age structure
can@qse periodic oscillation of populations.

rom the point of view of human needs, harvesting of
populations generally occurs in wildlife, forestry, and fisheries
management. When harvesting is integrated into the predator-
prey model, there are three types of harvesting, namely
constant harvesting [15], linear harvesting [16], and non-linear
harvesting [17]. In this article, we assume that the predator is
not a commercial species and there is inlraspecifm)mpelition
among immature predators. Therefore, the predator-prey
model with age structure and intraspecific competition in
predator (Equation 1), re the prey population is subject to

Michaelis—-Menten type harvesting, is given by

dx—rx(l— x)—mxz—

dt K ctx

dy

% :nxz—ﬁy—&y—wyz, (2)
Z o By—z

dt By 2=

An example of prey-predator interactions whose biological
be

rican

phenomena are described in the model (Equation 2)
found in the African wild dog with its prey impala. The
wild dogs are a social structure that lives in packs. For 3-4

weeks, young African wild dogs were in the den with their
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mother. All
young ones and provide food for them. The hunting members

1lt members of African wild dogs are care for their

of the pack will return to the den where they regurgitate meat
for the nursing female and young. In some cases, y@hg ones
fail to survive because the hunting member does not bring
back sufficient food for the young, which leads to intraspecific
competition in imr e predator [12]. On the other hand, the
prey, impala, evenﬁgh there are no major threats to their

survival, poaching has become significantly contributed to the

decline in its ber [19].

Note lhatggrowth rates of the prey, immature, and mature
predator populations in the model (Equation 2) depend only on
the local state as the left-hand side is the integer-order derivative.
On the other hand, most biological systems have properties
where the current state is affected by all of the past states or it
is called the memory effect. Therefore, modeling with memory
effects can be done by analyzing the system using fractional-
order calculus [20, 21]. The operators of the fractional-order
derivative have non-local properties to make them more suitable
for dynamical systems that have memory influences on their
state variables.

After Riemann and Liouville generalized the concept of
integer-order calculus to the fractional-order calculus over
two decades ago, the studies about the predator-prey models
with fractional-order differential equation have gained much
attention, for example, Rahmi et al. [22], Owolabi [23], Barman
et al. [24], Ghanbari and Djilali [25], Yousef et al. [26], Ghosh
et al. [27], and Panigoro et al. [28]. The fractional-order
derivatives are defined as an integration that provides the ability
to store the whole memory over time, and hence, it could give
an exact description of different ecological phenomena. For t
reason, the new structure for the model (Equation 2) is given n

the following form:

h
%) — mxz — Txm= Filx,y.z),
C‘Du _ o o o 2 _

e () =nmxz — By — 81y — wy” = Falx,y.2),
CDY2(t) = By — 822 = Fa(w.,2).

C‘D?‘x(r} =Fa (l -
(3)

The existence and local stability of all equilibrium points of
the model (Equation 3) are discussed in Panigoro et al. [29].
However, to the best of our knowledge, the global dynamics and
bifurcation analysis of the model (Equation 3), to this day, have
not been invemled. Here, C'D‘ff(r) is the standard Caputo
derivative for a continuous function f(x) € C([0,+0c),R),
which is defined as follows:

TP B L i) I
PO = Fi—m Jy G=ve

where F(ﬁ\& gamma function, t = 0,and 0 = @ = 1is
known as the order of the fractional derivative.
Based on the a

in several sections: In Section 3, we develop the existence and

dr, (4)

discussion, we have organized our work
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uniqueness solution of the model (Equation 3). To che e
biologically well-posedness of the model, we establish the non-
negativity and bounde
3. In Section 4, we derive some sufficientconditions to ensure the
global asymptotic stability of each locally asymptotically stable
equilibrium point by applying the Lyapunov functions. We then

t solutions of the model in Section

analyze the existing conditions of transcritical, saddle-node,
backward, and Hopf bifurcations in Segdmn 5. Some numerical
simulations of our obtained results are carried out in Section 6.

Finally, the conclusions are given in Section 7.

2. Existence and uniqueness

In this section, we will show that the model (Equation
3) has a unique solution. A similar manner given by Mahata
et al. [30] is adopted. We first take the Riemann-Liouville
integral (Definition 1 in Yavuz and Sene [31]) on both
sides of Equation (3) to achieve the following Volterra-type
integral equations.

% - 1
x(t) = 2(0) = =— [ Filx(z),p(z), z(z)(t—-)" " dx,
I‘(or)/(.:

1 ! o —1
HO=30) = s [J Ea(x(x), y(0), 20t — 1)* ) dr, (5)

1 J o —1
=20 = s A Fa(e(@, (1), 20t = 1)* 1 de,

Now, we will show that the kernels ?,—(x,y,z), i =
1,2, 3, satisfy the Lipschitz ition. For ||.|| is the Euclidean
norm, we suppose that R‘” = al, ||J_c(t)|| = aa,
[p®] = an [0 = as 20| = as and
||2(r} || = ap are bounded functions. For x, X, y, ¥ z, and Z,
we have

|g (x.022) = F1 (% p2) |

x hx
—|| rx ——)—mxz—
c+x

_ hx
1—— — MXz — = {1l
=||rix —x) — —(x+x)(x—x}

_f,,,(x;x_) I
(c+x)c+3x)

(a1 +az)r
K

mz (x — X)

J h
=rilx=x+ Il = X[l + asm |lx = x| + = [l =%|

=g lx=xl,

[ F2 (w) Fy (x5,2) |

= |[mz =By - sy—y?] - [mz =By = 815 - ]|

= |-BG=» - sip=p — oy + N+
=Bly=7|+8 |y —3] +elas +as) |y —7|
=g|y-7|.
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|Fs &,.},z) ~Fs(x.2)]

= [[By - 522] - [By - 5]
=glz—zl,
where g = r+ M

+asm+ h,gz #+31+w(ﬂ3+a4},
and g3 = &. Therefore, we conclude that Fi(x, 3, 2), i = 1,2,3,
satisfy the Lipschitzg@ndition. Furthermore, it is clear that if
0=g =<1 then?(

Therefore, the following theorem is obtained.

i(x, y,2) are contractions fori = 1,2,3.

Theorem 1. The kernel Q(x,y,z), i = 1,2,3 satisfy the
Lipschitz condition and contractions if0 < g = 1, i = 1,2,3.

Next, Equation (5) can be written as follows:

1 ! a—1
x(t) = x(0) + m A Fy{x(z),p(z), z(z)}t = 1) dr,

_ L , ~ et
)(r)—)({'l}-f—1_,(0(}‘[:1 Falx(r),y(r), z{z )t = 1) dr,

,

ft)=20) + —— [ FaGehpehao)e =)~ dr,

Cla) Jo

‘Which can be written by the following recursive formula

t
xult) = (0) + %f F (xn—l,}’,z}{l‘ _ r)ﬁf*l dr,

yu(t) = y(0) + — Fz(x,}’n—1,2)(t — 1)y,

F(}

_ - , _oya—1
zylt) = 2(0) + Ta) ./0 Fylx,yzy—1)(t — 1) dr,

with initial conditions %) = x(0), yp(t) = y(0), and z(t) =
z(0). Therefore, we have

‘Pln(r} = xylt) = xy—1(t)

1 ! .
= ﬁfo (F1(xn—1.3,2) = F1 (g2, 3,2)) (t = 1) dr,
‘PZNU} = yult) = yu—1(t)

1 t
o) A (Fa(x,yu—1,2) = Falx,yn—2.2)) (t — 1) dr,
(6)

‘P3“(r} = Z”“EZ” 1(t)

it / (Falxps zn—1) — Fa(x,y, za—2)) (¢ — )7

where x,(t) = Z}I:1 o1, (), yult) = E}'zlfﬂzn(f}, and z,(1) =
ELI @3, (t). Now, we evaluate the norm of Equation (6). We
achieve

o1, @ = [ntt) = 20100

1 4
= @A [ (Fi(xn—1,y.2)
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—F1(x,2,3,2)) (1 — 1)L dr,
||)’u(t) = yn—1(t) ”

1 t
= ﬁﬁ [ (Fy(xyn—1,2)

~Fa(x,yn—2,2)) (t — 1)* "L dr ||, (7)
”‘193u(r}” = “Zu(” - zufl(‘}”

1 t
== E(x,v,20—1)
r(a}_[o H[ 300y zp—1
—F3(x,y, zn_2)) (t — T L dr |l

ez, =

From Theorem 1, we have that the kernel satisfy the
Lipschitz condition and hence Equation (7) becomes

”x”(t} = Xn—1 (t}" = ” Xn—1 xu—Z” (t— T}a_l dr,
F( )

”}’u(f) ¥n—1 (t)” = ”}n 1 )’u—z|| (t— T)a_l dr,
F( )

”2”(3} ZFI—I(I}” = F(O(]f ”Z”_ 2:1—2” (t—0)""

The last inequality gives
a !
lew 0] < i [ torl d.

2 o @l ®

£
Lo 0] < 225 [ Jos, . 0 dr.

lea 0 =

53

Finally, the existence of a solution 1s given by the following
theorem.
Theorem 2. The solution of model (Equation 3) has @uion

[
under the condition if we have #; such that L =
T(e+1)

,i=123.
Proof. W unex[t),y(t),and z(t) are bounded and their

kernel Fi, 1 = 1,2, 3 satisly the Lipschitz condition. According
to Equation (8), we obtain

fler, @] = ”"0(””[1“( +1}}

flea, ] = Iro(8)] [r\‘ile , (9)

t g n
I 0] = o] [T

which represent the existence and continuity of the system. To
show that the solution of the model (Equation 3) can be set up

from the functions in Equation (9), we assume

x(@ K0} = xplt) — Q, (8),
2(t) = (0} = yult) — QZ,, (t), (10)
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10.3389/fams.2022.1077831

z(t) = 2(0) = za(t) — Qs,(1).

where Q; , i = 1,2, 3 are the remaining terms. Furthermore, the
n terms would be demonstrated to hold || Q; | — 0 Vi =
1,2, 3. Denoting that

'Bm
1Quall @) = H o f )= Fi(xy_1,312) dr

< @ﬁ |Fi(x.3.2) = Filen—1,3.2)| dr

L I
o+ 1)

1 t
1Qanll () = “ﬁfo X 3,2) — Fa(x, yy—1,2)) dr

x — xn—1],

1A

%fa{|Fz(x,)’,z)7Fz(x,y,,_1,z){| dr (1)
S ra+D NE +1} [y =ym-1]-

1Qsnll (t) = “ﬁﬂ; (F3(x 3 2) — Fa(x yozu—1)) dr

1 t
= m‘/‘o ”F‘_?,(x,)’,z}—_F‘_!,(I,)‘,Z”_l)” dr

ig3 ”

s Pl

By apply"lng arecursive pattern, we acquire

t n+1 .,
Q] < [m} ak

t n+1 "
H Qa, (1) || =< [m} ok (12)

t n+1 y
Qs 0] = [m} fnk

At the point 1, we have

f n+1
“ Ql,,(f)|| = [m] gk

n+1
Ter"(t) | = [ﬁ} &k (13)

f n+1 "
|, 0] = [—F(a+ 1)} sk

By considering the results of Theorem 1 and applying n —
no to both sides, we have ”ng ” — 0V¥i=1,2,3

In the end, we will show that the solution is unique for each
initial value by utilizing the contradiction approach. Suppose
that th
namely x1(1), y1(t), and z1(f). Then, we have

xists another solution of the model (Equation 3),

1 t
Ht) —x1(t) = @ﬁ (F1(x, 3, 2) — F1(xn—1,y,2)) dr,

1 4
¥(t) = y1(t) :ﬁﬁ (Fa(x,y,2) — F2(x,yn—1,2)) dr, (14)
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1 t
A0 -0 = 77 ﬁ (F3( 3, 2) — Fa(x . 2y_1)) d

Applying the norm on both sides, we achieve

1 t
|« =« = mf |Fi(x, y.2) = Filxu—1,y,2)| dr,

t
0 -1l = 7 f B2 ,2) — Bxo yu_1,2)| dir,
(15)

1 4
|zt — 2100 = mﬁ) |F3(x,3.2) — F3(x, yozn—1)| dr.

62
By considering Theorem 1, we obtain

I - 0] < - 2 -},

b - }’1(‘}"—1—~(u I = nol.

+1)
|z — 21| < 1“( ||z(r} z1(1)] -

Therefore, the following equations are obtained.

tgl
||x(t) —Il(f)" (1 = m) =0,

-

()] (1 Ta+D 1}) =0, (18)
. o1&

|2(8) — z1(1)) (1 Tt 1}) =0

As a result, we achieve H% —x1(t) || =0, ||y(t} —yl(r)" —]
0, and ||z(r} - zl(r)” = 0, which impact x(t) = x(t), y(t) =
y1(t), and z(t) = zj(t). Then, we finally give the following
theorem.

Theorem 3. The Caputo fractional-order predator-prey model
(Equation 3) has a unique solution.

3. Non-negativity and boundedness

In this section, we will show that for any initial condition is
in :{i where

B :={(602):x20,y20z>0,xck yeR].
The solution not only exists and is unique but also bounded
and always in _{+ as t — 00. Therefore, we have the following
two theorems.

Theorem 4. If the initial condition in 31 then both population

densities of prey and predator given by model (Equation 3)
remain in 323_.
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Proof. To prove this non-negativity condition, we apply
reductio ad absurdum (contradiction method), whi@s also
used in Barman et al. [24] and Maji [32]. We assume that there

exists { = 0 such that

x , whenL=t < i,
x(f) =0, whent=1 (17)
x(tT) = 0, whent =tt.

From the first equation in Equation (3) along with
Equation (17}, we have

(1)) =0 (18)

x(t

According to Lemma 3.1 in Barman et al. [33], we get
x(i+) = 0 whichc dicts with Equation (17) where x(it) <
0. This means thal%a‘z 0forall t € [0, 00]. Similarly, we can
show that y(t) = 0 and z(t) = 0 forallt € [0, oo]. In conclusion,
we have the non-negative solution for model (Equation 3) when
the initial values are in 323_.

Theorem 5. The solution of model (Equation 3) is always
bounded in 33_ for the initial condition in 323,

Proof. Since we work the population model, it is natural that
the population must be bounded due to the limitation of their
biological resources, which is also known environmental
carrying capacity. Thus, the boundedness of the solution of the
model (Equation 3) is also important to learn and prove. From
Theorem 4, we can define a positive function as follows:
No=x+" 4

(19)

For any » = 0, the following fractional-order differential
equation holds.

CDEN () + y N (1)
=Cpex(n) + %C‘Df’ Wt) + %C‘Df’ () + pN(D)

x hx
= (rx(l - E) - mxz — r+x)
m 2
+ (e — By — 81y — wy”)
rmy +}’mz
n n

m
;(ﬁ)’ = d2z) + yx+ —=

w2 hx Simy  wmy?

= rx— —
K c+x " "
Samz iy mz
LRIV A N s
n
2
rx Symy  damz my mz
K n n H n

2
rax my mz
=y = S (=8 4 (y = 8)
K i n
By choosing y < min{d; 5a|,we obtain
c it
DENE) +yN (W) < (r4p)x— ra
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(i)

(xl— (pKe  (Ey)PK (r+y}2K2)

|~

r 4r2 4r2

==

4r?

Al

(x_ (r+y}K)2 K
2r

r (a (r+y}K)2 TEy K
= — —|x— m
K 2r 4r
(r+y’K

4r

According to Lemma 3 in Panigoro et al. [34], we apply the

comparison principle and obtain

2 2
K K
N(t) < (‘.\f(g} - &) Eo[—t%] + ﬂ (20)
dyr dyr
2
+ K
t — 00, we achieve N(t) — %, which means

all solutions of model (Equation 3) with non-negative initial
conditions are confined to £2 where

my(t) n mz(t)

n

Q= {(x,y,z} € 3!13, s N(t) = (1) +

_ yPK
- dyr

=0o,0

=a,

+e,e=0g.(21)

4. Global dynamics

In this section, the global dynamics of model
(Equation 3) are investigated. Note that all biological
equilibrium points, their existence conditions, and their
local stability are successfully described in  Panigoro
et al. [29], which can be rewritten by the following theorem.

Theorem 6. (i) The origin point £, = (0,0, 0) always exists.
h
It is locally asymptotically slab#AS} ifr=—.
c

(i) The axial point £4 = {3‘:,0,0} where % is the positive root

h
of 4 (c — K)x + (— - r) K =0, which has
r

h
(a) an equilibrium pointif ¢ = —.
r
h
(b) a pair of equilibrium pointsifc < min {K, - }
r

(c+x)P°r

+ 8108
Moreover, itis LASifh = 7 and ¥ = i 1)62 .

Bn

(iii) The interior point &5 = {x*,y*,z*) exists, if @, i = 2,3 in

Panigoro et al. [29] satisfies the following statements.

(a) An equilibrium point in 31 ifag < 0.
(b) Two equilibrium points in 3?.1 ifas < Oand az = 0.
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10.3389/fams.2022.1077831

The LAS condition of £ can be seen in Theorem 4 in
Panigoro etal. [29].

Note that all equilibrium points may attain local asymptotic
stability with several biological conditions. Now, we will identify
the biological properties to obtain globally asymptotically stable
(GAS) for each equilibrium point. The analytical results are
given by the following three theorems.

h
Theorem 7. The origin point & = (0,0,0) is GASifr = P
C o

gﬂof. We define the positive definite Lyapunov function as
follows:

my  mz
Vil yz)=x+ - + — (22)
By applyingglma 3.1 in Vargas-De-Ledn [ 35], we compute

the o —order derivative of V1(x,y, z) along the solution of the

model (Equation 3) as follows:

m m
CDEVI(x,y,2) < CDFx ;C‘D‘:y + Cpgz

= (rx(l - %) — Mxz — [J':—xx)

+ %(mcz ~ By — b1y —wy?)

+ 2 (By — 822)

rac hx
=rXx— —— — Xz — + mxz
K c+x
Bmy  dymy wmyz Bmy  Symz
n n n n n
ra hx Symy wmyz Samz
= K ct+x n n n

+a n n
( h ) Symy  Samz
= - —rjx-—-—
c+ao n n

Therefore, C'Df'lﬁ (x,p,2) = 0 f (x3.2) € 323_, if
r= L'—G—Lo' We also find that D Vi(x,p,2) = 0, if (x.),2) =
(0,0,0). This conveys that {£,) is the only invariant set on which
C‘DfV1(x,y,z} = 0. Obeying Lemma 4.6 in Huo et al. [20],

ro= obviously becomes the biological condition of &, to

c+a
reach GAS.

hK
Theorem 8. The axial point £4 = (%,0,0) is GASif — = x =
cr

82

n
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Proof. We construct a positive definite Lyapunov function
based on the Volterra equation as follows:

¥\ | my
P Yy mz
W Z)= —%—xln> —_— —. 23
Viapa) = (x=F-&nF) + = 4 (23)

The e-order derivative of V4 (x, y, z) along the solution of the
model (Equation 3) given by Lemma 3.1 in Vargas-De-Ledn [35]

is given by
- mEDey Cpa
“DfVy(x,y,2) < (I x)CD“x+ RANR A
x n
—(x_%)(rx(l—i)—mxz—h—x)
- x K c+x
Z+E(mcz—ﬁy—81y—wyz)+
n
m
;(ﬁ}’—ﬁzz)
=(x73‘c)(rfzfmzf )+mxz
K c+
_mﬁly_mwyz N mbaz
n n n
=(x—13) ——(x—?c)+h(x—_%}—mz
K ¢+ x)c+x)
( )
+ iz — mbyy B mwyz B mdész
~ @
_ r 2 h[x—%} .
__E( %) +(r+x)(r+?c}+mxz
B z@ mwyz B mizz
n n n
hix—#)?°
g _i)2+%
Sy md
i Y mibaz
n n
_ ',h 7,‘27m51y
- (K (3‘() (e = %) n
)
(—2—3‘()mz
n
hK & a
Since — <= ¥ = —2 we have D“Vz(x ) = 0 for
cr

all (x,p,2) € 3 Lt is also clear that D‘:Vz(x,y,z} = 0if
(6y,2) = (% 0,0}. This confirms that {£4} is the only invariant
set on which C‘D?’Vz(x, ».z) = 0. Therefore, £4 is GAS due to
Lemma 4.6 in Huo et al. [20]. This confirms the justifiability of
Theorem &.

Theorem 9. Let Qyx =
* 1— * . L2
P el L e R
z (1 + am)my*
The interior point £ = (x, y*, z*) is GAS in Q.

Proof. Consider a positive definite Lyapunov function as

follows:

Vi(x,p,2) = (x —x*—x"In %)
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m - —k 1 (z—z*)?
= [ YERFEETR — R
+ﬂ y=y =Jy n)’*)+52 o

By applying Lemma 3.1 in Vargas-De-Le6n [35] and Lemma

(24)

1 in Aguila-Camacho etal. [36], we obtain the a-order derivative

of V3(x,ﬁ as follows:

CDEVs (e 3,2) = (%)“Dﬁ'ﬁ 2 (=)

¥
r,+ (Z
b4

(xx

)rDa
)( - 5) e )
(’v J)(m By — d1y — w}’z)
5 (557) -2

Z*
= (x—x*) (—é (x—x*) — m(z — 2%)

m
n
1

+

n h(x — x™)
(c+x)(e +x%)
n (),, ,*) mxz mytz* B mm(y—y"‘))
¢ ¥ B n
y z—z
+ (z=2% (}’_* 1 — )
T #y2 *
= 7E{x7x) + mz"x + mxz
N F‘i{J\:—x"‘}2
(e 4 x)(c + x*)
my*xz  mx*z¥y
}J )J*
mo(y— ) 2y
n yeoo
— )2
—z42" - (Z Z)
Z*

Applying Equation (21}, we have

-

mop-y)? -2

n z*

mx™ Jmy™ — no

D Vs(xp.2) < — (L -

on )z+ (14 om)z*.
my*

z (1-

Since — = , we achieve
z

(1 + o m)mmy*
DEVaey) < (£~ 3 ) b= )’

2
o (=)

n z

(=)

Thus, C‘D?‘Vs(x,y,z} = 0 for allmy,z) € 31, when

(2
h = ?r We also confirm that C'Df Vilx,p,2) = 0if (x,,2) =
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(™, ¥",2") and hence {£7} is the only invariant set on which
C‘Dsz.(x,y,z} = 0. Based on Lemma 4.6 in Huo et al. [20], the
interior point £ is GAS in Q. This ends the proof.

52
5. Bifurcation analysis

In this section, we will study the occurrence of several
phenomena namely transcritical, saddle-node, backward, and
Hopf bifurcations. Two meters are chosen, namely the
harvesting rate (h) and the order of the derivative (x), as
the memory index. For the analytical purpose, we define the

fol.lowing Pparam cter.

h’f =cr,

Bt (c + K)r
T4k
a® = — arctan C—‘

T ¢

Next, the following theorem is given for describing the
occurrence of transcritical bifurcation driven by the harvesting

rate (h) as the bifurcation parameter.

Theorem 10. The origin point &, and the axial point &4
exchange their stability via transcritical bifurcation when h
passes through hj.

Proof. Since the axial consists of two equilibrium points, we
focus on the axial point nearest to the origin point. When h =
hi axial point merge with the origin point & = £4 =
(0,0,0) where the eigenvalues of the Jacobian matrix are: ) = 0,
A3 = (B + 81), and A3 = —82. We obtain |arg (Agb3}| =7 =
o /2 while |arg (A1}| = am/2. This means & = £4 = (0,0,0)
(c+ K)»Pr i

4k D applying
Theorems 2 and 3 in Panigoro etal. [29], £ becomes LAS while
the nearest £4 becomes a saddle point. For 0 < h =< hy, The

is non-hyperbolic. When hf < h =

origin £ becomes unstable and the nearest £4 ¢ 33_ becomes
unstable. This condition shows the existence of transcritical
bifurcation, where h becomes the bifurcation parameter while
h = hY is the bifurcation point.

Now, the existence of saddle-node bifurcation on axial
will be proven by stll re@ing the harvesting rate (h) as

the bifurcation parameter. a result, the following theorem

is proposed.

h
Theorem 11. Suppose that ¢ < min { -, K}. The axial point £4
r

undergoes saddle-node bifurcation when h passes through the

bifurcation point h.

Proof. According to Theorem 1 in Panigoro et al. [29], the
axial point does not exist when h = hz. When h = h;, a

K—c¢
unique equilibrium point £4 = (T,O,O) occurs in axial
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where its Jacobian matrix has three eigenvalues: 4; = 0 and
1
ks = —z[Brat e+ VB e a7 +2pnK -0,
Since |arg ()L1}| = am/2, this axial point is non-hyperbolic.
When h < h*, two axial points occurs given by £ = (%,,0,0)
K- [(h* — h)K

andig = (X5, 0,0), where 24 = > E+VI (Gl DL and Xj, =
K- [(h* — h)K

£ ;;. It is easy to validate that both £ and

2 ¥ r
E}bi are in 31 and have different stability. As a consequence, all

the given circumstances express the occurrence of saddle-node

bifurcation.

Based on Theorems 10 and 11, we obtain more global
bifurcation namely backward bifurcation given by the following
lemma.

Lemma 1. The model (Equation 3) undergoes backward
bifurcation driven by the harvesting rate (h).

Proof. From previous theorems, the axial point £ exists and is
LAS, while £ is unstable when h = h’{. When h’f = h < h;,Eg
becomes LAS, 5"; still exists and is LAS, and unstable E}" accurs.
The bistability condition is held for this interval of h which
means that the convergence of the solution is very sensitive to
the initial condition. Finally, those two axial points merge when
h = h3 and disappear when h = h3. This completes the proof.

Finally, we will show that the memory index in this case, that
is, the order of the derivative (), affects the dynamical behaviors
of the model (Equation 3) indicated by the appearance of Hopf

bifurcation around the interior point &.

Theorem 12. Suppose @ characteristic  equation  of
the Jacobian matrix evaluated at @an be written as
33+ £12% + £34 4 £3 = 0, which has a pair of complex
conjugate eigenvalues 412 = &1 £ iy, where ¢; = 0 and one

negative eigenvalue (A3 = 0). The model (Equation 3)
%ergoes a Hopf bifurcation when the order of the fractional

derivative @ crosses out the critical value o* = % arctan |%| .

Proof. From  the  earlier  assumptions, we  have
ming—j<3 |arg()t;}| = arctan ‘%| Therefore, the solution
of me*) = o*F — minlarg(a;)] = 0 is only when
of = %arctan %‘ If we check the transversal condition:
d’;é“) lu=e+ = 3 which is not equal to 0, we can assure that

the sign of m(a) changes when the bifurcation parameter o
passing by a*. [t means that the equilibrium point £ is stable

when o € (0, ¢*) and is unstable for o* = o = 1.

?Numerical simulations

In this section, we explore the dynamical behaviors of the

model (Equation 3) numerically to support analytical findings,
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Bifurcation diagram driven by the harvesting rate |
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FIGURE 2
Phase portrait and time series of the model [Equation 3) using parameter values r =01, K =5, n=001, =006, § =005
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FIGURE 4
Phase portrait and time series of the model ([Equation 3) using parameter values. r =01, K=5 m=10.25,¢c =05, n =001, g = 0.06, § =0.05
§; =005 w=01a =09 and h =018
t0
=

= Limit-cycle
— £ —stable
= = & —unstable

@ o =~05

o 1.00 2
FIGURE 5 @
Bifurcation diagram driven by the order of the derivative (o) of model (Equation 3) around the axial point & using parameter Values: r =108,
K=5 m=025h=001c=008n=02p8=04 8§ =001, 4 =001, 4 =001, and w=0.1
especially the occurrence of bifurcation. The predictor-corrector LAS £4. The origin point losses its stability wia transcritical
scheme given by Diethelm et al. [37] is employed. All of bifurcation when h crosses h} and the unstable axial point
the parameters used in these simulations are assumptions &, occurs simultaneously. These dynamics are maintained for
matched with the biological conditions given by the previous interval h} = h < hj = 0.15125. On the other hand, the
analysis results. This decision was taken because this work stable branch of axial point £4 is preserved for 0 < h =
does not specifically address an ecological case involving a hi. The LAS point and unstable point of £4 merge into the
particular organism. non-hyperbolic point when & = h3. The axial point finally
To show the occurrence of several bifurcations driven by the disappeared when /i passes through 1 while the sign of &,
harvesting rate (h), we first set the parameter as follows: does not change. Thus, we have saddle-node bifurcation on axial
with 13 as the bifurcation point. If we observe from a more
r=01, K=5 m=025 c=05 n= 001, global point of view, these interesting phenomena represent the
B =006, 8 =005, § =005 w=01,a=09. (25 existence of backward bifurcation marked by the occurrence of
bistability condition. To show these dynamical behaviors, we
By varying the harvesting rate in the interval 0 < h < 0.24, choose three values of harvesting rate in each interval: h =
the bifurcation diagram is portrayed as in Figure 1. We have 0.02,0.12, and 0.18 and portray them as phase portraits and time
three types of dynamic behaviors around the axial point. When series (see Figures 2-4). The interesting phenomenon called
0 = h = hi = 0.05, we have unstable origin point £, and bistability is portrayed in Figure 3. Two equilibrium points LAS
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simultaneously impact the sensitivity of the convergence of the
solution to the selection of the initial value. The two closest
initial values are set which converge to the different equilibrium
points. One of them convergent to the origin point and the
other solution convergent to the axial point. This means, two
conditions may arrive, namely the extinction of all populations
and the only prey existence point. Several references show
that the bistability condition occurs as the consequence of
saddle-node bifurcation, see Adhikary et al. [3%] and several
references therein.

From the biological point of view, these numerical
bifurcations describe the possibility for the prey to extinct or
survive due to the change in the harvesting rate while the
predator both mature and immature is always extinct (Figure 1).
Three feasible conditions may happen. First, for any sufficiently
small harvesting rate (0 = i < h] = 0.05), the prey population
may maintain its existence in this ecosystem (Figure 2). Second,
if the harvesting rate increases (h’f = h = Pl;}, two possible
conditions may occur namely the extinction of prey or the
viability of prey. These circumstances depend on the initial
condition, where if the initial condition is quite close to the
origin point, the prey will be extinct, and for the initial condition
is far enough from the origin point, the prey can survive

extinction (Figure 3). Third, if the harvesting rate is again

Frontiersin Applied Mathematicsand Statistics

increased (h = h;), the population of prey will finally extinct
and there are no population again in this ecosystem (Figure 4).
The next circumstance occurs in the interior point of
model (Equation 3), which demonstrates the influence of the
order of the derivative as the memory index on the dynamical
behaviors around the interior point. We set the parameter as

follows:

r=08 K=5 m=025 h=001c=008 n=102
4

=

1 =001, d2 =001, d =001, w=01. (26)

To identify the dynamical behaviors, we vary the values of
o in the interval 0.76 < o =< 1. As a result, we obtain the
bifurcation diagram given in Figure 5. For @ < o™ == .86, the
interior point £ is LAS. To show this condition, we give the
phase portraits by selecting @ = 0.81 and ¢ = 084 as given
in Figures 6A, B. Nearby solution oscillates and convergent
0.86, £ losses its stability

via Hopf bifurcation which is indicated by the occurrence of

to &. When o crosses o =

periodic signal namely limit-cyce. The nearby solution stays
away from & and convergent to the limit-cyde. The evolution
of the limit-cycle given in Figure 5 also shows that the diameter
of the limit-cycle increases when alpha increases. We portray

the phase portraits in Figures 6C, D to show the dynamics
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o =0.81
o =084
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a =109

FIGURE 7

Phase portrait of the model (Equation 3) around interior point £ using parameter values from Equation (26).

087 and @ = 09. It is
shown that the densities of all populations are oscillated and

of solutions around £ for o =

finally converge to the limit cycle. The physical interpretations
of Hopf bifurcation driven by « are closely related to the
influence of the memory on the change of behaviors around the
interior point. The stronger the influence of memory, the higher
the ability of prey and predators to maintain their existence
(@ = @"). For less memory effect which is indicated by @ =
o*, all populations lose the ability to stabilize their number
of individuals. The population density fluctuates according to
seasonal patterns which indicates by the appearance of a limit
cycle (Figures6C, D), and the peak of each population also
increases for less memory effect (Figure 7). Although the density
for each population cannot tend to a constant number, in
this case, the memory effect cannot cause the extinction of
every population.

7. Conclusion

E dynamics of a predator—
four biological conditions, namely age structure, intraspecific

model incorporating

competition, Michaelis—-Menten type harvesting, and memory
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effect, have been sgglied. All biological validities have been
presented such as gexistenc:, uniqueness, non-negativity,
and boundedness of the solution. The dynamics of the model
have been explored by showing the global stability conditions
for three equilibrium points namely the origin, the axial, and
the interior points. We have shown that three bifurcations
phenomena driven by the harvesting rate occur around the
axial point namely transcritical, saddle-node, and backward
bifurcations. The bistability condition exists as the impact of
saddle-node bifurcation which states that the existence of prey
depends on the initial condition. A bifurcation driven by the
memory effect also has been shown around the interior point
which is called Hopf bifurcation. All the bifurcation phenomena
having an impact on the densities of the population not only
may reduce their densities but also threaten the existence of
several populations.
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