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Abstract

This paper 15 concerned with the formulation and lysis of an epidemic model
of COVID-19 governed by an eight-dimensional system of ﬂl"diﬂﬂ@ﬂéremial
equations, by taking into account the first dose and the second dose of vaccinated
individuals in the population. The developed model is analyzed and the threshold
quantity known as the control reproduction number R, 1s obtained. We invcsligzm
the equilibrium stability of the system, and the COVID-free equilibrium is said to
be locally asymptotically stablemlcn the control reproduction number 15 less than
unity, and unstable otherwise. Using the least-squares method, the model 15 cali-
brated based on the cumulative number of COVID-19 reported cases and available
information about the mass vaccine administration in Malaysia between the 24th of
February 2021 and February 2022. Following the model fitting and estimation of
the parameter values, a global sensitivity analysis was performed by using the Par-
tial Rank Correlation Coefficient (PRCC) to determine the most influential param-
eters on the threshold quantities. The result shows that the effective transmission
rate (a), the rate of first vaccine dose (¢h), the second dose vaccination rate (o) and
the recovery rate due to the second dose of vaccination (#) are the most influential of
all the model parameters. We further investigate the impact of these parameters by
performing a numerical simulation on the developed COVID-19 model. The result
of the Stl shows that adhering to the preventive measures has a huge impact on
reducing the spread of the disease in the population. Particularly, an increase in both
the first and second dose vaccination rates reduces the number of infected individu-
als, thus reducing the disease burden in the population.
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1 Introduction

Coronavirus disease 2019 (COVID-19) 1s a major life-threatening global epi-
demic (pandemic) that the world 1s still battling m] its ongoing outbreaks. The
disease 1s caused by a highly virulent new strain of severe acute respiratory syn-
drome comnas 2 (SARS-CoV-2) (Ahmad et al. 2021). COVID-19, which
emerged from Wuhan city of China in December 2019, was first reported to the
World Health Organization (WHO) in late December, 2019 (Chen et al. 2021).
Following its rapid spread across the globe within short time, the disease was
declared as a pandemic on March 11, 2020 (Chatterjee et al. 2022 Ariffin et al.
2021).

The pandemic has affected the world in many ways: it overwhelmed health sys-
tems, caused socioeconomic disruptions and a significant number of death tolls in
many countries including the United le of America (USA), Italy, India, Brazil
and Malaysia. As at May 10, 2022, the number of confirmed cases of COVID-
19 around the world was estimated at 517,816,860, including 38 907,718 active
cases and 6,280,681 deaths (Worldometer 2022). The pandemic became the most
important public health challenge mankind ever faced since the 1918 Spanish flu
pandemic (Gumel et al. 2021). This led most governments all over the world to
forth important steps in preventing and stemming the spread of the disease.
SARS-CoV-2 i1s an RNA virus belonging to the family Coronaviridae and genus
Betacoronavirus. Epidemiological investigations have shown that RNA viruses
have high mutation rate (Abidemi et al. 2021). Like many other viruses, 1t 1s no
longer news that COVID-19 mutates particularly during the high transmission
peri (Birch et al. 2021). For instance, on September 7, 2020, the Delta vari-
ant of SARS-CoV-2 was first detected in India (Kang et al. 2022). It became a
iaut of concern (VOC), as classified by WHO on May 11, 2021. This variant
rapidly outcompeted other variants of SARS-CoV-2 and became the pren:min ant
variant worldwide in November 2021 (Kang et al. 2022). Early 2022, the threat
of a new COVID-19 surge with the sprea(m Omicron variant was faced world-
wide (The Lancet Regional Health 2022). Different variants can trigger different
degrees of infectimmfmptums, rate of transmission and susceptibility. Further-
more, 1t 15 evident that treatment for one variant does not necessarily work for
another (Birch et al. 2021). Hence, to increase the population’s protectnl against
COVID-19, the rich countries have endorsed booster doses due to emergence
c@ new variant with suggestive immune escape and potentials for reinfection
(The Lancet Regional Health 2022). The main transmission route of COVID-19
includes direct spread, contact spread and aerosol spread (Chang et al. 2021).
Direct transmis simjf COVID-19 through respiratory droplets from coughing or
sneezing. People who are in close contact with a suspected or confirmed COVID-
19 patient can be infected by the virus (Akkilic et al. 2022; Chatterjee et al.
2022). Indirect transmission may take place in individuals by contacting either
eyes, nose or mouth while contacting contaminated objects or surfaces (Akkilic
et al. 2022; Chatterjee et al. 2022). Epidemiological studies have shown that
the most common symptoms shown by patients are viral pneumonia, fever, dry
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cough, sore throat, myalgia and E;ue at the onset of COVID-19 (Anggriani and
Beay 2022). However, there are other sympt—a@such as nasal congestion, runny
nose, sore throat, myalgia and diarrhea (Chen et al. 2021). The incubation period
of COVID-19 is generally between 2 days to 14 days (Anggriani and Beay 2022;
Ariffin et al. 2021), or longer with 5 days on average (Arnffin et al. 2{. It has
been reported that presymptomatic transmission contributes majorly to the spread
of COVID-19 (Alleman et al. 2021). It has been observed that after recovery from
primary COVID-19 infection, the same person can be infected with another vari-
ant of COVID-19 (Atifa et al. 2022).

As attaining the recovery phase for COVID-19 becomes the main hope for gov-
ernment and the public, every country implemented a standard operating procedure
(SOP) to prevent and control COVID-19 outbreaks when pharmaceutical interven-
tion in the form of vaccination was not yet available. The non-pharmaceutical inter-
ventions (precautionary me@‘es) enforced by various countries to halt the chain
of COVID-19 transmission include social distancing, wearing masks, regular hand
washing, a ban on air traffic, bans on social gatherings in different areas, lockdowns,
PZdation, social distance, quarantine, awareness programs, and personal hygiene,
such as wearing a mask and washing hands regularly (Chatterjee et al. 2022; Al
et al. 2022) and PCR testing for case detection (Baker et al. 2021). From late 2020,
USA, United Kingdom (UK) and European countries among many other countries
have deployed different vaccination campaigns (Gonzilez-Parra et al. 2022; Biswas
et al. 2021). This approval of vaccines for public use marked the commencement of
a slow recovery (The Lancet Regional Health 2022).

On the 25th of January 2020, Malaysia reported the first {:uned cases of
COVID-19 involving three tourists with immediate travel history from China who
had entered Malaysia through Johor from Singapore on January 23, 2020 (Arnffin
et al. 2021). Since then, the counlas experienced different waves of the global
epidemic. As at May 10, 2022, the cumulative number of confirmed cases of
COVID-19 has risen to 4,463,740 including 22,953 active cases and 35,590 deaths
(Ministry of Health Malaysia 2022; Worldometer 2022).

Betfore the licensure of COVID-19 vaccines, different non-pmnaceutical inter-
vention strategies were deployed by the Malaysian government in order to curb the
community spread of the disease in the country. These include imposition of move-
ment control order (which first came to implementation on March 18, 2020 (Anf-
fin et al. 2021; TheStar, Malaysia announces movement control order 2022), social
distancing, lockdown, advancement from a targeted PCR testing approach to a wide-
spread PCR testing for case detection, self-quarantine and wearing of facemasks
{Abidemi et al. 2021). In Malaysia, the public vaccine administration commenced in
February 2021 (Ministry of Health Malaysia 2022). As of May 10, 2022, Malaysia
has a high percentage of vaccinated people to be 84.86% of the population, includ-
ing 2.99% and 81.87% of who have received the first and second dose of vaccine,
respectively (Our World in Data, Coronavirus 2022).

Since late 2019 when COVID-19 emerged, many mathematical models have been
constru@ by researchers to facilitate understanding of the dynamical spread and
control of the pandemic in different countries (Atifa et al. 2022; Abro et al. ml;
Anggriani and Beay 2022; Gumel et al. 2021; Ojo and Goufo 2023; Alleman et al.
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2021; Dass et al. 2021; Abidemi et al. 2f&8; Olaniyi et al. 2020; Okuonghae and
Omame 2020; Abioye et al. 2021; Peter et al. 2021b; Bett1 et al. 2021; Ojo et al.
2022b; Aliet al. 2022a, b; Algehyne and Ibrahim 2021; Peter et al. 2021a; Bandekar
and Ghosh 2022; Omame et al. 2021). For instance, Atifa et al. (2022) developed
and analysed a compartmental model for COVID-19 transmission dynamics by tak-
ing into consideration ttmﬂ'ecl of reinfection of individuals after recovery using
Pakistan reported {:zas. A mathematical model based on Lotka-Volterra equali
to gain insights into the impact of lockdown on COVID-19 spread by examining the
difference in the growth rate of COVID-19 patients before and after the imposition
of lockdown 1n Pakistan and Malaysia was presented by Abro et al. (2021).

In another study, Anggriani and Beay (2022) proposed a newly formulated non-
linear deterfgiiistic model to explore the roles of self-isolation at home and hos-
pitalization on the population dynamics of COVID-19. In their study, Gumel et al.
(2021) proposed and analysed three non-linear mathematical models for different
aspects of COVID-19. Alleman et al. (2021) proposed and mbrated an appropri-
ate non-linear deterministic model to describe the impacts of non-pharmaceutical
interventions on COVID-19 transmission based on publicly available epidemiologi-
cal data for Belgium.

In an attempt to gain insights into the transmission dynamics of COVID-19
before and after movement control order implementation in Malaysia, Dass et al.
(2021) proposed and calibrated a non-linear mathematical model including asymp-
tomatic class using the actual observed cases in Malaysia. Abidemi et al. (2021)
developed an appropriate non-linear mathematical model taking into consideration
the impact of different pharmaceutical and non-pharmaceutical control interventions
for the dynamics of COVID-19. The model was parametrized using the publicly
available cumulative number of reported cases for Malaysia.

Olaniy1 et 2{}2{}) formulated and analysed a compartmental COVID-19 epi-
demic model taking into account the disease transmission routes from asympto-
matic, symptomatic and hospitalized individuals to gain insightful information
about the transmission dynamics of COVID-19 using Nigeria's cumulative number
of active cases data. Dkuonghad Omame (2020) used a non-linear mathemati-
cal model to assess the impacts of non-pharmaceutical interventions on the popula-
tion dynamics of COVID-19 based on the cumulative number of reported and active
cases 1n Lagos State, Nigeria. Abioye et al. (2{}m:rropused non-optimal and opti-
mal control mathematical models to describe the dynamics of transmission and opti-
mal control of COVID-19 in Nigeria.

Peter et al. (2021b) developed and analysed a non-linear mathematical model
to describe the transmissimnamics of COVID-19. The model was fitted to the
observed data for Pakistan. To estimate the time at which a mutant variant is able
to take over a wild-type strain during COVID-19 outbreak, Betti et al. (Zﬂmg-
posed and analysed a two-strain COVID-19 mathematical model featuring a wild-
type and mutant-type viral populations by using the available cumulative case data
for Ontario in parametrizing the model.

Al et al. (2022b) investigated the transmission dynamics of COVID-19 by
constructing a non-linear deterministic model with fractal fractional deriva-
tive. Ali et al. (2022a) developed and analysed a non-linear fractional derivative
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compartmental model to examine the effect of asymptomatic and symptomatic
transmissions on COVID-19 outbreak. Algehyne and Ibrahim (202 1) used a frac-
tal-fractional dimensional nonlinear mathematical model taking into account the
impact of lockdown to analyse the dynamical behaviour of COVID-19 in Santos,
Campinas and Sao Paulo cities of Brazil. Peter et al. (2021a) used a fractional-
order deterministic compartmental model to examine the community spread and
control mechanism of COVID-19 in Nigeria. In some other mathematical stud-
les, many authors have studied non-linear mathematical co-infection models of
COVID-19 with other infections, such as tuberculosis, dengue and malaria among
others (Bandekar and Ghosh 2022; Omame et al. 2021).

Recent epidemiological models of COVID-19 have im:duced a compart-
ment related to the vaccinated population (Aguilar-Canto et al. 2022; Chatterjee
et al. 2022; Choi et al. 2021; Demongeot et al. 2022; Gonzalez-Parra et al. 2022).
Specifically, Aguilar-Canto et al. (2022) proposed and analysed a mathematical
model with multiple types of vaccines and trained the model with COVID-19
data from six different countries including Germany and Italy. The model was
analysed by employing sensitivity theorems. Moreover, Chatterjee et al. (2022)
presented and analysed a fractional-order nonlinear mathematical model, which
includes a vaccination compartment and captures the effects of fear on the rates
of transmission of the disease and reinfection of vaccinated individuals.

Chot et al. (2021) proposed and calibrated an age-structured non-linear math-
ematical model taking into consideration vaccination and precautionary inter-

ventions (particularly, social distancing) for describing COVID-19 transmission
dynamics based on the actual epidemiological data for Korea. In the work of
Demongeot et al. (2022), a deterministic compartmental model taking into con-
sideration a variable vaccination in terms of effectiveness for COVID-19 trans-
mission dynamics based on the reported cases and vaccination data of New York
City was studied. Furthermore, Gonzilez-Parra et al. (2022) constructed and
parametrized an age-structured non-linear mathematical vaccination model for
COVID-19 to assess the optimal vaccination strategy under different scenarios
based on data relalto USA. In view of the new development in the control of
community spread of COVID-19 pandemic in different countries, and Malaysia
in particular, this paper aims to construct and analyse a non-linear mathemati-
cal model that explicitly includes different compartmental classes for the popu-
lations of vaccinated individual with first and second doses for the global epi-
demic and to investigate the impact of transmission rate, the rate of first vaccine
dose, the second dose @:ination rate and the recovery rate due to the second
dose of vaccination on the dynamics of the disease outbreak. The new model 1s
parameterized ugEl the cumulative number of daily cases reported for Malaysia.
The subsequent part of this paper is structured as follows: Sect. 2 discusses the
description, formulation, and theoretical analysis of the proposed COVID-19 vac-
{:iuatiuodel. This 1s followed up by parameter estimation and model fitting in
Sect. 3. The sensitivity analysis of each parameter with respect to the threshold
qu;@ties 1s presented in Sect. 4, while the numerical simulations of the dynam-
ics of the proposed model are reported in Sect. 5. The concluding remark is given
in Sect. 6.
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2 Model Formulation and%alysis

In this section, \Eevelop and analyze a deterministic mathematical model to effec-
tively study the transmission and control of COVID-19 1n a population. Before the
simulation of the dynamics of the model, we investigate the qualitative properties
of the model by theoretically analyzing the positivity and boundedness of solutions,
computation of the threshold quantity and the stability of the equilibrium.

2.1 Model Formulation

The COVID-19 model at a given time ¢ 15 derived by cmling the total human pop-
ulation into the mutually-exclusive compartments of susceptible, 5(r). vaccinated
with first dose, V,(#), vaccinated with second dose, Vzcxpuscd, E(t), asympto-
matically-infectious, A(r), symptomatically-infectious, I(7), hospitalized H(r). and
recovered, R(r) individuals. Therefore, the total human population denoted by N(t),
1S given as

S() + Vi) + Va(t) + E(r) + A(r) + I(n) + H(2) + R(1)

It should be noted that the asymptomatically-infectious, A(r), are individuals who
have exceeded the incubation period but are showing mild or no clinical symptoms
of the disease, while the symptomatically-infectious, I(f), are the individuals who
have passed the peak of the incubation period and are showing moderate or severe
symptoms of COVID-19. In addition, the hospitalized population, H(¢), contains the
group of individuals that exhibit a clinical symptom of COVID-19 and are hospi-
talized or self-isolated for treatment. The asymptomatically infectious, symptomati-
cally infectious, and hospitalized individuals are infectious and capable of transmit-
ting the infection to susceptible individuals after an effective contact.
Recruitment into susceptible class 1s assumed to be through immigration or birth
rate 1, susceptible individuals moves to vaccinated class after receiving the first
%CDVID- 19 vaccine at a rate ¢b, the first dose of vaccinated individuals moves
to the susceptible compartment at a rate 7 due to the fact that, the first dose of the
vaccine 15 imperfect to protect against COVID-19 and the rest of the population
moves to second dose of vaccinated class at a rate o. It is assume that individuals in
the second dose of vaccinated population moves to recovered class at a rate n. The

. e s alf A H) . . . .
force of infection 4 = % where a 1s the effective transmission rate,f, 1s
; .

the reduction rate in disease transmission for asymptomatic individuals, f; 1s the
reduction rate in disease transmission for symptomatic individuals and f§; 1s the
reduction rate in disease transmission for hospitalized individuals. The parameter £
represents the movement rate from the exposed class while a fraction &k develops
infection and moves to symptomatic class, the rest of (1 — k) become as ymptomatic.
Let y represents movement or exit rate from asymptomatic class A(¢), then fraction p
may recover naturally from asymptomatic infection and the rest of (1 — p) becomes
symptomatic. We assume that disease induced death in asymptomatic individuals,
A(n), 1s negligible. The exit rate from symptomatic infected class 1s @, where the
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fraction b recovered and the rest of (1 — b) are hospitalized. y 1s the per-capita natu-
ral death rate in all the classes. We assume additional death rate due to COVID-19 in
symptomatic and hospitalized cla§sElt rate d.

The model used in studying the transmission dynamics of COVID-19 in this
stud@ given by the following system of the nonlinear differential equation. The

state variables and parameters of the model are given in Table 1. while the flow dia-
gram 1s depicted in Fig. 1.

% =0 —iS—(u+PS+1V,,
dv,

dt
dv,

9E _ JS— (e + WE.

dt 1
dA (1)
— =&l =x)E—(u+y)A,

dt

el

7 =exkE+wi(l—pA —(u+ 8+ w)l,
‘fj—H — (1 = b) — (4 + 6+ d)H,

t

R

E:mbf+wpﬂ+dH+nV3—yR,

with the initial conditions S(0) > 0, V,(0) = 0, V,(0) = 0,E(0) 2 0,A = 0,/(0) = 0,
H = 0, and R = 0. where a 1s the effective transmission rate, f, 1s the reduction rate
in disease transmission for asymptomatic individuals, f, is the reduction rate in dis-
ease transmission for symptomatic individuals, and f;; 1s the reduction rate in dis-
ease transmission for hospitalized individuals.

Fig. 1 Flow chart of the COVID-19 model (1)
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Table 1 Description of the model’s variables and parameters

Description
Variable
SN Susceptible class
V| 14 Those who received the first dose of vaccine
Vi) ac-:;e who received the second dose of vaccine
Ein Exposed class
AN Asymptomatic infected class
1) Symptomatic infected class
Hin Hospitalized class
Rin Recovered class
P(H'{IH]"E"LE"F'
f Recruitment rate of susceptible class
i Natural death rate
] Rate of first vaccine dose
T Progressifzicate from V| to §
i Effective transmission rate
& Disease induced death rate
n Recovery rate due to second dose of vaccination
o Second dose vaccination rate
£ emeut rate from exposed class
k Fraction of exposed individuals who have been infected
@ Movement rate from symptomatic infected class
b Proportion of symptomatic infected individual who recovered
d Treatment rate
W Movement rate from asymptomatic infected class
o Proportion of asymptomatic infected individuals who recovered
Effective transmission rate
£y Reduction rate in disease transmission for asymptomatic individuals
i Reduction rate in disease transmission for symptomatic individuals
i Reduction rate in disease transmission for hospitalized individuals

2.2 Positivity and Boundedness of Solutions

It 1s important to show that the presented model (1) 1s ﬂpidﬂmmgi{:ally mean-
ingful in the feasible and bounded in the region D, such that the state variables of
the model are non-negative for all given time ¢ > 0. Thus, we state the following
result.

Theorem 1 The initial data for the model satisfies S(0) > 0,V,(0) = 0, V5(0) = 0,
E=0A0) = {}) 20, H(0) = 0 and R(0) = 0 such that the solutions of the
model represented a (5(), V (1), V5(0), E(), A(r), I(n), H(D), R(1)) with non-negative
initial data remain non-negative for all time t > 0.
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Proof We I} = sup{t >0 : S(1) > 0,V (1) > 0, V,(r) > 0, E(r) > 0,A(t) > 0,1(r) > 0.
H(t) > 0,R(r) > 0 € [0,¢]}, for all time T > 0. From the first equation of the set of
equations 1n (1), 1t follows that

%:gHv]—,15—(M+¢}sze—45—m+¢)s 2)

By using the integrating factor method, the above differential equation (2) 1s further
written as

%(S(I)flﬁr l(,u + ¢hlt +/ ﬁ.(x)cix] ) > fexp [':H + ¢h)r +/ ,l(x)dx].
0 0

Therefore,

T T ¥
S(Thexp l(,u + T + / J.(x)dx] - S5(0) = / E?(fxp [{M + )y + / J.(x)dx] )d}-‘
0 0

]

s0 that,

,
S(T) = §5(0)exp [—[,u + T - / A(_r}ff_x]

i

T r &
+ exp [—[,u + T - / Al{.:r}.{fx] x / B(m‘p [I[,u + ¢y + / ﬂ[.ﬂr}dx] )a’}' > (.
0 il 0
(3)
It 15 trivial that the mequality S(7) = 0 1s positive. In a similar way, the remaining

state variables can be shown to be positive for all ime 7 > (. Therefore, all the solu-
tions of model (1) remain non-negative for all non-negative initial conditions. O

To show that the presented COVID-19 model is mathematically and epidemi-
ologically meaningful, we consider the analysis of the model (1) in the feasible
region D C 'Ri such that

D= {{S,V],VE,E,A,I,H,R} ERY :S+V + Vo +E+A+I+H+R< E}

M

(4)

By following the standard technique method given in Ojo and Akinpelu (2017)
and Ojo et al. (2021), the feasible region T can bewn to be positively invari-
ant. Hence, all the solutions (5(z), V, (1), V5(1), E(1), A(1), I(z), H(1), R(f)) remain in the
region D where the model 1s said to be mathemall}f and epidemiologically well-
posed (Ojo and Goutfo 2021; Peter et al. 2018a). Thus, we claim the following result.

Theorem 2 The feasible region D C RE of the COVID-19 model is positively invari-
ant with positive initial conditions in R _.
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2.3 Existence and Stability of the COVID-Free Equilibrium (CFE)

The disease-free equilibrium sy state henceforth refer to as COVID-free equi-
librium steady state (CFE) 1s obtained by equating the right hand side of all the
equations in (1), and the vanables (£, A, [) to zero. Thus, the COVID-free equi-
librium, denoted by &, is obtained as & = (8", V/, VI,E", A" I", H',R") where
Eft=A"=I"=H"=0and

§ = Br+o+u
nr+ (o +wu+ @)’

V= B¢

b opr+ o+ p)(p+ )’ )
v = b¢a ,

© (ol + (o + p)p+ @)l
R = Ocpon

o+ lut 4 (o + e+ )l

The next-generation matrix method (Diekmann et al. 1990; Peter et al. 2{}1@2{};
James Peter et al. 2022; Ojo et al. 2022a; Peter et al. 2022, 2018b, 2018c) 1s used
to analyse the stability of the CDVID-@ equilibrium. Particularly, using the nota-
tion in Oke et al. (2020), the Jacobian matrix of the new infection terms (F) and the
remaining transfer terms (V) are obtained as

0 “fvf’-l ";f’f "fvf’” k, 0 0 0
o0 0 0 0 | qy_]| ks K 0 0
00 0 0 —ex —wk; kg 0O
00 0 0 0 0 =k ky

where ky=e+p, ks=1-x, ky=pu+y. ky=1-p ky=pu+oé+w, ky=1-5b
and ki, = p + 6 +d. Following Ojo and Akinpelu (2017), the threshold quantity
given by Ry, = w(FV~') (with @ being the spectral radius) is obtained as

Ry=wFV ) =R, +R, + R, (6)
where,
[I.Sr‘ﬁ_,i!Ekj [x.’f’ﬁ;E (W.kﬁk? + .!Ckﬁ) H.SMﬁHE(UA}}{ijk? + !Ckf,}
Ry=——77" Ry= v Ry =
Nk .k, Nk k ks N*kkkgkog

The threshold quantity R, 1s the control reproduction numberZso known as effec-
tive reproduction number) of the model (1). This quantity measures the average
number of new COVID-19 cases that a single typical infectious individual can gen-
erate m a population that is susceptible with a certain fraction that are vaccinated
individuals. As seen in (6), R, is the sum of the reproduction numbers associated
with the number of new cases generated by asymptomatically infectious humans
(R ,), symptomatically inf’ecli@ humans (R,;) and hospitalized individuals (R ).
Now, following Theorem 2 of Van den Driessche and Watmough (2002), we use the
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control reproduction number R, to cslablistmz local stability of the COVID-free
equilibrium (CFE) £, and the result is given in the Theorem below.

Theorem 3 The CFE &, of the model (1) is locally asymptotically stable in the bio-
logical feasible region D if R, < 1, and unstable otherwise.

Proof To prove Theorem 3, we obtained the Jacobian matrix of system (1) at the
CFE &, as

[ -k T 0 0 - af'y, aS'f  eS'fy 0 7
: M Nt N
¢ - kl 0 0 0 0 0 0
0 o -k 0 0 0 0 0
- as” iy al" a8 fiy
To(&y) = o0 0 ke N* N 0 (7)
0 0 0 eky -k 0 0 0
0 0 0 e wk — kg 0 0
0 0 0 0 0 wkg —ky O
| 0 0 n 0 wp beo d —u ]

where k, =pu+d. b =t+o+pubky=n+puki=e+mki=1-xky=p+wy,
ky=1—p, ky=p+é+w, kgy=1—b, and ky=pu+5+d, whil] S* and
N* = 58"+ V] + VI + R" are steady states given in (5). To establish the stability of
the COVID-free equilibrium, it is necessary to show that the eigenvalues of the Jac-
obian matrix 7, (&) are all negative. From (7), the first two eigenvalues are obtained
as —y and —k;. The remaining six eigenvalues are obtained by using the sub-matrix
J, (&) given below as

k1 0 _%B _aSh _ aShy ]
1 N Nt N
¢ -k 0 0 0 0
as* g, as* g, aS* By
Ji(E) = 0 0 -k N¢ N N (8)
0 0 eks -k, O
0 0 ex wk, -k O
0 0 0 0  wkyk —ky |

Following the standards of the Routh—Hurwitz criterion (Paul and Kuddus 2022), all
the eigenvalues of the sub-matrix 7,(&,) will be real and negative if the following
holds:

(i) Tr(J(E) <0
(i) Det(J, (&) >0
(iti) The product of Tr (J;(&;)) and the sum of all principal minors of 7, (&) is
equal to Det (7,(&,)).

Using the sub-matrix (8), we obtain the following
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Tr( T (&) = —(ky + ko + ky+ kg + kg + k) <0
and
Det( T, (Ey)) = kykgkgk,o(k (o + u) + pr)(1 = Ry) = 0.

From the above inequalities, we show that the first two Routh-Hurwitz conditions
hold. Thus, to establish the third condition, we obtain the sum of all the 5 x 5 princi-
pal minors of 7, (&,) represented by M as

M = Ijheghegh, ot — ke ey ey + Iy J(1 = RyWZ, +2Z,5) > 0.

Where Z, = & |kwhkgkyy + ki I:Iffkj ky + kkg + Kkm] + ksk, 5 1(&,3 + kyp)-
Zy = kokglky + ko) + kekyo(ky + kg, kyy = T’ ky, = M and k; = ﬂ.,'rﬁ For
the above inequality M > 0 to hold, then kk, < ¢t and T?.U < 1 must be satisfied.
To establish the Routh- Hurwitz ulteuo@e third condition must be satisfied such
that M x Tr(7,(&,)) = Det(.7,(&,)). thus all the eigenvalues of the sub-matrix (7) are
negative real part if Ry < 1. Hence, the CFE & 1s said to be locally asymptotically
stable and unstable otherwise. O

A simple interpretation and epidemiological implication of Theorem 3 is that a
small inflow of COVID-infected individuals will not generate an outbreak of the dis-
ease 1n the population if the threshold quantity R, 15 less than unity. In other words,
the disease will rapidly dies out when the control reproduction number R, < 1if the
initial sizes of the infected individuals is in the basin of attraction of &,

3 Parameter Estimation and Model Fitting

Estimation of parameters of model (1) based on the data from reported cases of
COVID-19 in Malaysia is explored in this section. To be specific, the model 1s
parameled to mvestigate the disease burden with effect of vaccination control
in terms of the cumulative number of daily reported cases in Malaysia from Feb-
ruary 24, 2021 up to February 15, 2022 (that is, from the beginning of vaccina-
tion progranm]plemeutation in Malaysia). In this work, the values for parameters
such as the recruitment rate of susceptible compartment, &, human natural death
rate, u, disease-induced death rate, o, progression rate from exposed class, £, frac-
tion of exposed individuals that progress to infectious state, &, rate of migration
from asymptomatic infected compartment, y, rate of migration from symptomatic
infectious class, e, treatment (or recovery) rate of hospitalized individuals, d, rate
of reduction in disease transmission for asymptomatic individuals, f, and rate of
reduction 1n disease transmission for symptomatic infectious 111d1v1dual:s, p,. are
either chosen or estimated from well-established literature as discussed below: As
of 2021, the average life expectancy of Malaysian people 1s 75.6 years (Depart-
ment of Statistics Malaysia 292), so that g = 1/(75.6 x365) per day. Further,
keeping in mind that the total population of Malaysia in 2021 1s estimated at 32.7
million (Department of Statistics Malaysia 2021), we set N(0) = 32700000 so that
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@ /p = N(0) = 32700000 is assumed as the limiting total hunapopulation in the
absence of the disease. Thus, # is estimated as @ = 1185. The incubation period for
COVID-19 15 estimated to average 5.2 days (Okuonghae and Omame 2020; Olaniyi
et al. 2020; Rothan and Byrareddy 2020), with a range of 3 to 14 days (Okuonghae
and Omame 2020), so that we set £ = 1/5.2. The relative infectiousness of asymp-
tomatic infected individuals when compared to symptomatic individuals 1s still
unknown; however, several studies have assumed that asymptomatic infection trans-
missibility was 0.5 times that of symptomatic infections (Okuonghae and Omame
2020; Olaniy: et al. 2020; Chen et al. 2020), hence we set ff; = 1 and f, = 0.54,.
The fraction of mfectious cases that are asymptomatic is uncertain; however some
studies have suggested setting this to 0.5 (Okuonghae and Omame 2020; Olaniyi
et al. 2020), hence we set k = (.5. The average recovery period is about 15 days
(Okuonghae and Omame 2020; Cauchemez et al. 2014; Chen et al. 2020), so that we
set y =@ = 1/15. There were 12 deaths out of the total number COVID-19 cases
of 3545 reported on February 24, 2021 (Minstry of Health Malaysia 2022), so the
disease induced death rate is estimated as 6 = 12/3545 = 0.0034. The treatment (or
recovery) rate for hospitalized individuals 15 set to d = 0.0667, following the works
in Olaniyi et al. (2020) and Chen et al. (2020)). Whereas the values of the remain-
ing parameters of model (1) (rate of first vaccine dose, ¢, rate of movement mn V;
class to § class, 7, effective transmission rate, a, recovery rate due to second dose of
vaccine, n, rate of second dose vaccination, ¢, proportion of symptomatic infected
individuals that recovered, b, proportion of asymptomatic individuals that recovered,
p. and rate ofmu{:tiuu in disease transmission for hospitalized individuals, f,;) are
estimated by fitting the model to the reported COVID-19 cases. In many previous
studies (Okuonghae and Omame 2020; Olaniy1 et al. 2020; Abidemu et al. 2021;
Abidemi and Aziz 2020, 2022), 1t has been shown that deterministic models fit well
to cumulative number of reported cases. Thus, model (1) is fitted with the cumula-
tive number of daily reported COVID-19 cases. Following Olaniyi et al. (2020) and
Abidemi and Aziz (2022), the parameter estimation is conducted based on the least
squares method implemented in MATLAB with ode4 5 routine with a view to mini-
mizing the sum of squared-errors defined as )’ ( Y(t,®) - X,,,)" constrained by the
COVID-19 model (1), where X, denotes the real reported data, and ¥Y(r, @) is the
solution of the model associated with the cumulative number of daily reported cases
over time t with the estimated parameters set @, where ® € {c;ﬁ, T.a.n.0.b, p, By }
Furthermore, the initial condition@e estimated according to the demographic
data of Malaysia and the reported COVID-19 cases by the Ministry of Health
Malaysia (Ministry of Health Malaysia 2022) and Our Wold in Data (Our World
in Data, amnavirus 2022) between February 24 2021 and February 15 2022.
The total population of Malaysia in 2021 1s estimated at 32.7 million as at 2021
(Department of Statistics Malaysia 2021). Thus, the initial total population 1s fixed
at N(0) = 32700000. As at February 24, 2021, 3 people had received the first dose
of vaccine, while 60 people had received the second dose of vaccine, so we set
V,(0) = 3 and V,(0) = 60. On this day, there were 3545, 30568 and 3331 numbers
of new, active and recmf cases, respectively, so [{0) = 3545, H(0) = 30568 and
R(0) = 3331. In Altahir et al. (2020) and Wang et al. (2020), it was assumed that
the number exposed individuals 1s 20 times the number of symptomatic infected
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individuals, so E(0) =20 x I{0) = T70900. We further mak@ similar assump-
tion that the number of asymptomatic infected individuals is assumed to be 10
times the number of symptomatic individuals, thus A(0) = 10 x I{0) = 35450.
Finally, the initial size of the Susceptiblmdividual subpopulation is easily deter-
mined from S(0) = N(0) — (V,(0) + V5(0) + E(0) + A(0) + 1(0) + H(0) + R(0)) as
S(0) = 32556143. Figure 2 demonstrates the results obtained from the model fitting
with reported cumulative number of daily cases, while Table 2 provides the esti-
mated model parameter values.

4 Sensitivity Analysis

In this section, the global sensitivity analysis of model (1) 1s provided. The Par-
tial Rank Correlation Coefficient (PRCC) 1s used to identificate the most influential
parameters of a given function (Marino et al. 2008). To genem the random data
that used in PRCC, the Saltelli sampling given is employed (Saltelli 2002; Saltelli
et al. 2010). In this phase, the open-source Python library called SALib developed
by Herman and User 1s applied to construct the random data using Saltelli sampling
(Herman and Usher 2017). The probability intervals are obeyed for the parameter
values random sampling. All parameters are included except the recruitment rate of
susceptible class (@) and natural death rate () which previously estimated. Two epi-
demiological aspects becomes the aims as follows.

I. The value of reproduction numbers R ,, R, Ry, and R of model (1).
2. The value of each compartment density of model (1).

The PRCC results for the reproduction number associated with the number of new
cases generated by asymptotically infectious humans (R ,) show that there are four
most influential parameters namely the effective transmission rate (a) and the reduc-
tion rate in disease transmission for asymptomatic individuals (f,) which have posi-
tive relationship with (R,). and the fraction of exposed individuals who have been
infected (k) and the movement rate from asymptimatic infected class (y) which have
negative relationship with (R, ). This PRCC results are given in Fig. 3a and the rela-
tion between f, with yr and & are given in Fig. 3b, c.

The next PRCC results given by Fig. 4a show that the effective transmission rate
and the reduction rate in disease transmission for symptomatic individuals (f,)
are the most influential parameters which have positive relationship with the repro-
duction number associated with the number of new cases generated by symptotically
infectious humans (R;). The contour plots in { w, fi; ) and { K, f;) —planes are given on
Fig. 4b, ¢ to show that x and @ are also in take effect to (R;).

When the PRCC results for the reproduction number associated with the number
of new cases generated by hospitalized individuals (R ;) are investigated, we obtain
that three parameters becomes the most influential given by the effective transmis-
sion rate (a), the proportion of symptomatic infected individual who recovered (b),
and the reduction rate in disease transmission for hospitalized individuals g, see
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Fig. 2 Fitting of the cumulative number of daily reported cases to model (1)
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Fig.3 PRCC resulis and contour plots for the parameters of R,
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Fig.4 PRCC results and contour plots for the parameters of 7,

Fig. 5a. @ and f;; have positive relationship with (R ;) while b has the different sign.
The second place is given by the disease induced death rate. To show the influence
of those parameters, the contour plots are portrayed in Fig. 5b, c.

Now, the most influential parameter for control reproduction number (%)) is iden-
tified. The PRCC results given by Fig. 6a indicate that the effective transmission
rate (ar) plays the important role in increasing Ry,. The relation of @ with ¢ and r are
presented in Fig. 6b, ¢ to show that those two parameters are also have impact to R,

Furthermore, the most influential parameters for the value of each compart-
ment density of model (1) are investigated. To obtain the solution, the fourth-order
Runge—Kutta numerical scheme is employed. By neglecting the recruitment rate of
susceptible class (@) and natural death rate () we compute the solution for 200, 400,
600, and 800 days and obtain PRCC results as in Figs. 7 and 8 and most influen-
tial parameters for each compartment as in Table 3. The rate of first vaccine dose
(¢p) becomes the most influential parameter for susceptible class (S5). For those who
received the first dose of vaccine (V) and the second dose of vaccine (V5), the sec-
ond dose vaccination rate (o) and the recovery rate due to second dose of vaccination
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Fig.5 PRCC results and contour plots for the parameters of R,

(1) have respectively become the dominating parameters. For the exposed class (E),
asymptomatic infected class (A), symptomatic infected class (), and hospitalized
class (H), the rate of first vaccine dose 1s the most influential parameters. Finally, the
PRCC results indicate that the disease induced death rate (6) is the most influential
parameter for for the recovered class (R).

5 Numerical Simulations

In this section, some numerical simulations are demonstrated. Fourth-order
Runge—-Kutta scheme 1s used to compute the numerical solution. Based on the PRCC
results, the influence of four parameters namely, the effective transmission rate (a),
the rate of first vaccine dose (¢b), the second dose vaccination rate (), and the recov-
ery rate due to second dose vaccination (#) are studied. All parameters values can be
found in Table 2 and the dynamical behaviors are observed when a parameter 1s var-
ied. For each case, two types simulations are given namely the bifurcation diagram
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Fig.6 PRCC resulis and contour plots for the parameters of Ry,

and the appropriate time-series. The proposed bifurcation diagram 1s presented to
show the change in stability of CFE and the occurrence of COVID-endemic equi-
librium point (CEE) when the bifurcation parameter is varied. To support the cir-
cumstance, the time-series are given for several values @]e parameters. From bio-
logical point a view, this simulations exhibit how big 1s the role of each parameter in
suppressing the spread of COVID-19.

a The Influence of the Effective Transmission Rate (a)

22

Using the parameter values in Table 2 by varying a in interval [0.86, 1], the bifur-
cation diagram driven by the influence of the effective transmission rate (a)
1s portrayed m Fig. 9. We show that the CFE 1s locally asymptotically stable for
0.86 < a < a” where a”* ~ 0.9287. When a crosses a*, CFE losses its stability and a
locally asymptotically stable CEE occurs via forward bifurcation. When a increases
after crosses a*, the CEE also increases. Now, by setting a = (0.25,0.5,0.75,0.95,
the time-series is simulated, see Fig. 10. When the effective transmission rate (a)
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Fig. 8 The contour plot of PRCC results for the parameters respect to each compartments

increases, the peak of exposed (E), asymptomatic (A), symptomatic (§) and hos-
pitalized (H) individuals increases. The convergence rate to the equilibrium point
for each compartments also increase. This means, we need to suppress the effective
transmission rate by applying the health protocols such as social distancing, hand
hygiene, and the use of health masks.

5.2 The Influence of the Rate of First Vaccine Dose(¢)

In these simulations, the rate of first vaccine dose (¢b) is varied in interval
0 < ¢ <0.04 to show its impact to the population densities of compartments. The
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Fig. 10 Time series of model (1) with o =0.25,0.5,0.75,0.95

forward bifurcation also occurs when ¢ crosses ¢* = 0.0212, see Fig. 11. When
¢ < ¢*. we have a locally asymptotically stable CFE and CEE does not exist. CFE
becomes unstable and CEE is locally asymptoticaly stable when ¢ passes through
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Fig. 12 Time series of model (1) with ¢b = 0.01, 0,02, 0.03, 0.04

¢*. Although CEE increase, but the peak for E, A, I, and H decreases when ¢
increase as we show in Fig. 12. The recovered individual (R) also increase due
the proportion of ¢. This means, the first vaccine dose has great contribution to
reduce the number of infected individuals.
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5.3 The Influence of the Second Dose Vaccination Rate (o)

To show the impact of the second dose vaccination rate (o) to the spread of
COVID-19, we vary o in interval [0,6] x 107, It is shown from Fig. 13 that for
0<o <o* 6" =3.2252 x 1077, both CFE and CEE exist where CFE is unstable
while CEE is locally asymptotically stable. The CEE decreases when o increases
and finally disappears when o crosses o*. The stablity of CFE also changes sign,
sifomes a locally asymptotically stable point for ¢ > ¢*. This phenomenon
is called forward bifurcation where o is the bifurcation parameter and ¢” is the
bifurcation point. For example, we plot the time-series for ¢ =0.1,0.3,0.7.0.9
and obtain Fig. 14. The peak pomnt of E, A, I, H decreases when the value of ¢
increases. From biological explanation, when the second dose vaccination rate (o)
increases, we can hold down the spread of COVID-19 and suppress the endemic
condition. For some values of o, the existence of COVID-19 may extincts.

5.4 The Influence of the Recovery Rate Due to Second Dose Vaccination (1)

From PRCC results, the recovery rate due to second dose vaccination (») 1s the
most influential parameter for the recovered class. We plot this condition in
Fig. 15 for 0.05 < » £0.2 and show that # is directly proportional to the den-
sity of recovery class (R) and inversely proportional to the density of the sec-
ond dose of vaccine individuals (V,). We have not found the bifurcation in this
interval. The interesting phenomena 1s given by Fig. 16 where although this
parameter is the most influential for R, the great leverage occurs only on the
decrease of V,. This condition describes that the recovery rate to the second
dose only has direct impact on the density of V, and small impact in R which
makes sense since all individuals moves to R.

s Stalde COVID-Emdemic Paoint == |[atahbe COVTD-Froe Poin s Stahke COWD-Froe Podin W Eifurestas Poins

It

Fig. 13 Bifurcation diagram of model (1) driven by the second dose vaccination rate (o)
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Fig. 14 Time series of model (1) withe = 0.1, 0.3, 0.7, 0.9

Fig. 15 Bifurcation diagram of model (1) driven by the recovery rate due to second dose vaccination (i)

6 Conclusion

Since the severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2) was first
reported in Wuhan China, the disease remains a global public health challenge that
has taken many human lives. To mitigate the impact of this deadly disease, several
control measures have been implemented to reduce its burden on the population.
Among many other preventive measures that were implemented 1s vaccination.
The use of the vaccine has helped in reducing the number of reported cases all over
the world. The effectiveness of this preventative measure requires an imnitiation of
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Table 3 Most influenced

Variables 200 day: 400 days 600 day: 8OO days
parameter for each variable ariables ] | | ]

8 B ¢ ¢ ¢
VI o a a a
V2 1 n "
E 9 b i i
A P ¢ ¢
i 9 b i i
H ¢ b é ¢
I & & & &

multiple doses of vaccine to effectively contain the infection by fully developing the
human immunity against the virus.

In this work, a non-linear mathematical model was developed and analyzed
to study the impact of vaccination status on the dynamics spread of COVID-19
in the population. The COVID-19 model presented explicitly includes differ-
ent compartmental classes for the population of vaccinated individuals with
first and second doses. Following the development of the model, the threshold
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quantities were obtained to investigate the conditions for attaininggadisease-
free environment. We show that when the threshold quantity R, is less than
unity, then the COVID-free equilibrium 1s said to be locally asymptotically
stable and unstable uthere. To 1dentify the most influential parameters on
the threshold quantities, we performed a global sensitivity analysis by using
the Partial Rank Correlation Coefficient (PRCC). The result from this analysis
informs us of the most impactful parameters that contribute most to the spread
and control of the disease. These parameters are effective transmission rate
(@), the rate of first vaccine dose (¢h), the second dose vaccination rate (o), and
the recovery rate due to second dose of vaccination (»).

Using the resulting parameters, a numerical simulation was performed to
first 1llustrate the bifurcation phenomenon, which shows the change in stabil-
ity of COVID-free equilibrium point and the occurrence of COVID- endemic
equilibrium point under some parameter variation. In addition, the time series
of the dynamical behavior of the system 1s presented under different values of
the most influential parameters. The result sh@ that adhering to the preven-
tive measures has a huge impact on reducing the spread 0@6 disease in the
population. For instance, our numerical simulation shows that an increase in
the effective transmission rate («) directly increases the peak of the expusca
asymptomatic, symptomatic, and hospitalized individuals. This implies that to
reduce the spread and burden of COVID-19 1n the population, the effective
transmission rate mit be curbed. This can be achieved by applying the health
protocols such as social distancing, good personal hygiene, and the use of face
masks. Furthermore, the impact of the rate of the first vaccine dose and sec-
ond vaccine dose were 1llustrated. As expected, increasing vaccination rates
decreases the population of infected individuals. Particularly, an increase in
the second dose vaccination rate shows to hold down the spread of COVID-19
and suppress the endemic condition.

Although, following the implementation of both the first and second dose of
the vaccine, COVID-19 remains a threat to the human community. As a result,
it 1s important to inform the public of the significant impact of the second dose
and boosters to better provide the level of protection needed to eradicate the
disease in the population. Therefore, to attain a high level of herd immunity to
the disease, mass vaccination exercises should be encouraged to cover most of
the population to prevent another outbreak of COVID-19.
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