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The main problem in multi-sensor-multi-target tracking is data association problem that 
leads to multidimensional assignment problems. In this paper, a multidimensional 
assignment problem is solved by merging ant colony optimization, Kalman Filter and 
artificial neural network. The ant colony optimization algorithm is first applied to acquire the 
number of targets, next  the states of the targets are estimated using the Kalman filter, and 
finally, the estimation results are improved by using the artificial neural network. In ant 
colony optimization algorithm, it has been investigated the process of choosing initial 
pheromone value of ants, ants placement in the second cycle and afterward. It is found 
that the ant colony optimization algorithm will produce better and faster search results if 
the initial pheromone value equals to the visibility and new ants are placed at the initial 
position in the next cycle on the point of the last visit of the previous cycle of ants. The 
proposed traget tracking system leads to improved performances in the simulation cases. 
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1.    INTRODUCTION 

Target tracking has wide applications either military or civilian, such as tracking the ground targets, air 
traffic control, surveillance, and radar tracking. Target tracking is a combination of tracking techniques 
employed for a large number of purposes. The objectives of multiple target tracking are to identify and 
to estimate states of multiple targets while distinguishing them. The states of the targets consist of 
position, velocity and acceleration. It is known that some of the results of measurements by the 
sensors are not correct as often corrupted by measurement noise. This causes the number of targets 
is not known a priori. The problem becomes how to determine the number of targets, where the 
measurement results mix between the correct measurements (derived from the targets) and incorrect 
(false alarm) which is called data association problem. In the case of multi-sensors, for the number of 
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sensors 3�N , the problem becomes a multidimensional assignment problem. The multidimensional 
assignment problem is NP (Nondeterministic Polynomial)-Hard (Kammerdiner et al., 2007), and to 
solve this type of problem, computational intellegence offers heuristic algorithm to deal with difficulties 
in developing computational algorithm (Sumathi and Paneerselvam, 2010). 

Some studies for multiple target tracking based on the search methodology to solve the 
multidimensional assignment problem have been done by Chen and Hong, 1997; Turkmen and 
Guney, 2006; Turkmen and Guney, 2008. In these studies, the problem is solved by using genetic 
algorithms (Chen and Hong, 1997; Turkmen and Guney, 2008), tabu search (Turkmen and Guney, 
2006), genetic algorithm and particle swarm optimization (Badamchizadeh et al., 2010). In several 
studies that apply the search methodology to traveling salesman problem, namely genetic algorithms, 
simulated annealing, and ant colony optimization algorithm (ACO), it was found that the ant colony 
optimization algorithm produces better solutions compared with other algorithms in terms of shorther 
tour length and less iterations. Ant colony optimization has also shown comparable results with those 
acquired by other all-purpose heuristic algorithms in implementation to other combinatorial 
optimization problems such as the quadratic assignment problem, graph coloring, job-shop 
scheduling, sequential ordering, and vehicle routing (Bonabeau et al., 1999). In this paper, the ant 
colony optimization algorithm is proposed to solve the multidimensional assignment problem in 
multiple target tracking. 

Ant colony optimization is a biomimetic model of ant behavior known to be able to find the shortest 
distance between nests and food sources (Dorigo, 1992; Dorigo et al., 1996; Bonabeau et al., 1999; 
Di Caro and Dorigo, 1998; Dorigo and Stützle, 2004; Duan et al., 2006; Sumathi and Paneerselvam, 
2010). The ACO algorithm uses a set of artificial ants that work together in order to obtain solution of 
problems by means of pheromone deposition. In a colony of ants, when the ants walk, they place 
chemical substance called pheromone in their path. With the intercession of this pheromone occurs 
indirect communication and exchanges information among ants while building a solution. The ants 
create a positive feedback choice based on preference visit of the path that increases the deposition 
of the pheromone.  Very soon, all ants will use the path with more pheromone. The probability that an 
ant takes a path increases with the number of ants that previously chose the same path. 

The Kalman filter, developed by R.E. Kalman, 1960; Kalman and Bucy, 1961, is extensively used in 
diverse fields such as navigational and guidance systems, radar tracking, sonar ranging, and satellite 
orbit determination, seismic data processing, nuclear power plant instrumentation, econometrics, etc. 
The application of Kalman Filter in trajectory estimation was started during the satellite orbit 
determination in 1960’s (to illustrate the Ranger, Apollo, and Mariner missions) (Naidu, 2003). It was 
the first full implementation of the Kalman filter to give precise estimates of a complex real time 
process with high measurement noise. The merging of the Kalman filter algorithm with target tracking 
has satisfied the requirement for data accuracy in real time target tracking and has produced a vital 
target tracking systems to the present day. The computational efficiency of the Kalman filter and its 
ease of realization in computer programming have made it as an ideal filter for target tracking 
applications combining image processing and filtering/estimation. The target tracking problem is 
frequently obscured by the measurement noise.  The data measured by tracking devices needs to be 
separated out from the noise in order to predict the actual path of a moving target (Bar-Shalom et al., 
2001).  

Artificial neural networks are modern term of neural networks that are composed of interconnected 
artificial neurons or nodes that are directly connected to each other and exchange information. The 
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artificial neural network is a program which is created to imitate the functions of biological neurons 
circuit. A real biological system model is not necessarily needed by the artificial neural networks in 
solving artificial intelligence problems (Sumathi and Paneerselvam, 2010). The artificial neural 
network is a method which proves to be very good for building a complex relationship and nonlinear 
between input and output data (Kosko, 1992; Krose and van der Smagt, 1998). The artificial neural 
networks are built by layer networks consist of neurons which calculate a function of their inputs and 
send the result to the neurons in the next layer. The input signal is fed forward from one layer to the 
subsequent layer through the networks. The output of a neuron is typically a nonlinear activation 
function of a weighted combination of the incoming signals and a threshold value. During learning 
process, the weight values are increased or decreased to alter the overall function of the network 

In this paper, the ACO, the Kalman filter and the artificial neural networks are merged into a target 
tracking system as shown in Figure 1. The proposed system is divided into two mains parts, the ACO 
algorithm-the Kalman filter and the artificial neural network (ANN). The multiple traget tracking 
problem is first solved by using the ACO algorithm to obtain the the actual number of the targets by 
separating the true targets and the false targets. After that, the Kalman filter is used to estimate the 
states of each target. The Kalman filter is an optimal filter which is extensively used to estimate the 
state of linear dynamic systems (Grewal and Andrews, 2008). Finally, inaccuracies of the estimation 
by the Kalman filter are then revised by using the artificial neural network. The paper extends the 
introduction by adding more overview and references that show the computational intelligence has 
received considerable attention in multiple traget tracking problems than the previous version of the 
paper appeared in Wiranto and Joelianto, 2010. In addition, analysis and discussion have been 
improved by giving the complete parameters in the simulation and by displaying the related algorithms 
and results in figures.  

Figure 1 Diagram block of a proposed target tracking system 

2.    MULTI SENSOR FOR MULTIPLE TARGET TRACKING 

Suppose there are N sensors used to find targets in a space. There is a number of targets q  (q  is 

unknown) in the surveillance view. The position of the target q  is defined by T
qqqq zyx ),,(�� . The 

detection probability of sensor s  is denoted by dsP . Suppose the number of measurements from 
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sensor s  is sn , s = 1,2,3, ..., N . The si -th measurement of sensor s is denoted as 
ssi

z , is=

1,2,3,…,ns and assumed that these measurements are derived from actual targets plus Gaussian 

noise ),0( 2
sN � . A target may not be detected or appears as a false alarm on each scan (Stimson, 

1998). To simplify notation, a dummy measurement )0(0 �ss iz is added to the measurement set of 

each sensor to describe a false alarm and also for the association of an incomplete measurement of 

the target caused by miss detection. The false alarm of a data set )(kZ is represented by
i

Z� with

)0,0,,0,,0,,0,0( �� ki i�� and the miss detection is represented by
i

Z�

with ),,,,0,,,,( 11121 NNkki iiiiii ���� ��� .

The likelihood function that anN -tuple of measurement },,,{
2121 21,,, NN Niiiiii zzzZ �� � derived from 

the same target with the known state q�  is described in (Popp et al., 2001) as folows  

	
�

���

N

s

iu
ds

iu
qsidsiii

ss

sN
PzpPqZ

1

)(1)(
,,, ]1[]|([)|(

21
��                                                                     (1)    

where )|( qsis
zp �  is the probability density function of the target q , and )( siu is an indicator function, 

which indicates that if 0�si . The sensor s  detects the target q , then 1)( �siu , otherwise if 0�si ,

the sensor s does not detect the target q , then 0)( �siu . The likelihood function that the 

measurements are all spurious or unrelated to target q , i.e. 0��q , is given by 
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where s is the volume of the surveillance view (field of view) of the sensor s .

Cost function to associate a measurement of N -tuple with a target q is given by  
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Because q�  is unknown, it is usually replaced by its maximum likelihood estimation, i.e. 
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The cost function is then defined by 
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The goal is to find the most likely set of N -tuple of measurement so that each measurement is 
assigned to a target or declared false, and each measurement is assigned to one target at most. This 

problem can be formulated as an N -multidimensional assignment problem (Chen and Hong, 1997) 
which is described by the following expression.  

Minimize:

�� �
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where
Niii ,,, 21 �� is the associated binary variable, such that 1,,, 21

�
Niii �� if the measurement of N -

tuple is associated with a candidate target. Otherwise, if the N -tuple is not a candidate target 

then 0,,, 21
�

Niii �� .

3.    ANT COLONY OPTIMIZATION FOR MULTI-SENSOR MULTI-TARGET DATA 
ASSOCIATION PROBLEM 

In the data association problem, the goal is to find the most likelihood that each measurement is 
assigned to a target or declared as a false alarm. The most likelihood that the measurement is a 
target is stated by a small cost. Hence, in order to solve the data association problem using ant 
colony optimization, ants need to move toward the points which consent to achieve minimum total 
cost. The search process by artificial ants (Dorigo, 1992; Dorigo et al., 1996) is described as follows.  

In the first cycle, the initial step is by placing the artificial ants (number of ants can be arbitraly chosen) 
randomly on different points. Next, until the end of the first cycle, the ant will move from point i to 

point j  (which is allowed) and a visibility function given by the following equation is considered  

j
j C

1
��                                                                     (7) 
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where jC is the cost of point j. Ants will eventually reach the points that have largest visibility value. 

The points are not allowed to be stored in the tabu list. After completing one cycle, the contents of the 
tabu list is reset. Each completed cycle, the ants will leave a pheromone trail on every visited point. 
After completing one cycle, the ants will die and be replaced with new ants with the same number.  

In the second cycle and afterward, the new ants placed on the points that has been visited by ants in 
the previous cycle, and will move from point i to point j (which allowed) based on a probability 

function, named as status transition rule  

�
�
�

��
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� � �
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where )(tj�  is amount of pheromone of the ant at point j at time t . The parameters � and � are 

used to control the relative importance of pheromone and visibility. Thus, after an ant finishes its tour 
in one cycle, the amount of pheromone will be updated as follows:  

),()()( NtttNt jjj ����� ����                                        (9) 

where � is a coefficient with a value between 0 to 1, and )1( ��  indicates the evaporation of 

pheromone, and 
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where ),( Nttkj ���  is the pheromone left by ant k at point j , by the time between t to )( Nt � ,

which is defined as follows:  
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otherwise
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where kL  is the total cost of the tour by the k -th ant and N is the number of points visited by each 

ant in a cycle. Total points visited by each ant in one cycle ( N ) are given by ��
��

s

i inN
1

1 .

Where in denotes number of measurements on the i -th sensor and s  is the number of sensors. The 

amount of pheromone at 0�t for every point is represented by )0(j� . One possibility of the selection 

is to set the value equals to the value of its visibility. The algorithm stops when all ants have the same 
route. 
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4.  ARTIFICIAL NEURAL NETWORK 

The artificial neural network (ANN) architecture which is used to improve the estimation results from 
the Kalman filter is a feed forward neural network with supervised learning rule. The learning 
algorithm uses a back-propagation method. The artificial neural network is used to improve the 
estimation quality of the states. In other words, it is employed to gain further reduction of the tracking 
error. Consequently, the parameters that have direct influence to the error reduction are tuned as 
ANN inputs. Figure 2 shows diagram block of the learning process of the ANN. For each target, it is 
utilized nine input signals (Turkmen and Guney, 2006). The selected signals consist of:   

(1) The position difference )( 1� between the measurement vector and the estimation vectors in 

Cartesian coordinate system, )]ˆ[( | pkkk xz � .

(2) The position difference )( 2� between the estimation vectors and the prediction vectors in 

Cartesian coordinate system, )]ˆ[]ˆ([ 1|| pkkpkk xx �� .

(3) The velocity difference )( 3� between the estimation and the prediction vectors in Cartesian 

coordinate system, )]ˆ[]ˆ([ 1|| vkkvkk xx �� .

During the learning phase, all the array of input parameters becomes input to the ANN. 

If kx is the true state vector, and let this vector provides a correct measurement in the Cartesian 

coordinate system ( x , y and z ), then the error from a track in the coordinates x , y and z  after the 

process in the Kalman filter is given by   

xkkkxr xxE )ˆ()( |�� ; ykkkyr xxE )ˆ()( |�� ; zkkkzr xxE )ˆ()( |��

Measurement inaccuracy in tracking rE is expressed by the above equations will be corrected by 

using the neural network (Vaidehi et al., 2001). After the learning process, the output of ANN is ideally 
describing the exact difference between the estimation position by the Kalman filter and the actual 
position of the target. Therefore, in performing supervised learning, the output of the artificial neural 

network will be compared with the value of rE . In the simulation, the value of states kx is assumed 

to be known.  

Figure 2 Learning in Artificial Neural Network 
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5.  SIMULATION 

Simulation is carried out to test the performance of the proposed target tracking system. There are 
two difference cases in the simulation, i.e. two targets in case-I and three targets in case-II. To each 
target, it is given additional zero mean Gaussian noise. Measurement is taken for 100 scans, where 
each scan has 4 seconds time interval. The motion of targets being tracked is modeled by the 
following discrete-time state space equation 

kkkkk wGxFx ���1           (12)  

where the state vector kx represents the position and velocity of each target in the Cartesian 

coordinates ( x , y , z ), kF  denotes the state transition matrix, given by the following matrix 
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and kG  is the process noise matrix, given by 
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In equation (14), t�  is the sampling time interval at which the measurement data are received. The 

time interval is assumed to be uniform. kw  denotes the process noise which is assumed Gaussian, 

zero mean and covariance kQ . Process noise covariance matrix, assuming that all noise processes 

are not correlated, is given by the following matrix 
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The measurement vector kz  is modeled as 
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kkkk vxHz ��           (16) 

where kH is the measurement matrix, given by 

�
�
�

�

 

!
!
!

"

#
�

010000
000100
000001

kH          (17) 

kv is the measurement noise is assumed Gaussian, zero mean with known covariance kR .

Covariance matrix of measurement noise, assuming that all noise measurements are not correlated, 
is given by 
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The parameters of the ant colony optimization were selected as 1�� , 1��  and 9.0�� for both 

cases. However, the number of ants was selected differently (6 ants in case-I and 10 ants in case-II). 
The process noise covariance matrix and the measurement noise covariance matrix were selected as 

kQ = diag(0.00001, 0.00001, 0.00001)km2s-4 and kR = diag(0.1, 0.1, 0.1)km2 respectively. The initial 

covariance matrix of the Kalman filter was chosen 660|0 $� IP . The sensors were assumed to have 

detection probability of 98.0�dsP . The false alarm rate of the sensors was assumed to be 1.  

During the artificial neural network learning phase, the outputs of the the Kalman filter for two targets 
in case-I and three targets in case-II were given as the input patterns of ANN after normalization. 
There were 80 input patterns of the targets without maneuver and 100 input patterns of the target with 
maneuver. These became input patterns in the learning process of the ANN. Therefore, the total input 
patterns were 420 inputs. Experimentally, it was found that the architecture of the artificial neural 
network that provides the best convergence results in order to achieve the specified error limit is given 
by the network that has 9 inputs and 3 outputs with 4 hidden layers.  Each hidden layer had 45 
neurons.  

Tangent-sigmoid activation function was used for as transfer function from inputs until the fourth 
hidden layer. A linear activation function was used as transfer function from the fourth hidden layer to 
the outputs. Error of the learning process was specified to achieve the mean square error of 0.002. 

Learning speed for each layer was selected 01.0�� . After the learning process was completed, the 

outputs of the neural network were de-normalized and summed at the position components of the 
target state vector of the Kalman filter in order to improve estimation results. The process of targets 
tracking for case-I is shown in Figure 3 to 6 and for case-II is shown in Figure 7 to 10 respectively.  
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Case-I: 
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Figure 3 Noisy measurements with false alarm 
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Figure 4 Selected measurements by ACO 
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Figure 5 Tracking using Kalman filter 
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Figure 6 Tracking using Kalman filter and ANN 
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Figure 7 Noisy measurements with false alarm
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Figure 8 Selected measurements by ACO
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Figure 9 Tracking using Kalman filter 
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Figure 10 Tracking using Kalman filter and ANN 

Table 1  Performance comparison between KF and KF-ANN 

Case Target RMSE (km) % improvement with ANN 

  KF KF-ANN  

1 1 0.155 0.090 42 

 2 0.190 0.079 58 

2 1 0.148 0.088 41 

 2 0.530 0.079 85 

 3 0.101 0.050 51 
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Table 1 shows comparison of RMSE value of performance between the results of estimation by using 
Kalman filter and the Kalman filter-ANN. Results show that estimation improvement using the artificial 
neural network yields 55% average of the estimation by only using the Kalman filter. The artificial 
neural network leads to better responses if the input patterns are selected similar to the patterns of 
the inputs given to the learning of neural network.  

6. EFFECTS OF PARAMETERS AND NUMBER OF ANTS

In the ant colony optimization (ACO), � and �  are parameters which influence the pheromone.  

Parameter �  affects the evaporation of pheromone. Increasing the value of � would make the 

evaporation of pheromone will be slower. Conversely, a small �  value will make the evaporation of 

pheromone will be faster. The parameter �  determines the sensitivity of ants to pheromone. Small 
value of � makes the ants are less sensitive to pheromone, whereas a large value of � that makes 
the ants are more sensitive to pheromone.  

Table 2 Test results for different values of � , �  and �

� � � Average of iteration Tracking results 

1 1 0.3 4.05 Match 
1 1 0.5 4.06 Match 
1 1 0.7 4.07 Match 
1 1 0.9 4.08 Match 
1 2 0.3 4.09 Match 
1 2 0.5 4.10 Match 
1 2 0.7 4.08 Match 
1 2 0.9 4.08 Not match 
2 1 0.3 4.03 Match 
2 1 0.5 4.06 Match 
2 1 0.7 4.06 Match 
2 1 0.9 4.06 Match 
2 2 0.3 4.05 Match 
2 2 0.5 4.06 Match 
2 2 0.7 4.07 Match 
2 2 0.9 4.08 Match 
2 3 0.3 4.06 Match 
2 3 0.5 4.08 Match 
2 3 0.7 4.11 Match 
2 3 0.9 4.07 Not match 
3 2 0.3 4.05 Match 
3 2 0.5 4.06 Match 
3 2 0.7 4.06 Match 
3 2 0.9 4.06 Match 

The parameter �  determines the sensitivity of ants to the heuristic factor in state transition rule. 

Large value of � will increase the sensitivity of ants to the visibility factor, otherwise the small value 
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of �  which will reduce the sensitivity of ants to the visibility factor.  Increasing the number of ants 

caused more points explored by the ants in a cycle. Thus it will improve the quality of solutions. 
Conversely, a large number of ants increased the time required to compute one cycle.  

Table 2 shows the test results for different values of � , �  and � to the number of iterations with 15 

ants. Testing is performed in the case-II. In this algorithm, the second cycle and afterward, the position 
of the end visited of ants in the previous cycle becomes the initial position of the new ants. Based on 

Table 2, it is found that better results are achieved by taking �� % . Figure 11 illustrates one case 

where the tracking result does not match when �� % . For faster computation time, the optimum 

value is achieved by using 2�� , 1�� and 3.0�� . A three dimensional plot of the results in Table 

2 is shown in Figure 12. It can be seen that the faster iteration is indicated by the dark blue color. The 

figure shows a pattern of colours as a function of varying values of � , �  and � .
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Figure 11  An example of not match tracking 

Figure 12  3-D Plot of Average of Iteration 
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In the next test, the placement of new ant initial points for the second cycle and afterward will be 
compared between the initial points taken from final visit of the previous cycle (Method-I) and the 
initial points are taken from the second visit of the previous cycle (Method-II). In the testing, the 
algorithm is run by using MATLAB program in a computer with the Intel Core2Duo processor (2.33 
GHz). Table 3 shows the comparison of search results by the method-I and the method-II which are 

shown as a bar graph in Figure 13, by using parameter values 2�� , 1�� and 3.0��  .  

Table 3  Comparison of results between Method-I and Method-II 
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Figure 13 Comparison of Search Results 

Based on the comparison as shown in Figure 13, it can be observed that placing the initial points of 

 Method-I  Method-II  

Number 
of ants 

Average of 
iteration 

Computation time 
(seconds) 

Average of 
iteration 

Computation time 
(seconds) 

10 4.06 0.249 3 0.137 

9 4.11 0.232 3 0.132 

8 4.05 0.207 3 0.114 

7 4.03 0.149 3 0.091 

6 4.01 0.137 3 0.089 

5 3.91 0.131 3 0.080 
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new ants at the point of the second visit of ants from the previous cycle will reduce the number of 
iterations, which purported to shorten the computation time. Search results are faster with the Method-
II. This can be explained as follows. The initial pheromone value equals to the value of visibility, then 
for the first cycle, the ants are placed at arbitrary points. Next, the ants will travel to the second point. 
This is the first chance for the ants to determine the point of the visit and to have a great opportunity 
that the second visited point is the correct point. For the second cycle and subsequently, the initial 
points of new ants are placed at the point of the second visit of the previous cycle. Thus, in the next 
step of the visit, the ants will move at the right points if the initial points are the correct points.  

7. CONCLUSIONS 

In this paper, it has been developed a system for multiple target tracking by combining the ant colony 
optimization, the Kalman filter and the artificial neural network. Simulation showed that the proposed 
system can identify the number of true targets and can improve the states estimation. Processing 
stages of this target tracking can be explained as follows: measurement data from sensors are 
processed by the observation of the ant colony optimization algorithm to obtain the right target 
number. Next, the states of the targets are estimated by using the Kalman filter. After that, the 
estimation results are improved by applying the artificial neural network. The developed algorithm was 
tested with a system model for multi sensors multiple target tracking. Simulation showed that the ant 
colony optimization algorithm can effectively separate the measurements originated from the true 
targets and the false alarms.  

In the ant colony optimization algorithm, it has been investigated effects on selecting initial 
pheromone value of ants, and ant assignment in the second cycle and afterward. Based on simulation 
results, the ant colony optimization algorithm produced better and faster search results if the initial 
pheromone value is taken to be equal to the visibility, the initial position of new ants is selected at the 
second cycle and afterward on the point of the second visit of the previous cycle of ants. The 
simulation results also showed that the Kalman filter gave fairly good estimation. The application of 
the artificial neural network improved significantly the results obtained by the Kalman filter.  
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