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Abstract: We consider a model of predator–prey interaction at fractional-order where the predation
obeys the ratio-dependent functional response and the prey is linearly harvested. For the proposed
model, we show the existence, uniqueness, non-negativity and boundedness of the solutions.
Conditions for the existence of all possible equilibrium points and their stability criteria, both locally
and globally, are also investigated. The local stability conditions are derived using the Magtinon’s
theorem, while the global stability is proven by formulating an appropriate Lyapunov function.
The occurrence of Hopf bifurcation around the interior point is also shown analytically. At the end,
we implemented the Predictor–Corrector scheme to perform some numerical simulations.

Keywords: fractional-order differential equation; linear harvesting; stability analysis; Lyapunov
function; Hopf bifurcation

1. Introduction

One of interesting topics in ecological systems is the predator–prey model, which studies the
dynamics of the populations as the extinction conditions of populations, and terms of its existence as
the result of their interaction. A general Lotka–Volterra prey–predator model is given by

du
dt

= ru
(

1− u
K

)
− p(u)v,

dv
dt

= np(u)v− dv,
(1)

where u and v, respectively, represent the population of prey and predator, p(u) denotes the functional
response, and n is the conversion rate of predation into predator growth rate. r, K and d are the prey
intrinsic growth rate, the prey carrying capacity and the predator death rate, respectively. The model
in Equation (1) was proposed by Gause et al. [1].

In modeling the interaction between predator and prey, one important task is to determine the
specific form of functional response [2], so the model is relevant to the expected ecological conditions.
For example, Rosenzweig and MacArthur [3] considered a Michaelis–Menten functional response

(also known as Holling Type II functional response) p(u) =
mu

ω + u
. This specific functional response

assumes that the prey population is a limited resource and that predation converges to a constant
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when the population of prey increases. Here, m and ω are the capturing rate of prey by predator and
the half saturation constant, respectively. Since the value of p(u) is fluctuated by prey density, this
functional response is called by “prey-dependence”. Several researchers argue that the functional
response depends not only on prey, but also on the ratio of both populations [2,4–6], known also
as “ratio-dependent” functional response. Such functional response is defined by p( u

v ). Recently,
Xiao and Cao [7] studied the interaction of prey and predator with a ratio-dependent functional
response with linear harvesting for both prey and predator population:

du
dt

= ru
(

1− u
K

)
− muv

u + ωv
− k1u,

dv
dt

=
nuv

u + ωv
− dv− k2v.

(2)

Using the following transformation

(u, v, t)→
( u

K
,

ωv
K

, rt
)

,

the model in Equation (2) can be simplified as

du
dt

= u(1− u)− auv
u + v

− ku,

dv
dt

=
buv

u + v
− δv,

(3)

where
a =

m
r

, k =
k1

r
, b =

n
ω

, δ =
1

rω
(d + k2), a, k, b, δ > 0.

Note that the prey and predator growth rates in the model in Equation (3) only depend on the
current conditions. In fact, the growth rates of population also depend on long-time memory. To include
such memory effects, many researchers have applied fractional derivatives to get fractional differential
equations. There are various theories of fractional derivatives in the literature. Among many, two well
known fractional derivatives are Riemann–Liouville and Caputo. We consider here the Caputo
fractional derivative since the classical initial values as in the differential equations of integer order
can also be applied.

Definition 1. [8] Suppose α > 0. The fractional operator

Dα
∗g(t) =

1
Γ(n− α)

∫ t

0

g(n)(s)
(t− s)1+α−n ds,

is called the Caputo fractional derivative of order α, where n = dαe. Particularly, if α ∈ (0, 1], then we have

Dα
∗g(t) =

1
Γ(1− α)

∫ t

t0

g′(s)
(t− s)α

ds.

Note that the Caputo operator is nonlocal operator, i.e., includes the history from initial state to
the current state. Therefore, the Caputo fractional derivative is often applied in modeling biological
systems to describe the influence of memory effects (see, e.g., [9–13]). Biologically, the growth rates of
both prey and predator not only depend on the current conditions, but also depend on all previous
conditions. To model such long-time memory effects, the first derivatives of the system in Equation (3)
are replaced by the Caputo derivative as follows
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Dα
∗u(t) = u(1− u)− auv

u + v
− ku,

Dα
∗v(t) =

buv
u + v

− δv.
(4)

We assume that the initial conditions are u (0) = u0 > 0 and v (0) = v0 > 0 where α ∈ (0, 1]. Further,
we consider 0 < k < 1 as the harvesting parameter.

Notice that the model in Equation (4) is a system of nonlinear fractional differential equations
and finding an analytical solution of such nonlinear system can be very complicated. In the case of
some nonlinear ordinary differential system, Shang [14–16] introduced the Lie algebra approach to
obtain exact solutions. The exact solutions of some nonlinear fractional differential equations may also
be found using similar method (see, for example, [17,18]). In the Lie algebra method, the solution is
constructed from the symmetry property of the model. Since the mathematical model of biological
system is often complicated and the symmetry is lacking, this method is not widely implemented.
An example application is the effect of microtemperatures for micropolar thermoelastic bodies [19].

In this paper, we are not interested in finding analytical solutions of the system in Equation (4)
but we more focus on the dynamics of this system. The local stability of the system in Equation (4)
without harvesting was investigated by Suryanto and Darti [20]. However, the dynamics of the full
system in Equation (4), to the best of our knowledge, has not been investigated. Thus, a fractional-order
ratio-dependent predator–prey model with linear harvesting is proposed and the dynamical behavior
of the model is studied. We first show the existence, uniqueness, boundedness and non-negativity of
solutions of the system in Equation (4). The stability analysis of equilibrium points is performed both
locally using Matignon’s Theorem and globally by choosing suitable Lyapunov function. From the
local analysis, we also prove the existence of Hopf bifurcation driven the order of fractional derivative.
Then, we implement a predictor–corrector scheme to do numerical simulations and to illustrate our
analytical findings. The focus of numerical simulations was to study the effects of fractional-order (α)
and the harvesting coefficient. We show that smaller α stabilizes the equilibrium points as its stability
region is larger. To study the dynamical behavior of the system in Equation (4), we first introduce some
basic concepts of fractional differential equations.

2. Preliminaries

The following lemma is needed to prove the existence and uniqueness of the solution for the
system in Equation (4).

Lemma 1. (See [21]). Consider a fractional-order-system

Dα
∗u(t) = f (t, u(t)), t > 0, u(0) ≥ 0, α ∈ (0, 1], (5)

where f : (0, ∞)×Ω → Rn, Ω ⊆ Rn. A unique solution of Equation (5) on (0, ∞)×Ω exists if f (t, u(t))
satisfies the locally lipschitz condition with respect to u.

To prove the non-negativity of the solution for the system in Equation (4), the following lemma
and corollary are needed.

Lemma 2. (See [22]). Assume that u(t) ∈ C[0, c], Dα
∗u(t) ∈ C[0, c] and α ∈ (0, 1]. Then, we get

u(t) = u(0) +
1

Γ(α)
Dα
∗u(ξ)t

α, (6)

where 0 ≤ ξ ≤ x, ∀x ∈ (0, c].
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Corollary 1. (See [22]). Assume that u(t) ∈ C[0, c], Dα
∗u(t) ∈ C[0, c] and α ∈ (0, 1]. If Dα

∗u(t) ≥ 0,
∀t ∈ (0, c), then u(t) is a non-decreasing function for all t ∈ [0, c]. If Dα

∗u(t) ≤ 0, ∀t ∈ (0, c), then u(t) is
a non-increasing function for all t ∈ [0, c].

The following comparison theorem is important to show the uniform boundedness of the solution.

Theorem 1. (Comparison Theorem [23]). Let u(t) ∈ C ([0,+∞)). If u(t) satisfies

Dα
∗u(t) ≤ −λu(t) + µ, u(0) = u0 ∈ R,

where α ∈ (0, 1], λ, µ ∈ R and λ 6= 0, then

u(t) ≤
(

u0 −
µ

λ

)
Eα[−λtα] +

µ

λ
,

where Eα(z) is the Mittag–Leffler function of one parameter, which is defined by

Eα(z) =
∞

∑
j=1

zj

Γ(αj + 1)
.

This function plays a crucial role in the classical calculus for α = 1, where it becomes the
exponential function, that is

ez = E1(z) =
∞

∑
j=1

zj

Γ(j + 1)
.

In [24], the fractional derivatives of Mittag–Leffler functions and further several important
properties were established. The relationships between the Mittag–Leffler and Wright functions
were also proved [24].

Theorem 2. (See [25,26]). Consider an autonomous nonlinear fractional-order system

Dα
∗~u = ~f (~u); ~u(0) = ~u0; α ∈ (0, 1].

A point ~u∗ is called an equilibrium point of the system if it satisfies ~f (~u∗) = 0. This equilibrium point is locally
asymptotically stable if all eigenvalues λj of the Jacobian matrix J = ∂ f

∂u evaluated at ~u∗ satisfy | arg(λj)| > απ
2 .

Lemma 3. [27] Let u(t) ∈ C (R+) and its fractional derivatives of order α exist for any α ∈ (0, 1]. Then,
for any t > 0, we have

Dα
∗

[
u(t)− u∗ − u∗ ln

u(t)
u∗

]
≤
(

1− u∗

u(t)

)
Dα
∗u(t), u∗ ∈ R+.

Lemma 4. (Generalized Lasalle Invariance Principle [28]). Suppose Ω is a bounded closed set and every
solution of

Dα
∗u(t) = f (u(t)),

starts from a point in Ω and remains in Ω for all time. If ∃ V(u) : Ω → R with continuous first partial
derivatives satisfies

Dα
∗V|Dα∗u(t)= f (u(t)) ≤ 0.

Let E :=
{

u|Dα
∗V|Dα∗u(t)= f (u(t)) = 0

}
and M be the largest invariant set of E. Then, every solution u(t)

originating in Ω tends to M as t→ ∞.
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Function V(u) in Lemma 4 is termed as a Lyapunov function. To apply this lemma, we need to
construct a suitable Lyapunov function for the considered fractional system that satisfies Lemma 4 and
show that the equilibrium point is the largest invariant set of E. Here, we usually need Lemma 3 to
prove the non-positivity of the partial derivatives of the Lyapunov function.

3. Main Results

3.1. Existence and Uniqueness

In this section, we investigate the existence and uniqueness of solution of the fractional-order
system in Equation (4) in the region [0, ∞)×ΩM where

ΩM =
{
(u, v) ∈ R2 : max {|u| , |v|} ≤ γ

}
,

for sufficiently large γ. The existence of γ is guaranteed by the boundedness of the solution,
which is shown below. We first denote Y = (u, v) and Ȳ = (ū.v̄), and then consider a mapping
F (Y) = (F1 (Y) , F2 (Y)) where

F1 (Y) = u(1− u)− auv
u + v

− ku,

F2 (Y) =
buv

u + v
− δv.

For any Y, Ȳ ∈ ΩM, next we show that∥∥F (Y)− F (Ȳ)
∥∥ =

∣∣F1 (Y)− F1 (Ȳ)
∣∣+ ∣∣F2 (Y)− F2 (Ȳ)

∣∣
=

∣∣∣∣u(1− u)− auv
u + v

− ku− ū(1− ū) +
aūv̄

ū + v̄
+ kū

∣∣∣∣
+

∣∣∣∣ buv
u + v

− δv− būv̄
ū + v̄

+ δv̄
∣∣∣∣

=

∣∣∣∣(1− k) (u− ū)− (u + ū) (u− ū)− a
uū (v− v̄) + vv̄ (u− ū)

(u + v) (ū + v̄)

∣∣∣∣
+

∣∣∣∣b uū (v− v̄) + vv̄ (u− ū)
(u + v) (ū + v̄)

− δ (v− v̄)
∣∣∣∣.

By applying the triangle inequality |u1 ± u2| ≤ |u1|+ |u2|, and noticing that max {|u| , |v|} ≤ γ

and
∣∣∣∣ uū
(u + v) (ū + v̄)

∣∣∣∣ ≤ 1, we can show that

∥∥F (Y)− F (Ȳ)
∥∥ ≤ (1− k) |u− ū|+ 2γ |u− ū|+ (a + b)

∣∣∣∣ vv̄
(u + v) (ū + v̄)

∣∣∣∣ |u− ū|

+(a + b)
∣∣∣∣ uū
(u + v) (ū + v̄)

∣∣∣∣ |v− v̄|+ δ |v− v̄|

≤ (1− k + 2γ + a + b) |u− ū|+ (a + b + δ) |v− v̄|

≤ L
∥∥Y− Ȳ

∥∥ ,

where L = max {1− k + 2γ + a + b, a + b + δ}. Hence, F (Y) satisfies the Lipschitz condition.
By Lemma 1, the fractional-order system in Equation (4) with initial values Y0 = (u0, v0) where
u0 ≥ 0 and v0 ≥ 0 has a unique solution Y (t) = (u (t) , v (t)) ∈ ΩM. Thus, we establish the following
existence and uniqueness of solution of the system in Equation (4).

Theorem 3. The fractional-order predator–prey system in Equation (4) subject to any non-negative initial
value (u0, v0) has a unique solution (u(t), v(t)) ∈ ΩM for all t > 0.
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3.2. Boundedness and Non-Negativity

The system in Equation (4) describes the interaction of prey population with predator population
at fractional-order and therefore solutions of this system must be bounded and non-negative. Let

Ω+ := {(u, v)|u ≥ 0 and v ≥ 0} ,

denotes all non-negative real number in R2. The non-negativity and boundedness of solutions of the
system in Equation (4) are guaranteed by the following theorem.

Theorem 4. All solutions of the system in Equation (4) with u0 > 0 and v0 > 0 are uniformly bounded and
non-negative.

Proof. We first assume u0 > 0 and v0 > 0 and show that u(t) ≥ 0, ∀t > 0. Suppose that is not correct,
then we can find t1 > 0 such that u(t) > 0 for t ∈ [0, t1), u(t1) = 0 and u(t) < 0 for t > t1. From the
first equation in the system in Equation (4), we obtain

Dα
∗u(t) |t=t1= 0.

Based on Corollary 1, we get u(t+1 ) = 0, which contradicts the fact u(t+1 ) < 0, i.e., u(t) < 0, ∀t > t1.
Hence, we get u(t) ≥ 0, ∀t ≥ 0. Using the same arguments, we can show that v(t) ≥ 0, ∀t ≥ 0. We next
prove that all solutions of the system in Equation (4) are uniformly bounded. For that, we define
a function w = u + a

b v. From the system in Equation (4), we obtain

Dα
∗w + δw = u (1− u)− auv

u + v
− ku +

auv
u + v

− aδ

b
v + δu +

aδ

b
v

= −u2 + (1− k + δ) u

= −
(

u− 1− k + δ

2

)2
+

(1− k + δ)2

4

≤ (1− k + δ)2

4
.

Based on the comparison in Theorem 1, we obtain

w (t) ≤
(

w (0)− (1− k + δ)2

4δ

)
Eα (−δtα) +

(1− k + δ)2

4δ
,

where Eα is the Mittag–Leffler function. Since

Eα (−δtα) −→ 0 as t −→ ∞,

(see [29], Lemma 5 and Corollary 6), we have

w (t) ≤ (1− k + δ)2

4δ
, t −→ ∞.

Hence, all solutions of the system in Equation (4), which start in R2
+, are restricted to the region

ΩB where

ΩB =

{
(u, v) ∈ R2

+ : u +
a
b

v ≤ (1− k + δ)2

4δ
+ ε, ε > 0

}
. (7)

Thus, all solutions of fractional-order system in Equation (4) are uniformly bounded.
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3.3. Local Stability

Based on Theorem (2), we can show that the system in Equation (4) has three equilibrium points
as follows:

1. The extinction point of both prey and predator population E0 = (0, 0) which is always feasible.
2. The free predator point E1 = (k0, 0), which also always exists. Here, k0 = 1− k.
3. The interior point E∗ = (u∗, v∗) where u∗ = 1

b (bk0 − a (b− δ)) and v∗ = 1
δ (b− δ) u∗. Notice that

E∗ exists if 0 < (b− δ) < b
a k0.

In the following, we study the dynamics of the system in Equation (4) around each of equilibrium
point. For that, we linearize the system in Equation (4) around each equilibrium point. The Jacobian
matrix obtained from this linearization at an equilibrium point E(u, v) is given by

J (E) =

[
∂F1
∂u

∂F1
∂v

∂F2
∂u

∂F2
∂v

]
=

 k0 − 2u− av2

(u+v)2 − au2

(u+v)2

bv2

(u+v)2
bu2

(u+v)2 − δ

 , (8)

where F1 and F2 are as in Section 3.1. By evaluating this Jacobian matrix at each equilibrium points
and applying Theorem 2, we obtain the stability properties of E0 and E1 as follows.

Theorem 5. For the fractional-order system in Equation (4), the extinction of both population point (E0) and
the free predator point (E1) have the following stability properties.

1. E0 is a saddle point.
2. If b < δ, then E1 is locally asymptotically stable and it is a saddle if b > δ.

Proof.

1. The Jacobian matrix in Equation (8) evaluated at E0 is

J (E0) =

[
k0 0
0 −δ

]
.

The eigenvalues of J (E0) are λ1 = k0 > 0 and λ2 = −δ < 0, and consequently we have
|arg (λ1)| = 0 < απ/2 and |arg (λ2)| = π > απ/2 for 0 < α < 1. Hence, E0 is a saddle point.

2. If E1 is substituted into the Jacobian matrix in Equation (8), then we have

J (E1) =

[
−k0 −a

0 b− δ

]
.

Obviously, J (E1) has eigenvalues λ1 = −k0 < 0 and λ2 = b− δ. We observe that |arg (λ1)| =
π > απ/2. If b < δ, then λ2 < 0 and thus |arg (λ2)| = π > απ/2. On the other hand, if b > δ,
then λ2 > 0, and consequently |arg (λ2)| = 0 < απ/2. Therefore, E1 is asymptotically stable
(locally) if b < δ and is a saddle point if b > δ.

A similar idea for fractional version is also applied in the percolation theory (see [30]).
We now examine the stability of equilibrium E∗. The characteristics equation of the Jacobian

matrix evaluated at E∗ is given by
λ2 − Tλ + D = 0, (9)
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where T = −
(
b2k0 + b2 (δ− a) + δ2 (a− b)

)
/b2 and D =

(
bδk0 (b− δ)− aδ (b− δ)2

)
/b2. From the

existence condition of E∗, we notice that D > 0. The eigenvalues of J (E∗) is

λ1,2 =
T ±
√

∆
2

, ∆ = T2 − 4D.

By analyzing these eigenvalues, the stability of E∗ is stated in following theorem.

Theorem 6. For the fractional-order system in Equation (4), the interior point E∗ is locally asymptotically
stable if one of the following mutually exclusive conditions holds:

1. T < 0 and ∆ ≥ 0

2. ∆ < 0 and
√
|∆|
T > tan

(
απ
2
)
.

Proof.

1. Since D > 0, T < 0 and ∆ ≥ 0, λ1,2 < 0 and arg (λ1,2) = π > απ/2. Therefore, E∗ is
asymptotically stable.

2. Suppose ∆ < 0. If λ is an eigenvalue, then its complex conjugate (λ̄) is also an eigenvalue.

We have that
∣∣∣ λ−λ̄

λ+λ̄

∣∣∣ = ∣∣∣ Im(λ)
Re(λ)

∣∣∣ = arg (λ) =

√
|∆|
T . Using the Matignon’s condition (see Theorem 2),

it is obvious that E∗ is locally asymptotically stable if
√
|∆|
T > tan

(
απ
2
)
.

3.4. Hopf Bifurcation

For the following fractional-order commensurate system:

Dα
∗w = f (µ, w), α ∈ (0, 1], w ∈ R2, (10)

Abdelouahab et al. [31] stated that a Hopf bifurcation occurs around an equilibrium E at µ = µ∗

if the following conditions hold:

(i) The eigenvalues of the Jacobian matrix are a pair of complex-conjugate: λ1,2(µ) = ζ(µ)± iω(µ);
(ii) p1,2(α, µ∗) = 0; and

(iii) ∂p1,2
∂µ |µ=µ∗ 6= 0,

where pj(α, µ) = απ
2 − | arg(λj(µ))|, j = 1, 2.

The existence of a Hopf bifurcation in the system in Equation (4) is analyzed as follows.
From Theorem 6, we can derive the following theorem.

Theorem 7. Suppose ∆ < 0 and T > 0. The fractional the model in Equation (4) undergoes a Hopf bifurcation
at E∗ when the fractional-order α crosses the critical values

α∗ =
2
π

tan−1

(√
|∆|
T

)
.

Proof. If ∆ < 0, T > 0 and α = α∗, then the characteristic equation of the Jacobian matrix at E∗ has
a pair of conjugate complex roots λ1,2 located on the border of stability area arg(λ1,2) = α∗π

2 . If α

changes around α∗, λ1,2 pass through the stability margin and a Hopf bifurcation occurs.

3.5. Global Asymptotic Stability

Theorem 8. Let k0 = 1− k. E1 is globally asymptotically stable in the region Ω1 =
{
(u, v)|u + v ≥ bk0

δ

}
.
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Proof. Define a Lyapunov function U (u, v) =
(

u− k0 − k0 ln u
k0
+ a

b v
)

. Using Lemma 3, we can show

Dα
∗U (u, v) ≤ u− k0

u
Dα
∗u +

a
b

Dα
∗v

= (u− k0)

[
k0 − u− a

v
u + v

]
+

a
b

(
b

u
u + v

− δ

)
v

= −(u− k0)
2 + a

[
k0

u + v
− δ

b

]
v.

It is obvious that Dα
∗U (u, v) ≤ 0, ∀(u, v) ∈ Ω1. Furthermore, Dα

∗U (u, v) = 0 implies that u = k0

and v = 0. Hence, the only invariant set on which Dα
∗U (u, v) = 0 is the singleton {E1}. Using Lasalle

invariance principle (Lemma 4), we conclude that E1 is globally asymptotically stable.

Theorem 9. E∗ is globally asymptotically stable in Ω2 =
{
(u, v)| v

v∗ >
u
u∗ > 1

}
.

Proof. Consider a Lyapunov function

L(u, v) =
(

u− u∗ − u∗ ln
u
u∗
)
+

a
b

(
v− v∗ − v∗ ln

v
v∗
)

.

Then, based on Lemma 3, we show that

Dα
∗L(u, v) ≤ u− u∗

u
Dα
∗u(t) +

a
b

(
v− v∗

v

)
Dα
∗v(t)

= (u− u∗)
(

1− u− a
v

(u + v)
− k
)
+

a
b
(v− v∗)

(
bu

u + v
− δ

)
= (u− u∗)

(
−u− a

v
(u + v)

+ u∗ + a
v∗

(u∗ + v∗)

)
+ a(v− v∗)

(
u

u + v
− u∗

u∗ + v∗

)
= −(u− u∗)2 + a

(u− u∗)(uv∗ − u∗v) + (v− v∗)(uv∗ − u∗v)
(u + v)(u∗ + v∗)

.

Hence, Dα
∗L(u, v) ≤ 0 for arbitrary (u, v) ∈ Ω2. Furthermore, Dα

∗L(u, v) = 0 implies that
u = u∗ and v = v∗. Hence, the singleton {E∗} is the only invariant set such that Dα

∗L(u, v) = 0.
Again, the Lasalle invariance principle (Lemma 4) gives conclusion that E∗ is globally asymptotically
stable.

4. Numerical Simulations

We implemented the predictor–corrector scheme developed by Diethelm [32] to solve our
fractional-order model in Equation (4) and to perform some numerical simulations. Since the parameter
values are not available, we use hypothetical parameters to illustrate the results of our previous analysis.
The hypothetical parameter for the first simulation are taken from Xiao and Cao [7]: a = 1.3, k = 0.25,
and δ = 0.4. Based on Theorems 5–7, we plot the bifurcation diagram in (α, b)−plane, as shown
in Figure 1. In this figure, we can see three different regions. The yellow area represents the stable
predator extinction point (E1); the green area denotes the stable coexistence point (E∗); and the cyan
area corresponds to the limit cycle oscillation. In this figure, we see that, for the case of b = 0.3 with
α = 0.75 or α = 0.9, the predator extinction point E1 = (0.75, 0.0) is asymptotically stable. This
behavior is clearly seen from the phase-portraits shown in Figure 2, i.e., all solutions are convergent to
E1. In Theorem 7, we find that, if ∆ < 0 and T > 0, then a Hopf bifurcation occurs around E∗ when α

passes through the critical values α∗. The critical values of α in Figure 1 is shown by the line between
green area and cyan area. This figure also shows that the Hopf bifurcation can also be driven by
parameter b. To show the phenomenon of Hopf bifurcation, we solve system in Equation (4) with the
same parameter values as before, except b = 0.8. From these parameter values, we get α∗ = 0.94366.
Hence, E∗ = (0.1, 0.1) is asymptotically stable for α ∈ (0, α∗). On the other hand, E∗ is unstable for
α > α∗. The numerical solution depicted in Figure 3a,b shows that, for α = 0.9 < α∗, the solution is
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convergent to E∗. On the other hand, for α = 0.95 > α∗, the solution is not convergent to any point,
and it is converging to a periodic solution (see Figure 3c,d). This shows that the system in Equation
(4) undergoes Hopf bifurcation. In Figure 3, we also observe that the smaller value of the order of
fractional derivative (α) may stabilize the equilibrium point. This can be understood from Theorem 2
that a smaller value of α has a larger stability area.

Next, we show the bifurcation diagram in (α, k)-plane for the system in Equation (4) with a =

1.3, b = 0.8, and δ = 0.4 in Figure 4. Figure 4 shows that there are two different stability regions. As in
the previous case, the green area represents the asymptotically stable area of coexistence point (E∗),
while the cyan area represents the area of stable limit cycle. Thus, the line which separates the two
areas corresponds to the Hopf bifurcation point. It is seen that smaller order of fractional derivative
has a larger value of critical harvesting rate k∗. For example, Xiao and Cao [7] showed that, for the
case of α = 1, the critical value of harvesting rate is k∗ = 0.225 (see also Figure 4). If we reduce the
value of α such that α = 0.9, then the Hopf bifurcation point becomes k∗ = 0.26564. Hence, for α = 0.9
and k = 0.25 < k∗, the coexistence point E∗ is asymptotically stable. This behavior can be seen in
Figure 3a,b. If we take k = 0.3 > k∗, then the solution converges to a periodic solution, which shows
that E∗ is unstable (see Figure 5).

Figure 1. Bifurcation diagram in (α, b)-plane for the prey–predator system in Equation (4) with
a = 1.3, k = 0.25 and δ = 0.4.
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Figure 2. Phase-portraits of the prey–predator system in Equation (4) with a = 1.3, k = 0.25, δ = 0.4
and b = 0.3 for different order of fractional derivative: (a) α = 0.75, and (b) α = 0.9.
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Figure 3. Numerical solutions of prey–predator population as function of time t and the phase-diagrams
of the system in Equation (4) with a = 1.3, k = 0.25, δ = 0.4, b = 0.8 and different order of fractional
derivative: (a,b) α = 0.9, (c,d) α = 0.95.

Figure 4. Bifurcation diagram in (α, k)-plane for the prey–predator system in Equation (4) with
a = 1.3, b = 0.8 and δ = 0.4.
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Figure 5. (a) Numerical solutions of prey-predator population as function of time t and (b) the
phase-diagrams of the system in Equation (4) with a = 1.3, b = 0.8, δ = 0.4, k = 0.3 and α = 0.9.
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5. Concluding Remarks

We introduce and analyze a fractional-order ratio-dependent predator–prey model with linear
harvesting. The existence, uniqueness, non-negativity and boundedness of solutions for the proposed
model are proven. Based on Matignon’s Theorem, we show the local stability of all possible equilibrium
points. Since the related Jacobian matrix has real number eigenvalues, the stability properties of the
extinction point of both population and the free predator point are exactly the same as those of
first-order system (see [7]). However, it is not the case for the coexistence point as the eigenvalues
of its Jacobian matrix might be a complex number. The global stability of the free predator point
and the coexistence point are also studied by defining an appropriate Lyapunov function. Further,
the existence of Hopf bifurcation driven by the order of fractional derivative (α) is also established.
From the bifurcation diagram, it is also shown that the Hopf bifurcation may be driven by parameter b
or k. The dynamical properties of the proposed system were confirmed by the numerical simulations.

To consider the memory effect, in this article, we apply the Caputo fractional derivative. The recent
extensive developments of the ory of fractional derivative has gained two new operators of fractional
derivatives, which are Caputo–Fabrizio [33] and Atangana–Baleanu [34]. The application of these
operators for our predator–prey model with linear harvesting is an interesting future research topic.
Furthermore, the comparison of models using those three different types of fractional derivatives as
well as with the real world data (if available) will be very interesting.
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