

The 3" National Conference

On Industrial Electrical and Electronics

PROCEEDINGS

Cilegon, 28-29 October 2014

Department of Electrical Engineering University of Sultan Ageng Tirtayasa

Susunan Panitia

Penanggung Jawab

Ketua Jurusan Teknik Elektro Fakultas Teknik Universitas Sultan Ageng Tirtayasa

Pengarah

Dekan Fakultas Teknik Universitas Sultan Ageng Tirtayasa

> Ketua Pelaksana

Anggoro Suryo Pramudyo

> Komite Program

- Dr. Eng. Wahyu Widada, M.Sc. (LAPAN)
- Prof. Dr. Ir. Kudang Boro Seminar, M.Sc. (IPB)
- Prof. Dr. Salama Manjang, M.T. (UNHAS)
- Dr. Alimuddin, M.M., M.T. (UNTIRTA)
- Yus Rama Denny, M.Si., Ph.D. (UNTIRTA)
- Ir. Wahyuni Martiningsih, M.T. (UNTIRTA)
- Muhammad Iman Santoso, S.T., M.Sc. (UNTIRTA)
- Romi Wiryadinata, S.T., M.Eng. (UNTIRTA)
- Supriyanto, S.T., M.Sc. (UNTIRTA)

Komite Pelaksana

- Suhendar
- Siswo Wardoyo
- Herudin
- Imamul Muttagin
- · Teguh Firmansyah
- Rocky Alfanz
- Rian Fahrizal
- Andri Suherman
- Ri Munarto
- · M. Otong
- Heri Haryanto
- Alief Maulana
- · Yeni Apriyeni

Diterbitkan oleh:

Jurusan Teknik Elektro Fakultas Teknik Universitas Sultan Ageng Tirtayasa Jl. Jend. Sudirman KM.3 Cilegon, Banten Phone: 0254-395502, 376712 Fax: 0254-395440 http://nciee.elektro.untirta.ac.id - http://elektro.untirta.ac.id

Daftar Isi

Analisis Kinerja Model Pengontrol Ekson DNA Menggunakan Metode Model Hidden Markov Suhartati Agoes, Binti Solihah, Alfred Pakpahan	1
Desain Protokol Jaringan untuk Komunikasi Multimedia melalui WiMAX	7
Suherman, Naemah Mubarakah	
Prototipe Website untuk Sajian Informasi Profil Desa Binaan Universitas Negeri Gorontalo sebagai salah satu Implementasi Pengembangan Tridharma Perguruan Tinggi	10
Amirudin Y. Dako, Rahmat Deddy Rianto Dako, Jumiati Ilham	
Prototipe ATG sebagai Alat Ukur Volum, Suhu dan Massa Jenis pada Tangki Timbun BBM	19
Romi Wiryadinata, Wyman Firmansyah Putra, Alimuddin	
Implementasi Automatic Packet Reporting System (APRS) Untuk Paket Data Pemantauan dan Pengukuran	27
Arief Goeritno, Rakhmad Yatim, dan Dwi Jatmiko Nugroho	
Sistem Klasifikasi Jenis Kendaraan Melalui Teknik Olah Citra Digital Bagus Pribadi, Muchammad Naseer	35
Remote Terminal Unit (RTU) SCADA Pada Jaringan Tegangan Menengah 30 KV Didik Aribowo, M.Otong, Radiyanto	39
Kemudahan Pemrograman Mikrokontroller Arduino Pada Aplikasi Wahana Terbang Effendi Dodi Arisandi	45
Prototipe Rele Proteksi Overheating pada Motor 1 Phasa Berbasis Mikrokontroler AT89C51 Endi Permata	49
	58
J Ervan Hasan Harun, Jumiati Ilham, dan Lanto Mohamad Kamil Amali	
Perancangan Voltage Control Oscillator untuk Tower Set pada Frekuensi 118 MHz – 137 MHz Feti Fatonah, David Octa Rengga	63
Analisa Pengaruh Arus Gangguan Terhadap Tegangan Induksi dan Isolasi Pada Kabel Bawah Tanah Tegangan 20 kV Herudin, Andri Suherman, Aris Munandar	67

Rancangan Low Noise Amplifier Subsistem Receiver Peralatan DME	72
Feti Fatonah, Hamestuti Hanggana Raras	
Perancangan Antena Mikrostrip Patch Segi Empat Frekuensi 3,3 GHz Untuk Aplikasi WiMAX Herudin, Alimuddin	75
Heraum, Ammudum	
Perancangan Collpits Oscillator Frekuensi 1 MHz dengan Resistansi Negatif pada Peralatan NDB Tipe ND 200	79
Iga Ayu Mas Oka, Esti Handarbeni	
Rancang Bangun Pembangkit Listrik Tenaga Pikohidro (PLTPH) Dengan Memanfaatkan Saluran Irigasi Di Desa Kadu Beureum Kecamatan Padarincang Kabupaten Serang	84
Heri Haryanto, Dedy Susanto, Rian Fahrizal	
Klasifikasi Fase Plasmodiumfalcifarum dalam Sel Darah Merah dengan Support Vector Machine (SVM) Menggunakan Weka	94
Evi Nuralita, Ri Munarto, Endi Permata	
Perancangan RF Amplifier pada Frekuensi 124 MHz untuk Peralatan Tower Set Bandar Udara Juanda Surabaya	104
Iga Ayu Mas Oka, Nurwahyuni Kurnia Sari Hariyadi	
Karakteristik Potensi Energi Surya dan Energi Angin Pada Lahan Potensil Agropolitan yang Belum Dimanfaatkan	107
Lanto Mohamad Kamil Amali, Yasin Mohamad, dan Ervan Hasan Harun	
Perbandingan Kinerja Metode Penggabungan MAC-Physical Layer Sistem LMDS pada Kanal Gelombang Milimeter	111
Naemah Mubarakah, Suherman, Yulianta Siregar, Arman Sani	
Rancangan Band Pass Filter Pada Komunikasi VHF Air To Ground di Bandara Budiarto dengan menggunakan Komponen Lumped Orde Tiga	116
Iga Ayu Mas Oka, I Komang Aditya Prawirayana	
Triple Band Frequency Using Slit Technique Rectangular Microstrip Antenna For Wimax Application	121
Syah Alam	
Perancangan dan Unjuk Kerja Antena Mikrostrip Patch Segitiga Dual Band Untuk Aplikasi Wi-Fi & LTE	125
Herudin, Azza Aghniya	

Potensi Hybrid Energy di Kabupaten Bone Bolango dan Kabupaten Gorontalo

Ervan Hasan Harun¹⁾, Jumiati Ilham²⁾, dan Lanto Mohamad Kamil Amali³⁾

¹⁾Teknik Elektro Fakultas Teknik Universitas Negeri Gorontalo, email:ervanharun@ung.ac.id

²⁾ Teknik Elektro Fakultas Teknik Universitas Negeri Gorontalo, email:jumiatiilham@ung.ac.id

³⁾Teknik Elektro Fakultas Teknik Universitas Negeri Gorontalo, email: kamilamali_gtlo@yahoo.co.id

Abstract - This study aims to determine the potential of hybrid renewable energy (micro hydro energy, solar energy and wind energy) as an alternative energy source in the district of Bolango Bone and Gorontalo. This research method starts from a basic collection of reference materials as well as technical and non-technical data, which is followed by observations methods to obtain data on the profile of the hamlet / village location of hybrid renewable energy potential.

The result showed that: 1) Electrical energy can be generated by the PLT-Hybrid Energy Tapadaa village of 643.59 kWh per day, Tulabolo village of 1553.69 kWh per day, the village Liyodu 3555.46 kWh per day, and the village South Dulamayo 3322.6 kWh per day. 2). Hybrid potential energy available is quite large but it has not been used optimally. With the current energy needs for Tapada'a village, village Tulabolo, Liyodu village, and the village of South Dulamayo then there are the energy reserves: 605.76 kWh per day for the Tapada'a, 1366.25 kWh per day for the Tulabolo, 3465,88 kWh per day for Liyodu, and 3190,8 kWh per day for the South of Dulamayo.

Keywords: potential, hybrid energy, hydro energy, solar energy, wind energy.

I. PENDAHULUAN

Problem energi listrik umumnya di Indonesia saat ini cukup rumit, hal ini ditandai dengan seringnya dilakukan pemadaman bergilir seperti halnya di Provinsi Gorontalo, sehingga untuk beberapa tahun kedepan supply energi listrik ke pedesaan tidak bisa diharapkan, sehingga diperlukan usaha-usaha untuk mencari sumber alternative lain dengan tetap mempertimbangkan aspek teknis, ekonomi dan lingkungan.

Gorontalo sebagai propinsi pemekaran dari Sulawesi Utara saat ini terdiri dari 5 (lima) kabupaten dan 1 (satu) kota yaitu Kabupaten Pohuwato, Kabupaten Boalemo, KabupatenGorontalo, Kabupaten Bone Bolango, Kabupaten Gorontalo Utara dan Kota Gorontalo. Sampai dengan tahun 2012 rasio elektrifikasi di propinsi Gorontalo sebesar 64,35%, [1]. Potensi energi primer yang tersedia di Gorontalo untuk membangkitkanenergi listrik cukup besar dan mempunyai peluang untuk dikembangkanbaik itu tenaga air maupun tenaga panas bumi[2]. Khusus untuk potensi daya air di Gorontalo yang belum termanfaatkan untuk kebutuhan energi listrik berdasarkan penelitian yang dilakukan oleh [5] sebesar 31,61 MW, begitu juga penelitian yang dilakukan oleh [6] memberikan kesimpulan bahwa potensi energi yang berasal dari sumber daya air cukup besar.

Sesuai dengan sasaran kebijakan energi nasional yakni: terwujudnya energi (primer) mix yang optimal pada tahun 2025, yaitu peranan masing-masing jenis energi terhadap konsumsi energi nasional: 1) minyak bumi menjadi kurang dari 20%; 2) gas bumi menjadi lebih dari 30%; 3) batubara menjadi lebih dari 33%; 4) biofuel menjadi lebih dari 5%; 5) panas bumi menjadi lebih dari 5%; 6) energi baru dan terbarukan lainnya, khususnya, Biomasa, Nuklir, Tenaga Air Skala Kecil, Tenaga Surya, dan Tenaga Angin menjadi lebih dari 5%; 7) Bahan Bakar Lain yang berasal dari pencairan batubara menjadi lebih dari 2%[3].

Bauran Energi Nasional sampai dengan tahun 2050 menunjukkan bahwa peranan dari Energi Baru dan Terbarukan (EBT) pada tahun 2010 sebesar 5% kemudian di tahun 2012 menjadi 5,6% dan diharapkan pada tahun 2050 menjadi 31%[4].

Salah satu usaha dalam mengatasi persoalan energi listrik adalah melalui pemanfaatan pembangkit listrik tenaga hybrid yang merupakan kombinasi dua atau lebih sistem pembangkit tenaga listrik. Berdasarkan pemaparan di atas, maka akan dilakukan pemetaan potensi dan pemanfaatan hybrid energi yang merupakan gabungan dari energi hidro, surya, dan energi angin di kabupaten Bone Bolango dan kabupaten Gorontalo.

II. TINJAUAN PUSTAKA

2.1. Hybrid Energi Terbarukan

Sumber energy mikrohidro, energi surya dan angin merupakan sumber energi terbarukan yang cukup popular yang bersih dan tersedia secara bebas (free). Masalah utama dari ketiga jenis energi tersebut adalah tidak tersedia terus menerus. Energi mikrohidro hanya tersedia pada lokasi dengan kontur tanah yang mempunyai aliran dan ketinggian tertentu serta tergantung musim, Energi surya hanya tersedia pada siang hari ketika cuaca cerah, sedangkan energi angin tersedia pada waktu yang seringkali tidak dapat diprediksi (sporadic) dan sangat berfluktuasi bergantung cuaca atau musim.

Untuk mengatasi permasalahan di atas, teknik hibrid banyak digunakan untuk menggabungkan beberapa jenis pembangkit listrik. Penelitian tentang pemanfaatan potensi hibrid energi sudah pernah dilakukan oleh [7], yakni meneliti tentang potensi Hybird Energi yang merupakan kombinasi antara sel surya dengan turbin angin savious. Dari hasil penelitian menggunakan sistem akuisisi data diperoleh bahwa energi terbangkitkan dari pembangkit Hybrid ini sebesar 7,5 Watt. Menurut [8], bahwa Energi hibrid dengan potensi panas matahari dan angin potensial dikembangkan di Indonesia.

Penelitian yang serupa juga sudah pernah dilakukan oleh [9] yang meneliti tentang Pengembangan Teknologi Energi

Terbarukan berdasarkan sumber daya lokal di Propinsi Riau. Dalam penelitian ini, dipeoleh bahwa hampir semua desa yang belum teraliri listrik memiliki potensi energi terbarukan dan memungkinkan untuk diterapkannya penggabungan dari beberapa sumber energi ke dalam satu sistem pembangkit listrik Hybrid Energi.

2.2. Potensi Energi Mikrohidro

Pada dasarnya sebuah pembangkit listrik tenaga mikrohidro memerlukan dua data yang penting yaitu debit air dan ketinggian jatuh (Head) untuk menghasilkan tenaga yang bermanfaat. Bentang alam yang terjadi (lebar, aliran sungai, kontur tanah dan sungai) akan menentukan besar potensi energi listrik yang ada di daerah tersebut. Persamaan dasar dari pembangkit listrik mikrohidro ini adalah [10]:

$$P_{\text{nerre}} = 7.8 \times R_{\text{gress}} \times Q \times \eta_{\text{rer}} \text{kW} \tag{1}$$

2.3. Potensi Energi Surya

Energi matahari dapat dimanfaatkan sebagai sumber energi listrik melalui peralatan konversi energi yakni sel surya. Dalam keadaan cuaca yang cerah, sebuah sel surya akan menghasilkan tegangan konstan sebesar 0.5 V sampai 0.7 V dengan arus sekitar 20 mA dan jumlah energi yang diterima akan mencapai optimal jika posisi sel surya 900 (tegak lurus) terhadap sinar matahari selain itu juga bergantung dari konstruksi sel surya itu sendiri. Untuk menentukaan besarnya potensi energi surya suatu lokasi dapat dihitung dengan menggunakan persamaan [11]:

$$P_{WP} = Area Array \times PSI \times \eta_{PV} \tag{2}$$

Sedangkan Area array (PV Area) diperhitungkan dengan menggunakan persamaan :

$$PV Area = \frac{\epsilon_b}{\epsilon_{au} \times \epsilon_{au} \times \epsilon_{c}}$$
 (3)

2.4.Potensi Energi Angin

Energi angin dapat dikonversi atau ditransfer ke dalam bentuk energi lain seperti listrik atau mekanik dengan menggunakan kincir atau turbin angin, untuk besarnya potensi energy angin dapat digunakan persamaan berikut[12]:

$$P = \frac{1}{2} \times \rho \times v^{2} \tag{4}$$

Daya angin maksimum yang dapat diekstrak oleh turbin angin dengan luas sapuan rotor A adalah,

$$P = \frac{16}{45} \times \frac{1}{4} \times \rho \times v^{3} \tag{5}$$

Angka 16/27 (=59.3%) ini disebut batas Betz (Betz limit, diambil dari ilmuwan Jerman Albert Betz). Angka ini secara teori menunjukkan efisiensi maksimum yang dapat dicapai oleh rotor turbin angin tipe sumbu horisontal. Pada kenyataannya karena ada rugi-rugi gesekan dan kerugian di ujung sudu, efisiensi aerodinamik dari rotor, η_{rotor} ini akan lebih kecil lagi yaitu berkisar pada harga maksimum 0.45 saja untuk sudu yang dirancang dengan sangat baik [12].

Menurut Brown, C.K. and Warne (1975) dalam [13] daya efektif dari angin yang mungkin dihasilkan oleh suatu kincir angin dapat dihitung dengan persamaan sebagai berikut:

$$P_{\Xi A} = \frac{1}{2} \cdot cp \cdot p \cdot D^2 \cdot V^i \text{ Watt}$$
 (6)

Selanjutnya Energi Listrik yang dapat dihasilkan oleh konversi energi angin per satuan luas sudu kincir angin dihitung dengan persamaan sebagai berikut [13]:

$$P_{\text{syst}}/A = cp \cdot \eta_{\text{rr}} \cdot \eta_{\text{g}} \cdot \eta_{\tilde{g}} \cdot \frac{1}{2} \cdot \rho \cdot V^{\tilde{g}} \text{ Watt/m}^2$$
 (7)

III. METODE PENELITIAN

3.1.Pengambilan Data

3.1.1. Hidrologi

Pengukuran hidrologi dilaksanakan pada musim kemarau dan musim penghujan. Pengukuran hidrologi meliputi pengukuran tinggi jatuh (Head) dan debit air. Dimana pengukuran tinggi jatuh (Head) dilakukan dengan menggunakan Theodolite. Sedangkan pengukuran debit air dilakukan dengan cara-cara sebagai berikut:

- a. Pengukuran Menggunakan current meter
- b. Pengukuran dengan Pelampung (Float Area Methode)
- c. Pengukuran Debit Air dengan Metode Rasional

3.1.2. Intensitas radiasi matahari

Pengukuran intensitas radiasi matahari diperoleh dengan menggunakan alat ukur actinograph dengan waktu pengukuran dimulai dari jam 06:00 s/d 18:00.

3.1.3. Kecepatan angin

Kecepatan angin diukur menggunakan anemometer dengan waktu pengukuran dimulai dari jam 06:00 s/d 18:00

3.1.4. Sosio Ekonomi Masyarakat

Data diperoleh melalui pengumpulan data sekunder maupun data primer menggunakan lembar observasi dan wawancara pada penduduk lokal di lokasi potensi. Data tersebut meliputi:

- 1) Profil dusun/desa
- 2) Tingkat standar hidup dan sumber pendapatan masyarakat.
- 3) Profil usaha dan sumber-sumber ekonomi produktif berbasis sumber daya lokal.
- Kecepatan akses, kemampuan mengusahakan akses kepada pasar.
- Kapasitas lokal dan kemampuan berkembang dengan pemanfaatan potensi sumber daya lokal.
- 6) Kondisi dan profil infrastruktur pelayanan publik yang

3.2. Lokasi Pengambilan data

Lokasi pengambilan data pada penelitian ini adalah tempat yang memiliki potensi sumber energi alternatif yang terdiri atas tenaga air, tenaga surya, dan tenaga angin yang memungkinkan dibangun Pembangkit Listrik Tenaga Hybrid Enegi, di kabupaten Bone Bolango dan kabupaten Gorontalo.

IV. HASIL DAN PEMBAHASAN

4.1. Potensi Energi

Hasil pengukuran karakteristik debit air, intensitas radiasi matahari, dan kecepatan angin yang dilakukan sebanyak 5 (lima) kali di 2 (dua) lokasi padasetiap kabupaten diberikan pada Tabel Is/d Tabel IV.

TABELI Potensi Hidro, Surva, dan Angin desa Tanadaa

Data	Debit	Intensitas Radiasi	Kec. Angin
	(m3/s) (W/m2)		(knot)
1	0,19	360,32	1,92
2	0,23	318,48	1,46
3	0,12	342,24	2,15
4	0,25	387,08	1,31
5	0,13	436,56	1,54
Rerata	0,19	368,94	1,68

TABELII

Data	Potensi Hidro, Surya, dan Angin de Debit Intensitas Radiasi			
Data	(m3/s)	(W/m2)	(knot)	
1	0,46	366,16	1,69	
2	0,68	333,56	1,62	
3	1,17	359,52	0,77	
4	0,98	322,88	1,15	
5	1,04	328,92	0,46	
Rerata	0,86	342,21	1,14	

TABELIII

Data	Debit	Surya, dan Angin d Intensitas Radiasi	Kec. Angin
	(m3/s)	(W/m2)	(knot)
1	1,1	461,72	2,08
2	0,74	459,12	0,69
3	0,94	331,16	1,23
4	0,83	368,12	1,54
5	0,82	383,88	1,69
Rerata	0,89	400,80	1,45

TABELIV

Data	Debit	a, dan Angin desa D Intensitas Radiasi	Kec. Angin
	(m3/s)	(W/m2)	(knot)
1	3,63	270,68	1,62
2	2,46	347,76	1,62
3	2,04	405,48	1,00
4	1,43	411,72	1,00
5	2,78	318,88	0,92
Rerata	2,47	350,90	1,23

4.2. Beban listrik berdasarkan sosio ekenomi masyarakat.

Berdasarkan data kependudukan dan fasilitas umum yang ada, dan dengan menggunakan asumsi setiap rumah rata-rata membutuhkan energi listrik 200 VA, bangunan sekolah 450 VA, bangunan Puskesdes 900 VA, dan mesjid 200 VA maka dapat dibuat estimasi kebutuhan energi listrik untuk setiap lokasi diberikan pada tabel V s/d VIII sebagai berikut:

TABELV Kebutuhan Energi Desa Tapadaa

Jenis Fasilitas	Jumlah	Kebutuhan Energi Listrik	Jumlah
	(unit)	(VA)	(VA)
Rumah	31	200	6200
SD	1	450	450
PUSKESDES	1	900	900
Mesjid	1	200	200
Total Kebutuhan	Listrik	Sast tems s	7750

TABELVI Kebutuhan Energi Desa Tulabolo

Jenis Fasilitas	Jumlah	Kebutuhan Energi	Jumlah
JES KOMPAGON P	(unit)	(VA)	(VA)
Rumah	180	200	36000
SD	1	450	450
SMP	1	450	450
PUSKESMAS	1	900	900
Mesjid	3	200	600
Total Kebutuhan	Listrik		38400

Tabel VII. Kebutuhan Energi Desa Liyodu

Jenis Fasilitas	Jumlah	Kebutuhan Energi	Jumlah
	(unit)	(VA)	(VA)
Rumah	84	200	16800
SD	1	450	450
PUSKESDES	1	900	900
Mesjid	1	200	200
Total Kebutuhan	18350		

Tabel VIII Kebutuhan Energi Desa Dulamayo Selatan

Jenis Fasilitas	Jumlah	Kebutuhan Energi	Jumlah
Danishi Bana Geata	(unit)	(VA)	(VA)
Rumah	125	200	25000
SD	1	450	450
SLTP	1	450	450
POLIDES	1	900	900
Mesjid	1	200	200
Total Kebutuhan 1	Listrik		27000
2 E T			

4.3. Energi Listrik yang dihasilkan oleh setiap komponen Hybrid Energi.

1. Hidro Energi

Berdasarkan data tinggi jatuh dan debit air seperti yang diberikan pada tabel dan efisiensi dari setiap peralatan yang digunakan dapat dihitung energi listrik yang akan dihasilkan dari komponen hydro energi sebagai berikut:

TABEL IX Energi terbangkitkan dari PLTMH

Lokasi	Output Generator		Energi dibangkitkar selama 24 jam	
a real gravaters but	kVA	kW	kWh	
Kabupaten Bone Bola	mgo			
Tapada'a	29,57	23,65	567,67	
Tulabolo	61,95	49,56	1189,38	
Kabupaten Gorontalo				
Liyodu	176,31	141,05	3385,13	
Dulamayo Selatan	157,12	125,70	3016,78	

2. Energi Surya

Energi listrik yang dihasilkan dari komponen surya (PLTS) dihitung menggunakan data intensitas radiasi

matahari terendah. Selain itu estimasi dari kebutuhan listrik juga digunakan dalam merancang sistem PLTS yang akan digunakan.

TABEL X
Energi terbangkitkan dari PLTS

Lokasi	Energy Demand	PVArea	Watt-Peak	Energi dibangkitkan
[bj. Banola	(kWh)	m ²	(kW-p)	(kWh-p)
Kabupaten Bone B	olango			
Tapada'a	17,34	43,99	6,77	74.43
Tulabolo	85,91	215,01	33,07	363,75
Kabupaten Bone Do	lango	an is the		
Liyodu	41,06	100,18	15,41	169,48
Dulamayo Selatan	60,41	180,33	27,74	305,09

3. Energi Angin.

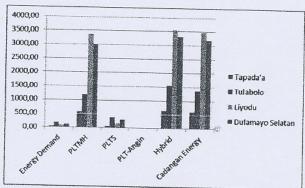
Berdasarkan pengukuran kecepatan angin yang dilakukan selama 5 (lima) hari desain diameter sudu dari kincir angin yang digunakan adalah 7 meter, maka energy yang dapat dibangkitkan dari PLT-Angin adalah sebagai berikut:

TABEL XI Energi terbangkitkan dari PLT-Angin

Lokasi	Energy Demand	Psyst		
7708064215 123304	(kWh)	(Watt)	(kWh)	
Kabupaten Bone Bo	lango			
Tapada'a	14,19	166,40	1,50	
Tulabolo	70,29	70,01	0,56	
Kabupaten Goronta	o a			
Liyodu	33,59	94,03	0,85	
Dulamayo Selatan	54,92	73,28	- 0,73	

4.4. Potensi Energi Listrik dari Hybrid Energi

Dari hasil analisis potensi energi listrik yang dihasilkan oleh setiap komponen PLT – Hybrid Energy dapat dibuat tabel yang menunjukkan total potensi energi listrik yang dapat dibangkitkan oleh PLT – Hybrid Energy di setiap lokasi baik di kabupaten Bone Bolango maupun di kabupaten Gorontalo. Hasil selengkapnya diberikan dalam tabel sebagai berikut:


TABEL XII Potensi Energi Listrik yang dibangkitkan oleh PLT- Hybrid

Lokasi	Demand 24 Jam	Energi dibangkitkan tiap komponen			
		PLTMH 24 jam	PLTS 11 jam	PLT-Angin 9 s/d 10 jam	Total Energi 24 jam
Kabupaten Bone Bola	ungo				
Tapada'a	37,83	567,67	74,43	1,50	643,59
Tulabolo	187,45	1189,38	363,75	0,56	1553,69
Kabupaten Gorontalo					
Liyodu	89,58	3385,13	169,48	0,85	3555.46
Dulamayo Selatan	131,80	3016,78	305,09	0.73	3322,60

Dari tabel XII terlihat bahwa kebutuhan energi harian untuk setiap lokasi Hybrid Energi dapat dipenuhi oleh energi yang dibangkitkan komponen PLTMH, dan jika PLTMH tidak dapat beroperasi sama sekali, maka kebutuhan energi masih dapat diatasi oleh komponen PLTS. Konstribusi dari PLT-Angin pada PLT-Hybrid Energy ini

sangat kecil, karena potensi energi angin di lokasi PLT-Hybrid Energy memang sangat kecil. Dari hasil pengukuran, rata-rata kecepatan angin di setiap lokasi kurang dari 2 knot yakni hanya berkisar antara 1,14 s/d 1,68 knot. Oleh karena itu, jika komponen PLTMH dan PLTS tidak dapat berfungsi sama sekali maka PLT-Angin tidak dapat diandalkan dalam melayani kebutuhan enegi harian konsumen.

Disisi lain, terlihat bahwa di semua lokasi PLT-Hybrid Energy terdapat cadangan energi yang berkisar antara 605,76 kWh s/d 3465,88 kWh setiap hari, seperti ditunjukkan pada grafik berikut:

Gambar 1. Energy Demand vs Cadangan Energy

Cadangan energy yang cukup besar ini dapat terjadi karena di setiap lokasi PLT-Hybrid Energi, komponen energi yang bersumber dari PLTMH sangat besar, dibandingkan dengan potensi surya maupun potensi angin, sedangkan kebutuhan energi (energy dmand) di setiap lokasi berdasarkan kondisi sosio ekonomi masyarakat sangat kecil.

Kelebihan pembangkitan energi (cadangan energi) ini tentunya sangat menguntungkan jika energi yang dibangkitkan dapat dimanfaatkan secara maksimal, misalnya dialirkan ke desa-desa tetangga atau dijual ke PLN.

V. KESIMPULAN

- Energi listrik yang dapat dibangkitkan oleh PLT-Hybrid Energi yakni desa Tapadaa sebesar 643,59 kWh per hari, desa Tulabolo sebesar 1553,69 kWh per hari, desa Liyodu 3555,46 kWh per hari, dan desa Dulamayo Selatan 3322,6 kWh per hari
- 2. Potensi Hybrid Energi tersedia cukup besar tetapi belum dimanfaatkan secara optimal. Dengan kebutuhan energi yang ada untuk desa Tapada'a, desa Tulabolo, desa Liyodu, dan desa Dulamayo Selatan maka terdapat cadangan energi yakni: 605,76 kWh per hari untuk desa Tapada'a, 1366,25 kWh per hari untuk desa Tulabolo, 3465,88 kWh per hari untuk desa Liyodu, dan 3190,8 kWh per hari untuk desa Dulamayo Selatan.

DAFTAR PUSTAKA

- [1] PT. PLN (Persero). 2013. "Statistik PLN 2012". Sekretariat Perusahan PT PLN (Persero). Jakarta.
- [2] PT. PLN (Persero)., 2010., "Rencana UsahaPenyediaan Tenaga Listrik 2010 – 2019.
- [3] Pepres RI No 5 tahun 2006., Kebijakan Energi Nasional

ISBN: 978-602-98211-0-9

- [4] Tumiran., Prof., Dr, 2014. Paradigma Baru Kebijakan Energi Nasional Menuju Ketahanan Dan Kemandirian Energi. Dewan Energi Nasional.
- [5] Harun, Ervan & Salim, Sardi. 2009, dkk "Pengembangan Sumber Daya air Untuk Peningkatan Ketenagalistrikan di Wilayah Propinsi Gorontalo". Penelitian Hibah Strategis Nasional DIKTI. Universitas Negeri Gorontalo. Gorontalo.
- [6] Matoka, Arifin,dkk. 2009. "Kajian Potensi Energi Listrik Mikrohidro Pada Saluran Irigasi Provinsi Gorontalo menunjang Elektrifikasi Pertanian". Penelitian Hibah Strategis Nasional DIKTI. Universitas Negeri Gorontalo. Gorontalo.
- [7] Winarto, Eko Wismo., 2013., Potensi Pembangkitan Listrik Hybrid menggunakan Vertical Axis Wind Turbine tipe Savonius dan Panel Surya., Jurnal Tenologi Volume 6 No 2 Desember 2013.
- [8] Olivia Lewi Pramesti, 2012., "Energi Hibrid Potensial Dikembangkan di Indonesia", http://nationalgeographic.co.id/berita/2012/04/energi-hibrid-potensial-dikembangkan-di-indonesia
- [9] Tengku Dahril, Prof.,Dr., 2012. "Penelitian dan Pengembangan Teknologi Energi Terbarukan berdasarkan sumber daya lokal di Prpinsi Riau"Disampaikan pada Annual Forum Energy and Enviromental Partnership, Pekanbaru 30 31 Oktober 2012
- [10] Harvey. 2003. "Manual Desing Mycrohydro Report on Standarisation of Civil Works for Small Microhydro Power Plant". UNINDO.
- [11] Manan Saiful. 2010., Energi Matahari sumber energi alternatif yang efisien, handal, dan ramah lingkungan di indonesia., Laporan Penelitian Fakultas Teknik Universitas Diponegoro. Semarang
- [12] Arif Afifudiin, dkk., 2010., "Studi Ekperimental Performansi Vertical Axis Wind Turbin (VAWT) dengan Variasi Desain Turbin". Teknik Fisika., ITS.
- [13] Sam, Alimuddin & Patabang, Daud. 2005. "Studi Potensi Energi Angin Di Kota Palu Untuk Membangkitkan Energi Listrik" Jurnal SMARTEK, Volume 3 No. 1 Pebruari 2005.