OnLine Journal of Biological Sciences

Country: United States - SIR Ranking of United States

Subject Area and Category:
- Agricultural and Biological Sciences
 - Agricultural and Biological Sciences (miscellaneous)
- Biochemistry, Genetics and Molecular Biology
 - Biochemistry, Genetics and Molecular Biology (miscellaneous)

Publisher: Science Publications
Publication type: Journals
ISSN: 16084217
Coverage: 2007-2019
Scope: Information not localized

Join the conversation about this journal

Quartiles

SJR

Citations per document
Dear Sir,

I want to publish a paper in Online Journal of Biological Sciences. I will send the paper on which mail for publication.
OnLine Journal of Biological Sciences

Editor-in-Chief

Hatem Rouached
Universite Montpellier
France

Expertise: Membrane transport and nutrient signaling in plants. Molecular mechanisms that enable plants to adapt to mineral nutrient deficiency.

Associate Editors

Benson Chellakkan Selvanesan
Albert Einstein College of Medicine
United States
Guangfeng Zhao
The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School
China
Liu Liu
University of Michigan
United States

Expertise: Stem Cell, microRNA, Developmental Biology, Immunity
Palani Kandavelu
University of Georgia (UGA), Athens, GA
United States

Editorial Board Members

Ashutosh Kumar
Ahmedabad University
India

Expertise: Nanomedicines for cancer and arthritis • Nanobased drug and gene delivery • Nanoemulsions for food • Environmental nanotechnology, Nanotoxicology • Cell biology and signal transduction in relation to medicinal and pharmaceutical field • Nanogenotoxicity
Chandramohan Chitraju
Harvard University
United States

Expertise: Triglyceride Synthesis, Lipolysis, Lipid Droplet Biology, Lipid-Induced ER Stress, Insulin Resistance, Adipose Tissue Biology, Cold Induced Thermogenesis

Charles Packianathan
Florida International University
United States

Expertise: Protein Crystallography, Structural Biology and Molecular modelling
Chiara Lombardi

ENEA

Italy
Daniela Cilloni
University of Turin
Italy

Expertise: Medicine Biochemistry, Genetics and Molecular Biology Immunology and Microbiology Neuroscience Pharmacology, Toxicology and Pharmaceutics Arts and Humanities Chemistry Nursing
Gokmen Zafer Pekmezci
Ondokuz Mayis University
Turkey

Expertise: Veterinary Agricultural and Biological Sciences Medicine Immunology and Microbiology Pharmacology, Toxicology and Pharmaceutics
Lingjun Wang
Southern Medical University
China
Expertise: Medicine Biochemistry, Genetics and Molecular Biology
Lubos Danisovic
Comenius University
Slovakia
Expertise: Medical Biology and Genetics

Maulin P Shah
Enviro Technology Limited
India

Mohammed Omar Altonsy
The University of Sohag
Egypt

Noureddine Benkeblia
University of the West Indies
Jamaica
Expertise: Pure & Applied Sciences
Yue Jianbo
City University of Hong Kong
Hong Kong
OnLine Journal of Biological Sciences

Abstracting and Indexing

- AGRICOLA
- AGRIS
- Chemical Abstracts Service
- CSA Illumina
- EBSCO
- EM Biology
- J-Gate
- SCOPUS
- Thomson Gale
- Ulrichsweb
- Zoological Record

Frequency: Quarterly
ISSN Print: 1608-4217
Cites per Doc: 0.35
SJR: 0.14

Journal Home (https://thescipub.com/journals/ojbs/)
Abstracting and Indexing (https://thescipub.com/journals/ojbs/indexing)
Online First (https://thescipub.com/journals/ojbs/aof)
Current Issue (https://thescipub.com/journals/ojbs/current)
Archive (https://thescipub.com/journals/ojbs/archive)
OnLine Journal of Biological Sciences

Research Article

Plant Growth Promoting Activity of Actinomycetes Isolated from Soybean Rhizosphere
Aris Tri Wahyudi, Jepri Agung Priyanto, Resti Afrista, Deni Kurniati, Rika Indri Astuti and Alina Akhdiya

Pages : 1-8
DOI : 10.3844/ojbsci.2019.1.8
Published On : January 5, 2019

Human Adipose Stem Cells in Collagen on Angiogenesis Process of Burn Healing in Rat Model: Its Number of Blood Vessels
Luluk Yunaini, Puji Sari, Dwi Pratami Septiara, Helsy Junaidi and Radiana D Antarianto

Pages : 9-14
DOI : 10.3844/ojbsci.2019.9.14
Published On : January 7, 2019

Effect of *Pachyrizus erosus* Extract on the Thrips Attack Phenomenon (Thripidae) in *Capsicum annuum* L. Leave

Tasmin Tangnagareng, Asni Johari, Ratna Sari Dewi, Desfaur Natalia, Hastutik Setia A and Muhamad Tomy

Pages:
15-19

DOI:
10.3844/ojbsci.2019.15.19

Published On:
January 24, 2019

Flavonoids and Antimicrobial Properties of *Begonia fischeri* var. *palustris in vitro* Plantlets

Evgeniya A. Karpova, Alexandra Yu. Nabieva, Tatiana D. Fershalova, Yuliya L. Yakimova and Nataliya V. Tsybulya

Pages:
20-27

DOI:
10.3844/ojbsci.2019.20.27

Published On:
January 29, 2019

Sex Dimorphism in the *Fgf21* Gene Expression in Liver and Adipose Tissues is Dependent on the Metabolic Condition

Nadezhda Bazhan, Tatiana Jakovleva, Natalia Balyibina, Anastasia Dubinina, Elena Denisova, Natalia Feofanova and Elena Makarova

Pages:
28-36
Investigation

Clostridia in Commercial Fish of the Azov and Black Seas and in Aquaculture Facilities in the Southern Region of Russia

Yuriy Aleksandrovich Fedorov, Marina Aleksandrovna Morozova and Roman Gennad’evich Trubnik

Pages: 37-45

DOI: 10.3844/ojbsci.2019.37.45

Published On: February 1, 2019

Heavy Metal Contents in Beef Cattle Grazing in Landfill of Makassar City, Indonesia

Ambo Ako, Renny Fatmyah Utamy, Syamsuddin Nompo, Purnama Isti Khaerani, Sema, Rahmawati and Syamsuddin Hasan

Pages: 46-50

DOI: 10.3844/ojbsci.2019.46.50

Published On: February 9, 2019
Molecular Approach to Identify Gobioid Fishes, “Nike” and “Hundala” (Local Name), from Gorontalo Waters, Indonesia

Abdul Hafidz Olii, Femy M. Sahami, Sri Nuryatin Hamzah and Nuralim Pasisingi

Pages : 51-56

DOI : 10.3844/ojbsci.2019.51.56

Published On : February 11, 2019

Reprocess of Copper from Worn Printed Circuit Boards

Swarnambiga A.K., M. Vidya Kalaivani, Sarah Sathyawathi and T.S. Ramyaa Lakshmi

Pages : 57-68

DOI : 10.3844/ojbsci.2019.57.68

Published On : February 12, 2019

Antileishmanial and Antibacterial Activity of Essential Oils of Medicinal Plant Achillea santolina L.

Abdulkarim Dakah and Mohammed Maarrouf

Pages : 69-76

DOI : 10.3844/ojbsci.2019.69.76

Published On :
The Usage of Biologically Active Raw Materials in Confectionery Products Technology
Alfiya Chernenkova, Svetlana Leonova, Tamara Nikiforova, Anna Zagranichnaya, Evgeniy Chernenkov, Olesya Kalugina, Elena Badamshina and Igor Gazeev

Pages: 77-91
DOI: 10.3844/ojbsci.2019.77.91
Published On: March 7, 2019

Genotoxicity through Exposure to Particulate Matter (PM$_{10}$) at two Sites in the Valle de Aburrá, Colombia

Pages: 92-97
DOI: 10.3844/ojbsci.2019.92.97
Published On: March 19, 2019
Biopesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status
Lukmanul Hakim Samada and Usman Sumo Friend Tambunan
Volume: 20, Issue: 2 Pages: 66-76
Published On: April 29, 2020

SSR Analysis of Nuclear DNA of Annual and Perennial Sunflower Species (Helianthus L.)
N.V. Markin, A.V. Usatov, A.V. Grinko, K.F. Kan and V.A. Gavrilova
Volume: 20, Issue: 2 Pages: 77-83
Published On: April 25, 2020

Non-Target Inhibition of Antioxidant Enzymes in Honey Bees (A. mellifera and A. florea) Upon Pesticide Exposure
Amal Ahmed Berjawi, Syed Salman Ashraf and Mohammad Ali Al-Deeb
Volume: 20, Issue: 2 Pages: 57-65
Published On: April 10, 2020

Assessment of the Annona muricata Leaf Ethanol Extract Effect on The Diameter of Pancreatic Islets in Alloxan-Induced Mice
Syafira N. Dewi, Supri I. Handayani, Marini Stephanie, Siti Nurbaya and Vivitri D. Prasasty
Volume: 20, Issue: 1 Pages: 50-56
Published On: March 9, 2020

Infection of Ostrinia furnacalis (Lepidoptera: Pyralidae) by Endophytic Beauveria bassiana on Corn
Itji Diana Daud, Elkawakib, Kahar Mustari, Aris Baso and Nuniek Widiayani
Volume: 20, Issue: 1 Pages: 1-7
Published On: March 5, 2020

ISSN Print: 1608-4217
Molecular Approach to Identify Gobioid Fishes, “Nike” and “Hundala” (Local Name), from Gorontalo Waters, Indonesia

Abdul Hafidz Olii, Femy M. Sahami, Sri Nuryatin Hamzah and Nuralim Pasisingi

DOI : 10.3844/ojbsci.2019.51.56

OnLine Journal of Biological Sciences

Volume 19, Issue 1

Pages 51-56

Abstract

Data of the species scientific name is required to study biodiversity and conservation of local fish species. Nike and hundala are the local names for fish found in Gorontalo whose scientific names are unknown and recognized by local people as two different species of fish. This study aims to identify the genetic and species of nike and hundala fish. Nike and hundala specimens were collected using a fish net from the estuary of Gorontalo Bay and Bone River, Gorontalo, Indonesia in April 2018. Molecular analysis of fish over sequencing methods shows that nike and hundala at Gorontalo waters are alleged as Sicyopterus longifilis.

Copyright

© 2019 Abdul Hafidz Olii, Femy M. Sahami, Sri Nuryatin Hamzah and Nuralim Pasisingi. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Molecular Approach to Identify Gobioid Fishes, “Nike” and “Hundala” (Local Name), from Gorontalo Waters, Indonesia

Abdul Hafidz Olii, Femy M. Sahami, Sri Nuryatin Hamzah and Nuralim Pasisingi

Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Gorontalo State University, Gorontalo City, Indonesia

Article history
Received: 11-09-2018
Revised: 3-01-2019
Accepted: 08-02-2019

Corresponding Author:
Abdul Hafidz Olii
Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Gorontalo State University, Gorontalo City, Indonesia
Email: oliihafidz@gmail.com

Abstract: Data of the species scientific name is required to study biodiversity and conservation of local fish species. Nike and hundala are the local names for fish found in Gorontalo whose scientific names are unknown and recognized by local people as two different species of fish. This study aims to identify the genetic and species of nike and hundala fish. Nike and hundala specimens were collected using a fish net from the estuary of Gorontalo Bay and Bone River, Gorontalo, Indonesia in April 2018. Molecular analysis of fish over sequencing methods shows that nike and hundala at Gorontalo waters are alleged as *Sicyopterus longifilis*.

Keywords: Gorontalo, Local Fish Hundala, Nike, *Sicyopterus longifilis*, *Sicyopterus pugnans*

Introduction

Nike and hundala are the local names of fish found in the waters of Gorontalo, Indonesia where the scientific name of these two types of fish is not known. Biological and ecological information on both types of these species is also not yet available. These two types of fish are endemic in Gorontalo and have not been determined scientifically. A comprehensive scientific study of nike and hundala fish in Gorontalo waters is required to facilitate further research, especially those related to bioecology in supporting the management and conservation of fish species in the world.

Nike is the local name of small fish found in the waters of the sea and estuary of Bone River, Gorontalo, Indonesia (Olii *et al.*, 2017). Nike fish in Gorontalo waters will only appear in a few days at the end of the lunar phase (Pasisingi and Abdullah, 2018) and move from the sea towards the estuary and disappear and then reappear in the final few days of the next phase of the month and at the beginning of the new month. Nike fish is thought to have transformed into adult fish during the time of movement to reach the river so that its form is no longer recognized.

Morphologically, hundala fish exhibit features that similar to nike. This led to the notion that the hundala fish was an adult nike that had reached the river to spawn. However, this hypothesis has not been scientifically proven. Therefore, it is necessary to study the comparison of nike and hundala. This study aims to identify the species of nike and hundala fish with a molecular approach.

Materials and Methods

Sampling

Nike and hundala specimens were collected from the estuary of Gorontalo Bay (N 00°30.305’ and E 123°03.739’) and Bone River (N 00°31.347’ and E 123°04.358’) in Gorontalo waters, Indonesia (Fig. 1) in April 2018. Samples were caught using a fish net.

Molecular Analysis

Genomic DNA was isolated from the muscle tissue for sequencing method using the Genomic DNA mini kit (plant), Geneaid. Sequencing target was the cytochrome c oxidase subunit I (COI) gene due to DNA barcoding based on a fragment of the COI gene in the mitochondrial genome is widely applied in species identification and biodiversity studies (Bingpeng *et al.*, 2018). The COI gene is recommended as the standard barcoding marker for most animals (Renxie *et al.*, 2018). Based on COI barcoding, high rates of species-level identification are well documented in many animal species, for instance, 95.27% for numerous northwestern pacific mollusks (Sun *et al.*, 2016) and 98% for marine fishes (Ward, 2009). In addition, many studies have shown that intraspecific variation of COI barcodes is generally pretty small and clearly discriminable from interspecific variation (Hubert *et al.*, 2008; Steinke *et al.*, 2009; Ward *et al.*, 2009; Bucklin *et al.*, 2011).
The COI gene was amplified with primers Fish BCL: 5’- TCAACYAATCAYAAAGATATYGGCAC-3’ and Fish BCH: 5’- ACTTCYGGGTGRCCRAARAATCA-3’ (Baldwin et al., 2008) in a 50-µL volume with 18 µL ddH2O, 2.5 µL of Fish BCL (10 µM), 2.5 µL of Fish BCH (10 µM), 1.0 unit of DMSO, 25 µL of Go Taq Green PCR Mix 2X and 2 µL of DNA template. The PCR conditions were pre-denaturation at 80°C for 10 s and initial denaturation at 94°C for 5 min, followed by 40 cycles of 30 s at 94°C, 30 s at 50°C, 45 s at 72°C and the final extension at 72°C for 7 min. The PCR products were visualized on 1 5% agarose gel.

The sequencing process was carried out using the Sanger Termination Dideoxy Method. The sequencing process was carried out by 1st Base, Malaysia, through PT. Genetic Science. The nucleotide sequence from DNA sequencing was carried out by CONTIG using the BioEdit software with manual editing and pruning during the alignment process. The Alignment data obtained was then matched with the data available on the Genbank, namely Barcode of Life Data (BOLD) system and National Center for Biotechnology Information (NCBI).

A phylogenetic tree was arranged by aligning DNA sequences of nike and hundala fish identified with several DNA sequences of species in the same family. The tree was made using the Maximum Likelihood Method with 1000 bootstraps. DNA sequences and phylogetic tree compilation are aligned using MEGA 6.0 application with default settings.

Results

Genetic Identification of Nike and Hundala Fish

Genetic identification carried out to confirm genetics of nike and hundala fish in Bone River, Gorontalo.
Nike and hundala are thought to be the same species as *Sicyopterus longifilis*. This is as based on BOLD database (Table 1) they have the highest similarity to *Sicyopterus longifilis* with the number of 100% and 99.68% consecutively. Whereas, according to NCBI database, the highest similarity value of merely 99% is indicated by nike and hundala fish as *Sicyopterus pugnans* (Table 2).

The phylogenetic tree also aligns some of the genetics of fish in the same genus available in BOLD which are also found in other areas (Fig. 3). Nike and hundala species have a very close relationship with the species *S. pugnans* caught in French, Polynesia.

Table 1: The comparison of nike and hundala sequences with BOLD fish database

<table>
<thead>
<tr>
<th>No</th>
<th>Specimens</th>
<th>Species</th>
<th>Similarity</th>
<th>Data Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nike</td>
<td>Sicyopterus longifilis</td>
<td>100%</td>
<td>Private</td>
</tr>
<tr>
<td>2</td>
<td>S. longifilis</td>
<td>100%</td>
<td>Private</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S. longifilis</td>
<td>100%</td>
<td>Private</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S. longifilis</td>
<td>100%</td>
<td>Private</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S. longifilis</td>
<td>100%</td>
<td>Private</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hundala</td>
<td>Sicyopterus longifilis</td>
<td>99.68%</td>
<td>Private</td>
</tr>
<tr>
<td>2</td>
<td>S. longifilis</td>
<td>99.52%</td>
<td>Private</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S. longifilis</td>
<td>99.52%</td>
<td>Private</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S. longifilis</td>
<td>99.52%</td>
<td>Private</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S. longifilis</td>
<td>99.52%</td>
<td>Private</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: The comparison of nike and hundala sequences with NCBI fish database

<table>
<thead>
<tr>
<th>No</th>
<th>Specimens</th>
<th>Species</th>
<th>Accession Number</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nike</td>
<td>Sicyopterus pugnans</td>
<td>KJ202204.1</td>
<td>99%</td>
</tr>
<tr>
<td>2</td>
<td>S. pugnans</td>
<td></td>
<td>KF668861.1</td>
<td>96%</td>
</tr>
<tr>
<td>3</td>
<td>S. pugnans</td>
<td></td>
<td>HQ639045.1</td>
<td>95%</td>
</tr>
<tr>
<td>4</td>
<td>S. pugnans</td>
<td></td>
<td>HQ639044.1</td>
<td>95%</td>
</tr>
<tr>
<td>5</td>
<td>S. pugnans</td>
<td></td>
<td>JQ432155.1</td>
<td>95%</td>
</tr>
<tr>
<td>1</td>
<td>Hundala</td>
<td>Sicyopterus pugnans</td>
<td>KJ202204.1</td>
<td>99%</td>
</tr>
<tr>
<td>2</td>
<td>S. pugnans</td>
<td></td>
<td>KF668861.1</td>
<td>96%</td>
</tr>
<tr>
<td>3</td>
<td>S. pugnans</td>
<td></td>
<td>HQ639045.1</td>
<td>95%</td>
</tr>
<tr>
<td>4</td>
<td>S. pugnans</td>
<td></td>
<td>HQ639044.1</td>
<td>95%</td>
</tr>
<tr>
<td>5</td>
<td>S. pugnans</td>
<td></td>
<td>JQ432155.1</td>
<td>96%</td>
</tr>
</tbody>
</table>

Due to *S. longifilis* sequence data in BOLD database is still private and has not been permitted to be accessed, the study used fish sequences available in NCBI database to display nike and hundala fish relations to the other gobiidae (Fig. 4).

Figure 4 shows that nike and hundala fish are obviously separated from *S. pugnans*. On the other hand, nike and hundala share the highest similarity to each other. Unfortunately, the location of *S. longifilis* among nike and hundala fish cannot be displayed on the phylogenetic tree since this species is not available in NCBI database. In this case, although a more comprehensive analysis is needed to convince that they are characterized as the same fish, this allegation is still possible due to their nucleotide variation occurs only three times with base sequences of 97, 391 and 454 from the edited sequence along 650bp. As a result, the small p-distance of 0.0046 between the two samples supports that these two samples were the same species.

Morphological Characteristics of Nike and Hundala Fish

Nike and hundala are considered fish that have different stages of life. Nike is a juvenile while hundala is an adult stadium (Fig. 5), yet in this study, no detail morphological identification of nike and hundala species was carried out.

The morphological characteristic of nike is shown by the small body size which only reaches 3 cm and the body color is still transparent. The body has no scales, incomplete fins and an undeveloped mouth.

Hundala morphology showed a long body size reaching 6.5 cm compared to nike. Hundala has the dark body color and there were grayish spots on the dorsal part. Its body was scaly and the fin was complete with the blonde caudal fin color, flatted head shape, and the inferior mouth has developed perfectly.

![Fig. 3: Phylogenetic trees of nike and hundala compared to species found from other areas available in BOLD](image_url)
Fig. 4: Phylogenetic tree of nike and hundala compared to some gobiidae species available in NCBI
Discussion

This study shows that nike and hundala fish in Gorontalo waters are apparently as *Sicyopterus longifilis* species which is a freshwater fish type from the gobioid group based on their highest sequence similarity to *S. longifilis* in BOLD system. The species of *S. longifilis* originates from the Sicydiinae family (Wang et al., 2001). Lord et al. (2010) stated that fresh water of the Pacific region is inhabited by Gobiidae (Sicydiinae) species with a specific life cycle adapted to the insular amphidromous called as the environment (Keith, 2003). In this life cycle, newly hatched fish drift downstream to the ocean, recruit back to stream mouths as juveniles and then migrate upstream to live as adults (Luton et al., 2005).

The results of this study indicate that nike fish is the local designation of the Gorontalo community for juvenile phase, while the adult is hundala. Both are alleged as *Sicyopterus longifilis*. Keith et al. (2008) found that the morphological transformation of Sicyopterus lagocephalus between hatching and the adult phase is composed of two larval stages (L1, L2). In an adult stage, coloration is typical of sexual dimorphism. The mouth is inferior. The caudal fin distal border is rounded (% C superior to 100%). Adults are found in the lower, medium and upper courses of the river. Yamasaki et al. (2007) described briefly the developmental stages of another Siclydiine Gobiidae, a Stiphodon, using the terms "pelagic larvae", "settled larvae", "juvenile" and "adult".

Although scientific studies of *S. longifilis* species in Gorontalo waters are not yet available, Keith et al. (2011) described five new species of Sicyopterus, freshwater gobies, are described in Papua New Guinea and Papua Province, Indonesia. They differ from other species belonging to the genus by the combination of characters including the upper lip morphology, the second dorsal fin, the scales in the lateral, pre-dorsal, transverse back, transverse forward and zigzag series, sexual dimorphism and live colors.

Conclusion

From this study, we come to the conclusion that nike and hundala fish supposedly as *Sicyopterus longifilis* which are considered as species available in the Bone River and the estuary of Gorontalo Bay. Furthermore, a more comprehensive analysis of other divergent gene sequences is needed to convince this species characterization.

Acknowledgment

We wish to thank the staff of Fisheries and Marine Science Faculty Laboratory, Gorontalo State University for technical help.

Funding Information

This project is funding by the Directorate of Research and Development, Ministry of Research, Technology and Higher Education of Republic Indonesia.

Author’s Contributions

Abdul Hafidz Olii: Coordinated the implementation of research work, conducted research, compiled the literary review, analyzed and interpreted the study findings, drew conclusions, contributed manuscript preparation and revisions

Femy M. Sahami: Designed the research plan, organized the study, conducted research, and contributed to result analysis and the writing manuscript.

Sri Nuryatin Hamzah: Conducted research, compiled the literary review, analyzed and interpreted the results, contributed manuscript revisions.

Nuralim Pasisingi: Conducted research, contributed manuscript revisions

Ethics

This article is original and contains unpublished material. The corresponding author confirms that all of the other authors have read and approved the manuscript and there are no ethical issues involved.
References

Renxie, W., Z. Haoran, L. Jing, N. Sufang and X. Yao et al., 2018. DNA barcoding of the family Sparidae along the coast of China and revelation of potential cryptic diversity in the Indo West Pacific oceans based on COI and 16S rRNA genes. J. Oceanology Limnology, 36: 1753-1770. DOI: 10.1007/s00343-018-7214-6

Sun, S.E., Q. Li, L.F. Kong, H. Yu and X. Deng et al., 2016. DNA barcoding reveal patterns of species diversity among northwestern pacific molluscs. Science Report, 6: 1-17. DOI: 10.1038/srep33367

