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ABSTRACT 
This article discusses the analysis of dynamic models of the spread of drug addicts with educational effects. This 

model is modified from the White and Comiskey model by adding populations that have stopped using drugs so that 

the model will form the type of SURS. Besides, modifications were also made to consider the educational effects in 

each population class. The analysis shows that the free equilibrium point of drug addicts is stable when the condition 

is R0 < 1 and the endemic equilibrium point is stable when the condition is R0 >  1. Numerical simulations show that

an increase in the rate of education can reduce the rate of distribution of drug addicts so that the spread of drug addicts 

gradually decreases and will disappear from the population. 
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1. INTRODUCTION

A drug or drug can cause a decreased effect of

consciousness, hallucinations, and excitatory power. 

Such substances or drugs may cause dependence if 

used excessively. Drug abuse negatively impacts 

health, both physically, mentally, and socially. Today, 

cases of drug abuse are on the rise. Based on World 

Drugs Reports data, about 275 million people, or 

5.60% of the world's population aged 15-64, have 

taken drugs [1]. BNN's 2017 study stated that the 

prevalence of drug addicts between the ages of 10-59 

reached 3,376,115 [2]. The government has made 

numerous efforts to reduce the spread of drug addicts. 

One of them is by way of education. Education in 

question is any form of a planned effort to influence 

others, whether individuals, groups, or communities 

[3]. 

The problem of the spread of drug addicts can be 

transformed into mathematical models. This 

mathematical model can predict system behavior so 

that it can be used to take a policy [4]. Several studies 

discussing drug dealing have been conducted with 

mathematical model approaches, including White and 

Comiskey [5], have researched the spread of drug 

addicts by dividing the total human population into 

three subpopulations namely the susceptible 

population (S), the population of drug addicts not 

under treatment (𝐼1)., and the population of drug

addicts in the treatment period (𝐼2). Toaha [6]

examined the stability analysis of the balance point of 

the behavioral model of the number of drug offenders 

with rehabilitation effects. Faisol [7] researched SIRS 

model analysis on the spread of narcotics resulting in 

two equilibrium points that depend on the number of 

basic reproductions. Besides, Soleh and Mandasari [8] 

researched mathematical models of the influence of 

rehabilitation programs and the application of 

punishment to the number of drug addicts. Husain [9] 

and Resmawan et al. [10] also researched optimal drug 

user dissemination models with educational and 

rehabilitation effects. Studies on the problem of drugs 

are still being carried out in various perspectives, 

which can be seen in [11]–[14]. 

In this paper, a new model was introduced that 

refers to the White and Comiskey models with 

modifications in the form of the addition of a class of 

population that has stopped drug addicts from being 

notified with 𝑅 so that the model will form a 𝑆𝑈𝑅𝑆 

type [15]. Besides, modifications are also made, taking 

into account educational effects. That assumption adds 
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to the model's variables in the form of an educated 

class of susceptible populations (𝑆𝑒), an educated class 

of infected populations (𝑈𝑒), and a stopped class of 

drug addicts being educated (𝑅𝑒). The modified model 

will be analyzed with regard to the equilibrium point 

and its stability. Furthermore, numerical simulations 

were given with variations of several parameter values 

to see how educational effects affect the spread of drug 

addicts. 

2.  MODEL 

In this model, the total population is notified by N 

which is divided into six individual populations, 

namely susceptible individuals (𝑆), drug addicts (𝑈), 

individuals who have stopped using drugs (𝑅), 

susceptible individuals who are educated (𝑆𝑒), 

individuals who are educated drug addicts (𝑈𝑒), and 

these are individuals who have stopped using drugs 

and are educated (𝑅𝑒). Thus, the total population can 

be written, 𝑁 = 𝑆 + 𝑈 + 𝑅 + 𝑆𝑒 + 𝑈𝑒 + 𝑅𝑒 .  

Schematically, the spread of drug addicts in this 

model is illustrated in the compartment diagram in 

Figure 1. 

Based on the scheme in Figure 1, a mathematical 

model is obtained in the form of a differential equation 

system (1). With 

𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁 − 𝛾1𝑈 − 𝛾2𝑈𝑒 (2) 

And 

𝑁 = 𝑆 + 𝑈 + 𝑅 + 𝑆𝑒 + 𝑈𝑒 + 𝑅𝑒 
 

Λ on the equation model (1) states the rate of 

recruitment of susceptible populations, ε is part of a 

new recruiting individual with education, ρ is the rate 

of education to susceptible populations without 

education, 𝜔1(𝜔2) is the rate of progression of 

individuals U stops from drug addicts, 𝑈 to 𝑅 (𝑈𝑒 to 

𝑅𝑒), 𝛿1(𝛿2) is the rate of education of individuals in 

class 𝑈(𝑅), μ is the rate of death naturally, 𝛾1 (𝛾2 ) is 

the rate of death caused by drugs in individual in-class 

𝑈(𝑈𝑒), 𝛽 is the effective rate of contact between 

individual users with susceptible individuals, 𝜎 (0 <
𝜎 < 1) is the reducing factor of the spread of drug 

addicts with educational effects, and 𝜓 (0 < 𝜓 < 1) 

is the effective rate of educational effects in preventing 

the emergence of new drug addicts. 

3.  RESULTS AND DISCUSSIONS 

3.1 Equilibrium Point 

Referring to [16], the determination of equilibrium 

points can be obtained by resolving the equation by 

𝑑𝑆

𝑑𝑡
=

𝑑𝑈

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
=

𝑑𝑆𝑒

𝑑𝑡
=

𝑑𝑈𝑒

𝑑𝑡
=

𝑑𝑅𝑒

𝑑𝑡
= 0. 

From the completion of the equation is obtained, 

two equilibrium points as follows: 

3.1.1.  Drug Addicts-free Equilibrium Point 

(𝑋0) 

   𝑿𝟎 = (𝑺, 𝑼, 𝑹, 𝑺𝒆, 𝑼𝒆, 𝑹𝒆)  

         = (
(𝟏 − 𝜺)𝚲

𝝆 + 𝝁
, 𝟎, 𝟎,

𝚲(𝝁𝜺 + 𝝆)

𝝁(𝝆 + 𝝁)
, 𝟎, 𝟎 ) 

(3) 

 

3.1.2.  Endemic Equilibrium Point (𝑋1) 

   𝑿𝟏 = (𝑺, 𝑼, 𝑹, 𝑺𝒆, 𝑼𝒆, 𝑹𝒆)  

         = (𝑺∗, 𝑼∗, 𝑹∗, 𝑺𝒆
∗ , 𝑼𝒆

∗ , 𝑹𝒆
∗  ) 

(4) 

with 

𝑆∗ =
1

2
(−(𝑅𝑒

∗ + 𝑆𝑒
∗) +

−𝑈∗(𝛽+𝜇+𝜌)+𝑅∗𝜃

𝜇+𝜌
−

        
−(𝜇+𝜌)+Λ(1−𝜀)+𝑈𝑒

∗𝛽(𝜇+𝜌+1))

𝜌+𝜇
+ (

1

𝜇+𝜌
) ((4(𝑈∗ +

       𝑅∗ + 𝑆𝑒
∗ + 𝑈𝑒

∗ + 𝑅𝑒
∗)(𝑅∗𝜃 + Λ −  𝜀Λ)(𝜇 + 𝜌) +

 
Figure 1 Patterns of distribution of drug addicts with educational effects  
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       ((𝜀 − 1)Λ + (𝑆𝑒
∗ + 𝑅𝑒

∗)(𝜇 + 𝜌) + (𝑈∗ + 𝑈𝑒
∗)(𝛽 +

       𝜇 + 𝜌) + 𝑅∗(−𝜃 + 𝜇 +  𝜌) − 𝑈𝑒
∗𝛽𝜎)

2
))

1

2
)

 

    

𝑆∗ = −
1

2(𝜇+𝜌)
(𝑆𝑒

∗(𝜇 + 𝜌) + 𝑈𝑒
∗(𝛽 + 𝜇 + 𝜌 − 𝛽𝜎) +

         𝑈∗(𝛽 + 𝜇 + 𝜌) + (−𝑅∗)(𝜃 − 𝜇 − 𝜌) + 𝑅𝑒
∗(𝜇 +

         𝜌) ((4(𝑈∗ + 𝑅∗ +  𝑆𝑒
∗ + 𝑈𝑒

∗ + 𝑅𝑒
∗)(𝑅∗𝜃 + Λ −

        𝜀Λ)(𝜇 + 𝜌) + ((𝜀 − 1)Λ + (𝑆𝑒
∗ + 𝑅𝑒

∗)(𝜇 + 𝜌) +

        (𝑈∗ + 𝑈𝑒
∗)(𝛽 + 𝜇 + 𝜌) + 𝑅∗(−𝜃 + 𝜇 + 𝜌) −

        𝑈𝑒
∗𝛽𝜎)

2
))

1

2
)  

𝑈∗ =
1

2(𝜇+𝛾1+𝛿1+𝜔1)
(𝑆∗(𝛽 − (𝜇 + 𝛾1 + 𝛿1 + 𝜔1)) −

         (𝑅∗ + 𝑆𝑒
∗ + 𝑈𝑒

∗ + 𝑅𝑒
∗)(𝜇 + 𝛾1 + 𝛿1 + 𝜔1) +

         (−4𝑆∗𝑈𝑒
∗𝛽 (𝜎 − 1)(𝜇 + 𝛾1 + 𝛿1 + 𝜔1) +

         (𝑆∗(𝛽 − (𝜇 + 𝛾1 + 𝛿1 + 𝜔1)) − (𝑅∗ + 𝑆𝑒
∗ +

         𝑈𝑒
∗ + 𝑅𝑒

∗)(𝜇 + 𝛾1 +  𝛿1 + 𝜔1))

1

2
)  

𝑈∗ =
1

2(𝜇+𝛾1+𝛿1+𝜔1)
(𝑆∗(𝛽 − (𝜇 + 𝛾1 + 𝛿1 + 𝜔1)) −

        (𝑅∗ + 𝑆𝑒
∗ + 𝑈𝑒

∗ + 𝑅𝑒
∗)(𝜇 + 𝛾1 + 𝛿1 + 𝜔1) +

          (−4𝑆∗𝑈𝑒
∗𝛽(𝜎 − 1)(𝜇 + 𝛾1 + 𝛿1 + 𝜔1) +

         (𝑆∗(𝛽 − (𝜇 + 𝛾1 + 𝛿1 + 𝜔1)) − (𝑅∗ + 𝑆𝑒
∗ +

         𝑈𝑒
∗ + 𝑅𝑒

∗)(𝜇 + 𝛾1 + 𝛿1 + 𝜔1))

1

2
)  

𝑅∗ =
𝑈∗𝜔1

𝛿2+𝜃+𝜇
  

𝑆𝑒
∗ = −

1

2
(𝑈∗(𝛽 + 𝜇 − 𝛽𝜓) + 𝑈𝑒

∗(𝛽 + 𝜇 + 𝛽𝜎𝜓 −

         𝛽𝜎) − 𝜀Λ + (𝑅∗ + 𝑅𝑒
∗)𝜇 + 𝑆∗(𝜇 − 𝜌) −

        ( 4(𝑈∗ + 𝑅∗ + 𝑆𝑒
∗ + 𝑈𝑒

∗ + 𝑅𝑒
∗)𝜇(𝜀𝛬 +

        𝑆∗𝜌) (−𝜀𝛬 + (𝑅∗ + 𝑆𝑒
∗ + 𝑅𝑒

∗)𝜇 − 𝑆∗𝜌𝑈𝑒
∗(𝜇 +

       𝛽(𝜎 − 1)(𝜓 − 1)) + 𝑈∗(𝛽 + 𝜇 − 𝛽𝜓))
2

)

1

2
)  

𝑆𝑒
∗ = −

1

2
(𝑈∗(𝛽 + 𝜇 − 𝛽𝜓) + 𝑈𝑒

∗(𝛽 + 𝜇 + 𝛽𝜎𝜓 −

         𝛽𝜎) − 𝜀Λ + (𝑅∗ + 𝑅𝑒
∗)𝜇 + 𝑆∗(𝜇 − 𝜌) +

         (4(𝑈∗ + 𝑅∗ + 𝑆𝑒
∗ + 𝑈𝑒

∗ + 𝑅𝑒
∗)𝜇(𝜀𝛬 + 𝑆∗𝜌) +

         (−𝜀𝛬 + (𝑅∗ + 𝑆𝑒
∗ + 𝑅𝑒

∗)𝜇 − 𝑆∗𝜌𝑈𝑒
∗(𝜇 + 𝛽(𝜎 −

         1)(𝜓 − 1)) + 𝑈∗(𝛽 + 𝜇 − 𝛽𝜓))
2

)

1

2
)  

𝑈𝑒
∗ =

1

2
(−(𝑈∗ + 𝑅∗ + 𝑆𝑒

∗ + 𝑈𝑒
∗ + 𝑅𝑒

∗) +

           
𝑈∗𝛿1+𝑆𝑒

∗𝛽(𝜎−1)(𝜓−1)

𝜇+𝛾2+𝜔2
) +

         (
1

2(𝜇+𝛾2+𝜔2)
) ((4𝑈∗(𝑆∗ + 𝑈∗ +  𝑅∗ + 𝑅𝑒

∗)𝛿1 +

         𝑆𝑒
∗(𝛽 + 𝛿1 − 𝛽𝜓))(𝜇 + 𝛾2 + 𝜔2) + ((𝑆∗ +

         𝑅∗ + 𝑅𝑒
∗)(𝜇 + 𝛾2 + 𝜔2) + 𝑈∗(𝜇 + 𝛾2 +

         𝜔2 −) + 𝑆∗(𝜇 + 𝛾2 − 𝛽(𝜎 − 1)(𝜓 − 1) +

         𝜔2))
2

)

1

2
  

𝑈𝑒
∗ =

1

2
(−(𝑈∗ + 𝑅∗ + 𝑆𝑒

∗ + 𝑈𝑒
∗ + 𝑅𝑒

∗) +

         
𝑈∗𝛿1+𝑆𝑒

∗𝛽(𝜎−1)(𝜓−1)

𝜇+𝛾2+𝜔2
) − (

1

2(𝜇+𝛾2+𝜔2)
) ((4𝑈∗(𝑆∗ +

        𝑈∗ + 𝑅∗ +)𝛿1 + 𝑆𝑒
∗(𝛽 + 𝛿1 − 𝛽𝜓))(𝜇 + 𝛾2 +

        𝜔2) + ((𝑆∗ + 𝑅∗ + 𝑅𝑒
∗)(𝜇 + 𝛾2 + 𝜔2) +

        𝑈∗(𝜇 + 𝛾2 + 𝜔2 − 𝛿1) + 𝑆∗(𝜇 + 𝛾2 − 𝛽(𝜎 −

        1)(𝜓 − 1) + 𝜔2))
2

)

1

2
  

𝑅𝑒
∗ =

𝑅∗𝛿2+𝑈𝑒
∗𝜔2

𝜇
   

 

3.2 Basic Reproduction Number (𝑹𝟎) 

The basic reproduction number of the equation (1), 

referring to [17], [18] where the required calculations 

are matrix F and V, is shown by the 

 

𝐹 = [
𝑎11 𝑎12

𝑎21 𝑎22
] 

with 

𝑎11 =
𝛽𝑆(𝑆 + 𝑅 + 𝑆𝑒 + 𝑅𝑒) + 𝜎𝛽𝑈𝑒𝑆

(𝑆 + 𝑈 + 𝑅 + 𝑆𝑒 + 𝑈𝑒 + 𝑅𝑒)2
 

𝑎12 =
(1 − 𝜎)𝛽𝑆(𝑆 + 𝑅 + 𝑆𝑒 + 𝑅𝑒) − 𝜎𝛽𝑈𝑆

(𝑆 + 𝑈 + 𝑅 + 𝑆𝑒 + 𝑈𝑒 + 𝑅𝑒)2
 

𝑎21 =
(1 − 𝜓)(𝑆 + 𝑅 + 𝑆𝑒 + 𝑅𝑒) + (1 − 𝜓)𝜎𝛽𝑈𝑒𝑆𝑒

(𝑆 + 𝑈 + 𝑅 + 𝑆𝑒 + 𝑈𝑒 + 𝑅𝑒)2
 

𝑎22 =
(1 − 𝜓)(1 − 𝜎)𝛽𝑆𝑒(𝑆 + 𝑅 + 𝑆𝑒 + 𝑅𝑒) − (1 − 𝜓)𝜎𝛽𝑈𝑆𝑒

(𝑆 + 𝑈 + 𝑅 + 𝑆𝑒 + 𝑈𝑒 + 𝑅𝑒)2
 

 

𝑉 = [
𝜇 + 𝛾1 + 𝛿1 + 𝜔1 0

−𝛿1 𝜇 + 𝛾2 + 𝜔2
]  

Based on [15], the basic reproduction number 𝑅0 

is the spectral radius 𝜌(𝐹𝑉−1) of the model (1), 

provided by 

𝑅0 =
𝛽𝜇(1 − 𝜀)(𝜇 + 𝛾2 + 𝜔2 + 𝛿1(1 − 𝜎)

(𝜇 + 𝜌)(𝜇 + 𝛾1 + 𝛿1 + 𝜔1)(𝜇 + 𝛾2 + 𝜔2)

+
𝛽(1 − 𝜓)(1 − 𝜎)(𝜇𝜀 + 𝜌)

(𝜇 + 𝜌)(𝜇 + 𝛾2 + 𝜔2)
 

 

(5) 

3.3 Equilibrium Point Stability 

      The above drug user deployment model is a 

nonlinear differential equation system. To analyze the 

equilibrium point stability of a nonlinear differential 

equation system, it can be done by linearizing its 

differential equations to obtain the jacobian matrix as 

in [19]. The equilibrium point model's stability 
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properties of the spread of drug addicts are presented 

in Theorem 1. 

 

Theorem 1. The Drug addicts-free equilibrium point 

is locally asymptotically stable if 𝑅0 < 1 and 

otherwise, it is unstable. 

 

Proof: To obtain system stability at the 𝑋0, the 

substitution of equations (3) in the jacobian matrix, so 

obtained 

 

 (6) 

with 

𝐴11 = −𝜇 − 𝜌  

𝐴12 = −
𝛽𝜇(1−𝜀)

𝜌+𝜇
  

𝐴13 = 𝜃  

𝐴15 = −
𝛽𝜇(1−𝜀)(1−𝜎)

𝜌+𝜇
    

𝐴22 =
𝛽𝜇(1−𝜀)

𝜌+𝜇
− (𝜇 + 𝛾1 + 𝛿1 + 𝜔1)  

𝐴25 =
𝛽𝜇(1−𝜀)(1−𝜎)

𝜌+𝜇
  

𝐴32 = 𝜔1  

𝐴33 = −𝜇 − 𝛿2 − 𝜔2  

𝐴41 = 𝜌  

𝐴42 = −
(1−𝜓)𝛽(𝜇𝜀+𝜌)

𝜌+𝜇
  

𝐴44 = −𝜇  

𝐴45 = −
𝛽(1−𝜎)(1−𝜓)(𝜇𝜀+𝜌)

𝜌+𝜇
  

𝐴52 =
𝛽(𝜇𝜀+𝜌)(1−𝜓)

𝜌+𝜇
+ 𝛿1  

𝐴55 =
𝛽(1−𝜎)(𝜇𝜀+𝜌)(1−𝜓)

𝜌+𝜇
− (𝜇 + 𝛾2 + 𝜔2)  

𝐴63 = 𝛿2  

𝐴65 = 𝜔2  

𝐴66 = −𝜇  
  
by solving characteristic equations det(𝜆𝐼 − 𝐽𝑋0) = 0 

so that it is obtained 

 

(𝜆 − 𝐴11)(𝜆 − 𝐴33)(𝜆 − 𝐴44)(𝜆 − 𝐴66) − 𝐴25𝐴52 

+𝐴22𝐴55 − 𝐴22𝜆 − 𝐴55𝜆 + 𝜆2) = 0                     (7) 

  

Based on equation (6) obtained six eigenvalues. 

Four eigenvalues are 

𝜆1 = 𝐴11 = −(𝜌 + 𝜇)              
𝜆2 = 𝐴33 = −(𝜇 + 𝛿2 + 𝜔2) 

𝜆3 = 𝐴44 = −𝜇                         
𝜆4 = 𝐴66 = −𝜇                         

 

Since all parameters are positive, 𝜆1 < 0, 𝜆2 <
0 , 𝜆3 < 0, and 𝜆4 < 0. For the two eigenvalues, the 

value can be obtained by analyzing the following 

characteristic equations: 

𝜆2 − 𝑝1𝜆 + 𝑝2 = 0                      (8) 

where 

𝑝1 =
𝛽(𝜇+𝜀+𝜌)(1−𝜎)(1−𝜓)+𝛽𝜇(1−𝜀)

𝜌+𝜇
− ((𝜇 + 𝛾1 + 𝛿1 +

          𝜔1) + (𝜇 + 𝛾2 + 𝜔2) 

𝑝2 = (𝜇 + 𝛾1 + 𝛿1 + 𝜔1)(𝜇 + 𝛾2 + 𝜔2) −

          (
𝛽𝜇(1−𝜀)(𝜇+𝛾2+𝜔2+(1−𝜎)𝛿1)

𝜇+𝜌
   +

           
𝛽(𝜇𝜀+𝜌)(1−𝜎)(1−𝜓)(𝜇+𝛾1+𝛿1+𝜔1)

𝜇+𝜌
)  

The roots of equation (8) are the eigenvalues of the 

characteristic equations (7), namely 𝜆5 and 𝜆6. Based 

on the root properties of quadratic equations, the 

following equation system is obtained 





























666563

5552

45444241

3332

2522

15131211

0

000

0000

00

0000
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Figure 2 Population dynamics for 𝑅0 < 1. 
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𝜆5 + 𝜆6 = 𝑝1 

      𝜆5𝜆6 = 𝑝2 
 

Based on the equation (8) for 𝜆5 + 𝜆6 it will be 

shown that 𝜆5 < 0 or 𝜆6 < 0. As in [15], based on 

equations (4) 𝑅0 < 1 it is obtained: 

 
𝛽𝜇(1−𝜀)(𝜇+𝛾2+𝜔2+𝛿1(1−𝜎))

(𝜇+𝜌)(𝜇+𝛾1+𝛿1+𝜔1)(𝜇+𝛾2+𝜔2)
+

𝛽(1−𝜓)(1−𝜎)(𝜇𝜀+𝜌)

(𝜇+𝜌)(𝜇+𝛾2+𝜔2)
< 1    

                                          
𝛽(1−𝜓)(1−𝜎)(𝜇𝜀+𝜌)

(𝜇+𝜌)(𝜇+𝛾2+𝜔2)
< 1  

  
𝛽(1−𝜓)(1−𝜎)(𝜇𝜀+𝜌)

(𝜇+𝜌)
< (𝜇 + 𝛾2 + 𝜔2)         (9) 

and 

𝛽𝜇(1−𝜀)(𝜇+𝛾2+𝜔2)+𝛽𝜇𝛿1(1−𝜎)(1−𝜀)

(𝜇+𝜌)(𝜇+𝛾1+𝛿1+𝜔1)(𝜇+𝛾2+𝜔2)
< 1        

𝛽𝜇(1−𝜀)(𝜇+𝛾2+𝜔2)+𝛽𝜇𝛿1(1−𝜎)(1−𝜀)

𝜇+𝜌
< (𝜇 + 𝛾1 + 𝛿1 +

                                                               𝜔1)(𝜇 + 𝛾2 + 𝜔2)  
𝛽𝜇(1−𝜀)(𝜇+𝛾2+𝜔2)

𝜇+𝜌
< (𝜇 + 𝛾1 + 𝛿1 + 𝜔1)(𝜇 + 𝛾2 +

𝜔2)  

 
𝛽𝜇(1−𝜀)

𝜇+𝜌
< (𝜇 + 𝛾1 + 𝛿1 + 𝜔1)            (10) 

By summing equations (9) and (10) obtained 

𝛽(1−𝜓)(1−𝜎)(𝜇𝜀+𝜌)

(𝜇+𝜌)
+

𝛽𝜇(1−𝜀)

𝜇+𝜌
< (𝜇 + 𝛾2 + 𝜔2) + (𝜇 +

                                                      𝛾1 + 𝛿1 + 𝜔1)   

𝛽(1−𝜓)(1−𝜎)(𝜇𝜀+𝜌)

(𝜇+𝜌)
+

𝛽𝜇(1−𝜀)

𝜇+𝜌
− (𝜇 + 𝛾2 + 𝜔2) + (𝜇 +

𝛾1 + 𝛿1 + 𝜔1) < 0             (11) 

Based on the conditions in equation (11) 

𝜆5 + 𝜆6 < 0                   (12) 

 

𝛽𝜇(1−𝜀)(𝜇+𝛾2+𝜔2+𝛿1(1−𝜎))

(𝜇+𝜌)(𝜇+𝛾1+𝛿1+𝜔1)(𝜇+𝛾2+𝜔2)
+

𝛽(1−𝜓)(1−𝜎)(𝜇𝜀+𝜌)

(𝜇+𝜌)(𝜇+𝛾2+𝜔2)
< 1   

𝛽𝜇(1−𝜀)(𝜇+𝛾2+𝜔2+𝛿1(1−𝜎))+𝛽(1−𝜓)(1−𝜎)(𝜇𝜀+𝜌)

(𝜇+𝜌)(𝜇+𝛾1+𝛿1+𝜔1)(𝜇+𝛾2+𝜔2)
< 1  

𝛽𝜇(1−𝜀)(𝜇+𝛾2+𝜔2+𝛿1(1−𝜎))+𝛽(1−𝜓)(1−𝜎)(𝜇𝜀+𝜌)

(𝜇+𝜌)
< (𝜇 +

𝛾1 + 𝛿1 + 𝜔1)(𝜇 + 𝛾2 + 𝜔2)  

 

(𝜇 + 𝛾1 + 𝛿1 + 𝜔1)(𝜇 + 𝛾2 + 𝜔2) −
𝛽𝜇(1−𝜀)(𝜇+𝛾2+𝜔2+𝛿1(1−𝜎))+𝛽(1−𝜓)(1−𝜎)(𝜇𝜀+𝜌)

(𝜇+𝜌)
> 0   (13) 

 

Based on the equation (13), it is obtained 

 𝜆5𝜆6 > 0               (14) 

 

Since 𝑝1 < 0, the sum of the two eigenvalues is 

negative (𝜆5 + 𝜆6 < 0). For example 𝜆5 < 0. Further 

checking the stability of drug-addicts free equilibrium 

points note 𝜆6. Based on equations (14) if  𝜆5𝜆6 > 0 

then the drug user-free equilibrium point will be stable 

if 𝜆6 < 0, whereas if 𝜆6 > 0 then the drug user-free 

equilibrium point will not be stable. So the drug user-

free equilibrium point will be stable if 𝜆5 < 0 and 

𝜆6 < 0 and are met 𝑅0 < 1. □ 

 

3.4 Simulation 

In this section, a simulation was conducted to look 

at the population dynamics of the spread of drug 

addicts with educational effects and simulate with 

variations of several parameters at the education level 

to see the effectiveness of education in suppressing the 

rate of spread of drug addicts. This simulation use the 

initial value 𝑆 = 300, 𝑈 = 50, 𝑅 = 0, 𝑆𝑒 = 150,
𝑈𝑒 = 0, 𝑅𝑒 = 0 and the parameter values in Table 1. 

 
Figure 3. Population dynamics for 𝑅0 > 1. 
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Tabel 1. Parameter values for conditions 𝑅0 < 1 and 

𝑅0 > 1                   

Parameters 𝑅0 < 1 𝑅0 > 1 Source 

Λ 10 10 Assumption 

𝜀 0.40 0.40 Assumption 

𝜌 0.10 0.10 [20] 

𝜇 0.02 0.02 [20] 

𝛽 0.30 0.48 Assumption 

𝜎 0.10 0.07 Assumption 

𝜓 0.06 0.06 Assumption 

𝜃 0.08 0.08 Assumption 

𝛾1 0.03 0.03 [21] 

𝛾2 0.02 0.02 Assumption 

𝛿1 0.30 0.17 Assumption 

𝛿2 0.47 0.47 Assumption 

𝜔1 0.40 0.40 Assumption 

𝜔2 0.23 0.10 Assumption 

3.4.1 Population Dynamics for Conditions 

𝑅0 < 1 
Population dynamics in the 𝑅0 < 1 are shown in 

Figure 2 by using the parameter value in Table 1 with 

a base reproduction number value of 0.93. 

Figure 2 shows that each population is stable 

towards the point of equilibrium free of drug addicts. 

The susceptible population has decreased in 

population from its initial value to stable condition 

around the point of 𝑆 = 50.  

Meanwhile, the susceptible population in 

education experienced an increase in the number of 

populations from the initial value to reach stable 

conditions at the 𝑆𝑒 = 450. As for the population of 

drug addicts, the population that has stopped using 

drugs, the population of drug addicts who are 

educated, and the population that has stopped using 

drugs and in education each experienced an increase 

in the population from the initial value and then 

  

  

  
Figure 4 Simulation of the effect of reducing the distribution of drug addicts with educational effects. 
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decreased the population to stable at the point of 𝑈 =
𝑅 = 𝑈𝑒 = 𝑅𝑒 = 0. 

3.4.2 Population Dynamics for Conditions 

𝑅0 > 1 

Population dynamics in the 𝑅0 > 1 are shown in 

Figure 3 by using the parameter value in Table 1 with 

a base reproduction number value of 2.86. In Figure 3, 

it can be seen that the population is heading towards 

an endemic or stable equilibrium point around the 

endemic fixed point. The susceptible population of 

drug addicts and drug user populations decreased from 

the initial value to reach stable conditions at the time 

of 𝑆 = 37.95 or about 38 people and 𝑈 = 2.56 or 

about three people.   

The population that had stopped using drugs 

experienced an increase in the number of populations 

from the initial value then decreased in population 

until it reached a stable condition at the time of 𝑅 =
1.79 or about two people. The susceptible population 

of educated drug addicts, the population of drug 

addicts who have stopped using drugs and in education 

each fluctuated to stable at 𝑆𝑒 = 131.30 or about 131 

people, 𝑈𝑒 = 40.04 or about 40 people, and 𝑅𝑒 =
242.46 or about 242 people. 

3.4.3 Simulation of the effect of parameters of 

reducing the spread of drug addicts with 

educational effects (𝜎) 

In this section, the simulation is simulated using 

the parameter values in Table 1 with several variations 

of the parameter 𝜎. The simulation aims to look at the 

influence of 𝜎 parameters on the value 𝑅0 and their 

influence on the population dynamics of the spread of 

 

 

 
Figure 5 The effect of the effectiveness of education in preventing the rise of new drug addicts 
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drug addicts. Any modified parameter σ can be viewed 

in Table 2. 

Table 2. Simulation results of 𝜎 parameters against 

 𝑅0. 

Simulation 𝜎 𝑅0 

1 0.10 0.93 < 1 

2 0.20 0.83 < 1 

3 0.30 0.73 < 1 

4 0.40 0.63 < 1 

 

Based on Table 2, it can be seen that increasing the 

value of the 𝜎 parameter causes the value of 𝑅0 to 

decrease, thus reducing the rate of spread of drug 

addicts, i.e., increasing the reduction of the spread of 

drug addicts with educational effects.  The simulation 

of the 𝜎 parameters on the dynamics of the spread of 

drug addicts can be seen in Figure 4.  

Figure 4 shows that changes in the reduction rate 

of drug addicts with educational effects further affect 

the number of disseminated populations of drug 

addicts educated compared to the population of spread 

drug addicts without education. The greater the 

reduction in the spread of drug addicts with 

educational effects causes the number of susceptible 

populations to be reduced while the rest of the 

population decreases. 

 

 

  

 
 

Figure 6 Simulation of the effect of the progress rate of the individual class of drug addicts who are educated to 

stop using drugs. 
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3.4.4 Simulation of the effect of the effective 

parameters of educational effects in preventing 

the emergence of new drug addicts (𝜓) 

In this section, the simulation is simulated using 

the parameter values in Table 1 with several variations 

of the parameter 𝜓. The simulation aims to look at the 

influence of 𝜓 parameters on the value 𝑅0 and their 

influence on the population dynamics of the spread of 

drug addicts. Any parameter values that ψ vary can be 

seen in Table 3. 

 

Table 3. The results of the simulation of 

𝜓 parameters  against 𝑅0. 
Simulation 𝜓 𝑅0 

1 0.06 0.93 < 1 

2 0.16 0.84 < 1 

3 0.26 0.75 < 1 

4 0.36 0.66 < 1 

 

Based on Table 3, it can be seen that increasing the 

value of the 𝜓 parameter causes the value of 𝑅0 to 

decrease so that efforts to suppress the rate of drug 

spread, i.e., increase educational effects in preventing 

the emergence of new drug addicts. The simulation of 

the 𝜓 parameters on the dynamics of the spread of drug 

addicts can be seen in Figure 5. 

Figure 5 shows that changes in the value of 𝜓 

parameters affect the number of disseminated 

populations of educated drug addicts compared to 

disseminated drug addicts without education. The 

greater the effectiveness of educational effects in 

preventing the emergence of new drug addicts causes 

the number of susceptible populations to be reduced 

while other populations are reduced, and there is no 

spread of drug addicts in the population. 

 

3.4.5 Simulation of the effect of individual 

progression 𝑈𝑒 to stop using drugs (𝜔2) 

In this section, the simulation is performed using 

the parameter values in Table 1 with some variation in 

the value of the 𝜔2 parameter. The simulation aims to 

look at the effect of the 𝜔2 the parameter on the value 

of 𝑅0 and its effect on the population dynamics of the 

spread of drug addicts. Any values of the 𝜔2 the varied 

parameter can be seen in Table 4. 

Based on Table 4, it can be seen that increasing the 

value of the 𝜔2 parameter causes the value of 𝑅0 to 

decrease, thus attempting to suppress the rate of drug 

spread. Increase the progression rate of class 𝑈𝑒 to stop 

using drugs.  

 

 Table 4.  𝜔2 parameter simulation results against 𝑅0. 

Simulation 𝜎 𝑅0 

1 0.10 0.93 < 1 

2 0.20 0.83< 1 

3 0.30 0.73 < 1 

4 0.40 0.63 < 1 

 

The results of the simulation of the influence of the 𝜔2 

the parameter on the dynamics of the spread of drug 

addicts can be seen in Figure 6.  

  Figure 6 shows that the change in the value of the 

progression rate parameters of 𝑈𝑒 to stop using drugs 

more affects the number of populations of 

disseminated drug addicts who are educated than the 

population of disseminated drug addicts without 

education. The greater the rate value reducing the 

spread of drug addicts with educational effects leads 

to a reduced number of susceptible populations and 

populations that have stopped using drugs increasing 

while other populations are decreasing. So, at no 

particular time is the spread of drug addicts in the 

population. 

4.  CONCLUSION 
Analysis of the dynamic model of the spread of 

drug addicts with educational effects has two 

equilibrium points: the free equilibrium point of drug 

addicts and the endemic equilibrium point. Drug 

addicts' free equilibrium points are stable if 𝑅0 < 1 

where the number of drug addicts decreases and in a 

certain period becomes non-existed, whereas the 

endemic equilibrium point is stable if 𝑅0 > 1 where 

there is a spread of drug addicts. Based on numerical 

simulations with variations in several parameter 

values at the educational level shows that increasing 

the rate of education can suppress the rate of spread of 

drug addicts so that the slow spread of drug addicts is 

reduced and at any given time will disappear from the 

population. 
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