Kode/Nama Rumpun Ilmu: 234 / Pengolahan Hasil Perikanan

LAPORAN AKHIR PENELITIAN PASCADOKTOR

PRODUKSI ASAM GLUTAMAT DARI IKAN KAYU CAKALANG HASIL SOLID STATE FERMENTATION (SSF) OLEH Aspergillus oryzae

Tahun Ke 1 dari 2 Tahun

Dr.RIENY SULISTIJOWATI S. S.Pi,M.Si NIDN 0009107103 (Pengusul)

Prof. Dr. Ir. JUNIANTO, MP. NIDN 0017086709 (Pengarah

UNIVERSITAS NEGERI GORONTALO
OKTOBER 2017

HALAMAN PENGESAHAN

HALAMAN PENGESAHAN

Judul : Produksi Asam Glutamat Dari Ikan Kayu Cakalang Hasil Solid State Fermentation (SSF) Oleh Aspergillus oryzae

Peneliti/Pelaksana

Nama Lengkap : Dr RIENY SULISTIJOWATI S, S.Pi, M.Si

Perguruan Tinggi : Universitas Negeri Gorontalo

NIDN : 0009107103 Jabatan Fungsional : Lektor Kepala

Program Studi : Teknologi Hasil Perikanan

Nomor HP : 08114344103

Alamat surel (e-mail) : rinysulistijowati@gmail.com

Anggota (1)

Nama Lengkap : Dr. Ir JUNIANTO M.P

NIDN : 0017086709

Perguruan Tinggi : Universitas Padjadjaran

Institusi Mitra (jika ada)

Nama Institusi Mitra
Alamat
Penanggung Jawab

Tahun Pelaksanaan : Tahun ke 1 dari rencana 2 tahun

Biaya Tahun Berjalan : Rp 169,500,000 Biaya Keseluruhan : Rp 419,500,000

> Mengetahui, __ Dekan

(Dr. Abd. Hafidz Ohi, S.Pi,M.Si)

Kota Gorontalo, 18 - 10 - 2017

Ketua,

(Dr RIENY SULISTIJOWATI S, S.Pi, M.Si)

NIP/NIK 197110092005012001

Menyetujui, Ketua LPPM

(Prof. Dr. Fenty U. Puluhulawa, S.H,M.Hum) NIP/NIK 196804091993032001

RINGKASAN

Telah dilakukan penelitian untuk mengetahui aktivitas enzim protease A.oryzae dan profile asam asam amino hasil solid state fermentation *A.oryzae* pada ikan kayu cakalang. Metode aktivitas enzim secara kualitatif dan kuantitatif. Kualitatif dengan cara zona bening dan kuantitatif secara LC MS. Hasil penelitian menunjukkan *A.oryzae* memiliki aktivitas enzim dan berdasarkan LCMS A.oryzae mampu mendegradasi protein menjadi tirosin pada hari ke 2 dan ke 4. Profil asama amino yang terdeteksi yaitu asam glutamat, leucine dan lycine. Luaran yang telah dicapai antara lain seminar internasional, jurnal internasional, visiting scholars Murdoc dan Curtin University Perth Australia, dalam tamu ilmiah, draf buku ajar, draf Teknologi Tepat Guna pengering mekanik.

Kata kunci:Solid State Fermentation, A.oryzae, Asam glutamat, cakalang

PRAKATA

Puji syukur penulis panjatkan kehadirat Allah SWT atas rahmatnya laporan akhir penelitianini dapat dirampungkan. Terimakasih disampaikan kepada kemenristik dikti melalui LPPM UNG telah mensuport dana penelitian Hibah Pasca Doktor tahun anggaran 2017.

Besar harapan agar penelitian ini dapat dilanjutkan pada tahun kedua (2018).

Peneliti

DAFTAR ISI

	_	- 1	_	- 4	_
	വ	nt	Δ1	ПΤ	·C
u	w			ш	

HALAMAN PENGESAHAN	i
RINGKASAN	ii
PRAKATA	iii
DAFTAR ISI	iv
DAFTAR TABEL	vi
DAFTAR GAMBAR	vii
DAFTAR LAMPIRAN	viii
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2 Tujuan Khusus	2
1.3 Urgensi Penelitian	2
BAB 2 TINJAUAN PUSTAKA	5
1.1 Ikan Kayu	5
2.4 Asam Glutamat	16
BAB 3 TUJUAN DAN MANFAAT PENELITIAN	19
BAB 4 METODE PENELITIAN	20
BAB 5 HASIL DAN LUARAN YANG DICAPAI	22
5.1 Kurva pertumbuhan dan perubahan pH	22
Asam asam amino pada fermentasi ikan kayu cakalang	33

5.2 Luaran yang dicapai	
BAB 6 RENCANA TAHAPAN BERIKUTNYA	34
BAB 7 KESIMPULAN DAN SARAN	35
DAFTAR PUSTAKA	36
LAMPIRAN	39

DAFTAR TABEL

1. Rencana Target Capaian Tahunan	
2. Rendemen Ikan Kayu (<i>arabushi</i>)6	
3. Syarat Mutu dan Keamanan Pangan Ikan Kayu	
4. Kandungan Asam Amino pada Daging Ikan17	
5. Data Jumlah Sel (CFU/mL) dalam Pembuatan Kurva Pertumbuhan Aspergillus oryzae InaF43	,
6 . Data Aktivitas Proteolitik A. oryzae24	4

DAFTAR GAMBAR

1. Diagram Alir Pembuatan Ikan Kayu	6
2. Kurva Pertumbuhan <i>A. oryzae</i>	23
3. Grafik perubahan pH kultur <i>A.oryzae</i>	23
4. Zona aktivitas enzim protease <i>A.oryzae</i>	24
5. Berat molekul Tirosin Hasil Degradasi Protease A.oryzae 2 hari	26
6. Berat molekul Tirosin Hasil Degradasi Protease A.oryzae 4 hari	27
7. Profil asam asam amino solid state fermentation ikan kayu cakalang	34

DAFTAR LAMPIRAN

1. Biodada Tim Pelaksana Penelitian	39
2. Sertifikat seminar internasional	49
3. Manuskrip artikel ilmiah	50
4.Teknologi Tepat Guna	51
5. Invited Speaker	52
6.Visiting Lecture	53
7. Proses fermentasi ikan kayu	62

BAB 1

PENDAHULUAN

1.1 Latar Belakang Masalah

Ikan kayu merupakan salah satu produk ikan asap sebagai bahan baku pembuatan penyedap rasa alami masih ditemui kelemahan yaitu kandungan fenol yang tinggi yaitu 47.5% (Sulistijowati, 2015). Sementara kandungan fenol untuk produk asap yaitu 0.5%. Kandungan fenol yang tinggi bersifat karsinogenik yang dapat menyebabkan penyakit kanker (Girard, 1992 dalam Setiawan, 1997). Pengasapan cair merupakan teknologi pengasapan modern yang dapat mengurangi kadar fenol, pada konsentrasi larutan asap cair 3% dan lama perendaman 30 menit pada ikan cakalang pasca perebusan dapat menurunkan kadar fenol ikan kayu hingga 0.4% (Sulistijowati, 2015).

Fermentasi ikan kayu menjadi asam glutamat sangat dipengaruhi oleh beberapa faktor antara lain kondisi ikan kayu, medium pertumbuhan *Aspergillus oryzae*, kinetika pertumbuhan *A. Oryzae* pada substrat ikan kayu serta kondisi fermentasi seperti lama dan konsentrasi substrat. Kondisi ikan kayu sebagai substrat *A.oryzae* berdasarkan hasil penelitian Sulistijowati (2012), bahwa tekstur ikan kayu yang keras menghasilkan asam glutamat sedikit, hal ini disebabkan *A.oryzae* membutuhkan waktu yang lama untuk melakukan pemecahan protein menjadi asam-asam amino. Sehingga perlu dilakukan hidrolisis menggunakan asam, basa atau enzim pada ikan kayu sebelum difermentasi.

A.oryzae sebagai agen fermentasi memerlukan medium untuk pertumbuhannya untuk menghasilkan metabolit protease baik medium alami, sintesis atau semi sintesis. Bagi industri, medium sintesis walaupun baik untuk pertumbuhannya namun membutuhkan biaya yang tinggi, sehingga perlu membuat medium alami sebagai alternatif solusinya. Medium tersebut dapat dibuat dengan memperhatikan sumber karbon dan sumber nitrogen sebagai nutrient A.oryzae selama pertumbuhan dan produksi protease. Sumber karbohidrat seperti glukosa, laktosa, maltosa, sukrosa dan gliserol. Sumber nitrogen seperti pepton, tripton, dan yeast extract.

Selama fermentasi pada ikan kayu kinetika pertumbuhan *A.oryzae* penting diamati, mengingat pada kinetika tersebut akan diketahui jumlah inokulum dan konsentrasi substrat yang tepat untuk menghasil asam glutamat. Kondisi fermentasi optimum seperti frekuensi inokulasi, lama fermentasi dan konsentrasi substrat untuk menghasilkan asam glutamat menjadi kunci proses fermentasi, hal ini dapat diadopsi sebagai rujukan untuk peningkatan skala produksi bagi usaha penyedap rasa dari ikan kayu.

Sebagai tindak lanjut hasil penelitian skala laboratorium, peningkatan skala penting dilanjutkan melalui kultur *A.oryzae* pada fermentor yang dirancang berdasarkan kondisi optimum sebagai stok starter fermentasi ikan kayu. Kondisi lingkungan fermentasi ikan kayu pada tahap peningkatan skala perlu dipertimbangkan kebutuhan sarana prasarana dan biaya operasional sehingga perhitungan bagi penerapan produksi asam glutamat dapat tercapai.

Berdasarkan latar belakang tersebut, maka perlu dilakukan penelitian "Produksi asam glutamat ikan kayu cakalang hasil solid state fermentation oleh *Aspergillus oryzae*". Melalui penelitian ini diharapkan Indonesia dapat memroduksi asam glutamat baik skala kecil maupun menengah.

1.2 Tujuan Khusus

Tujuan penelitian yang hendak dicapai sebagai berikut:

- 1. Optimasi proses *Solid State Fermentation* (SSF) pada ikan kayu cakalang dengan menggunakan *Aspergillus oryzae*.
- 2. Peningkatan produksi (*Scale-up*) asam glutamat hasil *Solid State Fermentation* (SSF) dari ikan kayu cakalang oleh *A.oryzae*

1.3 Urgensi Penelitian

Hasil penelitian ini diharapkan memberikan kontribusi sebagai berikut:

- a. Menjadi masukan kepada industri ikan kayu dalam memroduksi asam glutamat sebagai penyedap rasa alami melalui proses fermentasi.
- b. Sebagai masukan bagi pemerintah untuk mengembangkan produk fermentasi penyedap rasa berkualitas dari ikan kayu secara mandiri sebagai salah satu produk unggulan sektor perikanan dalam menghadapi era Mayarakat Ekonomi Asean (MEA).

c. Menjadi bahan acuan bagi kajian ataupun penelitian sejenis di masa yang akan datang untuk pengembangan ilmu pengetahuan di bidang industri berbasis pengolahan hasil perikanan.

1.4 Rencana Capaian Tahunan

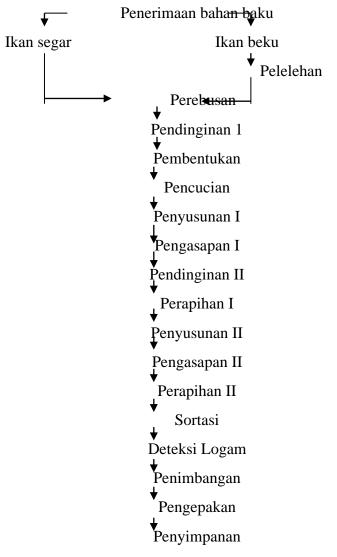
Berdasarkan luaran yang ditargetkan, rencana capaian selama penelitian dua tahun seperti pada Tabel 1 sebagai berikut:

Tabel 1. Rencana Target Capaian Tahunan

No	Jenis Luaran		Indikator Capaian	
			TS ¹⁾	TS ²⁾
1	Publikasi ilmiah	Internasional	Accepted	Accepted
		Nasional Terakreditas	Tidak ada	Tidak ada
		Nasional Tidak Terakreditasi	Tidak ada	Tidak ada
2	Pemakalah dalam	Internasional	Sudah	Sudah dilaksanakan
	temu ilmiah	Nasional	dilaksanakan	Tidak ada
		Lokal	Tidak ada	Tidak ada
3	Invited Speaker dalam tamu ilmiah	Internasional	Tidak ada	Tidak ada
daiam tamu mman	Nasional	Tidak ada	Tidak ada	
		Lokal	Ada	Ada
4		Internasional	Ada	Terdaftar
5.	Visiting Lecturer	Paten	Tidak ada	Tidak ada
	Hak Kekayaan Intelektual	Paten sederhana	Tidak ada	Terdaftar

Hak Cipta	Draf	Tidak ada
Merek dagang	Tidak ada	Tidak ada
Desain Produk Industri	Tidak ada	Tidak ada
Indikasi Geografis	Tidak ada	Tidak ada
Perlindungan Varietas Tanaman	Tidak ada	Tidak ada
Perlindungan Topografi Sirkuit Terpadu		
Teknologi Tepat Guna	Draf	
Model/Prototip/Desain/Karya	Tidak ada	Ada
seni/Rekayasa sosial	Tidak ada	Ada
Buku Ajar (ISBN)	Tidak ada	
Tingkat Kesiapan Teknologi	Draf	Sudah terbit
	Skala 1	Skala 2

BAB 2


TINJAUAN PUSTAKA

1.1 Ikan Kayu

Ikan kayu atau *arabushi* adalah salah satu komoditi ekspor perikanan Indonesia, khususnya ke Jepang. *Katsuobushi* (ikan cakalang) dan *sodabushi* (ikan tongkol) merupakan produk ikan asap kering yang unik dalam pembuatannya dan telah lama dikenal oleh bangsa Jepang serta digunakan sebagai bumbu penyedap masakan (Wada *et al*, 2006). Proses pembuatan *katsuobushi* melalui beberapa tahapan yaitu perebusan, pengasapan dan penjamuran (Kiminishi *et al*, 1999). Karakteristik *sodabushi* adalah aromanya tajam dan rasanya lebih kuat dibandingkan *katsuobushi* (Kihara *and* Kuramatsu, 2009). Selanjutnya dijelaskan produksi *sodabushi* meliputi tahapan penting seperti produksi *katsuobushi*. *Pertama* ikan segar dibersihkan dan ditempatkan dalam tray untuk direbus, *kedua* ikan direbus, *ketiga* tulang dan duri dikeluarkan sambil direndam dalam air mentah, *keempat* proses pengasapan sampai kering dan *kelima* proses penjamuran.

Katsuobushi / ikan kayu merupakan makanan awetan berbahan baku ikan cakalang / ikan bonito (Katsuwonus pelamis). Katsuobushi dan sodabushi diserut menjadi seperti serutan kayu untuk dimasukkan dalam kaldu yang merupakan bahan dasar masakan Jepang, ditaburkan di atas makanan sebagai penyedap rasa atau dimakan begitu saja sebagai teman makan nasi. Katsuobushi yang sudah diserut tipis, berwarna coklat muda hingga merah jambu sedikit bening umumnya dijual dalam kemasan plastik. Katsuobushi sebagai penyedap makanan biasanya ditaburkan di atas tahu dingin (hiyayako), okonomiyaki dan takoyaki. Katsuobushi yang sudah diserut sering disebut kezuribushi dan di Indonesia dikenal sebagai ikan kayu (Kiminishi et al, 1999).

Pembuatan *katsuobushi* dan *sodabushi* ini memanfaatkan sejenis kapang-kapangan diantaranya yakni *Aspergillus tamarii, A. oryzae, A. tonophilus* dan *A. chevalieri. A. tonophilus* dan *A. chevalieri* merupakan dua jenis kapang yang termasuk *A. glaucus* grup yang merupakan kapang yang bersifat xerofilik dan paling banyak digunakan untuk pembuatan *katsuobushi* (Yamauchi *and* Doi, 1997). Beberapa studi pada komponen *flavor katsuobushi* diketahui berasal dari *flavor* pengasapan dan *flavor* asap yang tajam, dan waktu yang cukup selama pengapangan (Doi *et al*, 1989). Diagram alir proses ikan kayu dapat dilihat pada Gambar 1.

Gambar 1. Diagram Alir Pembuatan Ikan Kayu

Sumber: SNI 691.3:2009 dalam Sulistijowati, 2010.

Rendemen ikan kayu tampak pada Tabel 2.

Tabel 2. Rendemen Ikan Kayu (arabushi)

Berat/ekor Cakalang	Rendemen
Lebih dari 3,35 kg	19,2 %
2,63 - 3,00 kg	18,5%
1,88 - 2,25 kg	17,2%
1,50 - 2,00 kg	16,2%

Persyaratan mutu ikan kayu telihat pada Tabel 3.

Tabel 3. Syarat Mutu dan Keamanan Pangan Ikan Kayu

Jenis Uji	Satuan	Persyaratan
a. Sensori	Angka (1-9)	Minimal 7
b. Cemaran mikro*		
ALT (angka lempeng total)	Koloni/g	Maksimum 1,0x10 ³
Escherichia coli	APM/g	Maksimal < 3
Salmonella	per 25 g	Negatif
Vibrio cholerae	Per 25 g	Negatif
c. Kimia*	% fraksi masa	
Kadar air	mg/kg	Maksimal 20
Kadmium (Cd)	mg/kg	Maksimal 0,1
Merkuri (Hg)	mg/kg	Maksimal 1,0
Timbal (Pb)	mg/kg	Maksimal 0,4
*Jika diperlukan		

SNI 2691.1:2009

Sumber: Sulistijowati, 2010

2.2 Hirolisis Protein

Hidrolisis protein merupakan proses pemutusan ikatan peptida dari protein menjadi komponen-komponen yang lebih kecil seperti pepton, peptida dan asam amino. Hidrolisis ikatan peptida akan menyebabkan beberapa perubahan pada protein, yaitu meningkatkan kelarutan karena bertambahnya kandungan NH3+ dan COO- dan berkurangnya berat molekul protein atau polipeptida, serta rusaknya struktur globular protein. Waktu yang digunakan untuk hidrolisis pada ikatan peptida bergantung pada asam amino. Biasanya, ikatan peptida antara asam amino alifatik membutuhkan waktu yang sangat lama untuk diuraikan. Hidrolisis yang memakan waktu 24 jam pada suhu 8

110°C kurang mampu memecahkan ikatan peptida. Sedangkan hidrolisis yang memakan waktu 2-3 hari mampu menguraikan dengan sempurna isoleusin dan ikatan valin. Dipeptida menjadi 2 asam amino. Ada empat cara untuk menghidrolisis protein:

1.Hidrolisis Asam

Hidrolisis dengan menggunakan asam kuat anorganik, seperti HCl atau H2SO4 pekat (4-8 normal), lalu dipanaskan pada suhu mendidih atau dapat dilakukan dengan tekanan di atas satu atmosfer, selama beberapa jam. Akibat samping yang terjadi dengan hidrolisis asam ialah rusaknya beberapa asam amino (triptofan, sebagian serin dan threonin). Cara lama: Protein dipanaskan dengan 6 N HCL selama 24 jam dengan suhu 110C Cara cepat: Sampel protein diletakkan di tabung pada wadah tertutup yang berisi 6 N HCL dgn ruang kosong yang diisi oleh nitrogen. Wadah tersebut lalu diletakkan di oven selama 5-30 menit dengan suhu lebih dari 200C. Asam HCl akan terevaporasi dan dihidrolisasi oleh nitrogen.

2. Hidrolisis Basa

Hidrolisis protein menggunakan basa merupakan proses pemecahan polipeptida dengan menggunakan basa / alkali kuat, seperti NaOH dan KOH pada suhu tinggi, selama beberapa jam, dengan tekanan di atas satu atmosfer. Namun serin dan threonin rusak dengan basa.

3. Hidrolisis Enzimatik

Hidrolisis enzimatik dilakukan dengan menggunakan enzim. Dapat digunakan satu jenis enzim saja, atau beberapa jenis enzim yang berbeda. Penambahan enzim perlu dilakukan pengaturan pada kondisi pH dan suhu optimum. Dibandingkan dengan hidrolisis secara kimia (menggunakan asam atau basa), hidrolisis enzimatik lebih menguntungkan karena tidak mengakibatkan kerusakan asam amino dan asam-asam amino bebas serta peptida dengan rantai pendek yang dihasilkan lebih bervariasi, reaksi dapat dipercepat kira-kira 10 sampai 20 kali,tingkat kehilangan asam amino esensial lebih rendah, biaya produksi relatif lebih murah dan menghasilkan komposisi asam amino tertentu terutama peptida rantai pendek (dipeptida dan tripeptida) yang mudah diabsorbsi oleh tubuh.

Salah satu cara lain untuk menghidrolisis kandungan protein dalam suatu bahan dapat menggunakan enzim proteolitik baik yang berasal dari bahan itu sendiri atau dengan

penambahan enzim dari luar bahan. Enzim proteolitik yang ditambahkan dapat berasal dari hewan maupun dari tumbuhan. Menurut Reed (1975) enzim proteolitik atau enzim protease adalah enzim yang dapat memecah molekul-molekul protein dengan menghidrolisis ikatan peptida menjadi senyawa-senyawa yang lebih sederhana seperti proteosa, pepton, polipeptida, dipeptida dan sejumlah asam-asam amino, (Nissen, Steven 1992 and Sikorski, Z., E. 2000).

2.2 Fermentasi Media Padat

Fermentasi substrat padat adalah fermentasi yang menggunakan medium tidak larut, tetapi cukup mengandung air untuk keperluan mikroorganisme (Sastramihardja, 1989). Menurut Murthy (1993) seperti yang dikutip oleh Borzani, et al (1999), di negara-negara barat fermentasi substrat padat selama kurang lebih 40 tahun kurang diperhatikan, namun situasi tersebut berubah setelah diketahui fermentasi substrat padat berpotensi tinggi secara sosial ekonomi dan menguntungkan. Fermentasi substrat padat telah lama digunakan dalam fermentasi pangan tradisional seperti dalam pembuatan tempe di Indonesia, koji di Jepang, dan keju biru di Perancis (Raimbault, 1998). Saat ini, aplikasi fermentasi substrat padat telah berkembang, seperti untuk produksi antibiotik, alkaloid, hormon pertumbuhan, biofuel, enzim, asam organik, senyawa aroma, juga untuk bioremediasi senyawa berbahaya, detoksifikasi limbah agroindustri, biopestisida, dan pengkayaan nutrisi (Perez-Guerra, 2003).

Bakteri, khamir, dan kapang dapat tumbuh pada substrat padat sehingga dapat digunakan dalam proses fermentasi substrat padat. Kapang merupakan jenis mikroorganisme yang paling dapat beradaptasi pada proses fermentasi substrat padat dan paling banyak digunakan dalam berbagai penelitian, karena sifat fisiologi, biokimia, dan enzim-enzim yang dimilikinya (Raimbault, 1998). Hifa dari kapang yang tumbuh dapat memberi kekuatan untuk menembus substrat yang padat, juga memberikan keuntungan yang besar dibandingkan mikroba uniseluler, karena membentuk kolonisasi pada substrat (Perez-Guerra, 2003). Selain itu, kapang cukup toleran terhadap aktivitas air (Aw) yang rendah dan terhadap kondisi tekanan osmotik yang tinggi yang membuat kapang lebih efisien dan kompetitif untuk biokonversi substrat padat (Raimbault, 1998).

Penggunaan fermentasi substrat padat memberikan beberapa keuntungan, di antaranya adalah substrat hanya membutuhkan penambahan sedikit air, kadar air yang rendah mengurangi masalah kontaminasi, aerasi dipermudah dengan adanya rongga-rongga antara partikel padatan,

volume bejana fermentasi dapat lebih kecil, biaya perlengkapan lebih murah, dan produktivitas tinggi (Sastramihardja, 1989; Raimbault, 1998).

Fermentasi substrat padat dipengaruhi faktor lingkungan yang meliputi aktivitas air (Aw), pH, konsentrasi substrat/nutrisi, tingkat oksigen (aerasi), suhu dan konsentrasi inokulum (Judoamidjodjo, 1990). Faktor-faktor tersebut dijelaskan sebagai berikut:

a. Aktivitas air (Aw) dan kelembaban substrat

Kebutuhan mikroorganisme terhadap air didefinisikan dalam bentuk aktivitas air (Aw). Aktivitas air (Aw) berkaitan dengan ketersedian air untuk reaksi pada substrat padat (Raimbault, 1998). Aw merupakan nilai perbandingan antara tekanan uap air larutan dengan tekanan uap air, atau 1/100 dari kelembaban relatif (Suriawiria, 1995). Jenis mikroorganisme yang berbeda membutuhkan jumlah air yang berbeda pula untuk pertumbuhannya. Bakteri umumnya tumbuh dan berkembang biak hanya pada media dengan nilai Aw tinggi (0.91), khamir membutuhkan nilai Aw lebih rendah (0.87-0.91), dan kapang nilai Aw-nya lebih rendah lagi, yaitu 0.80-0.87 (Buckle dkk, 1987).

Menurut Krishna (1996) *seperti yang dikutip* oleh Perez-Guerra (2003), Aw merupakan faktor penting dalam proses fermentasi substrat padat, karena berpengaruh terhadap pertumbuhan, biosintesis, dan sekresi berbagai metabolit. Raimbault (1998) menyatakan kemampuan mempertahankan nilai Aw yang sesuai pada saat pertumbuhan optimum menjadikan biomasa jamur dapat berproduksi tanpa sporulasi. Perez-Guerra (2003) menyatakan, secara umum kandungan air substrat pada fermentasi tipe ini antara 30 dan 75 persen, jika lebih rendah dapat menginduksi sporulasi mikroorganisme, sebaliknya jika lebih tinggi dapat mengurangi porositas dan meningkatkan resiko terjadinya kontaminasi dari bakteri. Menurut Raimbault (1998), tingkat kelembaban untuk proses fermentasi substrat padat adalah bervariasi antara 30 – 85 persen, namun demikian, nilai kelembaban optimum yang dibutuhkan untuk fermentasi substrat padat tergantung kepada organismenya dan substrat yang digunakan. Sebagai contoh kelembaban optimum untuk produksi protease oleh *Rhizopus oligosporus* melalui fermentasi substrat padat adalah 47 persen (Aw = 0.47) (Ikasari *and* Mitchell, 1994). Penelitian lain menunjukkan, selama fermentasi tempeh oleh *R. oligosporus* aktivitas seluruh enzim yang dihasilkan oleh kapang ini seperti enzim polisakaridase sangat dipengaruhi oleh Aw (Sarrette *et*

al, 1992). Contoh lain adalah untuk aktivitas α-amylase tertinggi pada fermentasi koji oleh *Aspergillus oryzae* membutuhkan kelembaban sekitar 35 persen (Jung-yin, 2005).

Selama fermentasi pengontrolan terhadap kelembaban perlu dilakukan. Jika kelembaban pada medium fermentasi menurun secara signifikan, perlu ditambahkan air secara periodik. Volume air yang ditambahkan dalam jumlah kecil, terutama jika aktivitas mikroba selama fermentasi menghasilkan sejumlah air (Borjani, *et al.* 1999).

b.Derajat keasaman (pH)

Derajat keasaman (pH) kultur dapat berubah sebagai akibat adanya respon terhadap aktivitas metabolit. Mikroorganisme yang menghasilkan asam organik seperti asam sitrat dan asam laktat dapat menurunkan pH, sebaliknya mikroba yang mengasimilasi asam organik yang terdapat dalam media dapat menaikkan pH. Nilai pH selama fermentasi pada jenis mikroorganisme *Aspergilus* sp., *Penicillium* sp., dan *Rhizopus* sp. dapat menurun cepat, yaitu di bawah 3. Pada jenis kapang yang lain seperti *Trichoderma*, *Sporotrichum*, dan *Pleurotus* sp. nilai pH lebih stabil, yaitu pH 4 dan pH 5 (Raimbault, 1998).

Perez-Guerra (2003) menyatakan untuk mengukur dan mengontrol pH pada fermentasi substrat padat sangat sulit. Jika pengontrolan pH perlu dilakukan, dapat ditambahkan dengan larutan *buffer*, seperti garam ammonium (Raimbault, 1998).

c. Konsentrasi substrat dan nutrisi

Semua organisme membutuhkan nutrien dasar sebagai sumber karbon, nitrogen, serta energi untuk pertumbuhan. Unsur nutrien dasar tersebut menyediakan energi untuk memenuhi kebutuhan tersebut.

d.Aerasi

Aerasi memegang peranan penting dalam fermentasi substrat padat. Aerasi berperan dalam menjaga kondisi tetap aerob, perpindahan gas, mengatur suhu substrat, dan mengatur kadar kelembaban sehingga terjadi penyaluran panas antara padatan yang mengalami fermentasi dengan lingkungan (Sastramihardja, 1989; Raimbault, 1998).

e.Suhu

Meningkatnya suhu dalam fermentasi substrat padat merupakan konsekuensi adanya

aktifitas metabolisme, jika pemindahan panas tidak berjalan lancar. Hal ini secara langsung dapat

memengaruhi pertumbuhan, pembentukan spora, dan pembentukan produk. Tingkat suhu yang

dicapai tergantung pada jenis mikroorganisme, porositas, diameter partikel, dan kedalaman

substrat (Perez-Guerra, 2003).

f. Dosis inokulum

Faktor lain yang harus diperhatikan dalam fermentasi substrat padat adalah dosis

inokulum. Densitas yang terlalu rendah dapat menyebabkan kurangnya diperoleh biomasa dan

memberi peluang bagi tumbuhnya organisme yang tidak dikendaki. Densitas terlalu tinggi akan

menghasilkan biomasa yang terlalu banyak dan mengakibatkan kurangnya nutrisi yang

diperlukan untuk pembentukan produk (Sastramihardja, 1989).

2.3 Aspergillus oryzae

Aspergillus oryzae merupakan jenis jamur yang seringkali digunakan dalam proses

fermentasi pangan. Spesies ini pertama kali diisolasi oleh Ahlburg pada tahun 1876 dengan nama

Eurotium oryzae yang kemudian diganti menjadi Aspergillus oryzae oleh Cohn pada tahun 1884.

Aspergillus oryzae bersifat saprofit dan ditemukan hidup di mana-mana, memiliki miselium yang

bersekat dan berwarna terang dengan posisi sebagian terbenam ke dalam medium dan sebagian

lainnya keluar. Sel kaki berada di dalam medium, namun terkadang berada di luar dengan ukuran

lebih besar dari bagian lain dan berdinding tebal. Konidiofor tumbuh tegak lurus dari sel kaki.

Apeks atau ujung utama membesar dan membentuk vesikel yang ditumbuhi sterigma primer dan

sekunder. Kumpulan dari sterigma atau sterigmata akan menghasilkan konidia (Kavanagh,

2005).

Taksonomi Aspergillus oryzae dan Aspergillus tamarii menurut Alexopoulos dan Mims

Scientific adalah:

Kingdom: Fungi

Divisi : Ascomycetes

Sub divisi: Pezizomycotina

12

Classis: Eurotiomycetes

Ordo: Eurotiales

Familia: Trichocomaceae

Genus: Aspergillus

Species: Aspergillus oryzae; Aspergillus tamarii

Aspergillus oryzae merupakan jamur imperfekti yang hanya memiliki spora aseksual (konodia) dan hifa bersepta. Konidia yang dihasilkan berjumlah banyak, ringan, berukuran kecil serta resisten terhadap udara kering. Aspergillus oryzae dapat menggunakan berbagai komponen makanan dari yang sederhana maupun yang kompleks. Sejumlah molekul organik besar seperti karbohidrat dan priotein dapat dipecah-pecah menjadi molekul yang lebih sederhana sehingga mudah larut dan dicerna dengan menggunakan enzim (Han et al, 1999).

Kondisi pertumbuhan yang diperlukan oleh jamur terdiri suhu optimum, air, kebutuhan O2, pH optimum, serta nutrisi. Pada sebagian besar jamur genus Aspergillus, suhu optimum untuk pertumbuhan berkisar antara 30o-37oC dan pH optimum berkisar antara 4.5-5.5 (Kavanagh, 2005).

Menurut Han et al (1999) menyatakan bahwa Aspergillus oryzae dalam pertumbuhannya berhubungan langsung dengan zat makanan yang terkandung di dalam medium. Molekul sederhana seperti gula akan langsung diserap oleh hifa. Molekul lain yang lebih kompleks seperti pati, protein dan selulosa harus dipecah dahulu sebelum diserap ke dalam sel. Aspergillus oryzae menghasilkan beberapa enzim untuk memecah molekul-molekul komples tersebut seperti amilase, amiloglukosidase, lipase, xylanase dan protease.

Enzim pada mikroorganisme dibagi ke dalam dua kelompok yaitu Enzim intraseluler (endoenzim), merupakan enzim yang tetap berada di dalam sel. Enzim ektraseluler (eksoenzim), merupakan enzim yang dikeluarkan dari sel dan ditemukan dalam keadaan bebas pada media yang mengelilingi sel.

Aspergillus oryzae di dalam cawan petri membentuk koloni dengan konidiofor yang panjang yang berbaur dengan miselia aerial dengan konidian berwarna hijau pucat agak kekuningan dan bila tua menjadi coklat redup (Indrawati, dkk. 1999). Selama ini Aspergillus

13

oryzae telah banyak dimanfaatkan dalam kegiatan industri makanan dan minuman seperti dalam pembuatan kecap, koji, miso, dan sake. *Aspergillus oryzae* juga merupakan kapang yang potensial dalam menghasilkan berbagai jenis enzim seperti amylase, protease, β-galaktosidase, lipase, dan selulase. Alkalin yang aktif pada pH 6-11, semi alkalin, netral I dan II, proteinase asam I, II, dan III. Semua enzim ini bersifat endoenzim sehingga tidak dihasilkan asam amino bebas dari aktivitasnya.

Enzim yang dihasilkan oleh A. oryzae pada saat proses fermentasi adalah sebagai berikut:

1. Enzim Selulase

Selulase merupakan enzim yang dihasilkan oleh mikroorganisme yang dapat mendegradasi selulosa menjadi glukosa. Kerja enzim selulase telah lama diteliti karena banyaknya limbah tanaman berselulosa yang dapat digunakan sebagai sumber glukosa untuk industri kimia dan pangan (Kavanagh, 2005). Selulase dihasilkan dari kapang dan bakteri (Actinomycetes), namun demikian hanya kapang yang mampu menghasilkan selulase dengan aktivitas tinggi. Terdapat tiga jenis selulase yang dihasilkan kapang (Kavanagh, 2005), yaitu:

a. Endoglukosinase (1.4-β-D-glucan 4-glucanolhydrolase)

Endoglukosinase dapat menghidrolisis ikatan β -1.4 glikosida secara acak. Endoglukosinase tidak dapat memecah selobiose, dapat menghidrolisis selodekstrin dan senyawa modifikasi selulase seperti CMC (*Carboxymethyl Cellulose*) dan HEC (*Hydroxytehyl Cellulose*).

b. Selobiohidrolase (1.4-β-D-glucan cellobiohydrolase)

Selobiohidrolase dapat memecah selulosa, memisahkan unit-unit selobiose dari rantainya. Enzim ini tidak dapat memecahkan senyawa modifikasi selulase seperti CMC dan HEC.

c. B-glukosidase (β-D-glucosidase glucohydrolase)

B-glukosidase mampu menghidrolisis selobiose dan selooligosakarida menjadi glukosa. Enzim ini tidak dapat memecah selulase atau selodekstrin yang lebih tinggi.

2. Enzim Amilase

Enzim amilase merupakan enzim yang berfungsi memecah pati (glikogen). Enzim amilase dibedakan menjadi:

- a. Endoamilase, merupakan enzim yang memecah molekul pati secara acak dari bagian dalam, hanya pada ikatan α -1.4. Contoh α -amilase.
- b. Eksoamilase, merupakan enzim pemecah polimer patinya dari ikatan ujung non pereduksi. Contoh glukoamilase.

Enzim penghidrolisa karbohidrat distase (amilase) ada dua macam yaitu:

1. α-amilase

 α -amilase berfungsi untuk mengkatalisis pemecahan sebagian pati guna membentuk senyawa yang memiliki berat molekul lebih kecil (dekstrin). Enzim ini menghidrolisis ikatan α -1,4 glikosida pada amilosa, amilopektin serta glikogen. Hidolisis ini terjadi secara acak dari tengah atau bagian dalam suatu molekul pati. Namun demikian, sifat masing-masing enzim berbeda antara satu dengan yang lainnya tergantung dari sumber enzim tersebut.

Amilosa dihidrolisis oleh α -amilase terjadi dalam dua tahap. Pertama, amilosa didegradasi menjadi maltosa dan maltrotriosa yang terjadi secara cepat, diikuti oleh penurunan viskositas. Kemudian, proses degradasi berikutnya terjadi lebih lambat, yaitu pembentukan glukosa dan maltosa sebagai produk akhir, dimulai dari ujung pereduksi secara teratur. Pada molekul pektin, α -amilase bekerja menghasilkan glukosa dan oligosakarida.

2. β-amilase (menghirolisis pati menjadi maltosa)

A. oryzae menghasilkan enzim amiglukosidase yang berfungsi untuk memecah polisakarida menghasilkan glukosa. Pati yang terkandung dalam media merupakan polimer glukosa yang harus diuraikan terlebih dahulu menjadi molekul yang sederhana agar dapat diserap oleh sel fungi. Penguraian sempurna dari suatu polimer merupakan proses bertahap yang dilakukan oleh berbagai macam enzim. Hal ini yang menyebabkan bermacam-macam enzim dihasilkan oleh sel untuk menguraikan molekul pati, seperti amilase, maltase, dan glukoamilase. Pati dihidrolisis oleh enzim dalam reaksi berikut:

$$(C_6H_{10}O_5)_2n + (_{n-1}) H_2O \xrightarrow{amilase} n C_{12}H_{22}O_{11}$$
Pati Maltosa
 $C_{12}H_{22}O_{11} + H_2O \xrightarrow{maltase} 2 C_6H_{12}O_6$
Maltosa Glukosa

3. Enzim Protease

Enzim protease merupakan enzim yang berfungsi untuk menguraikan protein. Enzim ini disebut juga peptidase karena mampu memecah ikatan rantai peptida. Protease yang dihasilkan oleh *A. oryzae* tergolong ekstraseluler karena mampu menghidrolisis susbstrat di sekeliling sel. Kondisi untuk aktivitas optimum dan stabilitasnya tidak jauh berbeda dengan kondisi optimum untuk pertumbuhan mikroba penghasilnya, karena enzim ini bersifat ekstraseluler yang artinya enzim ini bekerja di lingkungan tempat mikroba tersebut tumbuh.

4. Enzim Lipase

Enzim lipase meupakan enzim yang berfungsi untuk memecah lemak menjadi monogliserida serta asam-asam lemak. Pada umumnya lipase tergolong enzim ekstraseluler. *A. oryzae* merupakan jenis fungi yang menghasilkan enzim lipase dan telah digunakan secara komersial. Enzim ini memiliki pH optimum pada pH netral atau sedikit asam dan suhu optimumnya antara 30°-40°C (Kavanagh, 2005).

2.4 Asam Glutamat

Pembangkit citarasa (*flavor enhancement*) adalah bahan-bahan yang dapat meningkatkan rasa enak atau menekan rasa yang tidak diinginkan dari suatu bahan makanan padahal bahan itu sendiri tidak atau sedikit mempunyai citarasa. Contohnya penambahan asam L-glutamat pada daging atau ayam, sop, sayur-sayuran, *seafood* dan hidangan lainnya (Zuhra, 2006).

Glutamat ada dalam bentuk D- , L- dan sebagai campuran keduanya. Bentuk L-merupakan isomer yang terdapat secara alami dan mempunyai sifat sebagai pembangkit citarasa sedangkan bentuk D- tidak menunjukkan aktivitas ini. L-glutamic acid inilah inti dari MSG, yang berbentuk butiran putih mirip garam. MSG sendiri sebenarnya tidak memiliki rasa. Tetapi bila ditambahkan ke dalam makanan, akan terbentuk asam glutamat bebas yang ditangkap oleh reseptor khusus di otak dan mempresentasikan rasa dasar dalam makanan itu menjadi jauh lebih lezat dan gurih (Winarno, 1992).

Secara alamiah glutamat terdapat dalam bahan makanan seperti tomat, jamur, kobis, keju, ikan laut, daging dan bahkan air susu ibu yang kadarnya 20 kali lebih tinggi dari susu sapi. Kandungan asam amino pada daging ikan dapat dilihat pada Tabel 4.

Tabel 4. Kandungan Asam Amino pada Daging Ikan

ASAM AMINO	KANDUNGAN (mg%)
Lysine*	1.9-22.8
Tryptophan*	1,0
Histidine*	0-470.0
Phenilalanine*	0.5-1.8
Leucine*	3.8-7.1
Isoleucine*	3.4
Threonine*	0.5-11.0
Methionine*	11.6
Cysteine*	5.6
Valine*	3.5-4.7
Alanin**	10.5-72.0
Arginin**	0-5,8
Asam	1.9-12.0
asparginat**	8.0-20.0
Asam glutamat**	18.0-166.0
Glisin**	0.5-6.3
Prolin**	
*as.amino esensial	
**as.amino non esensial	

Sumber: Adawyah, 2007 dalam Sulistijowati dkk, 2011.

Penguat rasa yang mengandung asam glutamat dapat dibuat dari ikan seperti *sodabushi* melalui proses fermentasi oleh kapang. Metabolisme berfilamen diketahui memiliki kemampuan menguraikan protein. Kemampuan fungi untuk menguraikan protein di lingkungannya dan menggunakannya sebagai sumber nitrogen maupun karbon bergantung kepada aktivitas enzim proteolitik atau protease. Fungi mengeksresikan enzim protease ke lingkungan untuk

menguraikan protein menjadi asam-asam amino, selanjutnya hasil penguraian di angkut ke dalam sel menggunakan sistem transport (Purwoko, 2007). Penentuan asam-asam amino penyusun protein dapat dilakukan dengan metode HPLC (*High Pressure Liquid Cromatography*) (Sudarmadji, dkk. 2007).

BAB3

TUJUAN DAN MANFAAT PENELITIAN

3.1 Tujuan Khusus

Tujuan penelitian yang hendak dicapai sebagai berikut:

- 1. Optimasi proses *Solid State Fermentation* (SSF) pada ikan kayu cakalang dengan menggunakan *Aspergillus oryzae*.
- 2. Peningkatan produksi (*Scale-up*) asam glutamat hasil *Solid State Fermentation* (SSF) dari ikan kayu cakalang oleh *A.oryzae*

3.2 Manfaat Penelitian

Hasil penelitian ini diharapkan memberikan kontribusi sebagai berikut:

- a. Menjadi masukan kepada industri ikan kayu dalam memroduksi asam glutamat sebagai penyedap rasa alami melalui proses fermentasi.
- b. Sebagai masukan bagi pemerintah untuk mengembangkan produk fermentasi penyedap rasa berkualitas dari ikan kayu secara mandiri sebagai salah satu produk unggulan sektor perikanan dalam menghadapi era Mayarakat Ekonomi Asean (MEA).
- c. Menjadi bahan acuan bagi kajian ataupun penelitian sejenis di masa yang akan datang untuk pengembangan ilmu pengetahuan di bidang industri berbasis pengolahan hasil perikanan.

BAB 4

METODE PENELITIAN

4.1. Uji aktivitas enzim

1. Prosedur Kerja

(1). Sterilisasi

Semua alat dan medium sebelum digunakan terlebih dahulu disterilisasi menggunakan autoklaf pada temperatur 121°C dengan tekanan 1 atm selama 15 menit. Alat yang tidak tahan panas disterilisasi dengan direndam menggunakan alkohol 70 persen.

(2). Aktivasi A. tamarii dan A.oryzae

Kultur murni A.oryzae dan A.tamarii diaktivasi dengan menginokulasikan 1 ose biakan murni Aspergillus ke dalam 10 mL potato dexrose broth kemudian diinkubasi pada suhu 30°C selama 3x24 jam. Aktivasi kedua dengan inokulasi 1 mL kultur aktivasi pertama ke dalam 9 mL potato dextose broth kemudian diinkubasi pada suhu 30°C selama 3x24 jam. Aktivasi dilakukan secara aerob menggunakan shaker Certomat BS-1 dengan kecepatan 120 rpm.

(3). Aktivitas proteolitik A.tamarii dan A.oryzae

Filtrat enzim produksi kultur *A.tamarii*, *A.oryzae* dan konsorsium masing-masing sebanyak 0,1 mL diinokulasi pada *paper dish*. Selanjutnya diletakkan pada cawan petri yang mengandung media 4 persen *skim milk agar*. Selanjutnya diinkubasi pada suhu 25°C, 30°C dan 35°C. Pengamatan diameter zona bening setiap enam jam selama 48 jam. Adanya zona bening di sekitar koloni menunjukkan aktivitas protease.

Aktivitas proteolitik (AU/mL) =
$$\frac{Lz - Ls}{V}$$

Lz: Luas zona bening (mm²).

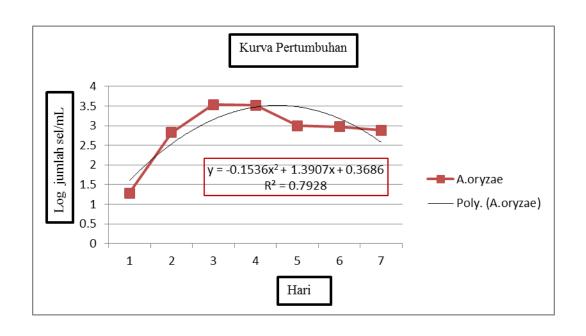
Ls: Luas *paper dish* (mm²).

V: Volume contoh (mL).

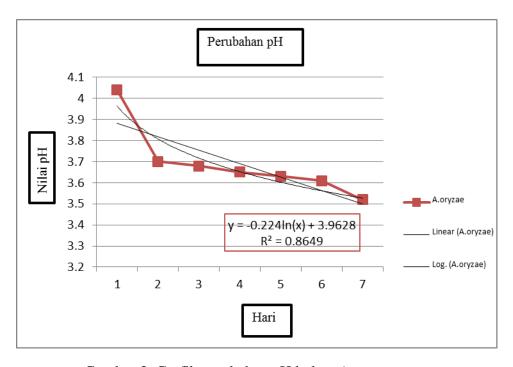
4.2. Liquid Cromatografi Mass Spectroscopy

Sampel dipreparasi dibuat dalam konsentrasi 10,15,20,25,30 ppm. Pengambilan sampel dilakukan selama 6 hari dengan siklus 24 jam. Tekhnik analisis menggunakan metode LCMS. Instrumen yang digunakan UPLC Waters G2 Q-TOF, dilaksanakan pada agustus 2017. Pengkodisian alat dilakukan dengan fase gerak Methanol : Ultra water (0,1 % asam format) dengan metode gradient, dan laju alir 0,5 ml/mnt, dimana konsentrasi fase gerak dijelaskan table dibawah ini :

Time	ULTRA WATER	МОН
	(Asam Format	
	0,1%)	
0 - 2.5 mnt	90	10
3-5 mnt	40	60
5.5 – 8 mnt	90	10


BAB 5

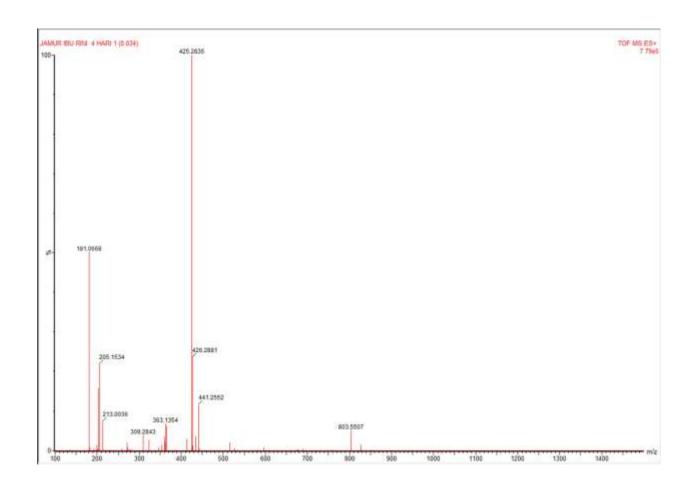
HASIL DAN LUARAN YANG DICAPAI

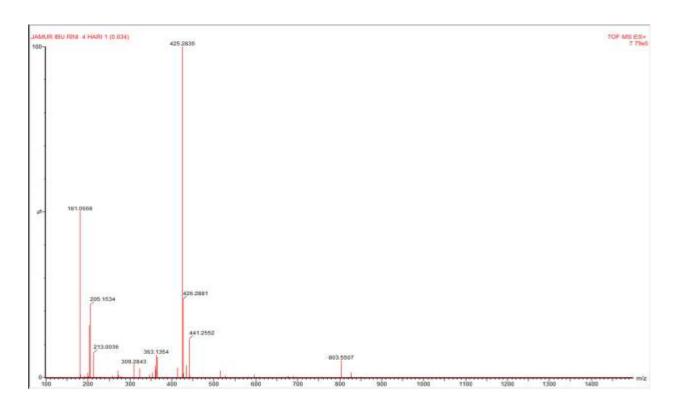

5.1 Kurva pertumbuhan dan perubahan pH

Tabel 5. Data Jumlah Sel (CFU/mL) dalam Pembuatan Kurva Pertumbuhan *Aspergillus oryzae* InaCC F43

Umur	pН	Jumlah Sel/mL	Log Sel
(Hari)			
1	4.04	2.1x10 ¹	1.28
2	3.7	$6.8x10^2$	2.83
3	3.68	$3.5x10^3$	3.54
4	3.65	$3.3x10^3$	3.52
5	3.63	1x10 ³	3
6	3.61	9.4×10^{2}	2.97
7	3.52	7.5×10^2	2.88

Gambar 2. Kurva Pertumbuhan A. oryzae


Gambar 3. Grafik perubahan pH kultur A. oryzae


Gambar 4. Zona aktivitas enzim protease A.oryzae

Tabel 6 . Data Aktivitas Proteolitik $A.\ oryzae$

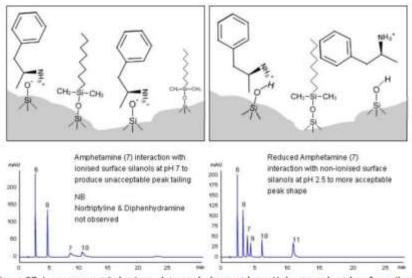
Kapang	Suhu	Aktivitas Proteolitik (AU/mL)			
		6 jam	12 jam	18 jam	24 -48jam
A. oryzae	25°C(RH50%)	0	0	3.179.25	7.261.25
	30°C(RH45%)	0	0	1.727	8.792
	35°C(RH40%)	0	0	2.857.4	9.891

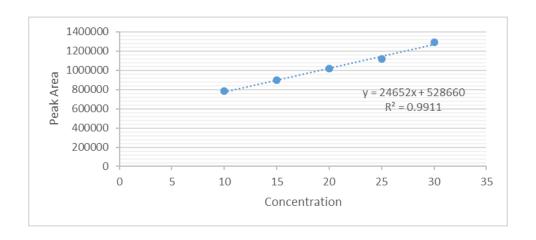
Gambar 5. Berat molekul Tirosin Hasil Degradasi Protease A.oryzae 2 hari

Gambar 6. Berat molekul Tirosin Hasil Degradasi Protease A.oryzae 4 hari

Liquid Chromatography

Dari hasi analisis memperlihatkan adanya senyawa yang diduga tirosin pada waktu retensi 0.5 mnt. Pemisahan senyawa tirosin dengan senyawa-senyawa lain memperlihatkan rentan waktu pemisahan yang cukup jauh. Tirosin muncul diwaktu retensi lebih awal, dikarenakan adanya faktor penambahan asam format di fase gerak. Dimana lingkungan asam akan mempengaruhi interaksi dengan ODS yang terpadat pada kolom. Silanol (SiOH) pada kolom memiliki pKa 3, dimana saat diberikan lingkungan asam dengan nilai pH yang sama dengan nilai pKa, hal ini memgakibatkan proses ionisasi yang tidak sempurna (atau hanya sebagian), sehingga hal ini memungkinkan untuk senyawa yang memilki gugus amino (NH3⁺) untuk berinteraksi drngan silanol. Sehingga interaksi senyawa tirosin dengan kolom tidak hanya antar gugus aromatis dengan ODS, namun juga gugus amina yang dengan silanol. Oleh karena itu memungkinkan senyawa tirosin yang merupakan asam amino aromatis yang memilki pka 9 pada gugus amino, memiliki peluang jauh lebih besar untuk berikatan dengan ODS dilingkungan asam. Sehingga hal ini memungkinkan peak yang jauh lebih tajam dan juga waktu retensi yang jauh lebih cepat.



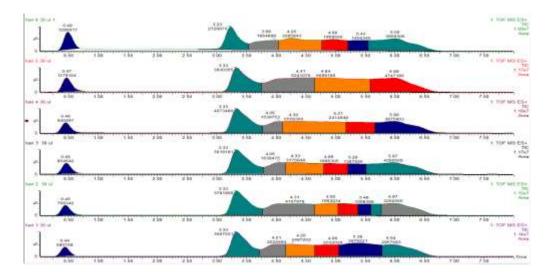

Figure 37: Improvement in basic analyte peak shape at low pH due to reduced surface silanol interaction.

Berdasarkan hasil kromatogram memperlihatkan adanya korelasi antara peningkatan produksi tirosin per harinya. Hal ini dibuktikan dengan semakin meningkatnya nilai Area under Curve (AUC) pada waktu retensi 0.5 mnt setiap hari selama proses penelitian dilakukan. Adapun nilai konsentrasi serta validasi metode dituangkan dalam table dibawah ini. Adapun nilai LOD (limit Of detection) dari instrument 7.580 ug/ml dan nilai LOQ (limit of detection) dari instrument 22,96 ug/ml.

Parameter	Value		
Accuracy	100.2752529 ± 3.273231151		
Slope	24652		
Intercept	528660		
Linearity range	10-30 μg/ml		
Correlation Coefficient (r)	0.9911		
SE of intercept	0.094942663		
SD of intercept	0.28482799		
LOD	7.580099745		
LOQ	22.96999923		

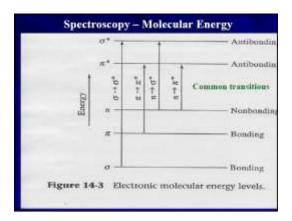
Concentration (ug/ml)	Peak area	Found Concentration (ug/ml)	Recovery %
30	1290617	30.90852669	103.0284223
25	1117189	23.87347883	95.4939153
20	1019101	19.89457245	99.47286224
15	897405	14.95801558	99.72010385
10	784205	10.36609606	103.6609606
Mean (n=5)		·	100.2752529
SD			3.273231151

SE of Intercept	0.094942663
SD of Intercept	0.28482799
LOD	7.580099745
LOQ	22.96999923


Berikut merupaka tabel peningkatan Konsentrasi Persatuan Jam

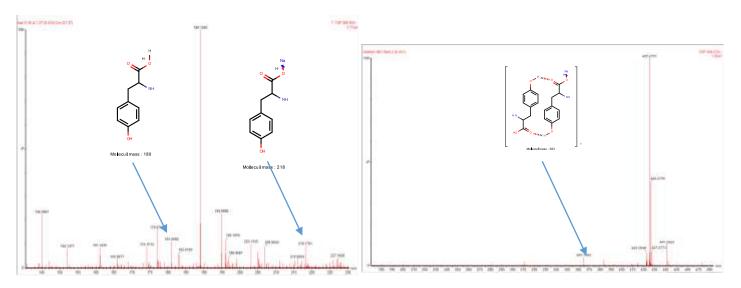
Hours	Peak area	Concentration (ug/ml)
120	1290617	30.90852669
96	1179164	28.23937851
72	940497	22.52362756
48	854797	20.47122879
24	769342	18.42469744
6	680158	16.2888616

Berikut data Kromatogram Dari Hari Pertama Sampai Hari Ke 6 yang memperlihatkanpeningkatan nilai luas area peak pada waktu retensi 0.5 mnt

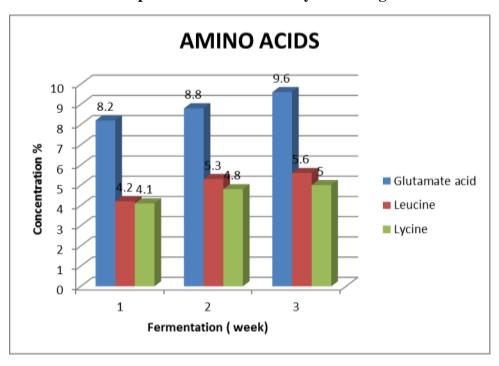


Spectroscopy Mass

Detector yang digunakan adalah spektroskopi massa, dengan metode ESI (Eletron Spray Ionisasion) dimana pembawa sampel adalah berupa liquid. Mode yang digunakan adalah ion positif. Berdasrkan teori, ada korelasi antara besar energy voltase dengan model dari fragmentasi, semkain besar energy voltase yang diberikan maka akan menghasilkan banyak fragmen-fragmen dari senyawa. Berdasarkan hasil analisis memperlihatkan adanya senyawa tirosin dimana hal ini dibuktikan dengan adanya peak di 180 m/z yang meiliki kesamaan dengan berat molekul dari tirosin 180 msi.


Adapun dari tipe frfagmentasi memperlihatkan adanya peak di 383 m/z yang mengindikasikan adanya dua tirosin yang dihubungkan oleh ikatan hydrogen dan memilki ion Na⁺. Ion Na kemungkinan berasal dari jaringan intraseluler. Adapun kemungkinan lain juga bisa dari ultra water yang digunakan kemungkinan masih adanya kontaminan mineral mengingat solvent yang digunakan bukan grade lcms namun grade hplc. Dari 383 m/z kemudian terfragmentasi, sehingga menghasilkan fragmen di 218 m/z dan 180 m/z.

Adapun dasar teori dari proses fragmentasi, dimana energy ikatan berbanding lurus dengan pola dari fragmentasi. Pola fragmentasi akan mengikuti keuatan energy ikatan. Semakin besar energy ikatan maka akan semakin sulit untuk diputus.



Berdasarkan gambar diatas memperlihatkan senyawa yang memilki gugus non bonding jauh lebih mudah diputus disbanding dengan ikatan phi/ π (sp2) dan ikatan π jauh lebih mudah di putus dibandingak dengan ikatan sigma / δ (sp3). Berikut interpretasi dari tipe fragmentasi MS dari tirosin.

Mollecuil mass: 180

Asam asam amino pada fermentasi ikan kayu cakalang

Gambar 7. Profil asam asam amino solid state fermentation ikan kayu cakalang

5.2 Luaran yang dicapai

- 1. Pemateri seminar internasional di Batam
- 2. Acepted artikel ilmiah di Int.Journal of Bio-Science and Bio-Technology
- 3. Penerapan teknologi tepat guna (Pengering mekanik)
- 4. Invited Speaker pada workshop MP3EI di UNG 2017
- 5. Visiting Schoolars ke Murdoc dan Curtin University di Perth Australia
- 6. Draf Buku Ajar

BAB 6

RENCANA TAHAPAN BERIKUTNYA

Rencana kegiatan penelitian tahun ke-2 antara lain:

- 1. Analisis kondisi fermentor sebagai pertumbuhan starter Soryzae
- 2. Analisis produksi asam glutamat pada peningkatan skala produksi (analisis biaya operasional dan analisis ekonomi usaha skala industrisi kecil)
- 3. Analisis rancangan teknologi skala 2

BAB 7

KESIMPULAN DAN SARAN

Simpulan hasil penelitian

- 1. Apergillua oryzae memiliki aktivitas enzim protease yang mempu mengubah protein menjadi asam asam amino.
- 2. Profil asam glutaman tetinggi dihasilkan pada fermentasi selama 3 minggu

DAFTAR PUSTAKA

Borzani, W., G.L. Salomao., C. Martins and V. Alonso. 1999. Simple Method to Control The Moisture Content of The Fermenting Medium During Laboratory-Scale Solid-State Fermentation Experiments. *Braz. J. Chem. Eng* **16**: 1.

Doi, M., M. Ninomiya., M. Matsui and K. Konoshita. 1989. Degradation and *O*-Methylation of Phenols among Volatile Flavor Components of Dried Bonito (Katsuobushi) by *Aspergillus* Species. *Agric.Biol.Chem.*, **53** (4): 1051-1055.

Han, S. W., K. W. Lee, B. D. Lee and C. G. Sung. 1999. Effect of Feeding *Aspergillus oryzae* Culture of Feral Microflora Egg Qualities and Nutrient Metabolizabilities in Laying Hens. *Asian Aust. J. Anim.* Sci., **12**:417-421.

Ikasari, L. and D.A. Mitchell. 1994. Protease production by *Rhizopus oligosporus* in solid-state fermentation. *World Journal of Microbiology and Biotechnology* **10** (3): 320-324.

Indrawati, G., Robert., A.S. Karin van den Tweel-Vermueulen., O. Ariyanti dan S. Iman. 1999. *Pengenalan Kapang Tropik Umum*. Depok: Universitas Indonesia.

Judoamidjojo, M., A. Darwis dan E.G Sa'id. 1990. *Teknologi Fermentasi*. PAU-Bioteknologi IPB. Bogor.

Kavanagh, K. 2005. *Fungi-Biology and Applications*. Department of Biology National University of Ireland Maynooth. John Wiley & Sons, Ltd. 105-106

Kihara, C. and T. Kuramatsu. 2009. Health Benefits and Cultural Role of Sodabushi in

Tosashimizu, Kochi. Kuroshio Science 3(1):81-83.

Kiminishi, Y., J. Egusa and M. Kunimoto. 1999. Antioxidant Production from Several

Xerophilous Fungi Used in "Katsuobushi" Molding. Journal of National Fisheries University 47(3): 113-120

Nissen, S. 1992. Modern Methods in Protein Nutrition and Metabolism. Academic

Press: San Diego, California.

Perez-Guerra, N., A.Torrado- Agrasar., C.Lopez-Macias and L.Pastrana. 2003. Main Characteristics And Applications Of Solid Substrate Fermentation. *Electronic Journal of Environmental*, *Agricultural and Food Chemistry* **2** (3). http://ejeafche.uvigo.es/2(3)2003/001232003F.htm. [Assessed March 13, 2016]

Raimbault, M. 1998. General and Microbiological Aspects of Solid Substrate

Fermentation. *Electronic Journal of Biotechnology* **1** (3): 174-188. 25

http://www.ejbiotechnology.info/content/vol1/issue3/full/9/9.PDF [Assessed March 17,2016].

Sarrette, M., M.J.R. Nout., P. Gervais and F.M. Rombouts. 1992. Effect of Water

Activity on Production and Activity of *Rhizopus oligosporus* Polysaccharidases. *Journal*. *Applied Microbiology and Biotechnology* **37** (4): 420-425

Sastramihardja, I. 1989. Prinsip Dasar Mikrobiologi Industri. PAU ITB.

Sikorski, Z., E. 2000. Chemical and Functional Properties of Food Proteins. CRC Press: USA.

Sudarmadji, S., B. Haryono dan Suhardi. 2007. *Prosedur Analisa untuk Bahan Makanan dan Pertanian*. Liberty, Yogyakarta

Sulistijowati, R., Suhara, O., Nurhajati, J., Afrianto, E. dan Linar, U. 2011. Mekanisme Pengasapan Ikan. Unpad Press.

Sulistijowati, R. 2010. *Dokumentasi SNI dan Cara Uji Pada Produk Perikanan Jilid II*Universitas Padjadjaran Bandung.

Sulistijowati, R. 2012. Kajian Mutu Mikrobiologis dan Kimiawi Sodabushi Ikan tongkol Menggunakan Biopreservatif *L.acidophilus* dan Difermentasi Oleh *A.oryzae*. Disertasi. UNPAD.

Sulistijowati, R. 2015. Ikan kayu rendah fenol. Laporan Penelitian, UNG.

Sulistijowati, R. 2015. Mengolah Ikan Kayu Menjadi Penyedap Rasa. ISBN 9786020889368. Ideas Publishing.

Winarno, F.G. 1992. Kimia Pangan dan Gizi. PT. Gramedia. Jakarta.

Yamauchi, H. and M. Doi. 1997. *O*-Methylation of 2,6-Dimethoxy-4-methylphenol by *Aspergillus glaucus* and Their Possible Contribution to *Katsuobushi* Flavor. *Biosci. Biotechem.*, **61**:8, 1386-1387.

Yamauchi, H. and M. Doi. 1997. *O*-Methylation of 2,6-Dimethoxy-4-methylphenol by *Aspergillus glaucus* and Their Possible Contribution to *Katsuobushi* Flavor. *Biosci. Biotechem.*, **61**:8, 1386-1387.

Zuhra, F. 2006. Flavor (citarasa). Fakultas MIPA UNSU.

LAMPIRAN

A. Data Diri

1.	Nama Lengkap	Dr. Rieny Sulistijowati S. S.Pi,M.Si (P)		
2.	Tempat dan Tanggal Lahir	Manado, 9 Oktober 1971		
3.	NIP/NIDN	197110092005012001/ 0009107103		
4.	Jabatan Fungsional	LEKTOR KEPALA		
5.	Pangkat/Golongan	IV/A		
6.	Fakultas/Program studi	Perikanan dan Ilmu Kelautan / Teknologi Hasil Perikanan		
7.	Alamat Rumah	Jl.Pramuka Kel.Bulotadaa Timur Rt/Rw 01/02 Kec. Sipatana. Kota Gorontalo		
8.	Nomor Telepon/Faks	08114344103		
9.	Alamat Kantor	Univ.Negeri Gorontalo Jl.Jend.Sudirman No.06 Gorontalo		
10.	Nomor Telepon/Faks	Telp. 0435821125 Fax, 0435 821752		
11.	Alamat e-mail	rienysulistijowati@ung.ac.id		
		rinysulistijowati@gmail.com		
12.	Lulusan Yang Telah Dihasilkan	S1= 40 orang; S2= 3 Orang; S3= 1 orang		
12.	Mata kuliah yang diampuh	S-1 Pengantar THP, Pemanfaatan Limbah Hasil Perikanan, Mikrobiologi Hasil Perikanan, Mikrobiologi Dasar, Kimia Organik, Metode Penelitian, Rancangan Percobaan, Bioteknologi Hasil Perikanan, Kimia Dasar, Pengendalian Mutu Hasil Perikanan. S-2 Etika sains dan teknik penulisan ilmiah, Teknologi Industri Perikanan dan Kelautan, Mikrobiologi, Metodologi Penelitian, Statistika		

B. Riwayat Pendidikan

Program	S3	S2	S1
Nama PT	Univ. Padjadjaran	Univ. Padjadjaran	Univ. Samratulangi
Tempat	Bandung	Bandung	Manado
Bidang Ilmu	Tek.Hasil Perikanan	Kimia/Mikrobiologi Proses	Tek.Hasil Perikanan
Thn Masuk	2009	2006	1990
Tahun lulus	2012	2008	1995
Gelar	Dr	M.Si	S.Pi
Judul Disertasi,Tesis, Skripsi	Kajian Mutu Mikrobiologis dan Kimiawi Sodabushi Ikan tongkol Menggunakan Biopreservatif L.acidophilus dan Difermentasi Oleh A.oryzae	Uji Aktivitas Antikanker Payudara Pada <i>cell</i> <i>line</i> T47D dan Identifikasi PCR Isolat Jamur Endofitik Tumbuhan Taxus Sumatrana	Pengaruh cara pemasakan dan perbandingan ekstrak nenas terhadap mutu kecap udang galah

C. Pengalaman Penelitian

No.	Tahun	Judul Penelitian	Pendanaan	
			Sumber	Jumlah (juta Rp)
1.	2017	Pengembangan Ikan Julung-	MP3Ei	169.5
		Julung Asap Sebagai Komoditi	RISTEK	
		Lokal Unggulan Kabupaten	DIKTI	
		Gorontalo Utara		
2.	2017	Pengembangan Ikan Julung-	MP3Ei	185
		Julung Asap Sebagai Komoditi	RISTEK	
		Lokal Unggulan Kabupaten	DIKTI	
		Gorontalo Utara		
3.	2016	Pengembangan Ikan Julung-	MP3EI	150
		Julung Asap Sebagai Komoditi	RISTEK	
		Lokal Unggulan Kabupaten	DIKTI	
		Gorontalo Utara		
4.	2016	Model Teknologi Artificial	PUPT DIKTI	100
		Coralreef Dan Seed Protector		

		Untuk Peningkatan Produksi Dan Kualitas Rumput Laut Serta Daya Dukung Ekologi Pesisir Di Kabupaten Boalemo Provinsi Gorontalo		
5.	2015	Aktivitas Antagonis Bakteri Asam Laktat Hasil Isolasi Dari Ikan Bandeng Terhadap Bakteri Patogen	Fundamental Tahun II	67.5
6.	2015	Ikan Kayu Rendah Fenol	Mandiri	10
7.	2014	Aktivitas Antagonis Bakteri Asam Laktat Hasil Isolasi Dari Ikan Bandeng Terhadap Bakteri Patogen	Fundamental Tahun I	30
8.	2013	Peningkatan Kualitas Pembelajaran Mikrobiologi Melalui Media Audiovisual Di SMK 1 Kota Gorontalo	Pascasarjana UNG	15
9.	2013	Kajian Sistem Pengendalian Mutu Ikan Cakalang Asap Di Kecamatan Tilango Kabupaten Gorontalo	PNBP	10
10.	2011	Pemanfaatan Bakteriosin Produksi <i>Lactobacillus</i> <i>Acidophilus</i> Sebagai Biopreservatif <i>Sodabushi</i> Ikan Tongkol (<i>Auxis Rochei</i>)	Hibah Doktor DIKTI	40

D. Pengalaman Pengabdian pada Masyarakat

No.	Tahun	Judul	Sumber	Jumlah
			Dana	(juta Rp)
1.	2017	Sosialisasi Fak.Perikanan dan	PNBP	10
		Ilmu Kelautan di Kab. Boalemo		
2.	2017	Juri Lomba Mahasiswa	BOPTN	5
		Berprestasi		
3.	2017	Pemateri Percepatan Jurnal di	FPIK	2
		FPIK		
4.	2016	Pengabdian Pascasarjana di	PNBP	5
		Paguyaman Pante, Tema	UNG	
		Penanganan Pasca Panen Ikan		
		Tuna		

5.	2016	KKN-PPN Bagi UKM	Ristek	65
		Pengasapan Ikan Di	Dikti	
		Kab.Gorontalo Utara		
6.	2016	Visitasi Akreditasi Sekolah	BAP	10
		Tahap 2	Gorontalo	
7.	2016	GMP Ikan Kayu	Mandiri	3
8.	2016	Pemateri Bisafety Lavel	Lab Jkt	10
9.	2016	Pemateri KKN-PPM Teknik	Ristek	10
		Pengolahan Cumi	Dikti	
10.	2016	Juri Lomba Masak Serba Ikan	DKP dan	10
		se-Kota Gorontalo	Ketahanan	
			Pangan	
11.	2016	Visitasi Akreditasi Sekolah	BAP	10
		Tahap 1	Gorontalo	
12.	2015	KKS Pengabdian UNG	PNBP	25
		Manajemen Mutu Pengemasan		
		dan Pemasaran Ikan Asap Di		
		Desa Pasalae Kab.GORUT		
13	2015	Pemateri Pengolahan dan	MP3Ei	10
		Pengemasan Sambal Ikan Teri		
14.	2015	Juri Lomba Masak Menu Ikan	Dinas	10
		se Kotamadya Gorontalo	Ketahanan	
			Pangan	
			Kota	
			Gorontalo	
15.	2015	Penguji eksternal UKK	DIKNAS	20
		Nasional Di Gorontalo		
16.	2015	Penyuluhan Penanganan dan	Jurusan	5
		Pemanfaatan Hasil Perikanan	THP	
		dan Sosialisasi Jurusan		
		Teknologi Hasil Perikanan di		
		Desa Ilangata Kecamatan		
		Anggrek, Kab. Gorontalo Utara		
17.	2014	KKS Pengabdian UNG	PNBP	25
		Pengasapan Ikan Sistem	UNG	
		Kabinet Di Desa Pasalae		
		Kab.GORUT		
18.	2014	Pemateri "Pengemasan Ikan	Tim	10
		Teri Kering"Di Kab.Gorut	MP3EI	
4.5	201:		(DIKTI)	
19.	2014	Aspek Sosial Ekonomi	Fak.Perika	5
		Perikanan dan Kelautan Desa	nan UNG	
		Tolotiu Kecamatan Bone Pantai		
20	2012	Kabupaten Bone Bolango	IDIC	20
20.	2013	Bina Akrab UNG dengan	UNG	20
		Masyarakat Pemda Boalema		

21.	2013	Pelatihan Pengolahan Ikan Menjadi Aneka Menu Yang Sehat Kerjasama dengan FORHATI Wilayah Gorontalo	FORHATI	3
22.	2012	Bina Akrab Civitas Akademika Jurusan Tek.Perikanan dengan Masyarakat Bongo	PNBP	8
23.	2012	Bimbingan Teknis Pengelolaan Pelabuhan Perikanan	Ditjen Tangkap KKP	50
24.	2012	Temu Teknis Pembina Sentra Pengolahan Ikan Indonesia	P2HP KKP	80
25.	2012	Tim Pengembang Model Momongu Lipu Masyarakat Pesisir Danau Limboto Berbasis Pembelajaran Budidaya Pembesaran Otili (sogili)	BPKB Provinsi Gorontalo	120

E. Publikai Artikel Ilmiah dalam 5 Tahun Terakhir

No.	Thn	Judul Artikel	Volume/nomor	Nama Artikel
1.	2017	Amino Acids Skipjack Fish	ISBN 978-602-60736-	Proceeding 10th ADRI
		Dried Profile By Solid State	5-5	2017 Iternational
		Fermentation		Multidisciplinary
				Conference for Paper
2.	2016	Identification Of Lactic Acid	Terindeks scopus	International Journal of
		Bacteria Isolates From Intestine	Vol.8 No.3 2016	Science and
		Of Milkfish (Chanos-Chanos)	ISSN:22337849	Biotechnology
		Potential Activity Against		
		Pathogen Bacteria Used PCR 18s		
		Rrna method		
3.	2015	The Effectiveness Inhibition	Terindeks scopus Vol.7	International Journal of
		Filtrate Bacteriocins	No.3 2015	Science and
		Lactobacillus acidophilus	ISSN:22337849	Biotechnology
		Toward Contaminants Bacteria		
		from Swordfish (Auxis rochei)		
		Stew		
4.	2015	The Physics and Chemical	ISBN: 978-602-72985-	Proceeding International
		Characteristics of Sausage	0-7	Seminar 2015 in
		Catfish Subtitution By Algae		Accordate With Sail
		(Kappaphycus alvarezii)		Tomini and Festival of
				Boalemo 2015
5.	2015	Efektivitas Penghambatan Filtrat	ISBN: 978-602-72784-	Prosiding Seminar
		Asam Laktat <i>Lactobacillus Sp.</i>	00	Nasional Perikanan dan
		Hasil Isolasi Dari Usus Ikan		Kelautan V

		Bandeng (<i>Chanos chanos</i>) Terhadap Bakteri Patogen		
6.	2015	Aktivitas Antibakteri Kitosan Kulit Udang Vaname (Litopenaeus vannamei) Terhadap Bakteri Kontaminan Bakso Ikan Tuna (Thunnus Sp.)	ISBN:978-602-71759- 1-4	Prosiding Simposium Nasional Kelautan dan Perikanan II Universitas Hasanuddin
7.	2015	Analisis Mutu Garam Tradisional di Desa Siduwonge Kecamatan Randangan Kabupaten Pohuwato Provinsi Gorontalo	Vol 3 No.1 ISSN 2303-2200	Jurnal Nike
8.	2015	Kitosan Kulit Udang <i>Vaname</i> Sebagai <i>Edible Coating</i> Pada Bakso Ikan Tuna.	Vol 3 No.3 ISSN 2303-2200	Jurnal Nike
9.	2015	Analisis Total Bakteri Kontaminan dan Nilai Organoleptik Ikan Tongkol Segar yang Diawetkan dengan Filtrat Asam Laktat Kulit Nanas pada Penyimpanan Suhu Kamar	Vol 3 No.3 ISSN 2303-2200	Jurnal Nike
10.	2015	Mutu Organoleptik Sosis Ikan Lele yang Disubtitusi dengan Rumput Laut.	Vol 3 No.3 ISSN 2303-2200	Jurnal Nike
11.	2015	Pengaruh Jenis Kemasan dan Lama Penyimpanan pada Suhu Ruang terhadap Nilai TBA Abon Ikan Sidat	Vol 3 No.4 ISSN 2303-2200	Jurnal Nike
12.	2014	Identification of Lactic Acid Bacteria Isolated from Milkfish Intestine (Chanos chanos).	ISBN 978-602-19699- 8-4	Proceeding Intenational Seminar Innovation on Marine and Fisheries Product Processing and Biotechnology Towards the Asean Economic Community in 2015
13.	2014	Penerapan Rumah Asap Model Kabinet Untuk Efesiensi Bahan Bakar, Lama Pengasapan dan Perbaikan Mutu Ikan Asap	ISBN 9796029890228	Prosiding : Seminar Nasional Hari Pangan Sedunia Tahun 2014
14.	2014	Studi Kelayakan Unit	Vol II No.2 2014	Jurnal Nike

		Pengolahan Udang Putih (<i>Litopenaus vannamei</i>) Beku Tanpa Kepala di PT.xx Gorontalo	ISSN 2303-2200	
15.	2013	Uji Mutu Ikan Cakalang (<i>Katsuwonus pelamis</i>) Asap dari Unit Pengolahan Ikan di Provinsi Gorontalo	Vol I No.3 2013 ISSN 2303-2200	Jurnal Nike
16.	2013	The Influence Culture Age and Soaking Time Range with Filtrate <i>L.acidophillus</i> toward The Number of <i>Coliform</i> bacteria in Swordfish stew	Vol 3. No.4 ISSN2224-3208 ISSN2225-093x	Int.Journal Biology Agryculture and Healthcare
17.	2013	Penentuan Perbandingan Es Curah dan ikan Nike Segar dalam Cool Box Berinsulasi terhadap Mutu Organoleptik dan Mikrobiologis Selama Pemasaran	Vol I No.2 2013 ISSN 2303-2200	Jurnal Nike

F. Pengalaman Sebagai Pemakalah Dalam Seminar Ilmiah Internasional dan atau Seminar Ilmiah Nasional

No	Tahun	Judul Artikel	Tema Seminar	Penyelenggara	Tempat
1.	2017	Amino Acids Skipjack Fish Dried Profile By Solid State Fermentation	10th ADRI 2017 Iternationa I Multidiscip linary Conference for Paper	Perkumpulan dan Ahli Dosen Republik Indonesia (ADRI)	Batam
2.	2016	Julung-Julung Fish Smoke Phenol Less	Food Ingredient Conferency ASEAN	FI Asean;PATPI	Kemayoran Expo Jakarta
3.	2015	The Physics And Chemical Characteristics Of Sausage Catfish Subtitution By Algae (Kappaphycus Alvarezii)	Seminar Internasioa nal Fisheries and Marine Sciences 2015	FPIK UNG	Gorontalo
4.	2015	Extraction Chitosan Shells Vaname	The 6 th AFOB	Universitas Indonesia	Depok

5.	2015	(Litopenaeus vannamei) Efektivitas	Regional Symposium "Biotechnolo gy for food, health, and energy sovereignty" Seminar	FPIK	Malang
<i>J</i> .	2013	Penghambatan Filtrat Asam Laktat Lactobacillus Sp. Hasil Isolasi Dari Usus Ikan Bandeng (Chanos chanos) Terhadap Bakteri Patogen	Nasional Perikanan dan Kelautan V, 4-6 Mei 2015	Universitas Brawijaya Malang.	Walang
6.	2015	Aktivitas Antibakteri Kitosan Kulit Udang Vaname (Litopenaeus vannamei) Terhadap Bakteri Kontaminan Bakso Ikan Tuna (Thunnus Sp.)	Simposium Nasional Kelautan dan Perianan II Universitas Hasanuddin	FPIK UNHAS	Makassar
7.	2014	Kajian Sistem Pengendalian Mutu Ikan Cakalang Asap Di Kab.Gorontalo	Seminar Nasional Kimia dan Pendidikan Kimia UNG	MIPA UNG	Gorontalo
8.	2014	Penerapan Rumah Asap Model Kabinet Untuk Efisiensi Bahan Bakar, Lama Pengasapan dan Perbaikan Mutu Ikan Asap	Optimalisasi Kemandirian Pangan Menyambut Asean Economic Community	PATPI SULUT	Manado
9.	2014	Identification of Lactic Acid Bacteria Isolated from Milkfish Intestine (Chanos chanos).	Innovation on Marine and Fisheries Product Processing and Biotechnolog y Towards the Asean Economic Community	Balai Penelitian Pengembangan Bioteknologi Produk Hasil Perikanan. KKP	Jakarta

in 2015

G. Karya Buku dalam 5 Tahun Terakhir

No.	Tahun	Judul Buku	Jumlah	No.ISBN	Penerbit
			Halaman		
1.	2017	Komponen Bioaktif Tumbuhan Mangrove Sonneratia alba	101	ISBN 978-602- 61253-8-5	ZAHIR Yogyakarta
2.	2016	Manajemen usaha pengasapan ikan	70	ISBN 978-602- 0889-85-6	Ideas Publishing
3.	2015	Mengolah Ikan Tongkol Menjadi Penyedap Rasa	80	ISBN 978- 6020-889-122	Ideas Publishing
4.	2015	Biopreservatif Asam Laktat dari Usus Ikan Bandeng	60	ISBN 9786020889368	Ideas Publishing
5.	2014	Mikrobiologi Hasil Perikanan	90	ISBN 978- 6602-280-383-3	Deepublish
6.	2013	Seafood safety dan Implementasi Analisis SWOT Quality Sistem dalam buku Cakrawala Perubahan merangkai gagasan, kebijakan dan Harapan	8	ISBN 978-979- 1340-56-4	UNG Press
7.	2011	Mekanisme Pengasapan Ikan	149	978-602-8743- 86-0	Unpad Press

H. Perolehan HKI dalam 10 Tahun Terakhir

No	Judul / tema HKI	Tahun	Jenis	Nomor P/ID
1.	Julung-Julung Asap	2017	Merek dagang	WFT2017008063
	Dokokayu			
2.	Buku: Mikrobiologi	2017	Hak Cipta	0887314
	Hasil Perikanan			
3.	Buku: Mekanisme	2017	Hak Cipta	W.26.HI.06.01-
	Pengasapan Ikan			881

	engalaman Merumuskan I ahun Terakhir	Kebijakan Publi	k/Rekāyasa Sosti	al Lainnya dalam 19	k
No		Tahun	Tempat Penerapan	Respon Masyarakat	
J. P	enghargaan dalam 10 tah: innya)	ın Terakhir (dar	i Pemerintah, as	osinsi atau institusi	
No	Bentuk Penghargaan		Pemberi	Tahun	
1.	Peserta Terbaik Diklat /	Asesor S/M	Badan Akredita Propinsi Goront	2016	
2.	Dosen Berpretasi T Perikanan	ingkat Fakultas	Dekan FPIK UN	IG 2015	
3	Dosen Berprestasi Ting Negeri Gorontalo	gkat Universitas	Rektor UNG	2015	
ipertang esuaian Pemikiai	emua data yang saya isikar gungjawabkan secara huk dengan kenyataan, saya san a biodata ini saya buat deng ngajuan Penugasan Hibah P	um. Apabila dik ggop menerima s an sebenarnya um enelitian Pascad	emudian hari te anksi. tuk memenuhi sal oktor. Gorontalo, Penetiti Peng	myata dijumpai ket ah satu persyaratan 15 April 2016	ADMINISTRA
					7.50

BIODATA TIM PENGARAH

A. Identitas Diri

1	Nama Lengkap	: Prof. Dr. Ir. Junianto, MP
2	Jenis Kelamin	: Laki-laki
3	Jabatan Fungsional	: Guru Besar
4	NIP	: 196708171992031005
5	NIDN	: 0017036703
6	Tempat dan Tanggal lahir	: Madura, 17 Agustus 1967
7	E-mail	: anto_lisc@yahoo.com/
8	Nomor Telepon/HP	: 0227503889/085222209359
9	Alamat Kantor	: Jalan Raya Jatinangor Km 21, Sumedang
10	Nomor Telepon/Faks	: 02287701518/02287701519
11	Lulusan yang dihasilkan	: $S1 = 30$ orang $S2 = 0$ orang $S3 = 4$ Orang
12	Mata Kuliah Yang	Teknologi Pengolahan Hasil Perikanan
	Diampu	2. Manajemen Industri Hasil Perikanan
	r "	3. Biokimia Perairan
		4. Pengantar Ilmu Perikanan
		5. Metode Penelitian dan Penulisan Skripsi
		6. Pendidikan Kewarganegaraan
		7. Manajemen dan Teknologi Penangkapan Ikan

B. Riwayat Pendidikan

	S1	S2	S3
Nama Perguran Tinggi	Unpad	Unpad	IPB
Bidang Ilmu	Teknologi Hasil Pertanian	Pascapanen Perikanan	Teknologi Industri Pertanian
Tahun masuk –	1986 – 1991	1993 – 1997	2004 – 2008

lulus			
Judul Skripsi/Tesis/ Disertasi	Pengaruh Konsentrasi natrium Metabisulfit Dalam Larutan Perendaman dan Tingkat Kematangan Buah terhadap Karakteristik Manisan Nenas (Ananas comosus) Yang Dihasilkan	Pengaruh Penambahan Garam Pada Es dan Jenis Kemasan Penyimpanan Ikan Kembung (Rastrelliger Spp) Yang Tidak Habis Terjual terhadap Karakteristik Kesegarannya	Perancangan Proses dan Peningkatan Skala Ekstraksi Kitin dari Kulit Udang Secara Biologis
Nama Pembimbing/Pro motor	-Ir. Tati Sukarti, MS. -Drs. Oyon Sumaryono, MS. -Ir. M Djali	-Dr. Ir. Carmen Tjahyadi, MSc -Dr.Ir. Otong Suhara, MS -Ir. Kusmayadi Suradi, MS	 - Prof. Dr. Ir. Djumali Mangunwidjadja, DEA - Dr. Ir. Supriatin - Dr. Ir. Mulyorini - Dr. Ir. Budiasih Wahyuntari

C. Pengalaman Penelitian dalam 5 tahun terakhir

No	Tahun	Judul Penelitian	Penda	naan
			Sumber	Jml (Jt Rp)
1	2015	Komersialisasi Produk Berbahan Baku Ikan Nilem Sebagai Daya Ungkit Produksi Ikan Lokal di Jawa Barat	BLU Unpad	250
2	2015	Pengikatan Cemaran Logam Berat pada Berbagai Daging Ikan Konsumsi yang Dibudidayakan di Waduk Cirata dalam Mendukung Keamanan Pangan	PUPT- Kemenristek dikti	60
3	2015	Pemanfaatan Daging Ikan dari Waduk Cirata sebagai Suplementasi pada Kecimpring Singkong dan Daya Simpannya dalam Berbagai Kondisi Kemasan		50
4	2014	Produksi Konsentrat Protein Berbahan Baku Ikan Mati Akibat Pembalikan Massa Air Pada Budidaya Keramba Jaring Apung Di Waduk Cirata	BLU Unpad	22,5

5	2014	Ekstraksi Feed Oil Supplement dari Bahan Alternatif terhadap Imbangan Energi dan Efisiensi Protein pada Ikan Nila Merah	Ristek	100
6	2013	Produksi Silase Berbahan Baku Ikan Mati Akibat Pembalikan Massa Air pada Budidaya Keramba Jaring Apung di Waduk Cirata	PUPT-Dikti	51
7	2012	Fortifikasi Protein dengan Hidrolisat Protein Ikan Pada Kerupuk Malarat dan Kajian Umur Simpannya	BLU Unpad	22,5

D. Pengalaman Pengabdian Kepada Masyarakat dalam 5 tahun terakhir

No	Tahun	Judul Penelitian	Penda	naan
			Sumber	Jml (Jt Rp)
1	2015	IbM Kelompok Industri Rumah Tangga Kecimpring di Desa Cilayung dan Wirausaha Toko Jajanan Di Desa Cikeruh Kecamatan Jatinangor, Kabupaten Sumedang	IbM- Kemenristek dikti	37,5
2	2015	Sosialisasi Penggunaan Balong Plastik (BALISTIK) untuk Usaha Budidaya Lele di Desa Parung dan Desa Karanganyar Kecamatan Darma Kabupaten Kuningan	BLU-Unpad	8,5
3	2014	Pelatihan Pembuatan Otak-Otak Ikan Mujaer Dalam Upaya Peningkatan Konsumsi Protein Ikani Masyarakat Di Desa Karangheulet dan Kaduwulung Kecamatan Situraja Kabupaten Sumedang	BLU-Unpad	7,5
4	2014	Limpah Keterampilan Pembuatan Donat yang Disuplementasi dengan Tepung Konsentrat Protein Ikan Mas Di Jangari, Kawasan Waduk Cirata Kabupaten Cianjur – Jawa Barat	BLU-Unpad	8
5	2013	Pemberdayaan Ekonomi Masyarakat	BLU FPIK	8

		Di Kabupaten Indramayu Melalui Peningkatan Keterampilan Teknologi Pengolahan Otak-Otak Ikan	Unpad	
6	2012	Sosialisasi dan Pelatihan Pembuatan Krispy Baby Fish Nilem di Desa Cikurubuk Kecamatan Buah Dua Kabupaten Sumendang	_	5
7	2011	Workshop dan Pelatihan Pembuatan Pindang Presto Ikan Mas dalam Upaya Membuka Peluang Usaha Home Industri di Desa Conggeang Kolon dan Desa Conggeang Wetan Kecamatan Conggeang Kabupaten Sumedang	BLU Unpad	7,5

E. Publikasi Artikel Ilmiah (Oral persentation) dalam 5 tahun terakhir

No	Judul Artikel Ilmiah/Seminar	Nama Jurnal	Volume/Nomor/Tahun
1	Penambahan Surimi Lele Terhadap Tingkat Kesukaan Permen Jelly Rumput Laut	Jurnal Perikanan dan Kelautan	Vol. VI /No.2(1)/2015
2	Selection of Methods for Microbiological Extraction of Chitin from Shrimp Shells	Jurnal Microbiologi Indonesia	Vol 7/ No 2/ 2013
3	Karakteristik Cangkang Kapsul yang Terbuat dari Gelatin Tulang Ikan	Jurnal Akuatika	Vol. IV/No.1/ 2013
4	Physical and Mechanical Study on Tilapia's Skin gelatine Edible Films with Additional of Plasticizer Sorbitol	African Journal Food Science	Vol. 6/ No. 5/ 2012
5	Pengaruh Penambahan Rumput Laut (<i>Eucheuma</i> cottonii) Terhadap Tingkat Kesukaan Selai Nanas	Jurnal Perikanan dan Kelautan	Vol.2 /No 3/2011

6	Process Design of	Jurnal	Vol. 5 /No.1/ 2011
	Microbilogical Chitin	Microbiologi	
	Extraction	Indonesia	
7	Studi Karakterisasi Pengolahan Terasi Cirebon Dalam Upaya Mendapatkan Perlindungan Indikasi Geografis	Jurnal Akuatika	Vol. II /No.1/2011

F. Pemakalah Seminar Ilmiah Publikasi Artikel Ilmiah dalam Jurnal pada 5 tahun terakhir

No	Nama Pertemuan Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	Seminar dan Pertemuan Ilmiah ke- 7 Masyarakat Pengolahan Hasil Perikanan Indonesia	Evaluasi Ceramaran Logam Berat pada Berbagai Daging Ikan Konsumsi yang Dibudidayakan di Waduk Cirata dalam Mendukung Keamanan Pangan	23-24 Oktober 2015/IPB International Convention Center, Bogor
2	Seminar Nasional Tahunan ke X Hasil Penelitian Perikanan Dan Kelautan	Pengaruh Peningkatan Skala Produksi Terhadap Karakteristik Mutu Silase yang Dihasilkan	30 Juli 2014/Kampus UGM, Yogyakarta
3	Seminar Nasional Tahunan ke VIII Hasil Penelitian Perikanan Dan Kelautan	Pengaruh Jenis Kemasan Penyimpanan Ikan Kembung (Rastrellinger Spp) Yang Tidak Habis Terjual dalam Media Pendingin Es plus Garam Terhadap Karakteristik Kesegarannya	6 Juli 2012/ Kampus UGM, Yogyakarta
4	Seminar Nasional Inovasi Teknologi- BRPPBK	Karakterisasi Proses Deproteinasi Kulit Udang Secara Biologis Menggunakan <i>Bacillus licheniformis</i> F11	24 Agustus 2011/Balai Riset Pengolahan Perikanan Slipi, Jakarta

5	Seminar Nasional	Ekstraksi Gelatin dari	24 Juli 2011/
	Tahunan ke VII Hasil	Tulang Ikan Untuk Bahan	Kampus UGM,
	Penelitian Perikanan	Dasar Pembuatan	Yogyakarta
	dan Kelautan	Cangkang Kapsul	

G. Karya Buku dalam 5 tahun terakhir

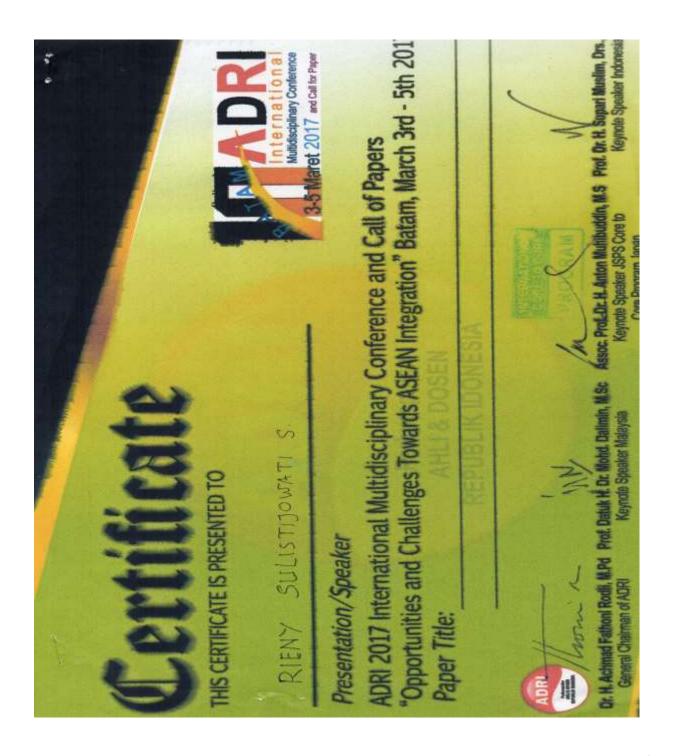
No	Judul Buku	Tahun	Jumlah	Penerbit
			Halaman	
1	Desain Pengolahan Kulit Udang Menjadi Produk Kitin Secara Biologis	2016	172	Unpad Press

H. Perolehan HKI dalam 5 – 10 terakhir

No	Judul / tema HKI	Tahun	Jenis	Nomor P/ID

I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

No	Judul / tema/ Jenis	Tahun	Tempat	Respon
	Rekayasa Sosial		Penerapan	Masyarakat
	Lainnya yang telah			
	diterapkan			


J. Penghargaan dalam 10 tahun terakhir

No	Jenis Penghargaan	Institusi Pemberi	Tahun
		Penghargaan	

1	Dosen Teladan Peringkat	FPIK Unpad	2009
	II Tingkat Fakultas		

2	Dosen Teladan Peringkat I Tingkat Fakultas	PPIK Unpad	2010
3	Ketus Program Studi Teladan Peringkat III Tingkat Universitas	Unpad	2012
		Jatinanger 1 Pengs	k

2. Sertifikat Pemateri Seminar Internasional

3. Manuskrip Artikel ilmiah

AMINO ACIDS SKIPJACK FISH DRIED PROFILE BY SOLID STATE FERMENTATION

Rieny Sulistijowati S.¹and Junianto²

¹¹)UNG, Gorontalo,Indonesia

²)UNPAD, Bandung,Indonesia

E-mail: rienysulistijowati@ung.ac.id

Abstract. Skipjack fish dried fermented as umami flavor. The quality study of amino acids profiles skipjack fish dried product fermented by the fungus *Aspergillus oryzae* was carried out. The observation of fermentation hydrolized time 3 weeks to amino acids production. The research has quantitative observation method to know amino acids type and concentration by HPLC method. The results indicated that glutamate acid highest concentration then leucine and lysine (9.6%, 5.6%, and 5%).

Keywords: amino acids, fermentation, skipjack

1. INTRODUCTION

Flavor enhancement trough chemical process community avoided cause of degenerative disease. Glutamate acid from skipjack dried as solution trough solid state fermentation. This product use as flavor after fermentation process by fungus *Aspergillus oryzae*. The influence factors success are substrate condition, inoculum probiotics concentration, growth environment and fermentation time. Proceessing steps include boiled, plucked thorns, soaked in the liquid smoke 2%, dried at 40-50°C, and fermentation (Sulistijowati, 2015). Optimum growth condition *Aspergillus* sp, temperature 30-37°C dan pH 4.5-5.5 (Kavanagh, 2005). Along fermentation used *Aspergillus oryz*ae some enzyme result to complex molecules broke amylase, amyloglucosidase, xylase and protease (Han, et al 1999).

4. Teknologi Tepat Guna (Pengering Mekanik)

LEMBAGA PENELITIAN DAN PENGABDIAN MASYARAKAT

JNIVERSITAS NEGERI GORONTALO Alamat: JL Jendral Sudiman No. 06 Kota Gorontalo

Piagam Penghargaan

Diberikan kepada:

Dr. Rieny Sulistijowati, S.Pi, M.Si

Atas partisipasi sebagai

Pemateri Workshop

"Peningkatan daya saing produk Usaha Mikro Kecil Menengah (UMKM) bidang perikanan di era Masyarakat Ekonomi Asean (MEA) melalui penerapan HACCP dan strategi pemasaran"

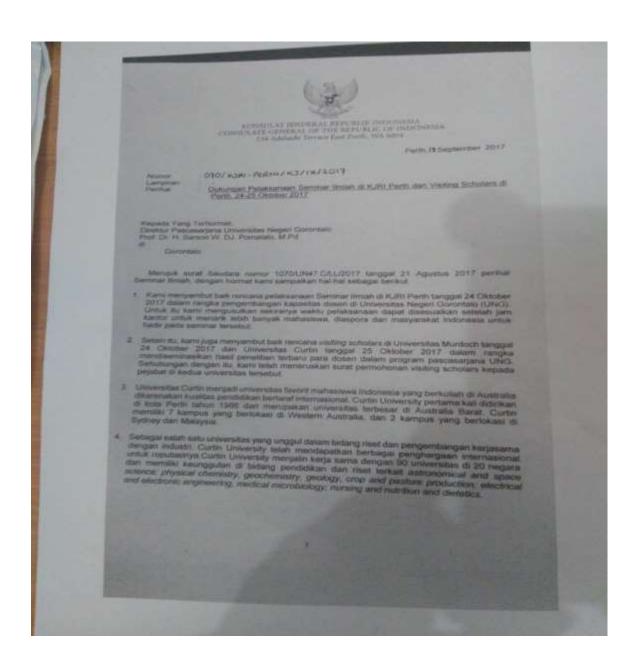
Diselenggarakan oleh Tim MP3EI UNG 2017 Gorontalo, 26 Agustus 2017

Ketua LPPM UNG

Prof. Dr. Fenty U. Puluhulawa, SH, M.Hum

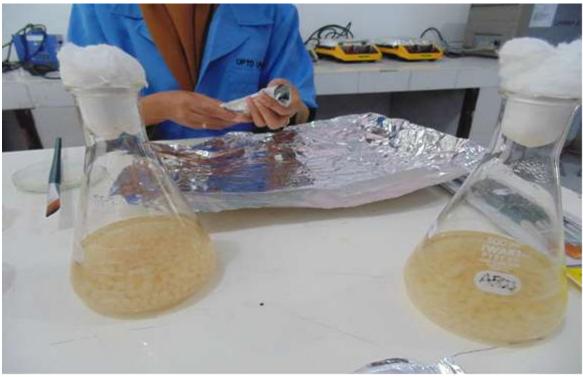
Nip. 1968040919930332001

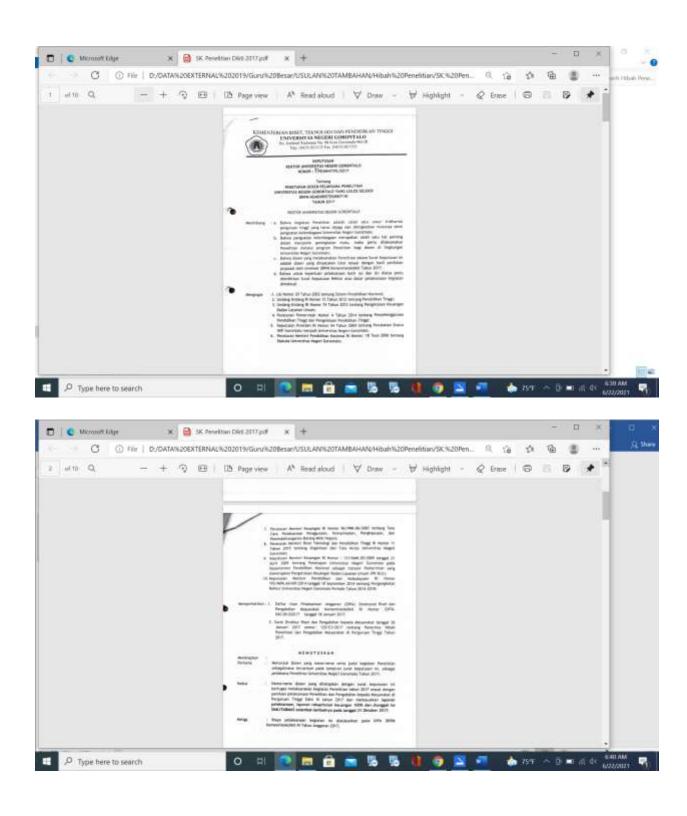
Certificate of Appreciation


Awarded to

Dr. Rieny Sulistijowaty, S.Pi, M.3

Held on Tuesday, October 24, 2017, at the Consulate General of the Republic of Indonesia As visiting lecturer in the Academic Seminar of the Visiting Scholars Program in Perth, Western Australia


Consul for Information and Social Culture


7. Proses fermentasi ikan kayu cakalang

Keempat

: Surat Keputusan ini berlaku sejak tanggal ditetapkan dan berakhir setelah kegiatan dan diberikan kepada yang bersangkutan untuk diketahui dan dilaksanakan dengan penuh rasa tanggung jawab dengan ketentuan bilamana terdapat kekeliruan akan diperbaiki sebagaimana mestinya.

> Ditetapkan di Gorontalo Pada tanggal April 2017

Rektor

Mrg Or. H. Syamsu Qamar Badu, M.Pd NIP. 19600603198603 1 003

Tembusan:

- 1. Yth. Para Wakil Rektor Universitas Negeri Gorontalo;
- 2. Yth. Dekan Fakultas di lingkungan Universitas Negeri Gorontalo;
- 3. Yth. Direktur PPs Universitas Negeri Gorontalo;
- 4. Yth. Ketua Lembaga di lingkungan Universitas Negeri Gorontalo;
- 5. Yth. Kepala Biro di lingkungan Universitas Negeri Gorontalo;
- 6. Yth. Bendahara Pengeluaran Universitas Negeri Gorontalo;
- 7. Yang bersangkutan
- 8. Arsip.

	Lampiran Nomor Tanggal Tentang	Surat Keputusan Rektor Universita : 334/UN47/PL/2017 : 3 April 2017 : Penetapan Dosen Penelitian			seleksi DRPM KEMENI	RISTEKDIKTI RI.
Ī	NAMA	JUDUL PENELITIAN	FAKULTAS	SKIM	BIAYA (RP)	Dana Tambahan
	Jumiati Ilham, ST., MT Wrastawa Ridwan, ST, MT. ST.	Pengembangan Dan Uji Kinerja Alat Reaktor Gas Tipe Fixed Dome Multi Input Skala Laboratorium	FATEK	Produk Terapan	72.500.000 50.750.000 (70%) 21.750.000 (30%)	Rp
	Ervan Hasan, MT Bambang Panji Asmara, S. T Salmawati Tansa, S. T	Pembuatan Pembangkit Sumber Energi Listrik Alternatif Dengan Model Sistem Hibri Thermolektrik Generator (TEG) Dengan Panel Sel Surya Mini Untuk Desa Mandiri Energi	FATER	Penelitian	71.500.000 50.050.000 (70%) 21.450.000 (30%)	Rp
	ir Wahab Musa MUSA M.T. Ph.D Wrastawa Ridwan,ST., MT.	Aplikasi Model Prediksi Berbasis Algoritma Genetika dan Nelder Mead Untuk Harga Energi Tak Terbarukan	FATEK	Penelitian Produk Terapan	65.000.000 45.500.000 (70%) 19.500.000 (30%)	Rp
l	Dr. Teti Sutriyati Tuloli, M.Si, s.Farm Dewirahmawati Moo	Rasionalitas Penggunaan Antibiotik dalam Terapi Demam Typhoid Pada Pasien Anak Rawat Inap di RSUD Dr. M.M. Dunda Limboto	FOK	Penelitian Produk Terapan	50.000.000 35.000.000(70%) 15.000.000 (30%)	Rp
ŀ	Madania, S.Farm, Apt, M.Sc. Hamsidar Hasan, S.Si, M.Si,Apt Nur Ain Thomas, S.Si, M.Si	Pemanfaatan Ubi Ungu Sebagai Makanan Kesehatan dalam Upaya Peningkatan Derajat Kesehatan dan Kesejahteraan Masyarakat Petani di Desa Mekar Jaya Kecamatan Duhiadaa Kabupaten Pohowato	FOK	Penelitian Produk Terapan	72.500.000 50.750.000(70%) 21.750.000 (30%)	Rp
	Dr Netty Ischak, M.Kes Deasy Natalia Botutihe S.Pd, M.Si	Pengembangan Tanaman Lokal (Ceplukan, Daun Salam, Sambiloto) Sebagai Herbal Medisin Untuk Menurunkan Kadar Glukosa Darah Pada Kasus Diabetes Mellitus Tipe 2	MIPA	Penelitian Produk Terapan	75.000.000 52.500.000(70%) 22.500.000 (30%)	Rp. 15.000.000
	Nurhayati Bialangi Mohamad Adam Mustapa S.Si, M.Sc Dr. Yuszda K. Salimi, S.Si, M.Si	Produk Senyawa Aktif Antimalaria Tumbuhan	MIPA	Penelitian Produk Terapan	70.000.000 49.000.000(70%) 21.000.000 (30%)	
l	Idham Halid Lahay, S.T Hasanuddin, S.T, M.Si	Pendekatan Ergonomi Total Pada Pekerja Pembuat Batako di Gorontalo		Penelitian Produk Terapan	67.500.000 47.250.000(70%) 20.250.000 (30%) 57.000.000	Rp
t	Hendra Uloli, S.T Dr. Widysusanti Abdulkadir, S.Si, M.Si, Apt. Robert Tungadi, S.Si., M.Si, Apt	Ekstrak Kering Teripang Laut (Holothuria scabra) Sebagai Hepatoprotektor Akibat Pemberian Dosis Hepatotoksik Parasetamol	FOK	Penelitian Produk Terapan	39.900.000(70%) 17.100.000 (30%)	
-	Asri Silvana Naiu S.Pi, M.Si Nikmawatisusanti Yusuf	Formulasi dan uji stabilitas produk herbal skin lotion yang menggunakan gelatin dari tulang Ikan Tuna hasi		Penelitian Produk Terapan	72.000.000 50.400.000(70%) 21.600.000 (30%)	Rp
-	Dr Zuhriana K.Yusuf M.Kes Dr Nanang Roswita Paramata, S.Ked, M.Kes	ekstraksi dengan cuka aren Pemanfaatan minyak kelapa murn (VCO) untuk pengobatan kulit pasier kusta	FOK	Penelitian Produk Terapan	60.000.000 42.000.000(70%) 18.000.000 (30%)	Rp
-	Wirda Y Dulahu Nikmawatisusanti Yusuf Asri Silvana Naiu S.PI, M.Si	Pengembangan Formula Sabun Cai Alami Menggunakan Gelatin Tipe dari Tulang Ikan Tuna (Thunnus sp)	r FPIK	Penelitian Produk Terapan	70.000.000 49.000.000(70%) 21.000.000 (30%)	Rp. 15.000.000
1	Asrin Lukum, M.Si	Produk Kitosan Dari Limbah Kul Udang Windu (Peneaus Monodor	it MIPA	Penelitias Produk Teranan	49.000.000(70%)	Rp. 10.000.001

F	r ir Musrowati Lasindrang	Komposit Nanosilika-Kitosan sebagai Pupuk Lepas-Lambat Si untuk Tanaman Padi	FAPERTA	PASCA DOKTOR	121.575.000 85.102.500 (70%) 36.472,500 (30%)	Rp. 17.500.000
	Dr. Rieny Sulistijowati S S.Pi, V M.Si	Produksi Asam Glutamat Dari Ikan Kayu Cakalang Hasii Solid State Fermentation (SSF) Oleh Aspergillus	FPIK	PASCA DOKTOR	169.500.000 118.650.000 70%) 50.850.000 (30%)	Rp. 17.500.000
	Prof. Dr. Drs Enos Taruh M.Pd Dr. Drs. Mursalin M.Si	Oryzae Pengembangan Perangkat Penilaian Otentik Dalam Pembelajaran IPA Fisika SMA	FMIPA	Tim Pasca Sarjana	150.000.000 105.000.000(70%) 45.000.000 (30%)	Rp. 15.000.000
	Dr. Drs. Arfan Arsyad M.Pd Prof. Dr. Abdul Kadim Masaong	Analisis Kompetensi Pengawas Dalam Implementasi Manajemen Berbasis Sekolah Melalui «br./» Penguatan Budaya Mutu Sekolah Menengah «br./» Pertama Di Kabupaten Boalemo	FIP	Tim Pasca Sarjana	150.000.000 105.000.000(70%) 45.000.000 (30%)	Rp. 15.000.000
	Karmila Machmud, Ph.D Dr. Drs. Harto Malik M.Hum	Interating Mobile Technology In Eff (English As A Foreign Language) Instructions To Promote Students' Learning Autonomy In Increasing Their Mastery Of The Language Skills	FSB	Tim Pasca Sarjana	150.000.000 105.000.000(70%) 45.000.000 (30%)	Rp
0	Dr. Drs Supriyadi M.Pd Dr Muslimin S.Pd, M.Pd	Pengembangan Model Perangkat Pembelajaran Menulis Ilmiah yang Partisipatil dan Kolaboratif untuk Mengembangkan Kecerdasan Sosial dan Emosional Mahasiswa	FSB	Tim Pasca Sarjana	150.000.000 105.000.000(70%) 45.000.000 (30%)	Rp
	Prof. Dr. Drs Ansar M.Si Dr. Drs Ikhifan Haris M.Sc.	Meningkatkan Daya Saing, Inovasi dan Kompetensi Lulusan Perguruan Tinggi Melalui Pengembangan Model Pembelajaran Berbasis Life Skill Formation	FIP	Tim Pasca Sarjana	150.000.000 105.000.000(70%) 45.000.000 (30%)	Rp. 15.000.000
2	Dr. Eng. Sri Maryati S.Si Dr. Sunarty Suly Eraku M.Pd Muhammad Kasim S.T, M.T	Model Pengelolaan DAS Bone Sebagai Penyedia Jasa Lingkungan Di Provinsi Gorontalo	MIPA	PUPT	155.000.000 108.000.000(70%) 46.500.000 (30%)	Яр
13	Eduart Wolok S.T. M.T Dr. Abdul Haffdz Olii M.Si Stella Junus S.T Zhulmaydin Fachrussyah M.Si, S.ST	Prototipe Perahu Listrik Hasil Kolaborasi Energi Surya Dan Angin Untuk Masyarakat Nelayan Tradisional	FAPERTA	PUPT	210.000.000 147.000.000(70%) 63.000.000 (30%)	Rp. 20.000.000
4	Yuniarti Koniyo M.P Dr. Juliana S.Pi, M.P	Domestikasi Ikan Manggabai (Glossogobius giuris) Melalui Optimalisasi Lingkungan dan Pakan	FPIK	PUPT	150.000.000 105.000.000(70%) 45.000.000 (30%)	Rp
75	Dr. Abdul Hafidz Olii M.Si Femmy Sahami Sri Nuryatin Hamzah M.Si	Pengembangan Potensi Sumberdaya Perikanan Nike (Awaous sp.) Berbasis Budaya Lokal Di Kota Gorontalo	FPIK	PUPT	116.500.000 81.550.000(70%) 34.950.000 (30%)	Rp
76	Dr. Yuszda K Salimi S.Si, M.Si Dr. Widysusanti Abdulkadir S.Si, M.Si, Apt. Nurhayati Bialangi	Pengembangan Produk Pangan		PUPT	135.500.000 94.850.000(70%) 40.650.000 (30%)	Rp
77	Weny JA Musa M.Si Dr. Dra Jusna Ahmad M.Si Dr. Dra Chairunnisah Jl. M.Si	Senyawa bioaktif dari tanaman tombili dan tubile sebagai pengganti pestisida sintetik pada tanaman padi yang terserang hama	123000000	PUPT	215.000.000 150.500.000(70%) 64.500.000 (30%)	Rp. 10.000.000
78	Drs. Sunarto Kadir M.Kes. Lisna Ahmad S.TP Rahmiyati Kasim S.TP	Fortifikasi Kalsium Bubur Jagung Tradisional Gorontalo Untuk Lansia dan Kajian Sosial Ekonomi		PUPT	169.000.000 118.300.000(70%) 50.700.000 (30%)	Rp. 50.000.000
79	Dr. Laksmyn Kadir S.Pd, M.Kes Wirnangsi D. Uno S.Pd, M.Kes Syam S. Kumaji M.Kes			PUPT	137.500.000 96.250.000(70%) 41.250.000 (30%)	Rp
80	Dr. Ade Muharam S.Pi, M.Si Mulis S.Pi, M.Sc	Model Teknologi Teknologi artificia Coralreef Dan Seed Protector Untul Pagintistan Brodukti Dan Kualita		PUPT	215.000.000 150.500.000(70%)	Rp. 10.000.000

	Rauf Hatu-M.Si. Ibdul Kahman Pakaya S.E., M.Si Dra. Mery Balango M.Hum	-Model Pengembangan Kapasitas Pemerintah Daerah dalam Implementasi Program Penanggulangan Kemiskinan di Kabupaten Gorontalo Provinsi Gorontalo	FIS		94.500.000(70%) 40.500.000 (30%)	пр
7	Dr.Rustam Husain S.Ag, M.Pd Dr. Zulaecha Ngiu M.Pd	Pengembangan Model Pembelajaran Berbasis Riset Untuk Meningkatkan Kemampuan Belajar Siswa	FIP	PUPT	100.000.000 70.000.000(70%) 30.000.000 (30%)	Rp, -
,	Hasdiana S.Pd., M.Sn Dr. Ayuddin S.Pd, M.T I Wayan Sudana S.Sn., M.Sn	Model-model Bancangan Produk- produk Kriya Tekstil Aplikatif Dengan Memanfaatkan Limbah Kulit Jagung	FATEK	PUPT	250.000.000 175.000.000(70%) 75.000.000 (30%)	Rp. 25.000.000
00	Prof. Dr. Fenty U. Puluhulawa 5.H., M.Hum Zuchri Abdussamad M.Si	Kebijakan Hukum Dalam Bangka Perlindungan Sumber Daya ikan Yang Berkelanjutan dan Berbasis Kearifan Lokal Pada Suku Bajo di Gorontalo	FHUKUM	PUPT	250.000.000 175.000.000(70%) 75.000.000 (30%)	Rp. 25.000.000
01	Nirwa Junus SH., MH Prof. Kartin Lihawa M.Pd Dr. Rasuna Talib M.Hum	Pengembengan Kamus istilah Adat Gerontaio dalam Bentuk Video Natural berbasis Web	F58	PUPT	125.000.000 87.500.000(70%) 37.500.000 (30%)	Rρ
02	Agus Lahinta ST., M.Kom Mukhinulfatih Latief M.T Dr. Novri Youla Kandowangko M.P Bampi Yusuf S.Kom, M.T	Pengembangan Database Berbasis Image Clustering Untuk Identifikasi Tumbuhan Obat Warisan Budaya Gorontalo	FATEK	PUPT	152.500.000 (100%) 196.750.000 (70%) 45.750.000 (30%)	
03	Faital Kasim Sitti Nursinar S.Pi., M.Si Citra Panigoro S.T, M.Si	Analisis Etnobotani Perubahan Mangrove dan Sistem Sosial Ekonomi Masyarakat untuk Pengelotaan Berkelanjutan Wilayah Pesisir Utara Gorontalo	FPIK	PUPT	72.500.000 50.750.000(70%) 21.750.000 (30%)	Rp
104	Or. Dra Reni Hiola M.Kes Dr.Rama Hiola M.Kes Lanto Mohamad K. Amali S.T	Desain Ruang Kerja Ergonomis Bagi Pengrajin Karawo di Kabupaten Gorontalo	FOK	PUPT	130.000.000 91.000.000(70%) 39.000.000 (30%)	Rp
105	Dr. Drs Usman Moonti M.Si Dr.Sastro M. Wantu M.Si Asmun W. Wantu S.Pd, M.Sc	Depolitisasi Birokrasi dan Kebijakan Pengembangan Pertanlan Agropolitan Jagung Dalam Meningkatkan Ekonomi Petani di Provinsi Gorontalo	FEKON	MP3EI	185,000,000 129,500,000(70%) 55,500,000 (30%)	Rp. 30.000.000
106	Or.Amir Halid S.E., M.St. A.Md Dr.Mohamad Ikbai Bahua SP. M.SI Ir. Zainudin Antuli M.SI	Pengembangan Produk Olahan Jagung Sebagai Lokomotif Perekonomian Masyarakat Di Provinsi Gorontalo	FEKON	мезеі	183.000.000 128.100.000(70%) 54.900.000 (30%)	яр. 30.000.00
107	Affi Sahri Baruadi M.Si Prof Dr. Ramli Utina M.Pd Abubakar Sidik Katili S.Pd., M.Sc	Penerapan Intervensi Sosial dan Intervensi Teknologi Pada Perikanan Artisarial Yang ramah Lingkungan Untuk Meningkatkan Pendapatan Masyarakat Suku Bajo Di Provinsi Gorontalo	FPIK	MP3EI	148.000.000 103.600.000(70%) 44.400.000 (30%)	Rp. 50.000.000
108	Dr. Muhammad Amir Arham S.Pd Lukman Mile S.Pi, M.Si	Pengembangan Usaha Ikan Julung- Julung (Hemirhampus sp) Asap Sebagai Komoditi Lokal Unggulan Kabupaten Gorontalo utara.		MP3EI	185.000.000 129.500.000(70%) 55.500.000 (30%)	яр. 30.000.000
	THE	CONTRACTOR AND STREET	,	UMLAH DANA	10.942.975.000 7.660.082.500 (70% 3.282.892.500 (30%	

Trot. Dr. H. Syamsu Qamar Badu, M.Pd