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Abstract. This research discusses the math model of spreading cholera disease with a mathematical model 

constructed by considering a vaccination strategy. In addition, there is a population of hyper infectious and less 
infectious bacteria, so the model of SVIR-BhiBli type. The model is formed in fixed-point determination, basic 

reproductions numbers, analysis of the equilibrium point, and sensitivity analysis The equilibrium analysis produces 

two equilibrium points of disease-free equilibrium point is locally asymptotically stable if 𝑅0 < 1 and endemic 

equilibrium points will be locally asymptotically stable if 𝑅0>1. Furthermore, a numerical simulation that the 

increase in vaccination rate influences the decline in 𝑅0 value while increased rate of vaccine depreciation can 

increase the value of 𝑅0. In addition, sensitivity analysis shows that if the parameter 𝜉 is enhanced while other 

contrast parameters will contribute to the increase in 𝑅0 value, it can increase the rate of transmission of cholera 

disease. Whereas if the parameter  𝜇𝑝 is enhanced while other contrast parameters will contribute to the decrease in 

𝑅0 value, the dissemination of the disease can be pressed very significantly. 
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1. INTRODUCTION 

Cholera is an acute intestinal infection that occurs due to consuming food and water contaminated with 

Vibrio cholerae. This bacterium produces enterotoxins that cause excessive discharge of body fluids. Body 

fluids with the Vibrio cholerae bacteria have a high infection rate (hyper infectious). However, the infection 

will not last long, and the nature of the infection can decrease to less infectious (weak infection). It means 

that hyper infectious bacteria will only be digested if an infected individual uses the same toilet on the same 

day [1]. WHO has released data that there are 132.121 cases of cholera with 2,420 reported deaths [2-3]. 

The high number of reported cases shows that there needs to be a solution to control and prevent the 

spread of cholera. In mathematics, this problem can be studied from a modeling perspective. Mathematical 

modeling is a field of mathematics that simplifies problems in the real world into mathematical statements in 

the form of equations and inequalities so that the proper understanding is obtained [4]. Many mathematicians 

have mathematical modeling of cholera, which is still developing today. 

The model of the spread of cholera discussed by Rahmi discusses the cholera model with the Hyper 

infectious type of Vibrio cholerae bacteria [5]. Tian involves a vaccination strategy by dividing the population 

into five compartments, namely the number of susceptible individuals (S), the number of individuals who are 

infected and can infect other individuals (I), the number of recovered individuals (R), the number of 

individuals vaccinated (V), and the concentration of toxigenic V. cholerae in water (B). In addition, Kokomo 

and Emvudu formulated an age-structured cholera model with vaccination and demographic movement [6]. 

Furthermore, Lin et al. investigated cholera transmission dynamics with hyperinfected vibrio by involving a 

control strategy [7]. A recent study conducted by Nuha and Resmawan discussed a mathematical model of 

the spread of cholera by considering the incubation period [8]. 

In this study, a new model is introduced, which refers to the Tian model [5] by modifying the 

concentration of toxigenic V. cholerae in water (B) into two sub-populations, namely the concentration of 

hyper infectious bacteria (Bhi) and the concentration of less infectious bacteria (Bli). Bhi is a class of bacterial 

population with a high infection rate, and Bli is a class of bacterial population with a low infection rate. The 

addition of the Bhi variable was to determine the spread of cholera from humans caused by using the same 

toilet simultaneously. It has a higher risk of transmission [5-9]. The addition of the Bli variable because Vibrio 

cholerae bacteria that have been in the environment within hours will become less infectious and have a lower 

infection rate [7]. Another modification was done by adding a mortality variable to hyper infectious bacteria 

(Bhi) using the water sanitation control method [10]. 

 

 

2. RESEARCH METHODS 

This research used the literature study method with the following stages: 

1. Determine the problem, 

2. Formulate the problem, 

3. Theoretical studies, 

4. Analysis for problem-solving, and 

5. Draw conclusions.  

The problem was determined and formulated through a literature study of scientific references related 

to cholera disease and mathematical modeling. Theoretical studies were carried out by collecting library 

resources to support the research. Furthermore, the stages and analytical procedures in this study were carried 

out as follows:  

1. Determination of assumptions, 

2. Finding the equilibrium point, 

3. Determine the value of R0, 

4. Conduct research using the Jacobian matrix, 

5. Finding the eigenvalues, 

6. Perform equilibrium point analysis, and 

7. Provide biological interpretation to obtain conclusions. 
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3. RESULTS AND DISCUSSION 

3.1. Mathematical Model 

The assumptions used in this model were: 

1. The total human population is not constant because the death and birth rates are not the same. 

2. The population is closed, with no migration either into or out of the population. 

3. Newborn individuals will enter the population susceptible to cholera. 

4. The vaccinated susceptible population will enter the vaccinated population. 

5. Individuals who have been vaccinated will experience an increase in body resistance. However, the 

vaccines available in the human body will continue to decrease. Therefore, the population can return 

to the susceptible population. 

6. The vaccinated population can enter the infected population because not all vaccines function 

effectively. The vaccine is not effective in preventing infection. 

7. Individuals can become infected with cholera by consuming food or drink contaminated with V. 

cholerae hyper infectious bacteria (caused by an infected individual with a susceptible individual) or 

V. less infectious bacteria (consuming contaminated food or drink without encountering an infected 

individual with a susceptible individual). 

8. Some individuals in the infected population can enter the recovered population because they are 

recovering. 

9. Cholera can cause death. 

10. Every population experiences a natural death. 

11. Total population can be written as N = S + V + I + R 

The pattern of spread of cholera can be seen in the compartment diagram Figure 1. 

 

 
Figure 1. Compartment Diagram Model of the spread of cholera by the Hyper infectious  

type of Vibrio cholerae bacteria with Vaccination strategy 

 

Based on Figure 4.1, the differential equation of the mathematical model is obtained as follows, 

𝑑𝑆

𝑑𝑡
= 𝐴 + 𝜂 𝑉 − 𝜙 𝑆 − (𝛽ℎ𝑖

𝐵ℎ𝑖

𝐾ℎ𝑖 + 𝐵ℎ𝑖
+ 𝛽𝑙𝑖

𝐵𝑙𝑖

𝐾𝑙𝑖 + 𝐵𝑙𝑖
) 𝑆 − 𝜇 𝑆 

𝑑𝑉

𝑑𝑡
= 𝜙 𝑆 − (𝛽ℎ𝑖

𝐵ℎ𝑖

𝐾ℎ𝑖 + 𝐵ℎ𝑖
+ 𝛽𝑙𝑖

𝐵𝑙𝑖

𝐾𝑙𝑖 + 𝐵𝑙𝑖
)𝜎 𝑉 − (𝜂 + 𝜇)𝑉 
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𝑑𝐼

𝑑𝑡
= (𝛽ℎ𝑖

𝐵ℎ𝑖

𝐾ℎ𝑖 + 𝐵ℎ𝑖
+ 𝛽𝑙𝑖

𝐵𝑙𝑖

𝐾𝑙𝑖 + 𝐵𝑙𝑖
) (𝑆 + 𝜎 𝑉) − (𝜇 + 𝛾 + 𝑑)𝐼                                                                         (1)  

𝑑𝑅

𝑑𝑡
= 𝛾 𝐼 − 𝜇 𝑅 

𝑑𝐵ℎ𝑖

𝑑𝑡
= 𝜉 𝐼 − (𝜒 + 𝜔)𝐵ℎ𝑖 

𝑑𝐵𝑙𝑖

𝑑𝑡
= 𝜒 𝐵ℎ𝑖 − (𝜇𝑝 + 𝜔)𝐵𝑙𝑖 

With the following parameters and variables used, S, V, I, R are the population of Susceptible- 

Vaccinated-Infected-Recovered individuals. Bhi and Bli are the population of Hyper infectious-less 

infectious bacteria. A is the birth rate, 𝜙 is the vaccination rate, η is the vaccine shrinkage rate, µ is the natural 

death rate, σ is the rate of decline in vaccine effectiveness, γ is the recovery rate, d is the death rate from 

cholera, ξ is the contribution rate of each infected person to the population of hyper infectious V. cholerae 

bacteria in aquatic environment. χ is the rate of bacterial transition from hyper infectious to less infectious, ω 

is the rate of bacterial death due to water sanitation, 𝜇𝑝 is the natural death rate for bacteria, 𝛽ℎ𝑖  is the rate of 

hyper infectious bacteria ingested by individual S from contaminated water, 𝛽𝑙𝑖 is the rate of ingestion of 

hyper infectious bacteria by individual S from contaminated water, 𝐾ℎ𝑖  is the concentration of hyper 

infectious bacteria in the water that causes a 50 percent chance of getting cholera, and 𝐾𝑙𝑖 is the concentration 

of less infectious bacteria in the water that causes a 50 percent chance of getting cholera. Next, we will find 

the equilibrium point of the system of equations (1) and analyze the stability properties of the equilibrium 

point. 

 

3.2. Equilibrium Point and Basic Reproductive Number 

Solving equation (1) obtains two equilibrium points, namely, the disease-free equilibrium point 

 𝐸0(𝑆, 𝑉, 𝐼, 𝑅, 𝐵ℎ𝑖, 𝐵𝑙𝑖) = (
𝐴(𝜂+𝜇)

𝜇(𝜂+𝜇+𝜙)
+

𝐴𝜙

𝜇(𝜂+𝜇+𝜙)
, 0,0,0,0) and Endemic Equilibrium Point 

𝐸1(𝑆, 𝑉, 𝐼, 𝑅, 𝐵ℎ𝑖 , 𝐵𝑙𝑖) = (𝑆∗, 𝑉∗, 𝐼∗, 𝑅∗, 𝐵ℎ𝑖
∗, 𝐵𝑙𝑖

∗) 

where 

𝑆∗ =
𝐴 + 𝑉∗ 𝜂

𝐵ℎ𝑖
∗   𝛽ℎ𝑖

𝐵ℎ𝑖
∗ +𝐾ℎ𝑖

+
𝐵𝑙𝑖

∗ 𝛽𝑙𝑖

𝐵𝑙𝑖
∗ +𝐾𝑙𝑖

+ 𝜇 + 𝜙
                                                                               𝑅∗ =

𝐼∗𝛾

𝜇
 

𝑉∗ =
𝑠𝜙

𝜂 + 𝜇 (
𝐵ℎ𝑖

∗ 𝛽ℎ𝑖

𝐵ℎ𝑖
∗ +𝐾ℎ𝑖

+
𝐵𝑙𝑖

∗ 𝛽𝑙𝑖

𝐵𝑙𝑖
∗ +𝐾𝑙𝑖

)𝜎
                                                                           𝐵ℎ𝑖

∗ =
𝐼∗𝜉

𝜒 + 𝜔
 

𝐼∗ =
(𝐵ℎ𝑖

∗ 𝛽ℎ𝑖(𝐵𝑙𝑖
∗ + 𝐾𝑙𝑖) + 𝐵𝑙𝑖

∗ 𝛽𝑙𝑖(𝐵ℎ𝑖
∗ + 𝐾ℎ𝑖))(𝑆

∗ + 𝑉∗𝜎)

(𝐵ℎ𝑖
∗ + 𝐾ℎ𝑖)(𝐵𝑙𝑖

∗ + 𝐾𝑙𝑖)(𝑑 + 𝜇 + 𝛾)
                             𝐵𝑙𝑖

∗ =
𝐵ℎ𝑖

∗ 𝜒

𝜇𝑝 + 𝜔
 

The primary reproductive number is used to determine how big the potential spread of disease is. The 

primary reproduction number is determined by referring to equation (1) using The next generation matrix 

method, which is denoted by K [11-12]. The next generation matrix is defined as 𝐾 = 𝐹𝑉−1, where the matrix 

F represents the matrix of the increasing number of individuals who are included in the population infected 

with cholera and matrix V represents the matrix of the increase in the population of infected individuals due 

to death and recovery from the disease so that 𝑅0 value was obtained as follows 

𝑅0 =
𝐴𝜉(𝜂 + 𝜇 + 𝜎𝜙) (𝐾ℎ𝑖𝜒𝛽𝑙𝑖 + 𝐾𝑙𝑖𝛽ℎ𝑖(𝜇𝑝 + 𝜔))

𝐾ℎ𝑖𝐾𝑙𝑖𝜇(𝑑 + 𝜇 + 𝛾)(𝜂 + 𝜇 + 𝜙)(𝜒 + 𝜔)(𝜇𝑝 + 𝜔)
                                         (2) 

or 𝑅0 = 𝑅1 + 𝑅2 with 

𝑅1 =
𝐴𝜉𝜒𝛽𝑙𝑖(𝜂+𝜇+𝜎𝜙)

𝐾𝑙𝑖𝜇(𝑑+𝜇+𝛾)(𝜂+𝜇+𝜙)(𝜒+𝜔)(𝜇𝑝+𝜔)
 and 𝑅2 =

𝐴𝜉𝛽ℎ𝑖(𝜂+𝜇+𝜎𝜙)

𝐾ℎ𝑖𝜇(𝑑+𝜇+𝛾)(𝜂+𝜇+𝜙)(𝜒+𝜔)
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3.3. Stability Analysis 

Theorem 1. The disease-free equilibrium fixed point (𝐸0) is locally asymptotically stable if 𝑅0 < 1 and 

unstable if 𝑅0 > 1. 

Proof. The disease-free equilibrium point jacobian matrix is obtained by substituting the equilibrium point 

(𝐸0) into the jacobian matrix of equation (1), and is defined as follows 

𝐽(𝐸0) =

[
 
 
 
 
 
𝐴11

𝐴21

0
0
0
0

𝐴12

𝐴22

0
0
0
0

0
0

𝐴33

𝐴43

𝐴53

0

0
0
0

𝐴44

0
0

𝐴15

𝐴25

𝐴35

0
𝐴55

𝐴65

𝐴16

𝐴26

𝐴36

0
0

𝐴66]
 
 
 
 
 

                                          (3) 

with 

𝐴11 = −𝜇 − 𝜙 𝐴35 =
𝐴𝛽ℎ𝑖(𝜂+𝜇)

𝐾ℎ𝑖𝜇(𝜂+𝜇+𝜙)
+

𝐴𝛽ℎ𝑖𝜎𝜙

𝐾ℎ𝑖𝜇(𝜂+𝜇+𝜙)
 

𝐴12 = 𝜂 𝐴36 =
𝐴𝛽𝑙𝑖(𝜂+𝜇)

𝐾𝑙𝑖𝜇(𝜂+𝜇+𝜙)
+

𝐴𝛽𝑙𝑖𝜎𝜙

𝐾𝑙𝑖𝜇(𝜂+𝜇+𝜙)
 

𝐴15 = −
𝐴𝛽ℎ𝑖(𝜂+𝜇)

𝐾ℎ𝑖𝜇(𝜂+𝜇+𝜙)
 𝐴43 = 𝛾 

𝐴16 = −
𝐴𝛽𝑙𝑖(𝜂+𝜇)

𝐾𝑙𝑖𝜇(𝜂+𝜇+𝜙)
 𝐴44 = −𝜇 

𝐴21 = 𝜙 𝐴53 = 𝜉 

𝐴22 = −𝜂 − 𝜇 𝐴55 = −𝜒 − 𝜔 

𝐴25 = −
𝐴𝛽ℎ𝑖𝜎𝜙

𝐾ℎ𝑖𝜇(𝜂+𝜇+𝜙)
 𝐴65 = 𝜒 

𝐴26 = −
𝐴𝛽𝑙𝑖𝜎𝜙

𝐾𝑙𝑖𝜇(𝜂+𝜇+𝜙)
 𝐴66 = −𝜇𝑝 − 𝜔 

𝐴33 = −𝑑 − 𝜇 − 𝛾 

Next, find the eigenvalues of the Jacobian matrix in equation (3), based on the characteristic equation  

det(𝜆𝐼 − 𝐽𝐸0) = 0 

generate equation 

(𝐴44 − 𝜆)(((𝐴33 − 𝜆)(𝐴55 − 𝜆) − 𝐴35𝐴53)(𝐴66 − 𝜆) + 𝐴36𝐴53𝐴65) (𝐴12𝐴21 + (𝐴11 − 𝜆)(𝜆 − 𝐴22)) = 0           (4) 

Based on equation (4), six eigenvalues are obtained. One of them is 

𝜆1 = 𝐴22 = −𝜇 < 0 

The other two eigenvalues are obtained from the equation 

𝑎0𝜆
2 + 𝑎1𝜆 + 𝑎2 = 0                                                                          (5) 

with 

𝑎0 = 1 

𝑎1 = 𝜂 + 2𝜇 + 𝜙 

𝑎2 = 𝜇(𝜂 + 𝜇 + 𝜙) 

Since all parameters are positive and based on the nature of the roots of the quadratic equation in equation 

(5), we get 

𝜆2 + 𝜆3 = −
𝑎1

𝑎0
= −𝑎1 < 0                                                              (6) 

𝜆2𝜆3 =
𝑎2

𝑎0
= 𝑎2 > 0                                                                           (7) 

From equation (7) it is known that 𝜆2 and 𝜆3 have the same sign. Based on equation (6) it is known that 𝜆2 <
0 and 𝜆3 < 0. 

Furthermore, the other three eigenvalues are obtained from the equation 

𝑎0𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 = 0                                                           (8) 
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where 

𝑎0 = 1 

𝑎1 = 𝑑 + 𝜒 + 𝜇 + 𝜇𝑝 + 𝛾 + 2𝜔 

𝑎2 = ((1 − 𝑅2)(𝜒 + 𝜔) + (𝜇𝑝 + 𝜔)) (𝑑 + 𝜇 + 𝛾) + (𝜇𝑝 + 𝜔)(𝑥 + 𝜔) 

𝑎3 = (1 − 𝑅0)(𝑑 + 𝜇 + 𝛾)(𝜇𝑝 + 𝜔)(𝜒 + 𝜔) 

Before determining the eigenvalues, it is necessary to ensure that 𝑎0, 𝑎1, 𝑎2, 𝑎3 are positive. Since all 

parameter values are positive, 𝑎0 and 𝑎1 are definitely positive. Note that if 𝑅0 < 1, so 𝑎2 has positive value. 

Likewise, with 𝑎3 has positive value if only the condition 1 − 𝑅0 > 0 which means 𝑅0 < 1. 

Next, 3 eigenvalues will be identified from equation (8), namely 𝜆4, 𝜆5 dan 𝜆6. Based on the nature of the 

cubic equations, the following system of equations is obtained: 

𝜆4 + 𝜆5 + 𝜆6 = −
𝑎1

𝑎0
= −𝑎1 < 0                                                    (9) 

𝜆4𝜆5 + 𝜆4𝜆6 + 𝜆5𝜆6 =
𝑎2

𝑎0
= 𝑎2 > 0                                            (10) 

𝜆4𝜆5𝜆6 = −
𝑎3

𝑎0
= −𝑎3 < 0                                                             (11) 

From equation (9), because all parameters are positive then 

𝜆4 + 𝜆5 + 𝜆6 < 0                                                                               (12) 

From the equation (10), 

𝜆4(𝜆5 + 𝜆6) + 𝜆5𝜆6 > 0                                                                  (13) 

From the equation (11), 

𝜆4𝜆5𝜆6 < 0                                                                     (14) 

The conditions in equation (12) are met if at least one of 𝜆4, 𝜆5,  and 𝜆6 is negative. For example, 𝜆4 < 0, 

then based on equations (13) and (14), 𝜆5 and 𝜆6 must be negative. Conversely, if 𝑅0 < 1, so 𝑎3 < 0 which 

results in one of 𝜆4, 𝜆5,  and 𝜆6 has positive value. Thus, the equilibrium point 𝐸0 is locally asymptotically 

stable, if 𝑅0 < 1 and unstable if 𝑅0 > 1.  

Theorem 2. Endemic fixed point 𝐸∗ is locally asymptotically stable if 𝑅0 > 1 and unstable if 𝑅0 < 1. 

Proof. The proof of this theorem refers to the Castillo-Chaves theorem and Song [13]. For example, 𝛽𝑙𝑖 = 𝜑 

is a bifurcation parameter that is chosen randomly as a threshold for changing stability properties. Define new 

variables 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, and 𝑥6 which represent 𝑆, 𝑉, 𝐼, 𝑅, 𝐵ℎ𝑖, 𝐵𝑙𝑖 respectively. Based on equation (1) a 

new system of equations is formed 

𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = 𝐴 + 𝜂 𝑥2 − 𝜙 𝑥1 − (𝛽ℎ𝑖

𝑥5

𝐾ℎ𝑖 + 𝑥5
+ 𝛽𝑙𝑖

𝑥6

𝐾𝑙𝑖 + 𝑥6
) 𝑥1 − 𝜇 𝑥1 

𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = 𝜙 𝑥1 − (𝛽ℎ𝑖

𝑥5

𝐾ℎ𝑖 + 𝑥5
+ 𝛽𝑙𝑖

𝑥6

𝐾𝑙𝑖 + 𝑥6
)𝜎 𝑥2 − (𝜂 + 𝜇)𝑥2 

𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)

= (𝛽ℎ𝑖

𝑥5

𝐾ℎ𝑖 + 𝑥5
+ 𝛽𝑙𝑖

𝑥6

𝐾𝑙𝑖 + 𝑥6
) (𝑥1 + 𝜎 𝑥2)

− (𝜇 + 𝛾 + 𝑑)𝑥3                                                                                                                             (15)  
𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = 𝛾 𝑥3 − 𝜇 𝑥4 

𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = 𝜉 𝑥3 − (𝜒 + 𝜔)𝑥5 

𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = 𝜒 𝑥5 − (𝜇𝑝 + 𝜔)𝑥6 

Note that, 𝑅0 = 1 is equivalent to 

𝜑∗ =
𝐾𝑙𝑖𝜇(𝑑 + 𝜇 + 𝛾)(𝜂 + 𝜇 + 𝜙)(𝜒 + 𝜔)(𝜇𝑝 + 𝜔)(1 − 𝑅2)

𝐴𝑥𝜉(𝜂 + 𝜇 + 𝜎𝜙)
 

And the equilibrium point 𝐸0 has five negative eigenvalues and one zero eigenvalue. The zero eigenvalues 

have a right eigenvector (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6), namely: 
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𝑢1 = −
𝐴((𝜂 + 𝜇)2 + 𝜂𝜎𝜙) (𝐾ℎ𝑖 𝜒 𝛽𝑙𝑖 + 𝐾𝑙𝑖𝛽ℎ𝑖(𝜇𝑝 + 𝜔))

𝐾ℎ𝑖𝐾𝑙𝑖𝜇
2(𝜂 + 𝜇 + 𝜙)2(𝜇𝑝 + 𝜔)

𝑢5 < 0   

𝑢2 = −
𝐴𝜙(𝜂 + 𝜇 + 𝜇𝜎 + 𝜎𝜙) (𝐾ℎ𝑖 𝜒 𝛽𝑙𝑖 + 𝐾𝑙𝑖𝛽ℎ𝑖(𝜇𝑝 + 𝜔))

𝐾ℎ𝑖𝐾𝑙𝑖𝜇
2(𝜂 + 𝜇 + 𝜙)2(𝜇𝑝 + 𝜔)

𝑢5 < 0  

𝑢3 =
(𝜒 + 𝜔)

𝜉
𝑢5 > 0 

𝑢4 =
𝛾(𝜒 + 𝜔)

𝜇𝜉
𝑢5 > 0   

𝑢5 > 0  bebas 

𝑢6 =
𝜒

𝜇𝑝 + 𝜔
𝑢5 > 0  

and the left eigenvector(𝑣1, 𝑣, 𝑣3, 𝑣4, 𝑣5, 𝑣6) which is formulated as follows: 

𝑣1 =
𝜙

𝜇 + 𝜙
𝑣2 > 0 

𝑣2 > 0   free 

𝑣3 =
𝐴𝜉𝜙(𝜂 + 𝜇 + 𝜇𝜎 + 𝜎𝜙) (𝐾ℎ𝑖  𝜒 𝛽𝑙𝑖 + 𝐾𝑙𝑖 𝛽ℎ𝑖(𝜇𝑝 + 𝜔))

𝐾ℎ𝑖(𝜇 + 𝜙)𝐾𝑙𝑖𝜇(𝑑 + 𝜇 + 𝛾)(𝜂 + 𝜇 + 𝜙)(𝑥 + 𝜔)(𝜇𝑝 + 𝜔)(𝑅0 − 1)
𝑣2 

𝑣4 = 0 

𝑣5 =
𝐴𝜙(𝜂 + 𝜇 + 𝜇𝜎 + 𝜎𝜙) (𝐾ℎ𝑖  𝜒 𝛽𝑙𝑖 + 𝐾𝑙𝑖𝛽ℎ𝑖(𝜇𝑝 + 𝜔))

𝜇(𝜇 + 𝜙)𝐾ℎ𝑖𝐾𝑙𝑖(𝜂 + 𝜇 + 𝜙)(𝑥 + 𝜔)(𝜇𝑝 + 𝜔)(𝑅0 − 1)
𝑣2 

𝑣6 =
𝐴𝛽𝑙𝑖(𝑑 + 𝜇 + 𝛾 )𝜙(𝜂 + 𝜇 + 𝜇𝜎 + 𝜎𝜙)(𝑥 + 𝜔)

(𝜇 + 𝜙)𝐾𝑙𝑖𝜇(𝑑 + 𝜇 + 𝛾)(𝜂 + 𝜇 + 𝜙)(𝑥 + 𝜔)(𝜇𝑝 + 𝜔)(𝑅0 − 1)
𝑣2 

Using the Castillo-Chavez Theorem and Song [13], it is defined 

                                              𝑎 = ∑ 𝑣𝑘𝑢𝑖𝑢𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(𝐸0, 𝜑∗)

6

𝑘,𝑖,𝑗=1

𝑏 = ∑ 𝑣𝑘𝑢𝑖

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝜑

(𝐸0, 𝜑∗)

6

𝑘,𝑖,𝑗=1

                  (16) 

Based on equations (15) and (16), the values of a and b are obtained as follows 

𝑎 =
𝐴2𝜉𝜙(𝜂+𝜇+𝜇𝜎+𝜎𝜙)((𝜂+𝜇)2+𝜎(2𝜂+𝜇+𝜇𝜎)𝜙+𝜎2𝜙2)(𝐾ℎ𝑖 𝜒 𝛽𝑙𝑖+𝐾𝑙𝑖𝛽ℎ𝑖(𝜇𝑝+𝜔))

3

𝐾ℎ𝑖
3 𝐾𝑙𝑖

3𝜇3(𝑑+𝜇+𝛾)(𝜇+𝜙)(𝜂+𝜇+𝜙)3(𝑥+𝜔)(𝜇𝑝+𝜔)
3
(1−𝑅0)

𝑢5
2𝑣2                                        (17) 

𝑏 =
𝐴𝑥𝜙(𝜂 + 𝜇 + 𝜇𝜎 + 𝜎𝜙)

(𝜇 + 𝜙)𝐾𝑙𝑖𝜇(𝜂 + 𝜇 + 𝜙)(𝜇𝑝 + 𝜔)(𝑅0 − 1)
𝑢5𝑣2                                                                                         (18) 

Based on equations (17) and (18), the values of a and b depend on the value of 𝑅0. The condition 𝑅0 < 1 will 

result 𝑎 > 0 and 𝑏 < 0 dan 0 < 𝜑 ≪ 1. This fulfills case 3 of the Castillo-Chaves and Song theorem [11] 

which states that 𝐸0 is locally asymptotically stable and a positive fixed point 𝐸∗ is unstable. On the other 

hand, the condition 𝑅0 > 1 resulted in values 𝑎 < 0 and 𝑏 > 0 which fulfills case 4 of the Castillo-Chaves 

and Song theorem [11]. This shows that if 𝜑 changes from 𝜑 < 0 (𝑅0 < 1) to > 0 (𝑅0 > 1), it causes the 

fixed point 𝐸0 change from stable to unstable. Besides, the endemic fixed point 𝐸∗ changed from negative to 

positive and locally asymptotically stable. In other words, if 𝑅0 > 1, the endemic point 𝐸∗ is locally 

asymptotically stable.  

Stability properties are presented completely in Table 1.  

Table 1. Table Point Stability Properties 

Condition Fixed Point Without Disease Endemic Fixed Point 

𝑅0 < 1 Exist and Locally asymptotically 

stable  

Exist and Unstable 

𝑅0 > 1 Exist and Unstable Exist and Locally asymptotically stable 

  



288  Abdul, et. al.     Dynamic Analysis Of The Mathematical Model Of …..…  

 

3.4. Numerical Simulation 

Numerical simulations were carried out using python software to show the stability properties of each 

fixed point in the numerical system. Furthermore, the stability properties of each fixed point in the numerical 

system are shown. There is a numerical simulation to see how the population dynamics in the model are based 

on the parameter values in Table 2. 

 
Table 2. Parameter value used 

Parameter 𝑅0 < 1 𝑅0 > 1 Sources 

𝜒 

𝐾𝑙𝑖 

𝐴 

𝜙 

𝜂 

𝜇 

𝜎 

𝑑 

𝛾 

𝜉 

𝜔 

𝛽ℎ𝑖 

𝛽𝑙𝑖 

𝜇𝑝 

𝐾ℎ𝑖 

0.8 

2(106) 
0.1 

0.01 

0.005 

5.48(10−5) 

0.1 

0.015 

0.0001 

3 

0.5 

0.0075 

0.00012 

0.132 

2.86(103) 

0.2 

106 
0.1 

0.01 

0.005 

5.48(10−5) 

0.1 

0.015 

0.004 

10 

0.4 

0.0075 

0.00012 

0.033 

1.43(103) 

[1] 

[1] 

[5] 

[5]  

[5] 

[5] 

[5] 

[5] 

Assumption 

Assumption 

Assumption 

[14] 

[14]  

[15] 

[16] 

 

Sensitivity Analysis 

Sensitivity analysis was conducted to determine the basic reproduction rate parameters. The primary 

reproduction rate analyzed is in the condition of 𝑅0 > 1 which shows how much infection will occur in the 

environment. Based on this, it is necessary to conduct a sensitivity analysis on these parameters to determine 

what efforts must be made to suppress the spread of cholera. One way is to look at the sensitivity index of 𝑅0 

using Chitnis formula formula [17-18]. The parameter values in Table 1 are input into the sensitivity analysis 

for the equation 𝐶𝑝
𝑅0 . Next, the value 𝑅0   of 3.86246 and the other sensitivity index values can be seen in 

Table 3. 
 

Table 3. Sensitivity Index for 𝑹𝟎 > 𝟏 

Parameter Index value Parameter Index value Parameter Index value 

𝐴 

𝜉 

𝜙 

𝜂 

𝜇 
 

1 

1 

-0.49 

0.49 

-0.99 

 

𝜎 

𝛾 

𝑑 

𝜔 

𝛽ℎ𝑖 
 

0.16 

-0.20 

-0.78 

-0.66 

0.99 

 

𝜒 

𝜇𝑝 

𝐾ℎ𝑖 

𝐾𝑙𝑖 

-0.33 

-0.08 

-0.99 

-0.10 

 

The sensitivity index in Table 3 has a sensitivity index value 𝑅0 that has a positive and a negative 

values and each parameter value has a varying effect on 𝑅0. A positive value indicates that if the parameter 

value is increased (decreased) while the other parameter values are constant, it will contribute to an increase 

(decrease) in the basic reproduction rate. For example, the value of the contribution rate parameter of each 

infected person to the population of Hyper infectious bacteria in an aquatic environment is denoted by 𝜉. It 

has a positive sensitivity index. This indicates that if the value of 𝜉 is increased, the value of 𝑅0 will also 

increase. On the other hand, a negative value indicates that if the parameter value is increased (decreased) 

while other parameters are held constant, it will contribute to a decrease (increase) in the basic reproduction 

number. Sensitivity analysis shows that the most sensitive parameter to changes in the value of 𝑅0 is the birth 

rate and the contribution rate of each infected person to the population of V. Cholers hyper infectious bacteria 

in the aquatic environment. It means that an increase in the value of 𝑅0 will increase in the bacterial 

population.  
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Population Dynamics 

Population dynamics of the spread of cholera with a vaccination strategy will be observed under the 

following conditions: 𝑅0 < 1 and 𝑅0 > 1. The initial value used is 𝑆(0) = 500, 𝑉(0) = 0, 𝐼(0) = 350,
𝑅(0) = 0, 𝐵ℎ𝑖(0) = 200, 𝐵𝑙𝑖 = 100. 

Equation (1) has one disease-free equilibrium point. The equilibrium point is obtained by substituting 

equation (1) into the parameters in Table 1 with the value of 𝑅0 = 0,293076  and the equilibrium point is 

𝐸0 = (612,701 1212,12 0 0 0 0). The population dynamics for  𝑅0 < 1 can be seen in Figure 2. 

 

 

 
Figure 2. Population Dynamics for 𝑹𝟎 < 𝟏 

 

Figure 2 shows that each population is stable towards a disease-free equilibrium point. The susceptible 

population experienced a decrease in population from the initial value = 1000 down to a stable condition 

around S = 612 people. Meanwhile, for the individual population that has been vaccinated, the population 

has increased from the initial value to a stable point at V=1,212 people. Meanwhile, for the infected 

population, the population recovered, and the bacterial population decreased from the initial point until it 

reached a stable point 𝐼 = 𝑅 = 𝐵ℎ𝑖 = 𝐵𝑙𝑖 =  0. 

Then, the value of 𝑅0 > 1 with the basic reproduction number 𝑅0 = 3;  36681 was found. The 

followings are  equilibrium points 𝐸1 = (189,866 373,367 3,62821 264,833 60,4702 27,9308). 

Thus, the human population for the condition 𝑅0 > 1 can be seen in Figure 3. 
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Figure 3. Population Dynamics for 𝑹𝟎 > 𝟏 

 

Figure 3 shows that each population at one time is not immediately stable but still fluctuates. At a 

particular time, the population will experience an increase or decrease depending on the factors that influence 

it. Until a specific time (t), it will be stable. It shows that each population is approaching the endemic 

equilibrium point. The population susceptible to the spread of cholera has decreased until it reaches a stable 

point when S = 189,866 or about 190 people and (vaccinated population) V = 373,367 or about 373 people. 

The population recovered from cholera was stable at R=264,833 or about 265 people, for infected pollutant I 

= 3.62821 or about 4 people, for the population of bacteria Bhi = 60.4702 and the population of less infectious 

bacteria Bli = 27.9308. 

Based on the sensitivity analysis, the value of 𝜂 = 0.49367 is obtained. This value shows that the change 

in the parameter value is directly proportional to the change in the value of R0. This means that if the value 

of the parameter is enlarged, it will contribute to an increase in the value of R0. It can be a consideration in 

making vaccines. Vaccines that can last a long time in the human body are needed. Figure 4 shows the 

shrinkage rate of vaccination. 
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Figure 4. Simulation of Vaccine Depreciation Rate on Population Dynamics 𝑹𝟎 < 𝟏 

 

In Figure 4, it can be seen that the value of the vaccine shrinkage parameter causes the population of 

susceptible individuals to increase and causes the population of infected individuals to decrease. It shows that 

vaccine shrinkage can increase the occurrence of disease transmission so that the disease is difficult to control. 

In addition, vaccine shrinkage can also accelerate the increase in the number of susceptible, infected, and 

hyper infectious bacteria and less infectious bacteria. 

Based on the sensitivity analysis, the value of 𝜙 = -0.49908 is obtained. This value shows that the 

change in the parameter value is inversely proportional to the change in the value of R0. It means that if the 

parameter value is enlarged, it will contribute to a decrease in the value of R0. This means that giving the 

vaccine is right to suppress the spread of cholera. 
 

 

 

 
Figure 5. Vaccination rates on population dynamics 𝑹𝟎 < 𝟏 

 Figure 5 shows that increasing vaccination can reduce the number of ranged individuals and increase 

the infected and cured individual’s population. In addition, vaccination also slows the increase in the number 

of infected populations, populations of hyper infectious bacteria, and populations of less infectious bacteria. 
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Thus, it can be stated that increasing vaccine administration is a way that can be done to reduce the spread of 

cholera disease. 

 

 

4. CONCLUSIONS 

The cholera spread model has two equilibrium points, namely the disease-free equilibrium point and 

the endemic equilibrium point. The disease-free equilibrium point is locally asymptotically stable if R0 < 1 

and unstable if R0 > 1. The endemic equilibrium point is locally asymptotically stable if R0 > 1 and unstable 

if R0 < 1. Sensitivity analysis showed that the most sensitive parameter affecting the transmission of cholera 

was the contribution rate of each infected person to the population of V. Cholers hyper infectious bacteria in 

the aquatic environment. Furthermore, the numerical simulation results show that an increase in the 

vaccination rate can reduce the basic reproduction number, which means that an increase in vaccination can 

reduce the spread of cholera. 
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