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a b s t r a c t

Tight reservoirs are considered one of the unconventional hydrocarbon reservoirs with low perme-
ability and porosity, directly affecting the oil production rate rather than conventional reservoirs.
Thereby, optimum enhanced oil recovery methods would help petroleum industries produce more oil
volumes from these reservoirs. In this study, different chemical and thermal enhanced oil recoveries
methods such as surfactant alternating gas (SAG), water alternating gas (WAG), surfactant and foam
flooding, and carbon dioxide (continuous and cyclic) were experimentally investigated to measure oil
recovery factor. According to the results of this study, 3.5% of surfactant concentration, 0.15 PV of
surfactant slug size, and 0.75 PV was selected as the total surfactant injection volume was selected
as the optimum concentration for the injectivity performances. SAG scenario provided the highest
oil recovery factor among all injectivity scenarios. It is about 54% that indicated the best efficiency
of enhanced oil recovery methods in tight reservoirs rather than conventional recovery methods. The
second highest oil recovery factor is dedicated to the WAG injectivity scenario regarding the feasibility
of CO2 phase through porous media. It is about 46%. Moreover, due to the -gas phase in WAG and SAG,
water cut had fluctuated as the water and gas had been alternatively injected into the core samples.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to the global energy demand in recent decades, increas-
ng the oil production from underground hydrocarbon fields has
lways been challenging for petroleum industries as natural drive
echanisms would not be efficient (Zhou and Davarpanah, 2020;
avarpanah and Mirshekari, 2019a; Davarpanah et al., 2018; Vo-
eti et al., 2012; Pang et al., 2021; Cheng et al., 2016; Chen
t al., 2018; Zuo et al., 2015; Kazemi and Yang, 2021, 2019; Mao
t al., 2019). Therefore, enhanced oil recovery and improved oil
ecovery methods increase cumulative oil production (Chen et al.,
017, 2021a; Zuo et al., 2017; Liu et al., 2017; Yang and Sowmya,
015; Jiang et al., 2018; Zhang et al., 2020c; Huang and Ge,
020; Zheng et al., 2021a; Davarpanah, 2018b). Among various
nhanced oil recovery methods, chemical recovery methods have
een widely reported in the literature to enhance porous media’s
il production rate (Druetta et al., 2019; Spildo et al., 2012; Cher-
ghian et al., 2013; Xu et al., 2020; Sun et al., 2020; Zheng et al.,
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nc-nd/4.0/).
2021b; Mazarei et al., 2019; Sepahvand et al., 2021; Jalali Sar-
vestani and Charehjou, 2021; Awan et al., 2020; Bafkar, 2020;
Maina et al., 2020). Different mechanisms such as oil swelling,
wettability changes, reduction of interfacial tension, and oil vis-
cosity reduction would be influential (Zhang et al., 2020b; Alam
et al., 2021; Zhang et al., 2020a; Davarpanah, 2018a; Nwankwo
et al., 2020; Qayyum et al., 2020; Ebadi et al., 2020; Nnaemeka,
2020). Chemically enhanced oil recovery methods have revolu-
tionized how petroleum industries have produced the oil from
underground hydrocarbon reservoirs (Li et al., 2017; Jafari Be-
hbahani et al., 2012; Arshadi et al., 2018; Abedini and Zhang,
2021; Li et al., 2020; Yang et al., 2020a; Haiyan and Davarpanah,
2020). Surfactant flooding is an efficient oil recovery method as
it has provided efficient results due to its low costs and environ-
mentally friendly features (Davarpanah, 2020; Davarpanah and
Mirshekari, 2019d,c; Esfandyari et al., 2020a; Hu et al., 2020a; Jia
et al., 2021). Surfactants have caused to reduce the interfacial ten-
sion and subsequent wettability alteration. Thereby, the capillary
number has been increased and allows the oil phase to be more
mobilized through the porous media (Esfandyari et al., 2020c,b;
Saha et al., 2019; Pan et al., 2020; Huang et al., 2020; Yang et al.,

2020b; Ebadati et al., 2018; Nesic et al., 2020; Lu and Davarpanah,
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020). One of the surfactant problems in porous media is its
dsorption and retention, which might cause inefficiencies for
urther processing. It is essential to consider surfactant adsorption
nd which crucial parameters have affected this issue. Surfactant
dsorption is defined as the adsorbing of surface-active molecules
o rock surfaces (Ayoub et al., 2020; Porcelli and Bidner, 1994;
iu et al., 2019; Nowrouzi et al., 2020; Yang et al., 2015; Zhang
t al., 2021; Yan et al., 2020; Yang et al., 2021). The adsorption
echanisms are contained ion association, electron polarization,

on exchange, and bonding of the hydrophobic parts. The in-
luential parameters that have significantly impacted surfactant
dsorption are salinity, temperature, polymer addition, interfa-
ial tension, and surfactant concentration (Druetta and Picchioni,
020; Paternina et al., 2020; Chen et al., 2021b; Ma et al., 2021;
ue et al., 2020; Zhang et al., 2019; Sun et al., 2019; Davarpanah
t al., 2019; Daryayehsalameh et al., 2021).
Carbon dioxide injection is a thermally enhanced oil recov-

ry method regarding its proper feasibility in porous media. Hu
t al. (2020) experimentally investigated the profound impact of
arbon dioxide injection in shale reservoirs as a cyclic injection.
hey concluded that increasing the number of cycles would be an
ssential parameter for the oil recovery enhancement in different
emperatures and pressures (Hu et al., 2020b; Davarpanah and
irshekari, 2019b). In this study, we compared the results of oil

ecovery factor for different scenarios with cyclic and continuous
arbon dioxide injection that are in the same increasing pattern
y the increase of cycles. Ebadati et al. (2018) experimentally
nvestigated the water alternating gas injection scenario in low
ermeable reservoirs. This method has higher oil recovery than
onventional oil recovery methods as gas can be mobilized more
easibly through fractures and pores. In this study, the WAG injec-
ion scenario’s impact has been investigated, and it is compared
ith other injectivity scenarios (Ebadati et al., 2019). Surfactant
lternating gas (SAG) injection is considered the efficient method
o control mobility, especially in gas sequestration processes.
amal et al. (2018) experimentally investigated the effect of
ifferent surfactants for SAG injection at various mineral types.
hey concluded that residual gas saturation had been increased
egarding the surfactant concentration increase. The residual gas
aturation had higher values in tight reservoirs due to the low
ermeability of these reservoirs (Kamal et al., 2018). In this paper,
t is concluded that the SAG method has the highest recovery
actor regarding the low permeability of tight reservoirs. Gong
t al. (2020) investigated the SAG methods after a prolonged foam
nd gas injection. The water cut has been reduced regarding the
resence of gas in the SAG process. This issue might be related to
he capillary effects, pressure-driven flow, and liquid evaporation
artially in the coreflooding system (Gong et al., 2020). The wa-
er cut reduction is experimentally investigated in this study to
rovide a proper justification for this water cut reduction in SAG
rocesses.
In this study, we aimed to experimentally investigate the

ifferent injectivity scenarios of surfactant alternating gas (SAG),
ater alternating gas (WAG), surfactant and foam flooding, and
arbon dioxide (continuous and cyclic) on the oil recovery factor
or a tight reservoir. Due to the applicability of surfactant and
arbon dioxide in terms of interfacial tension reduction and mo-
ility control, combining these two methods would be significant
o improve the oil recovery from tight reservoirs.

. Materials and methods

.1. Materials

Shale samples; regarding previous literature, the size of samples
re 1.5’’*2’’ in diameter and length, respectively. Samples compo-
itions consisted of silica, Alumina, Fe O , CaCl , and Mg O with
2 3 2 2 3
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Table 1
Crude oil composition.
Composition Mole%

C1 79.4
C2 8.51
C3 4.6
C4 3.54
C5 1.2
C6 0.35
C7+ 0
CO2 0
H2S 0
N2 2.4

Table 2
Ions contained in synthetic brine.
Ions Salinity (mg/L)

KCl 835.64
H2SO−

4 5.39
MgCl2 18.73
CaCl2 15.41
H2CO2−

3 701.25
NaCl 724.84
Total salinity 2301.26

the percentage of 92.5%, 4.5%, 1.75%, 0.55, and 0.7% respectively.
The samples were selected from the Pazanan oilfield in the south
of Iran. The core samples’ average porosity is 23%–24.5%, and the
average permeability is 32 mD. The total number of samples used
in this paper is about 30 core samples, as some cores might be
broken during the tests.

– Crude oil; crude oil composition for this experiment is statisti-
cally depicted in Table 1.

– Carbon dioxide; to provide high purity for CO2, a high-pressurized
cylinder was administered. It can provide CO2 with the purity of
99.9% that used in the experiments.

Synthetic brine; to ensure that the results would match the
reservoir condition, synthetic brine was used with the following
properties in Table 2.

– Surfactant; Cetyl trimethyl ammonium bromide with the chem-
ical formula of (C16H33)N(CH3)3)Br were used in this experiment
to reduce the interfacial tension.

2.2. Methods

The Coreflooding apparatus is schematically depicted in Fig. 1.
A tight percolation tester is defined in the system to hold the
shale core samples. To provide field application of the studied
reservoir, a tight percolation tester was held in an oven to en-
sure that the reservoir temperature is induced to the system.
The temperature in this system is about 60 ◦C. Three constant
pressure injection pump were put in the system to maintain the
pressure with the accurate injection rate of 0.001 ml/min. These
pumps can provide constant fluid flow through the system and
saturate the oil and water phases steadily. Confining pressure is
defined as 2600 psi to maintain the system in a proper condition.
It is 500 psi more than the required pressure in the system. A
gas pressure transmitter was used to provide the pressurized
gaseous phase for the system during the injection performances.
To observe the oil recovery factor, water cut, and pressure drop
in the system, we implemented different injectivity scenarios.
The injectivity scenarios contained water flooding, carbon dioxide
injection (continuous injection and cyclic injection), foam flood-
ing, surfactant flooding, surfactant alternating gas injection, and
water alternating gas injection. To ensure that the results were
done appropriately and confidentially, each test were repeated



X. Sun, J. Liu, X. Dai et al. Energy Reports 7 (2021) 2452–2459

i
9
p
d

3

s
t
s

3

f
f

Fig. 1. Schematic of coreflooding apparatus.
Table 3
Injectivity scenarios for different injection patterns.
Scenario No. Injectivity pattern Procedure

1 Water flooding Water with the flow rate of 0.2 cm3/min injected continuously in the system
to reach the water cut of 98%

2 Foam flooding Foam flooding (0.75 PV) + Water with a flow rate of 0.2 cm3/min.

3 Surfactant flooding Surfactant flooding (0.75 PV) + Water with a flow rate of 0.2 cm3/min.

4 Carbon Dioxide (Continuous) CO2 injection continuously (0.75 PV) + Water with the flow rate of
0.2 cm3/min.

5 Carbon Dioxide (Cyclic) 3 Cycles of CO2 injection 3 Cycles (0.75 PV) + Water with the flow rate of
0.2 cm3/min.

6 WAG Water (0.3 PV) + CO2 (0.4 PV) + Water with the flow rate of 0.2 cm3/min.

7 SAG 3.5% of surfactant (0.3 PV) + CO2 (0.4 PV) + Water with the flow rate of
0.2 cm3/min.
three times, and an average value was considered in the results.
Synthetic brine with a constant flow rate of 0.2 cm3/min was
njected continuously in the system to reach the water cut of
8%. At this point, synthetic brine injection was stopped as the
ressure drop reached a plateau. Injectivity scenarios pattern was
efined as the following scenarios in Table 3.

. Results and discussion

As surfactant concentration, injected volume and slug sizes
hould be optimized before any injectivity scenarios. Therefore,
hese parameter’s were optimized, and the optimum one is cho-
en for the injectivity scenarios in the coreflooding system.

.1. Optimum surfactant concentration

To observe and select the optimum surfactant concentration
or injectivity scenarios, 0.1 PV of slug size and 0.75 PV of the
luid mixture contained carbon dioxide and surfactant solution
2454
in the water phase was considered in the system. As shown in
Fig. 2, by the increase of surfactant concentration, the oil recovery
factor increased. This increase was incrementally crucial for the
increase from 0.5% to 2.5%. There are no significant changes in the
oil recovery by the increase of surfactant concentration from 3.5%
to 5%. Thereby, 3.5% of surfactant concentration was selected as
the optimum concentration for the injectivity performances.

3.2. Optimum surfactant slug size

To observe and select the optimum surfactant slug size for
injectivity scenarios, 3.5% of surfactant concentration and 0.75
PV of the fluid mixture contained carbon dioxide and surfactant
solution in the water phase was considered in the system. As
shown in Fig. 3, the oil recovery factor has increased by increasing
surfactant slug sizes from 0.05 PV to 0.15 PV. As the increasing
pattern for 0.15 PV to 0.2 is not significant enough, 0.15 PV
was selected as the optimal surfactant slug size for injectivity
scenarios was not significant enough.
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Fig. 2. Oil recovery factor in the presence of different surfactant concentration.
Fig. 3. Oil recovery factor in the presence of different surfactant slug sizes.
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.3. Optimum total surfactant injection volume

To observe and select the optimum total surfactant injection
olume for injectivity scenarios, 3.5% of surfactant concentration
nd 0.15 PV of surfactant slug size was considered in the system.
s shown in Fig. 4, the oil recovery factor has increased by
ncreasing total surfactant injection volume from 0.25 PV to 0.1
V. As the increasing pattern for 0.75 PV to 1 PV is not significant
nough, 0.75 PV was selected as the optimum total surfactant
njection volume for injectivity scenarios.

.4. Oil recovery factor

According to Table 3, different injectivity scenarios with the
rovided pore volume was injected into the system to measure
he oil recovery factor. As shown in Fig. 5, water flooding had the
owest oil recovery factor among other injectivity scenarios. Since
hen, foam flooding and surfactant flooding has the next lowest
il recovery factor. It is about 36% and 38% for surfactant and foam
looding, respectively, in the optimum mode. Carbon dioxide
njection had performed in two different situations of continuous
2455
and cyclic injection (3 cycles). As shown in Fig. 5, cyclic injection
provided better oil recovery than continuous injection. It is about
40% and 43% for continuous and cyclic injection, respectively. This
concept was experimentally investigated by Hu et al. (2020a,b)
that indicated that the increase of cyclic injection had provided
better results than continuous injection in one cycle. SAG scenario
provided the highest oil recovery factor among all injectivity sce-
narios. It is about 54%, indicating the best efficiency of enhanced
oil recovery methods in tight reservoirs rather than conventional
recovery methods. The second highest oil recovery factor is ded-
icated to the WAG injectivity scenario regarding the feasibility of
CO2 phase through porous media. It is about 46%.

.5. Water cut

According to Table 3, different injectivity scenarios with the
rovided pore volume was injected into the system to measure
ater cut. As shown in Fig. 6, water cut had the highest value

n the first period of pore volume injection. It has reached about
0% after only 0.4 pore volume injection. It is quickly reached
8% as the pressure has been stable, and there are no specific
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Fig. 4. Oil recovery factor in the presence of different total surfactant injection volume.
Fig. 5. Oil recovery factor for different injectivity scenarios.
hanges through the system. In foam and surfactant flooding,
ater cut increased slightly in the first period of pore volume

njection. After 0.4 PV, water cut increased dramatically, and it
eached its maximum value in 1 PV. Due to the gas phase in
AG and SAG, the water cut had fluctuated as the water and

as had been alternatively injected into the core samples. On the
ther hand, when the alternative injection of gas and water has
inished at 0.8 PV, the water cut started to increase in a slight
attern and reached its maximum value after 1.2 PV. For cycling
nd continuous injection of carbon dioxide, there is no water
roduction in the first period of injection due to the supercritical
roperty of carbon dioxide, improving oil recovery and reducing
ater cut.

. Conclusion

In this study, different chemical and thermal enhanced oil re-
overies methods such as surfactant alternating gas (SAG), water
lternating gas (WAG), surfactant and foam flooding, and carbon
2456
dioxide (continuous and cyclic) were experimentally investigated
to measure oil recovery factor. The main findings of this study are
as follows;

– There are no significant changes in the oil recovery by
the increase of surfactant concentration from 3.5% to 5%.
Thereby, 3.5% of surfactant concentration was selected as
the optimum concentration for the injectivity performances.

– Oil recovery factor has increased by the increase of surfac-
tant slug sizes from 0.05 PV to 0.15 PV. As the increasing
pattern for 0.15 PV to 0.2 is not significant enough, 0.15
PV was selected as the optimal surfactant slug size for
injectivity scenarios was not significant enough.

– The oil recovery factor has increased by increasing total
surfactant injection volume from 0.25 PV to 0.1 PV. As
the increasing pattern for 0.75 PV to 1 PV is not signifi-
cant enough, 0.75 PV was selected as the optimum total
surfactant injection volume for injectivity scenarios.
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Fig. 6. Water cut for different injectivity scenarios.
– SAG scenario provided the highest oil recovery factor among
all injectivity scenarios. It is about 54%, indicating the best
efficiency of enhanced oil recovery methods in tight reser-
voirs rather than conventional recovery methods.

– The second highest oil recovery factor is dedicated to the
WAG injectivity scenario regarding the feasibility of CO2
phase through porous media. It is about 46%.

– Water cut had the highest value in the first period of pore
volume injection. It has reached about 90% after only 0.4
pore volume injection. It is quickly reached 98% as the
pressure has been stable, and there are no specific changes
through the system.

– Due to the gas phase in WAG and SAG, the water cut
had fluctuated as the water and gas had been alternatively
injected into the core samples.

Abbreviations;
WAG; Water alternating gas
SAG; Surfactant alternating gas
PV; Pore volume
CO2; Carbon Dioxide
Fe2O3; Iron(III) oxide
CaCl2; Calcium chloride
Mg2O3; Magnesium oxide
(C16H33)N(CH3)3)Br; Cetyl trimethyl ammonium bromide
KCl, Potassium chloride
H2SO−

4 ; Sulfuric acid
MgCl2; Magnesium chloride
H2CO2−

3 ; Carbonic acid
NaCl; Sodium Chloride
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