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a b s t r a c t

Porosity estimation is one of the essential issues in petroleum industries to distinguish the reservoir
characteristics properly. Therefore, it is of importance to predict porosity with the optimum way to
reduce the logging tests. In this study, artificial neural network and fuzzy logics are considered efficient
techniques to predict the Asmari formation’s porosity. The results of porosity estimation by intelligent
neuro-phase method showed the ability of this method to estimate in complex conditions in Mansouri
oilfield. Preparing data before training the neural network increases the power of the network in
recognizing the appropriate pattern. In estimating the porosity in the Asmari reservoir of Mansouri
field, gamma, acoustic, neutron and density and diameter measurements have a more influential role.
Selecting the appropriate architecture for the neuro-phase network is effective in achieving more
accurate results. This architecture includes selecting the type and number of membership functions
for the inputs and the training algorithm with the appropriate number of iteration steps. The best
estimation results by assigning four Gaussian membership functions to gamma image data, two
Gaussian membership functions to each of the audio and neutron data, and three Gaussian membership
functions to density image data and creating 40 laws in the data space. Inputs were obtained using a
hybrid training algorithm. The average error of estimating porosity by the neuro-phase method in well
C of Mansouri field is 1.28% in the validation data set, representing a correlation coefficient of 92.5%
between the porosity extracted from the fuzzy neuro-fuzzy network and the porosity of the core.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Artificial neural networks are considered efficient and pros-
erous methods applied in various industries to perform a suit-
ble application instead of implementing experimental evalua-
ions (He et al., 2018a,b; Cheng et al., 2016; Chen et al., 2018,
017; Kazemi and Yang, 2021, 2019; Zarra et al., 2019; Sharma
nd Garg, 2020; Davarpanah et al., 2018; Abasi et al., 2015, 2020;
uang et al., 2021b; Yang et al., 2020a; Yin et al., 2021). The
unction of artificial neural networks is based on the study of ac-
ivities that take place in the human mind (Zuo et al., 2015, 2017;
ang et al., 2015; Ma et al., 2021; Xue et al., 2020; Najafi et al.,
013, 2012; Lee et al., 2019; Wawrzyniak, 2020; Davarpanah and
irshekari, 2019a; Karbakhshzadeh et al., 2021b,a; Nan et al.,
021; Rostami et al., 2021). This method includes observational
nterpretation, summarization and learning (Jiang et al., 2018;
hang et al., 2021; Yang et al., 2020b,a; Xu et al., 2021; Kargar
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et al., 2020; Rezaee et al., 2017; Valipour et al., 2012; Davarpanah,
2018b). Unlike previous methods that use a simple algorithm to
solve specific problems, artificial neural networks use a sample-
based method and usually perform a nonlinear survey between
input and output data to solve problems (Mao et al., 2019; Huang
and Ge, 2020; Zheng et al., 2021a,b; Huang et al., 2020b; Lin et al.,
2020; Chen et al., 2021; Kartavykh et al., 2020; Wang et al., 2021;
Hu et al., 2020; Hassanpour et al., 2021; Huang et al., 2021d;
Huang and Wang, 2021; Zhang et al., 2020b; Yang et al., 2020b,a).
Neural networks can determine the amount of field porosity using
well graph data regardless of the limitations associated with the
number of drilled wells (Zhang et al., 2020a; Li et al., 2017,
2019, 2020; Lim, 2005; Mazarei et al., 2019; Davarpanah and Mir-
shekari, 2019d; Zhang et al., 2020a; Huang et al., 2020a, 2021c).
Despite their remarkable accuracy in approximating continuous
functions, artificial neural networks do not provide users with
any knowledge of the fitted model. Besides, in cases where there
is uncertainty in the data or results, a low-confidence approx-
imation of the fitted model is unexpected (Lim, 2005; Aggoun
et al., 2006; Davarpanah, 2018a; Rabbani et al., 2018; Davarpanah,
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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020; Davarpanah et al., 2019c,a; Gholami and Ansari, 2017;
uang et al., 2021a,e; Daryayehsalameh et al., 2021). Researchers
n recent years have also used the theory of fuzzy logic to ap-
roximate continuous functions. This theory is the theory of
uzzy sets, which is itself an extension of the theory of sets with
oolean logic (Davarpanah et al., 2019b; Awan et al., 2020; Bafkar,
020; Pan et al., 2020; Davarpanah and Mirshekari, 2020, 2019b,
018; Esfandyari et al., 2020b; Ahmadi et al., 2014; Movahhed
t al., 2019; Ebadi et al., 2020; Jalali Sarvestani and Charehjou,
021; Maina et al., 2020). This theory provides a good basis
or decision-making in inaccurate and ambiguous situations by
ttributing membership functions to training data, but few train-
ng algorithms are for these systems (Davarpanah, 2019; Ebadati
t al., 2019b; Sun et al., 2020; Zhu et al., 2020; Davarpanah
nd Mirshekari, 2019c; Esfandyari et al., 2020a; Shokir, 2006).
ntelligent techniques are very powerful tools that have found
any applications in the oil industry. The reasons related to this
an be stated as follows (Jafarinezhad and Shahbazian, 2015;
aouche and Aïfa, 2017; Nnaemeka, 2020; Nwankwo et al., 2020;
ayyum et al., 2020; Sepahvand et al., 2021a);

• These methods can process data quickly and have the ability
to apply a built-in model to the system.

• These techniques are data-independent models that do not
require prior knowledge of the data to which they are ap-
plied.

• Smart grids can accurately estimate the data they have been
trained using existing datasets and their internal settings.

• Intelligent techniques can detect hidden non-linear relation-
ships between data and, in this regard, especially for use in
heterogeneous cases, including oil reservoirs.

• Given appropriate descriptive data, intelligent techniques
produce a fast and reliable prediction at a speed that appears
to be a new set of data for model construction (Wang et al.,
2019; Aïfa et al., 2014; Ghiasi-Freez et al., 2014).

hou et al. (1993) used neural network methods to estimate
orosity in an oil field in Canada based on acoustic and density
eutron and gamma data. In this study, a four-layer neural net-
ork was designed for estimation. Its results on experimental
ells showed that with the increasing complexity of geologi-
al conditions and cases where data other than experimental
ells are given to the network, the network’s ability to estimate
ecreases (Zhou et al., 1993). Elsharkawy (1998) introduced a
ew technique for modelling crude oil and natural gas systems’
ehaviour using a neural network model with a radial basis
unction. The model could predict the volume coefficient of oil
ormation, the ratio of soluble gas to oil, oil viscosity. They used
he PVT data of the step-by-step release test of 90 samples to
rain the network model and ten other samples to test the model.
he results showed a more accurate estimation of the mentioned
arameters based on the artificial neural network than experi-
ental relations (Elsharkawy, 1998). Singh (2005) used artificial
eural networks to estimate permeability based on gamma-ray
nd neutron graph data and density in Utah Field in the Gulf of
inta. In this study, data from seven wells were used as educa-
ional data and data from six wells were used as experimental
ata. The results obtained from the neural network proved the
emarkable ability of this method in estimation (Singh, 2005;
badati et al., 2019a).
Lim (2005) used the combined neuro-phase method to esti-

ate the permeability and porosity of reservoir rock based on
ell logs in Korea’s oil fields. In this study, fuzzy curves were first
sed to extract the best images related to porosity and permeabil-
ty. Then the neural network method was used to create a suitable
stimation function between inputs and outputs. Based on the
uzzy curves, the best porosity-related images were short-range
3091
resistance (LLS), long-range resistance (LLD), neutron and density
images, and the best permeability-related images were acoustic
images, respectively. Density, gamma, neutron and potential were
spontaneous. Based on these logs and in one of the wells of this
field, porosity and permeability were estimated with acceptable
accuracy, and the results showed the superiority of the neural
network over nonlinear regression (Lim, 2005). Lim (2005) used a
combination of artificial neural networks and genetic algorithms
to estimate reservoir rock permeability in one of the wells based
at an oil field in Korea that were used to estimate porosity
in terms of polynomial functions. In this study, the aim was
to optimize the coefficients of estimation polynomials, which,
based on the above-mentioned combined method, better results
were extracted than when artificial neural networks were used
alone (Lim et al., 2006).

Al-Abduijabbar et al. (2020) developed an ANN method to
estimate the reservoir porosity obtained from drilling operations.
They used two different horizontal wells for training and vali-
dating the training data. They concluded that the ANN method
would be a proper match to estimate porosity with approximately
30 neurons with a correlation coefficient of 0.907. In this paper,
we resulted that ANN would be a good choice for porosity es-
timation, too (Al-Abduijabbar et al., 2020). It was developed by
Okon et al. (2020) to use the ANN method to predict reservoir
characteristics (Saikia et al., 2020). Saikia et al. (2020) presented
a comprehensive review about the utilization of machine learning
and ANN methods to predict reservoir characteristics such as
porosity by implementing geophysical and geological resources.
They reviewed that ANN methods should be combined with some
hybrid models of soft computing to estimate reservoir charac-
teristics regarding the complex nonlinear relationship between
input and associated data in well logging processes. These models
would be applicable and less time-consuming instead of well
logging operations to determine reservoir characteristics (Okon
et al., 2020).

The primary purpose of this study is to determine the porosity
of Asmari reservoir rock in one of the oil fields located in the
south of Iran using well patterns and well logs using neural phase
networks. In this case, using the neural phase network technique
is that despite drilling several wells in this field, in many of them,
for various reasons, the most important of which is the high cost
and time consuming to prepare the core, no coring has been done.
However, to determine the exact characteristics of this field, the
need for information at different depths of wells is felt. Therefore,
using the neural network method to determine these parameters
can be useful and a solution.

2. Materials and methods

Mansouri oilfield is located in the southwest of Iran, adjacent
to Ahvaz and Shadegan oilfields. The sedimentary environment
in different parts of this region is diverse, so that faces changes
in Pabdeh, Asmari, Gachsaran, Mishan and Aghajari formations in
this region have been detected (see Fig. 1).

In this paper, we are more focused on the Asmari formation.
As the depths of the core data were not available, well data were
not available, so they had to be interpolated based on data in
their neighbourhood wells. These data were interpolated using
Lagrange interpolation functions through programming that is
performed in Matlab software. Due to the complexity of the
geological conditions of the Asmari reservoir in Mansouri oilfield,
six points in its vicinity were used to enter the data of well
logs at any depth. These six points were symmetrical concerning
the centre point. To help with the neural network training, the
well logs are normalized. In this research, the input data were
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Fig. 1. Location of Mansouri oilfield.
ormalized based on Eq. (1) and used in ANFIS neuro-phase
etwork.

Normalized =
Xi − Xmin

Xmax − Xmin
(1)

Core porosity data are used in this study as both educational
data and experimental data. These data for wells A, B and C
have been prepared based on laboratory studies in the Petroleum
Industry Research Institute using the mercury injection method.
The number of core porosity data related to wells A, B and C are
150, 14 and 8 data, respectively, which is the same number of
well image data generated by interpolation at the relevant depths.

- Gaussian Shape Membership Function
This function is defined as follows;

Ψ (x, σ , c) = Exp(−
(x − c)2

2σ 2 ) (2)

As can be seen, σ and c are the two main parameters of this
function.

- Triangular Shape Membership Function
This function is defined as follows;

Ψ (x, a, b, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ c
x − a
b − a

a ≤ x ≤ b
c − x
c − b

b ≤ x ≤ c

0 x ≥ c

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3)

This function depends on three variables a, b, c . The variables a, b
show the base of this triangle, and the variable c shows its vertex.

- Generalized Bell Shape Membership Function
This function is defined as follows;

Ψ (x, a, b, c) =
1

1 +
⏐⏐ x−c

a

⏐⏐2b (4)

In this regard, the variable b is usually positive and shows the
parameter c of the centre of the curve.
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- Trapezoidal Shape Membership Function
This function is defined as follows;

Ψ (x, a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ c
x − a
b − a

a ≤ x ≤ b

1 b ≤ x ≤ c
d − x
d − c

c ≤ x ≤ d

0 x ≥ d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

In this regard, variables a, d shows the trapezoidal base and vari-
ables c, b show its shoulders. The membership functions are the
same curves representing the fuzzy set. These functions assign
each of the reference space X variables a degree of membership
between [1 and 0]. Therefore, all functions that can receive values
as input and generate output between [1 and 0] can be used
as membership functions. These functions have different types,
introduced in the following four examples of the most used ones.

3. Results and discussion

3.1. Selection of more effective logs in estimation by fuzzy log curves

In the case of multivariate functions, the effect of that variable
on the function’s output can be investigated by plotting the fuzzy
curve of each variable. In any fuzzy curve where the amplitude
of the output changes (Delta) is greater, it can be concluded
that a variable such as this curve has a more influential role in
controlling the answer of the function. In this paper, fuzzy curves
were plotted for the data of natural acoustic gamma images,
density, neutrons and diameters of wells A and B of the Mansouri
field. Since short-range resistance and long-range resistance data
were also available for well c, these data were plotted for these
data, as well as data for five gamma, acoustic, neutron, and
density logs. In these curves, the horizontal axis corresponds to
the data of petrophysical logs, and the vertical axis indicates the
porosity of the core at similar depths. These curves were plotted



X. Li, B. Wang, Q. Hu et al. Energy Reports 7 (2021) 3090–3098

s
c

c
r

l
b

f
p

t
r
t
m

T
L

Fig. 2. Gamma (a) and (b) long-range resistance logs.

Table 1
Logs ranking and porosity ranges for well A.
Logs ranking Log type Porosity range

1 Gamma log 16.45
2 Long-range log 14.125
3 Short-range log 13.015
4 Acoustic resistance log 10.951
5 Density log 3.216
6 Neutron log 0.817
7 Diameter log 0.653

for the petrophysical graph data of well A through programming
in Matlab environment, given below the shapes related to these
curves and the following log rankings. The amplitude of porosity
changes in these curves (Delta) for gamma images and long-range
resistance are 16.45 and 14.125, respectively. It is shown in Fig. 2.

Fig. 3 shows these curves for short-range and acoustic re-
istance logs. The amplitude of porosity changes (Delta) in the
urves related to these logs is 13.015 and 10.951, respectively.
These results are summarized in Table 1. In the image ranking

olumn in this table, a lower-rated image plays a more influential
ole than a higher-ranked image in estimating porosity.

The fuzzy curves for well C of Mansouri Oilfield were plotted
ike well A. The amplitude of porosity changes is shown in Table 2
y ranking the petrophysical logs of well A in the estimation.
Fuzzy curves were also drawn for well B of Mansouri Oil-

ield. Table 3 shows the results of these curves by ranking the
etrophysical logs of well B in the estimation.
Based on the results obtained from the fuzzy curves in the

hree wells A, B and C, the long-range resistance and short-range
esistance logs are only available for well A, the gamma, acous-
ic, and density logs are, respectively. Neutrons and diameter
easurements are used to estimate porosity in this field.
3093
Fig. 3. Short-range (a) and acoustic resistance (b) logs.

able 2
ogs ranking and porosity ranges for well C.
Logs ranking Log type Porosity range

1 Gamma log 10.462
2 Acoustic resistance log 12.153
3 Density log 0.243
4 Neutron log 0.189
5 Diameter log 0.037

Table 3
Logs ranking and porosity ranges for well B.
Logs ranking Log type Porosity range

1 Gamma log 9.142
2 Acoustic resistance log 5.632
3 Density log 2.514
4 Neutron log 0.254
5 Diameter log 0.098

3.2. Select data for use in ANFIS software

ANFIS (adaptive-network-based fuzzy inference system) soft-
ware is a fuzzy inference system to administer the frameworks of
adaptive networks to model artificial neural networks. The pur-
pose of designing a neuro-fuzzy network is to estimate porosity
based on well graph data in different wells. Due to the complexity
of the geological conditions of the Asmari reservoir in the Man-
souri field and due to the need to cover the maximum output
values by the training data set and the multiplicity of well A well
data, we decided to mix the data of wells A and C. These data
were used as neuro-phase network training data and well B data
as experimental data to evaluate the ability of the neuro-phase
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Fig. 4. Neuro-fuzzy network training based on the data of wells logs for wells
A and C.

network in estimation after each training course. Therefore, the
general model in estimation in this paper is based on this method.

3.3. Neuro-phase network architecture

Obtaining acceptable results in porosity estimation by intelli-
ent neuro-fuzzy technique is related to the correct architecture
f this network. This architecture includes selecting the appropri-
te type and number of membership functions to determine the
egree of membership of input and output data and optimizing
he network training in terms of the number of rules and network
raining algorithm. All the mentioned items can be changed and
ptimized through ANFIS software by trial and error method. In
his research, the membership functions used for the input data
re Gaussian, trapezoidal, triangular and bell-shaped membership
unctions. Linear and fixed membership functions have also been
sed to determine the degree of output membership. The edu-
ational algorithms in this research are based on post-diffusion
nd hybrid algorithms, which is a combination of post-diffusion
lgorithm and least oilfields. In this system, the output of each
ule is obtained as a linear combination of input variables with
fixed sentence. The final output is a weighted average of the
utput of each rule. Since based on the fuzzy curves related to
he well logs in three wells A, B and C, the barometer log was
f the lowest importance due to the minimum amplitude of the
hanges (Delta), so the porosity estimation by the neural network
ith data of four Gamma, acoustic, density and neutron imaging
ere performed. The best results showed porosity estimation
ith a mean error of 1.28% and a correlation coefficient of 92.5%
etween the porosity of the core and the porosity resulting from
he neural network in the validation data set in well B. These re-
ults are obtained by using four Gaussian membership functions
or gamma graph data and two Gaussian membership functions
or acoustic and density graph data, as well as three Gaussian
embership functions for neutron graph data and assigning a

inear membership function to the output and hybrid training
lgorithm. Was obtained. In this case, the number of fuzzy rules
s 48 rules based on the Takagi–Sugeno fuzzy model.

These results are presented in Fig. 4 as the results of neuro-
uzzy network training based on wells logs for wells A and C
nd the test results based on wells B data. In this figure, the
tar-shaped points represent the results obtained from the neural
etwork and the points in the form of hollow circles represent the
nput data.

Fig. 5 also shows the relationship between the porosity re-
ults obtained from the neuro-phase network versus the porosity
f the core. Accordingly, the linear distribution of these points
ue to their high correlation coefficient represents an acceptable
stimate by the neuro-phase network. Next, this optimal state
f estimation is considered the base state, and the other cases
3094
Fig. 5. The relationship between the porosity results obtained from the
neuro-phase network.

Table 4
Porosity estimation for different logs (ANFIS software)
Log type Gaussian membership number

Gamma log 4 4 4 3 4 4 4
Acoustic log 2 2 2 2 1 2 2
Neutron log 2 2 2 2 2 2 1
Density log 3 2 1 1 1 1 1
Rules number 48 32 16 12 8 16 8
Training algorithm H B B B B H H
Error percent 1.2 5.5 3.8 5.2 8.7 9.1 8.3

are measured against it. In the estimation by the neuro-phase
network, we seek to design a network with the least test error
and the least number of neurons. Since the number of these
neurons is directly related to the number of fuzzy laws, the
number of neurons must be optimized by optimizing the number
of fuzzy laws.

To optimize the number of fuzzy rules, the number of mem-
bership functions must be optimized. Since reducing the number
of membership functions can reduce the number of fuzzy rules,
tests were performed to evaluate the estimation in different cases
in the recent neuro-fuzzy network. These modes include peri-
odically subtracting the Gaussian membership function from the
dedicated membership functions to gamma, acoustic, density, and
neutron images in two training modes by the post-diffusion and
hybrid algorithms. The results of these tests showed an increase
in estimation error in all cases. These results are shown in Table 4.
In the first column of this table, the baseline mode with the
best estimation results is given. In the following columns of the
table, we see a change in the number of dedicated membership
functions to the graph data, followed by a change in the number
of fuzzy rules, and finally, a change in the estimation error. In
all cases of the test, the estimation error increases concerning
the baseline. In these studies, the best estimation results are
assigned by assigning four Gaussian membership functions to
gamma image data.

Moreover, two Gaussian membership functions to each of the
audio and neutron image data, and one Gaussian membership
function to density image data and assigning a linear member-
ship function. The output data were obtained by republishing
using the educational algorithm and through 16 fuzzy rules. The
average error in the validation data set in this case is 3.8%.

Based on this, the extent of the number of fuzzy rules can
affect the estimation error. Similarly, increasing the number of
membership functions associated with each input data can in-
crease neurons and, consequently, increase the number of fuzzy
rules and, in most cases, lead to the retention of training data
by the neuro-fuzzy network. Despite these conditions, we will
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able 5
orosity estimation for different training algorithms.
Ranking Error

percent
Rules
number

Training
algorithm

Function Group
number

1 1.2 40 H Gaussian 1
2 6.8 32 P trapezoidal 2
3 5.4 36 P Gaussian 3

encounter many errors in estimating educational data. To get
acquainted with assigning fuzzy rules to data by ANFIS software,
these fuzzy rules for estimating porosity based on gamma, acous-
tic, neutron and density data and based on the best result of
the estimation in Table 4 are brought. In this case, the dedicated
membership functions to the image data are of the Gaussian
type, and the linear membership function is assigned to the core
porosity data.

3.4. Discussion

The results of the neuro-phase network in estimating the
orosity are affected by the type of input data and the architec-
ure of the neuro-phase network. To compare the performance
f the data and the membership functions, and the training al-
orithm, these results are examined in different cases. First, the
stimation results are presented based on different well logs. In
he next step, in each of these groups, the role of membership
unctions and the training algorithm are presented in full detail.
o compare the results of porosity estimation based on different
ogs, these estimation results were examined in three groups of
our regarding the type of log. The first group included gamma,
coustic, density and neutron data and the second group included
amma, acoustic, neutron and spectroscopy data, and the third
roup included gamma, acoustic, density and densitometry data.
n these studies, four Gaussian, trapezoidal, triangular and bell-
haped membership functions were assigned to the input data,
nd the linear membership function was assigned to the output.
he results of these studies are given in Table 5.

. Conclusion

As the ANN method gives a given appropriate descriptive data,
ntelligent techniques produce a fast and reliable prediction at a
peed that appears to be a new set of data for model construction.
he main findings of this study are as follows;

• The results of porosity estimation by intelligent neuro-phase
method showed the ability of this method to estimate in
complex conditions such as Mansouri field geological con-
ditions in Asmari reservoir.

• The presence of raw data with appropriate accuracy plays a
decisive role in estimation by the neuro-phase method.

• Preparing data before training the neural network increases
the power of the network in recognizing the appropriate
pattern.

• In cases where the neural network output is affected by
multiple inputs, by fuzzy log curves, more effective inputs
can be identified and used in network training.

• In estimating the porosity in the Asmari reservoir of Man-
souri field, gamma, acoustic, neutron and density and diam-
eter measurements have a more influential role.

• Selecting the appropriate architecture for the neuro-phase
network is effective in achieving more accurate results.
This architecture includes selecting the type and number
of membership functions for the inputs and the training
algorithm with the appropriate number of iteration steps.
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• The best estimation results by assigning four Gaussian mem-
bership functions to gamma image data, two Gaussian mem-
bership functions to each of the audio and neutron data, and
three Gaussian membership functions to density image data
and creating 40 laws in the data space. Inputs were obtained
using a hybrid training algorithm.

• The average error of estimating porosity by the neuro-phase
method in well C of Mansouri field is 1.28% in the valida-
tion data set, representing a correlation coefficient of 92.5%
between the porosity extracted from the fuzzy neuro-fuzzy
network and the porosity of the core.

Nomenclature

LLS Short-range resistance
LLD Long-range resistance
ANN Artificial neural network
x Distance
σ Tension
a Constant parameter
b Constant parameter
c Constant parameter
H Hybrid
B Post diffusion
ANFIS An adaptive-network-based fuzzy inference system
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