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Highlights 

 Raw scores have a bias in a conventional psychometric measurement 

 Stacking and racking measure students' ability and item difficulty level changes 

 The learning process in socio-scientific issues improves students' understanding 

 Misconceptions influence the negative values of students’ pre-and post test  

 

Abstract 

The present study aimed to measure the changes in students’ understanding ability of 

hydrolysis concept through a pretest-posttest quasi-experimental design and the stacking and 
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racking techniques in the Rasch model. Such a model was based on a person- and item-

centered statistics to determine how students’ ability changed during the treatment, as well as 

the changes in item difficulty level. Eleventh-grade students in one of the senior high schools 

in the eastern part of Indonesia were selected as the sample. The experimental class (N=57) 

was taught employing the scientific inquiry approach in the context of social-scientific issues; 

meanwhile, the control class (N=50) used the conventional method of learning. Moreover, 

this research utilized 15 three-tier multiple-choice items to evaluate students’ understanding. 

The results of the Mann-Whitney U and Wilcoxon (p < 0.05) tests showed that the 

experimental class had better understanding ability of hydrolysis concept than the control 

class. Further analysis also found that the mean difference in the logit of the pre- and post-test 

items of the experimental class was better.  In some cases, nevertheless, there were negative 

changes in students’ ability due to the transition to a lower rating.  It is concluded from the 

findings that learning innovations cannot solely change students’ misconceptions. Besides, 

stacking and racking analyses are proven superior in estimating the changes in students’ 

ability and item difficulty level.  These research findings can also be a reference for 

researchers and practitioners of chemistry education to measure the changes and progress in 

students’ learning ability. 

Keywords: measuring, understanding changes, stacking, racking 

Introduction 

Studies of pedagogical innovation application in a pretest-posttest quasi-experimental 

design frequently examine an effect yet infrequently elaborate the changes brought forth by 

the effect in question. Pre- and post-test changes should be given in detail, both in terms of the 

students’ ability and item difficulty level. However, this has not been the main focus in 

chemistry education research to date. Using raw scores that have a bias in conventional 



psychometric measurement is among the limitations [1]. Raw scores are not final data as they 

do not have the same measurement scale, nor do they have a great deal of information as the 

basis for drawing conclusions [2,3].  

Around the 2000s, the Rasch model was introduced as a probabilistic-based 

psychometric measurement that went beyond the use of raw scores [4,5]. The model was 

formulated by George Rasch in the 1960s [3], and has been widely applied to analyze various 

types of data, e.g., dichotomous, polytomous, multi-rating, and multi-rater data. This 

measurement model is generally relied on to overcome the limitations of conventional 

psychometric measurement [1,6]. Its analyses, including item fit, PCA (Principal Component 

Analysis), Wright map, are commonly used for international test analysis, namely TIMSS and 

PISA [7].    

In chemistry education research, the Rasch model has been employed to evaluate 

learning understanding and progress [8], and to diagnose students’ preconception [9,10] and 

misconceptions [11,12]. This model is also utilized to connect the measurement of content 

knowledge with pedagogical content knowledge [13], to diagnose the pattern of item 

difficulty [14], and to identify students’ preconception that tends to be permanent [15]. 

Stacking technique is applied to measure the changes in students’ ability; it was revealed that 

the post-test ability of children who learnt through games was better than their pre-test ability 

[16]. Thus far, the stacking and racking techniques in Rasch model to measure the changes in 

students’ chemistry understanding have not been extensively used.  

This research relied on the Rasch model's stacking and racking techniques to measure 

the changes in students’ understanding of hydrolysis concepts through a pre-test and post-test.  

It intended to test the effectiveness of scientific inquiry approach in the context of social-

scientific issue (SSI) in developing students’ epistemological understanding and reasoning 

[17]. Experts believe that students already have their own understanding [18], yet it relatively 



comprises misconception [19]. Even some students tend to reject the scientific explanation 

that is contrary to what they have understood [20,21] and prefer to defend their 

misconceptions [9,15]. In terms of hydrolysis learning, such rejection often occurs when 

students are asked to describe the concept of acid and base strength [22, 23]. This study 

featured three specific questions, as follows: (1) is there any significant difference in 

hydrolysis understanding ability of students in the experimental and control classes? (2) in 

terms of students’ ability, how are the changes in hydrolysis understanding during the pre- 

and post-test of students in the experimental and control classes? (3) in terms of items, how 

are the changes in the difficulty level of each item in the pre- and post-test of the experimental 

and control classes? 

Literature review  

Understanding of hydrolysis concept 

The concept of hydrolysis is a learning topic in high school that is strongly related to 

SSI. Students with a good understanding of the hydrolysis concept will manage to clarify 

scientifically why detergents, bleaching agents (NaOCl), and fertilizers can pollute the 

environment.  Despite this, linking this issue as the problem in learning is rarely carried out. 

The learning process puts more emphasis on mastering theoretical concepts [17]. 

Consequently, students find it challenging to use their comprehension to explain socio-

scientific phenomena around them [24]. This difficulty is on account of their misconceptions 

regarding acid-base reaction [25], making them unable to elaborate the concept of salt 

hydrolysis [23], particularly to determine acid and base strength [19]. In addition, it is 

reported that students are struggling with correctly explaining the dissolving process and the 

reaction of ionic compounds with water, writing down chemical equations, and having 

different interpretations about the dissolving process mentioned earlier [21].  



Socio-scientific issues (SSI) as the learning context 

SSI as the learning context is performed by integrating socio-scientific issues in 

students’ surroundings with certain topics, e.g., hydrolysis of salt. It trains students to develop 

scientific literacy skills [26, 27, 28].. The selected SSI is more likely to have a conceptual 

bond with science [24, 29], and its resolution requires many perspectives [28], including the 

dimension of moral and ethical evaluation of students [30]. For instance, the contexts of 

climate change, pollution, and global warming [17,31] are placed as socio-scientific 

phenomena that the students should elucidate based on insights that have been learned. On 

this ground, contexts function to encourage students to actively get involved in grasping 

problems [32], developing and utilizing their knowledge [33], improving their critical 

thinking [34], and being able to scientifically describe the discussed socio-scientific 

phenomena [17, 31, 35]. In the end, the integration of SSI contexts enables the learning 

process to be more significant in enhancing students’ understanding [31,36], and students are 

skilled to negotiate about the social aspect of the studied phenomena [37,38]. 

Method of study 

Research approach 

 This quantitative research relied on a control group pretest-posttest quasi-experimental 

design [39] by applying the racking and stacking techniques in the Rasch model [40] for data 

analysis. As standard techniques, racking and stacking are introduced by Benjamin Wright to 

measure the extent to which students and items change before and after treatment [41]. This 

kind of information is immensely helpful for teachers, especially in devising learning 

strategies that meet students’ needs [16]. There may be some cases that learning 

implementation does not match students’ characteristics or needs, so that the shortcomings of 

the applied pedagogical innovation can be evaluated. 



Subject 

Eleventh-grade students in one of the senior high schools in the eastern part of 

Indonesia participated as the subject. This study was conducted in the first semester of the 

2019-2020 academic year, in which research permission was obtained from the government 

and school administrators. Students taken part in this study had volunteered to participate. On 

top of that, the purpose of the research was also informed to the students. The gained 

information will be confidential and only used for science development [42]. The 16- to 17-

year-old students in the experimental class (N=57) and control class (N=50) were determined 

randomly out of ten classes.  

Table 1. Conceptual Map of the Understanding of Hydrolysis Concept.  

Item Understanding Ability  Level  

1 Balancing the reaction of sodium hypochlorite salt (NaOCl) hydrolysis in 

water 

2 

2 Stating the partial hydrolysis reaction:                   2 

3 Determining corrosive alkali of sodium hypochlorite salt (NaOCl) 1 

4 Calculating the pH of hydrolysis of sodium hypochlorite salt (NaOCl) with 

NaOCl = 0.1 M ; Ka = 10
-5

) 

3 

5 Determining the properties of NaOCl in the reaction:                

     

2 

6 Calculating the pH of sodium hypochlorite salt (NaOCl) that comes from a 

mixture of HOCl and NaOH (partially hydrolyzed), if the Ka HOCl = 10
-5 

and 

there is an increase in the pH of the solution mixture.  

3 

7 Determining aluminum salt (Al2(SO4)3) properties in water 1 

8 Determining aluminum salt (Al2(SO4)3) properties in water that is partially 1 



hydrolyzed by the Al
3+ 

ion 

9 Determining the properties of detergent solution causing eutrophication 1 

10 Determining the properties of detergent solution (sodium tripolyphosphate 

salt) that is partially hydrolyzed  

1 

11 Determining the impact of the disposal of detergent waste on the environment 2 

12 Determining the properties of ammonium sulfate salt (NH4)2SO4 1 

13 Stating the equation of (NH4)2SO4 reaction in water, partially hydrolyzed 2 

14 Students’ attitude towards the use of monosodium glutamate (C5H8NO4Na) 2 

15 Determining the properties of monosodium glutamate salt (C5H8NO4Na) 1 

Note:   Level 1 =  Determining the hydrolyzed salt properties,  

     Level 2 = Stating hydrolysis reactions of different salts in water,  

  Level 3 = Calculating the pH of the hydrolyzed salt solution.  

Instrument 

This present work utilized a three-tier multiple-choice test (henceforth, 3TMC) as the 

instrument to evaluate students’ understanding of the hydrolysis concept. 3TMC followed the 

Standard of Chemistry 2013 Curriculum of Senior High School under the Regulation of the 

Minister of Education and Culture of the Republic of Indonesia Number 37 of 2018. It was 

developed by following recommendations from [43, 44, 45]. 3TMC consisted of 15 items 

(Table 1) with different construction levels. Each item integrated diagnostic and summative 

measurements [46] and certainty of response index (CRI) [47,48]. The validity of the test 

construction by three experts was stated under Fleiss’ kappa (K = .96), implying that the 

experts agreed that the validity of 3TMC items was considered good.  

Each 3TMC item featured three questions (Q1, Q2, Q3), in which every response of 

the students to each item (Q1, Q2, Q3) was adjusted to the rubric (Table 2). For example, 



students’ responses to items were as follows: Q1, Q2 ―correct‖, and Q3 ―certain‖ under the 

code CCC, category of Scientific Knowledge (SK). On the other hand, if the response 

patterns in Q1, Q2 are ―incorrect‖ and Q3 ―uncertain‖, the code will be IIU, category of Lack 

of Knowledge (LOK). The CCC and IIU understandings were rated six and one, respectively. 

 Table 2. All Possibilities of Responses.
*)

 

*[47, 48, 49]  

 

Data collection 

Pre-test and post-test  

Before the intervention, this research underwent a pre-test; whereas, a post-test was 

done after the intervention. Both tests were supervised by teachers in the school. The 

(Q1) (Q2) (Q3) Code 

Conceptual Understanding 

Category 

Rating 

Correct Correct Certain CCC Scientific Knowledge (SK) 6 

Correct Incorrect Certain 

CIC Misconception False Positive 

(MFP) 

5 

Incorrect Correct Certain 

ICC Misconception False 

Negative (MFN) 

4 

Incorrect Incorrect Certain IIC All-Misconception (ALM) 3 

Correct Correct Uncertain 

CCU Lack of Confidence/Lucky 

Guess. (LG) 

2 

Correct Incorrect Uncertain CIU Lack of Knowledge (LOK) 1 

Incorrect Correct Uncertain ICU Lack of Knowledge (LOK) 1 

Incorrect Incorrect Uncertain IIU Lack of Knowledge (LOK) 1 



construction of pre- and post-test items was the same. Students wrote down their responses on 

the provided answer sheet. The students must work on all items according to the allocated 

time (45 minutes). The instrument was immediately collected and should have the same 

quantity as the research subject.  

Learning implementation 

Two chemistry teachers (teacher A and teacher B) were chosen to be the instructors of 

experimental and control classes. This implementation scenario was adapted from a study 

reported by Grooms [37]. At the beginning of the learning process, students were grouped 

into five—each consisted of six students. Next, in the observation stage, students were asked 

to watch a video for five minutes; the video represents socio-scientific issues around the 

students. In the questioning stage, they were stimulated to formulate questions regarding their 

observation, as well as formulating hypotheses. The students experimented by following the 

student worksheet and were accompanied by the teacher in the information collection stage. 

Thereupon, students had presentation and discussion sessions, during which they reported 

their experiment results and drew conclusions [50,51]. Meanwhile, in the control class, the 

learning process was performed conventionally and focused more on content mastery and 

problem-solving practice. The teacher also facilitated learning initiatives.  

Data analysis 

A non-parametric statistical test of Mann-Whitney U and a sign test of Wilcoxon were 

applied to determine students’ ability difference in the pre- and post-test in inter-class and 

intra-class [52]. This research used WINSTEP 4.5.5 software as the Rasch model analysis [6]. 

The changes in students’ ability were estimated by stacking and racking techniques. The 

stacking technique was to analyze the changes in students’ ability, and the racking technique 

was to investigate the changes in item difficulty level [40]. 



 The stacking technique put both pre- and post-test data vertically. Every student 

appeared twice in the data set, and each item emerged once in experimental and control 

classes [53]. This allowed the researchers to check out any changes of the students after the 

intervention [40]. All students had two rows of data, i.e., pre-test and post-test [54]. The 

students being examined should be based on the same item, making the changes in students’ 

ability during the pre- and post-test could be measured [40]. Students’ ability in each item of 

pre- and post-test could be compared as the data were analyzed in one single measurement, 

yet resulting in two item measures for every student and one measure for every item. 

Conversely, the racking analysis put both pre- and post-test data horizontally. Every item 

appeared twice in the data set, and each student emerged once; this enabled the researchers to 

check out any changes in item difficulty level before and after the intervention [40].  

Ethics 

The study is carried out within the guidelines of State University of Gorontalo for 

Research Data, including gathering informed consent from the from the local government and 

the school administrators on behalf of the students. The purpose of the research was also 

informed to the students. As the gained information will be confidential and only used for 

science development, the students’ names are anonymized. 

Results  

Instrument effectiveness 

Unidimensional and assessment scale analysis 

 The 3TMC instrument has a good unidimensionality (Appendix 1). Raw variant index 

arrives at above 40% (41.3%), meaning that the instrument can effectively measure students’ 

understanding ability of hydrolysis concept [55]. Assessment scale analysis (Appendix 2) 

informs that the observation mean starts from logit -.34 (category 1 , LOK) to logit +1.11 



(category 6, SK). This indicates that the category of students’ understanding takes place 

consistently [6].    

Person and item reliability 

 Based on Table 3, the person reliability index (.78) shows good response consistency 

of the students [56], implying that the scale is able to discriminate the category of students’ 

understanding ability properly. This interpretation also applies to the item reliability index 

(.97); students’ responses to items are excellent. The high value of item reliability also reveals 

that the item can define other variables very well [57]. Thus, the 3TMC instrument is reliable 

to be employed in the experimental and control classes.  

Table  3. Reliability of Person and Item. 

Parameter (N) Mean Logit (SD) Separation Reliability KR(20) 

Person  (214) .69 (.59) 1.90 .78 

.85 

Item    (15) .00 (.41) 6.04 .97 

 

Cronbach alpha 

 According to Rasch model calculation, the coefficient of Cronbach Alpha (.85) 

reflects very high interaction between 214 students and 15 items with excellent category [3, 

58]. The instrument of 3TMC has an excellent internal psychometric consistency and is 

considered very reliable. 

 

Person and item separation index 

 Person separation index estimates how well 3TMC differentiates students’ 

understanding ability of the hydrolysis concept. The higher the person separation index, the 

more likely students are to respond to items with correct understanding. The item separation 



index, on the contrary, shows how broad the item distribution in defining easy and difficult 

items. The broader the item distribution, the better and more appropriate it is [4]. In this study, 

the person separation index (1.90) and item separation index (6.04) reflect a moderate 3TMC 

distribution to students and items. Such criteria support 3TMC as the appropriate and reliable 

instrument to evaluate students’ understanding of the hydrolysis concept. 

Item validity 

 Table 4 illustrates the order of item suitability. An item is considered to experience a 

misfit if the measurement result is not in line with the following criteria: Outfit mean square 

residual (MNSQ): .5 < y < 1.5; Outfit standardized mean square residual  (ZSTD): -2 < Z < 

+2 ; and point measure correlation (PTMEA CORR): .4 < x < .8 [4]. Item 15 does not meet 

the Outfit MNSQ criterion; Item 15, 6, 12, and 13 are not in accordance with Outfit (ZSTD) 

criterion. No items experience misfit or have negative values in terms of PTMEA CORR 

criterion; simply put, all items fulfill those criteria mentioned previously and are suitable and 

valid. This result also suggests that the 3TMC instrument has good measurement 

effectiveness. 

Table 4. Item Statistics:  Misfit Order 

Item Measure Outfit MNSQ Outfit ZSTD PTMEA CORR. 

1 -.55 1.18 .96 .52 

15 .35 1.55 4.29 .52 

14 -.35 1.14 .83 .54 

6 .34 1.30 2.53 .44 

11 -.52 .93 -.34 .56 

2 .23 1.14 1.20 .55 

10 .08 1.14 1.06 .59 



9 -.61 .86 -.71 .55 

8 .61 1.10 .96 .45 

3 -.44 .81 -1.09 .49 

5 -.30 .81 -1.19 .61 

7 .19 .92 -.60 .58 

4 .38 .90 -.95 .55 

12 -.01 .71 -2.29 .63 

13 .58 .71 -3.09 .64 

 

The difference in students’ understanding ability of hydrolysis 

concept 

  Based on person measure data of every student, we statistically test the difference in 

students’ understanding of hydrolysis concept between pre- and post-test in the experimental 

class and control class, as well as the difference in pre- and post-test between the 

aforementioned classes using the non-parametric tests of Mann-Whitney U and Wilcoxon, 

presented in the following Table 5 and 6.  

Table 5. The Result of the Mann-Whitney U Test based on students’ pre-test and Post-

Test Ability in Experimental and Control Classes (p < 0.05). 

Test Experimental Class (N=57) Control Class (N=50) U p 

Pre-test 0.65(-0.59-1.10)
a 

0.18(-1.33-0.85)
a
 667.500 0.000 

Post-test 1.91(-0.03-3.62)
a
 1.24(-1.57-1.74)

a
 282.000 0.000 

a
descriptive statistics given as median (Min-Max) 

Table 6. The Result of the Wilcoxon Test of Students’ Pre-Test and Post-Test in 

Experimental and Control Classes (p < 0.05). 



Class Pre-test Post-test Z p
*
 

Experimental 0.65(-0.59-1.10)
a
 1.91(-0.03-3.62)

a
 -6.570 0.000 

Control 0.18(-1.33-0.85)
a
 1.24(-1.57-1.74)

a
 -6.147 0.000 

a
descriptive statistics given as median (Min-Max) 

The result of the Mann-Whitney test (Table 5) brings out the fact that statistically, 

there is a significant difference in the results of pre-test (U = 667.500, p < 0.05) and post-test 

(282.000, p < 0.05) among students in experimental and control classes. Further, the 

Wilcoxon test result (Table 6) shows that the results of pre-test (z=-6.570, p < 0.05) and post-

test (z = -6.147, p < 0.05) of students in experimental and control classes are significantly 

different. This can be seen that students’ ability after treatment (post-test) is higher than 

before treatment (pre-test), both in experimental and control classes. The ability of students in 

the experimental class, however, is better than those in the control class. Accordingly, such 

findings indicate that the learning process in the context of SSI is more effective than 

conventional learning.  

The changes in students’ understanding ability of hydrolysis 

concept 

From Table 7, it is worth noting that although the logit mean of pre-test items in 

experimental and control classes is not relatively different, the logit mean of post-test items 

shows a relatively major difference. The mean of logit difference of the pre- and post-test 

items in the experimental class (.78) is greater than that of the control class (.50), meaning 

that the ability changes of students in the experimental class are better than those in the 

control class. 

Table 7. Mean of the Pre- and Post-Test Items Logit Difference in Experimental and 

Control Classes. 



Class 

Total   Mean 

Students Items Pre-test Item 

Logit 

Post-test Item 

Logit 

Item Logit 

Difference 

Experimental 57 15 .52 1.30 .78 

Control 50 15 .17 .67 .50 

  

 

 

Fig. 1.  Scatter Plots of Person Measures in Pre-Posttest of Experimental and Control 

Classes. 

The above figure presents scatter plots of pre- and post-test in experimental and 

control classes as a line that intersects the horizontal axis. The gradient = 1 is plotted through 

the mean measurement of person in the pre- and post-test. As illustrated in Figure 1, the graph 

of person measure of the experimental class (a) looks more convincing than that of the control 

class (b) the range of logit scale of the vertical axis (post-test) of the experimental class (3.5 

logit) is higher than that of the control class (1.5 logit). Besides, 28 students in the 

experimental class are above the curve, and 29 students are under the curve. For the control 

class, 22 students and 28 students are, in succession, above and under the curve. After 



treatment, students above the curve show a more significant improvement of ability than the 

mean of logit difference of pre- and post-test items in experimental (.78 logit) and control (.50 

logit) classes.  

Table 8. Student Scalogram  (The Difference in Ability Measure of Pre- and Post-Test 

with Negative Values). 

Student 

Serial 

Number 

Class 

Item (N-15) (Sorted by Difficulty Level) 

DPP 

 

CSE 

 

 

 

|  1 1 11   1 1         

|911345207265438 (M)   (MSE) 

|--------------- 

17 Experimental Pre-

test  

+566564553566436 (.79) (.22) -.10 .43 

Post-

test 

+655564563366553 (.69) (.21)  

18 Experimental Pre-

test 

+666566636366333 (.74) (.21) -.71 .39 

Post-

test 

+666661322521161 (.03) (.18)  

22 Experimental Pre-

test 

+616664245121133 (-.06)(.18)  -.04 .36 

Post-

test 

+666662123521211 (-.10)(.18)  

34 Experimental Pre-

test 

+666535666564653 (.94) (.24) -.11 .47 

Post- +666636466636453 (.83) (.23)  



test 

72 Control Pre-

test 

+666635656565653 (1.00)(.25)  -.21 .47 

Post-

test 

+666646655653533 (.79) (.22)  

81 Control Pre-

test 

+566636563566356 (.89) (.23) -.24 .43 

Post-

test 

+666664653653433 (.65) (.20)  

88 Control Pre-

test 

+616665663261613 (.35) (.18) -.45 .36 

Post-

test 

+612162566131613 (-.10)(.18)  

Note:  M = measure, MSE= model standard error, DPP= difference in pre-post-test, 

CSE = combined standard error. (1=LOK, 2=LG, 3=AM, 4=MFN, 5=MFP, 6=SK) 

Red marks refer to post-test items that turn into a misconception 

 

After learning treatment, the logit difference of pre- and post-test ability from 28 

students (experimental class) and 22 students (control class) has successfully surpassed the 

mean of logit difference of pre- and post-test ability in each class.  Next, the plotting of pre-

test and post-test ability of four students in the experimental class ( 17, 18, 22, and 34) and 

three students in the control class ( 72, 81, and 88) is identified to be outside the modeled 

invariance curve. On top of that, the logit difference in pre-test and post-test ability of seven 

students mentioned earlier has a negative value; those students’ ability is changed to lower 

understanding rating after treatment. The question is ―on which item does it occur?‖ Provided 



in Table 8 is the result of the scalogram test of those seven students. However, this study only 

exemplifies one case, i.e., student 18 in the experimental class (hereinafter referred to as 

S18E).    

 S18E had the following ability measure: pre-test (.74 logit; SE .21 logit), post-test (.03 

logit; SE .18 logit), and difference in pre- and post-test ability (-.71 logit; SE .39 logit); SE 

refers to standard error. Due to the fact that the logit of difference in pre- and post-test ability 

(-.71) was less than the combined standard error logit (.39), there was no significant 

difference in students’ pre- and post-test ability. After a thorough investigation, in the pre-test 

ability (.74), S18E had a correct understanding on nine items (item 9, 1, 11, 14, 5, 12, 7, 6, 

and 15). In the post-test ability (.03), the student’s understanding rating went lower on four 

items (item 5, 12, 6, and 15). It is assumed that such a change was in consequence of the 

student’s misconception in stating the reaction of sodium hypochlorite salt (NaOCl) 

hydrolysis in the reaction:                   
  (item 5), determining the acid 

properties of ammonium sulfate salt (NH4)2SO4 (item 12), calculating the pH of sodium 

hypochlorite salt (NaOCl) (item 6), and determining the base properties of monosodium 

glutamate salt (item 15).  

Table 9.  Data of Item Measures of Pre- and Post-Test of Experimental and Control 

Classes. 

Item 

Experimental Class (N=57) Control Class (N=50) 

Pre-test 

Item Logit 

Post-test 

Item Logit 

Item Logit 

Difference 

Pre-test 

Item 

Logit 

Post-test 

Item Logit 

Item 

Logit 

Difference 

1 .18 -3.25 -3.43 -.10 -1.19 -1.18 

2 .99 .70 -.92 .60 -.66 -1.26 



 

The difference in hydrolysis item difficulty level of students 

Table 9 shows that the item difficulty level changes consistently in both experimental 

and control classes. The mean of item logit difference of the experimental class (-1.70) is less 

than that of the control class (-.63), signifying that after treatment, the item difficulty level of 

pre- and post-test in the experimental class turns to be easier than that of the control class. 

After examining the items, it is found that the difference in every pre- and post-test item logit 

in the experimental class is all negative in the value. On the other hand, the item logit 

difference in pre- and post-test in the control class has three items with negative values, one 

3 .37 -.89 -1.26 -.14 -1.3 -.89 

4 .83 .50 -.33 .74 -.14 -.88 

5 .22 -.71 -.93 .15 -.60 -.75 

6 .48 .42 -.60 .52 .42 -.1 

7 .91 -.35 -1.26 .44 -.50 -.49 

8 .87 .78 -.90 .65 .54 -.11 

9 .8 -1.5 -1.58 -.70 -1.46 -1.39 

10 .59 -.19 -.78 .38 -.40 -.42 

11 .18 -1.5 -1.68 -.60 -.60 .00 

12 .61 -.24 -.85 .33 -.40 -.73 

13 1.8 .36 -.72 .88 .36 -.52 

14 .15 -1.14 -1.29 .19 -.72 -.91 

15 .50 -.38 -.88 .59 .76 .17 

Mean .54 -.54 -1.70 .35 -.28 -.63 



unchanging item (item 11), and one changing item being more difficult (item 15).

 

Fig. 2. Wright Map of Experimental Class Students. 



 

Fig. 3. Wright Map of Control Class Students. 

Figure 2 and Figure 3 present the item Wright map to illustrate the changes in item 

difficulty level of pre- and post test in the experimental class and control class. Drawing from 

both figures in the pre-test, item 13 (measuring students’ ability in stating the reaction of 

partial hydrolysis of (NH4)2SO4 in water) has the highest difficulty level both in the 

experimental class (1.8 logit) and control class (.88 logit) Meanwhile, in the post-test, the 

measure of this item changes to .36 logit in the experimental class and .36 logit in the control 

class. The logit difference of pre-and post-test item 13 of the experimental class (-.72) is less 

than that of the control class (-.52), indicating that the change in difficulty level of item 13 in 

the experimental class is better than that of the control class.  



Discussion  

The changes in students’ ability and item difficulty level 

Producing information on the measurement of changes in students’ ability and item 

difficulty level is among the advantages of stacking and racking techniques in the Rasch 

model. This allows researchers to detail the influence of the applied pedagogical innovation 

[13, 14, 59]. The stacking technique provides information regarding ―who has changed‖; in 

contrast, the racking technique offers information of ―what has changed‖ [16,40]. Apart from 

positive changes, this study discovered that seven students experienced negative ability 

changes; S18E was among those students. His/her ability turned negative on items 5, 12, 6, 

and 15 after treatment. Why did it take place? How was the change? Figure 4 shows the result 

of the stacking analysis of S18E and racking analysis of item 5. Viewed from the measure of 

the post-test ability (.03) that is higher than the item 5 difficulty level of the post-test (-.71), 

the correct understanding of S18E on item 5 should have not changed. It is because items 

―being taught‖ mostly get way easier than the untaught ones [60]. Instead, S18E’s 

understanding became negative, indicating that post-test item 5 was more difficult than the 

pre-test item 5. It is assumed that this issue was caused by the misconception of S18E in 

determining the hydrolysis reaction in water [19, 21, 61]. 



 

Fig. 4. Results of Stacking and Racking Analysis of Item 5. 

The patterns of changes in students’ ability and item difficulty 

level 

The causes of these changes can be examined from the response patterns of S18E on 

item 5. This item has the student to pay attention to the reaction of NaOCl reaction:      

             
  with the estimated pH = 7 and is alkaline. The question Q1 of this item 

is ―is it correct that NaOCl is akaline?‖ S18E answered ―correct‖ in the pre-test, yet 

responded to ―incorrect‖ in the post-test. The next question Q2 is about the reason for 

students’ answer in Q1, with four provided answers, as follows: (a) because NaOCl is formed 

from strong acids and weak bases; (b) because NaOCl is formed from weak acids and strong 

bases; (c) because NaOCl is formed from weak acids and weak bases; (d) because NaOCl is 

formed from strong acids and strong bases. In the pre-test, S18E chose the correct answer (b), 

yet s/he selected (b) in the post-test that contained misconception. Additionally, S18E chose 

the answer ―certain‖ in question Q3 of the pre-test, and became ―uncertain‖ in the post-test. 



Therefore, the response patterns of S18E in the pre-test were CCC (category of scientific 

knowledge - SK) and IIU (category of lack of knowledge - LOK) in the post-test. The patterns 

of changes in the pre- and post-test of S18E were merely on account of the student’s inability 

to understand the reaction of NaOCl formed by weak acids and strong bases. On this ground, 

S18E does not understand the concept of acid and base, as well as acid-base reaction. These 

findings strengthen previous studies [19, 21, 25, 62].  

It is also intriguing to claim that the same techniques can examine the changes other 

students experience. Such information can be obtained through stacking and racking 

techniques in the Rasch model [3, 16, 40]. Although the result of 3TMC does not give 

information regarding changes, students’ ability changes can be measured to be more clearly 

and accurately after being analyzed through the Rasch model. On top of that, other variables, 

namely sex, learning style, and the like, can function as additional information in connection 

with the pedagogical or curricular effects on students’ ability [59].  

Conclusion  

The stacking technique provides information regarding changes in students’ ability, 

allowing researchers to identify which students experience positive or negative changes after 

the learning treatment. Despite the fact that students also have negative changes, it is found 

out that students taught with the SSI context relatively have a better understanding ability of 

the hydrolysis concept than those who learn conventionally. On the other hand, the racking 

technique allows researchers to determine items that are considered easiest or most difficult. 

Therefore, the integration of both analysis techniques in the Rasch model is able to give 

accurate details in evaluating the influence of pedagogical innovations and student learning 

outcomes. 

Limitations and further studies 



 This study is subject to several limitations that should be borne in mind, e.g., 

relatively limited sample size and other aspects that have not been considered: learning style, 

motivation, and hydrolysis preconception of students. Further studies are expected to 

investigate the correlation between those aspects and the effectiveness of changes in students’ 

understanding ability. Moreover, this research did not take into account the impact of item 

characteristics on the parameter of item difficulty level, i.e., whether different levels of item 

difficulty are resulted from different understanding or other causes, such as different contexts 

of problems presented on each item [63]. In essence, this present work did not examine the 

effect of problem presentation contexts as item characteristics on the item difficulty level; 

nonetheless, it followed the two-step processes suggested in the racking technique [14, 40].  

Further studies are also expected to find techniques to integrate contexts and item 

characteristics in a measurement model. It is assumed that different contexts of problem 

presentation on every item will influence measurement results.  

In addition to relying on quantitative measurement, further studies should be 

strengthened by the analysis of a structured interview to delve into the aspects that drive 

students to ability changes. Therefore, the linkages between the process during treatment and 

ability changes can be elaborated in detail and accurately, i.e., the part of the process that 

leads students to change their understanding of specific ideas taught to them. By the 

interview, the impact of the learning implementation in the SSI context can be analyzed to 

determine its effect on the changes in understanding ability and item difficulty level.  
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Abstract 

This research aimed to employ stacking and racking analysis techniques in the Rasch model to 

measure the hydrolysis conceptual changes of students taught by the process-oriented guided 

inquiry learning (POGIL) model in the context of socio-scientific issues (SSI) with the pretest-

posttest control group design. Such techniques were based on a person- and item-centered 

statistic to determine how students and items changed during interventions. Eleventh-grade 

students in one of the top-ranked senior high schools in the eastern part of Indonesia were 

involved as the participants. They provided written responses (pre- and post-test) to 15 three-

tier multiple-choice items. Their responses were assessed through a rubric that combines 

diagnostic measurement and certainty of response index.  Moreover, the data were analyzed 

following the Rasch Partial Credit Model, using the WINSTEPS 4.5.5 software. The results 

suggested that students in the experimental group taught by the POGIL approach in the SSI 

context had better positive conceptual changes than those in the control class learning with a 

conventional approach. Along with the intervention effect, in certain cases, it was found that 

positive conceptual changes were possibly due to student guessing, which happened to be 

correct (lucky guess), and cheating. In other cases, students who experienced negative 

conceptual changes may respond incorrectly due to carelessness, the boredom of problem-

solving, or misconception. Such findings have also proven that some students tend to give 

specific responses after the intervention in certain items, indicating that not all students fit the 

intervention. Besides, stacking and racking analyses are highly significant in detailing every 

change in students’ abilities, item difficulty levels, and learning progress. 

Keywords: stacking, racking, Rasch model, hydrolysis conceptual changes, inquiry model 

 

 



Introduction 

Central to defining the quality of pedagogical innovation in science classes is 

conceptual changes. The changes refer to how ideas or conceptions the students understand 

according to their ways of thinking [1, 2] become scientifically accurate [3]. It is because such 

ideas generally comprise misconceptions [4, 5, 6, 7], are not in accordance with scientific 

concepts [8, 9], tend to be resistant [10], changeable and varied [11], so that they should be 

improved if the correct conceptual understanding is to be taught [12, 13].  

Some studies have been conducted on learning innovation testing to form an accurate 

and scientific conceptual understanding of the students, e.g., inquiry-based learning. This 

model presents conceptual conflicts and participatory experiments to facilitate conceptual 

changes [14, 15, 16]. Conceptual understanding-based learning involves various strategies in 

identifying and analyzing students’ comprehension so that the investigation process can be 

designed to lead them to a more accurate and scientific conception [16, 17]. This research 

relied on a quasi-experimental design that assessed students’ pre-test and post-test, evaluated 

the changes in performances for testing significant differences. This type of testing informs the 

researcher about the presence of an effect, but does not provide detailed information on the 

level and trait of the changes [18]. What if the researcher is willing to compare the extent to 

which the pre- and post-test change (differences in learning outcomes) and interpret the 

changes (the reasoning why those changes occur) in terms of content? This is a core question 

regarding the changes in some latent traits or changes in traits measured after the intervention. 

In most studies, interpreting the changes in pre-test and post-test tends to be limited to 

identifying whether or not an effect prevails. 

Pre- and post-test changes should be given in detail regarding the students’ 

understanding ability and item difficulty levels. However, this has not been much revealed due 



to the limitations of its measurement techniques and analyses and has not been the main focus 

in chemistry education research to date. One reason for this issue is the debate in the 

psychometric community regarding the ability to measure changes accurately [18]. This 

debate questions the use of raw scores in the conventional psychometric analysis, which 

largely contains measurement biases [19], as follows: 1) the difference in pre- and post-test 

scores will be negatively correlated with the pre-test score, especially for students with low 

pre-test scores [18, 20]; 2) the difference in pre- and post-test scores shows low test reliability 

[21]; 3) low measurement properties due to different scales [22]. 

Raw scores are not final data, so that they do not have a great deal of information for 

drawing conclusions [23, 24]. Around the 1950s, Dr. Georg Rasch, a mathematician from 

Denmark, introduced the formulation of the Rasch measurement model [24]. The model has 

been widely applied to analyze various types of data, e.g., dichotomous, polytomous, multi-

rating, and multi-rater data. In the mid-2000s, the Rasch model was used as a probabilistic-

based psychometric measurement that went beyond the use of raw scores [25, 26], and was 

used to overcome the limitations of conventional psychometric measurement [19, 27]. Its 

analyses, including item fit, PCA (Principal Component Analysis), and Wright map, are 

commonly used for international test analyses, namely TIMSS and PISA [28].  

In chemistry education research, the Rasch model has been relied on to evaluate 

learning understanding and progress [29], to diagnose students’ preconceptions [1], 

misconceptions [13, 30, 31, 32], link the measurement of content knowledge with pedagogical 

content knowledge [33], and investigate item difficulty patterns [13, 34]. Even so, studies on 

the Rasch model to reveal the chemistry conceptual changes in students’ understanding and 

item difficulty levels are relatively hard to find as of today. The present study aims to employ 

stacking and racking analysis techniques in the Rasch model to measure the hydrolysis 

conceptual changes of students taught by the POGIL approach in the context of SSI and 

https://en.wikipedia.org/wiki/Georg_Rasch


students who learn conventionally. Such techniques are based on a person- and item-centered 

statistic to estimate how students and items change during the intervention.  

POGIL is a student-centered learning strategy that teaches content or process skills. 

The philosophical foundation of POGIL is the involvement of an interactive process of careful 

thinking, discussing ideas, perfecting understanding, practicing skills, reflecting progress, and 

evaluating performances [35]. POGIL is able to lead the process of designing a participatory 

experiment that presents a conceptual conflict as a strategy to encourage students to form an 

accurate concept [14]. Therefore, POGIL intervention is more likely to be potential in driving 

epistemological understanding and reasoning [36], making students have opportunities to 

change their conceptions to be more accurate and scientific [16]. Nevertheless, it is also worth 

noting that some students potentially have misconceptions resistant to changes [3].  

SSI functions as a learning context through the intergration of social problems that 

students are familiar with. It also has a conceptual connection with salt hydrolysis [37, 38], 

and its resolution requires many perspectives [39], including the dimension of moral and 

ethical evaluation of students [40]. The SSI context is a socio-scientific phenomenon that the 

students should explain based on their conceptual viewpoints. It encourages them to actively 

get involved in grasping problems [41], developing and utilizing their knowledge [42], 

improving their critical thinking [43], and being able to scientifically describe the discussed 

socio-scientific phenomenon [36, 44, 45]. For such reasons, the integration of SSI can build 

up students’ scientific literacy [39, 46, 47]. In the end, this integration enables the learning 

process to be more significant in enhancing students’ understanding [45, 48]. Besides, they 

are skilled in negotiating the social aspect of the studied phenomenon [49, 50]. For instance, 

the issues of global warming, climate change, and pollution [36]. 

Salt hydrolysis is a learning topic in high school that is strongly related to SSI. 

Students with a good understanding of hydrolysis will manage to clarify scientifically why 



detergents, bleaching agents (NaOCl), and fertilizers can pollute the environment. Despite 

this, the linkage of this issue as the problem in learning hydrolysis is rarely carried out. The 

learning process is more emphasized on mastering theoretical concepts [36]. As a 

consequence, students find it challenging to use their hydrolysis understanding to explain 

socio-scientific phenomena around them [37]. This challenge is on account of their 

misconceptions regarding acid-base reaction [51], making them unable to elaborate the 

concept of salt hydrolysis [52] and determine acid and base strength [53]. In addition, they 

are struggling with correctly explaining the dissolving process and the reaction of ionic 

compounds with water, writing down chemical equations, and having different interpretations 

of the dissolving process mentioned earlier [54]. On this ground, it is essential to reveal how 

the hydrolysis concept changes if intervened with the POGIL approach in the SSI context, 

through the following specific questions: (1) is there a significant hydrolysis conceptual 

change of the students after the learning process in experimental and control groups? (2) if 

compared, how is the hydrolysis conceptual change through the intervention of POGIL in the 

SSI context and conventional learning? (3) in addition to intervention, is there any other 

factor that also contributes to the students' hydrolysis conceptual changes? 

Method of Study 

This study relied on a quantitative approach with a quasi-experimental and pretest-

posttest control group design [55] by comparing the extent to which the hydrolysis concept 

changes after the intervention. Researchers carried out the learning process for 12 meetings, 

gave tests, and collected data on the results of the intervention and measurement. 

The changes of students and items were analyzed using the stacking and racking 

techniques in the Rasch model [56]. As standard techniques, racking and stacking were 



introduced by Benjamin Wright to measure the extent to which conceptual understanding of 

students and items change before and after interventions [57].  

In regards to students’ understanding, the measurement was to identify students who 

had specific hydrolysis conceptual changes in responding to the learning intervention. In terms 

of items, the measurement was done to identify which items had special characteristics and 

been understood by students differently during the learning intervention [57]. Thus, the 

scientific inquiry approach might not be suitable for some students, or some items might be 

too hard after the intervention. This insightful information is immensely helpful for 

researchers and education practitioners, especially in evaluating the weaknesses of 

pedagogical innovations being applied and devising learning strategies that meet students’ 

needs in learning [58].  

Participants 

Eleventh-grade students aged 16-17 years in one of the senior high schools in the 

eastern part of Indonesia were involved as the sample. This top-ranked school gets an ―A‖ 

accreditation (excellent)  from the National Accreditation Board for High School. The sample 

was determined by convenience sampling in six randomly assigned classes. Three classes 

(N=97) were experimental groups that applied the POGIL model in the SSI context. The other 

three classes (N=93), as control groups, applied conventional learning without the SSI context. 

The same teacher taught these classes following the Curriculum 2013 of Chemistry Subject 

(revised in 2016). There was no special classroom for learning the concept of hydrolysis, i.e., 

taking up the regular learning process at school. Before learning the hydrolysis concept, the 

students had previously learned the concept of acid and base to understand the concept of salt 

hydrolysis way better.  Research permission was obtained from the government and school 

administrators. In accordance with principles of research ethics, research purpose and 

procedures were informed to all the students being involved and that they were voluntarily 



participating. Additionally, their information is confidential and only used for science 

development [59].  

Learning implementation 

Students in the experimental group studied employing the process-oriented guided 

inquiry learning (POGIL) in the SSI context [35]. Meanwhile, in the control class, the 

learning process was performed conventionally; the teacher facilitated learning initiatives. 

The learning process focused more on content mastery and problem-solving practice. 

Applying the POGIL model in the SSI context highlights teacher assistance to guide the 

students to prepare their conceptual understanding based on epistemological reasoning they 

get from experiments, discussions, and collaborations [49, 60]. Researchers carried out the 

learning process for eight weeks to apply the intervention to the sample, gave tests, collected 

data on the results of the intervention and measurement. The first three weeks were the 

preparation stages when researchers and the teacher shared perceptions, and asked the teacher 

to perform a learning simulation under the scenario, including different assistance techniques 

in leading the students to conduct experiments, and to ask analytical questions. The pre-test 

was carried out in the third week. Further, the learning implementation was done for four 

weeks, and the post-test was executed in the eighth week.  

The learning stages with POGIL in the SSI context consist of orientation, exploration, 

concept formation, application, and closing. During the orientation stage, the teacher 

presented familiar contextual phenomena related to the concept of hydrolysis. The teacher 

asked initial questions to provoke curiosity and arouse motivation and interest of the students. 

While watching the video, had the students responded and explained the relationship between 

the phenomena and acids and bases, hydrolysis, and buffers. In the exploration stage, the 

teacher developed analytical questions with data, images, and multiple video clips to give 

perspectives on learning objectives and to delve into the concept that had been and would be 



learned. Next, the teacher assisted the students in doing experiments guided by a worksheet, 

and at the same time, asked analytical questions to lead them and strengthen their conceptual 

understanding. In the concept formation stage, the teacher asked students to build their 

conceptual understanding based on the exploration results, accompanied by critical and 

fundamental questions to guide students in building a conceptual understanding of the salt 

hydrolysis and buffer solution.  

Following the formation stage was the application stage when the teacher presented 

contextual problems in the SSI context, particularly those comprising social problems in 

society, that closely linked with the understanding of salt hydrolysis and buffer solution 

concepts. Such problems included 1) the use of bleaching agents (detergents), 2) the functions 

of alum (Al2(SO4)3 for water purification, 3) the harmful effects of detergent waste, 4) the 

beneficial and harmful effects of artificial fertilizer (NH4)2SO4 for soil fertility, and 5) the 

harmful effects of monosodium glutamate (MSG) for health. In this stage, the teacher guided 

the students through collaborative discussions and critical questions, intending to give them 

perspectives on SSI phenomena and encourage them to collect information and do 

experiments following student activity sheets.  Thereupon, the students had presentation and 

discussion sessions, during which they reported their experiment results and drew conclusions 

[61, 62]. The teacher asked them to describe the possible problems and solutions from their 

understanding of the studied concepts. This enabled the students to form their conceptual 

understanding that is closely related to contexts; the learning process was from contextual to 

abstract [37, 63]. From such a condition, the teacher led the students to apply their knowledge 

in different contexts and situations and solve problems. The final stage was closing or teacher 

assistance in guiding the students to explain the conclusion and reflection on the learning 

process as the end of the learning activities. 

Instrument 



Table 1 displays 15 items of diagnostic three-tier multiple choice test to measure 

students’ hydrolysis conceptual understanding. The test was constructed following the 

Competence Standard of 2013 Chemistry Curriculum of Senior High School under Regulation 

of the Minister of Education and Culture of the Republic of Indonesia Number 37 of 2018. 

The procedures of developing the instrument followed the recommendation by [64, 65, 66]. 

  

Table 1. Conceptual Map of Hydrolysis Concept Understanding. 

Problem Context Item Conceptual Understanding Ability Level 

Bleaching agents are 

formed of weak acid 

HOCl and strong base 

NaOH. Sodium 

hypochlorite salt 

(NaOCl) is reactive and 

dissolves the dye. In the 

water, the ion      will 

be hydrolyzed to HOCl 

and     -
 

1 Balancing the salt (NaOCl) 

hydrolysis reaction in the water 

2  

Level 3:  

 Students are 

able to 

calculate the 

pH of the 

hydrolyzed 

salt solution.  

 

 

Level 2:  

 Students are 

able to 

determine the 

hydrolysis 

reaction from 

2 Stating the partial hydrolysis 

reaction:            

       

2 

3 Determining corrosive alkali of 

sodium hypochlorite salt 

(NaOCl) 

1 

4 Calculating the pH of 

hydrolysis of sodium 

hypochlorite salt (NaOCl) with 

NaOCl = 0.1 M; Ka = 10
-5

) 

3 

5 Determining the property of 

NaOCl, in the reaction: 

                  
  

2 

 

6 Calculating the pH of sodium 3 



hypochlorite salt (NaOCl) that 

comes from a mixture of HOCl 

and NaOH (partially 

hydrolyzed), if the Ka HOCl is 

10
-5 

and there is an increase in 

the pH of the solution mixture.  

different types 

of salt  

 

 

Level 1:  

 Students are 

able to analyze 

the properties 

of the 

hydrolyzed 

salt 

 

 

Water purification with 

alum Al2(SO4)3 is the 

concept of salt 

hydrolysis, formed of 

H2SO4 and Al(OH)3. 

7 Determining aluminum salt 

(Al2(SO4)3) properties in the 

water 

1 

8 Determining aluminum salt 

(Al2(SO4)3) properties in the 

water that is partially 

hydrolyzed by the Al
3+ 

ion 

1 

The sodium 

tripolyphosphate 

(STPP) in detergents 

can pollute the 

environment, a 

eutrophication process.  

9 Determining the properties of 

detergent solution causing 

eutrophication 

1 

10 Determining the properties of 

detergent solution (sodium 

tripolyphosphate salt) that is 

partially hydrolyzed  

1 

11 Determining the impact of the 

disposal of detergent waste on 

the environment 

2 

ZA fertilizer 12 Determining the properties of 1 



(NH4)2SO4 is an acidic 

salt. 

ammonium sulfate salt 

(NH4)2SO4 

13 Stating the equation of 

(NH4)2SO4 reaction in the 

water, partially hydrolyzed 

2 

Monosodium glutamate 

(C5H8NO4Na) is L-

glutamic acid salt, 

adversely impactful on 

human health 

14 Students’ attitude towards the 

use of monosodium glutamate 

(C5H8NO4Na) 

2 

15 Determining the properties of 

monosodium glutamate salt 

(C5H8NO4Na) 

1 

 

Each item was designed in three questions (Q1, Q2, Q3) that integrated diagnostic [67, 

68] and summative measurements [10] and certainty of response index (CRI) [69, 70]. 

Students’ responses to items (Q1, Q2, Q3) were evaluated based on the rubric (Table 2). For 

example, students’ responses to items were as follows: Q1, Q2 ―correct‖, and Q3 ―very sure‖ 

under the code CCC. Such a code indicated that students’ conceptual understanding was in 

level 6, category of Scientific Knowledge (SK).  On the other hand, if the response patterns in 

Q1, Q2 ―incorrect‖ and Q3 ―not sure‖, the code would be IIU, implying that students’ 

conceptual understanding was in the category of Lack of Knowledge (LOK), or level 1.  This 

instrument had been validated from the aspects of item conformity with the construct variable 

and language. The validity results by three experts were stated under Fleiss’ kappa (K = .96), 

meaning that the experts agreed that the item validity was categorized good.  

 Table 2  All Possibilities of Responses [69, 70, 71] 



 

 

Data collection and analysis  

 Before the intervention, this research underwent pre-test data collection; whereas, the 

post-test data collection was done after the intervention. The construction of pre- and post-test 

items was the same. Students wrote down their responses on the provided answer sheet. Both 

tests were supervised by teachers in the school. The students must work on all items 

according to the allocated time (45 minutes). The instrument was immediately collected and 

should have the same number as the total participants. 

The pre- and post-test measurement data were still ordinal data. The Rasch Partial 

Credit Model with WINSTEPS 4.5.5 software [27, 72] was used to convert ordinal data into 

(Q1) (Q2) (Q3) Code 

Conceptual Understanding 

Category 

Level 

Correct Correct Certain CCC Scientific Knowledge (SK) 6 

Correct Incorrect Certain 

CIC Misconception False Positive 

(MFP) 

5 

Incorrect Correct Certain 

ICC Misconception False Negative 

(MFN) 

4 

Incorrect Incorrect Certain IIC All-Misconception (ALM) 3 

Correct Correct Uncertain 

CCU Lack of Confidence/Lucky Guess. 

(LG) 

2 

Correct Incorrect Uncertain CIU Lack of Knowledge (LOK) 1 

Incorrect Correct Uncertain ICU Lack of Knowledge (LOK) 1 

Incorrect Incorrect Uncertain IIU Lack of Knowledge (LOK) 1 



interval data to have the same logit scale. The result was a data calibration of the levels of 

student's ability and item difficulty in the same interval.  

The stacking analysis technique put pre-test and post-test data vertically [73]; 

meanwhile, the items appeared once in the experimental and control groups, allowing the 

researchers to check out any changes of the students after the intervention [56]. The 

examination was based on the same item, making the changes in students’ ability during the 

pre- and post-test be measured [56]. Hence, each student created two measures of abilities, 

namely pre-test and post-test, and one measure for each item. The research hypothesis is that 

the students' conceptual understanding from pre-test to post-test changes, both in the 

experimental and control groups. 

Conversely, the racking analysis technique put both pre- and post-test data 

horizontally, in which each item appeared twice in data collection, and students’ ability only 

emerged once. This enabled the researchers to check out the effects of learning 

implementation on each student’s ability from the tests, especially the changes in item 

difficulty levels before and after the intervention [56].  

Results  

Rasch analysis properties of instrument 

 The summary of changes in concepts and items analyzed by the Rasch model is 

presented in Table 1. Table 2 provides the item fit statistic. An item is considered to 

experience a misfit if the measurement result is not in line with the following three criteria: 

Outfit mean-square residual (MNSQ): .5 < y < 1.5; Outfit standardized mean-square residual  

(ZSTD): -2 < Z < +2 ; and point measure correlation (PTMEA CORR): .4 < x < .8 [25]. All 

items comply with the Outfit MNSQ criterion; item 15 does not meet the Outfit MNSQ 

criterion; five items (item 1, 6, 12, 13, and 15) are not in accordance with the Outfit (ZSTD) 



criterion; all items meet the PTMEA CORR criterion. Simply put, all items fulfill those 

criteria mentioned previously (none having a misfit), and are fit and valid.  

Table 3.  Item Statistics:  Misfit Order 

 

 

 

 

 

 

 

 

 This instrument has a good unidimensionality (Appendix 1). Raw variant index arrives 

at above the standard of 20% (33.9%), indicating that the instrument can effectively measure 

students’ understanding of the hydrolysis concept [74]. The assessment scale analysis 

(Appendix 2) informs that the observation mean starts from logit -1.73 for category 1 (LOK) 

Item Difficult Error 

Outfit 

MNSQ 

Outfit 

ZSTD 

PTMEA 

CORR. 

1 -.38 .05 1.36 2.87 .47 

2 .20 .04 1.13 1.56 .49 

3 -.36 .05 .91 -.79 .43 

4 .33 .04 1.09 .77 .55 

5 -.25 .05 .94 -.55 .56 

6 .26 .04 1.20 2.44 .41 

7 .15 .04 .91 -1.17 .54 

8 .47 .04 .90 -1.45 .44 

9 -.47 .05 1.19 1.49 .46 

10 .08 .04 1.09 1.04 .55 

11 -.34 .05 1.04 .42 .51 

12 -.06 .04 .71 -3.50 .60 

13 .46 .04 .74 -4.12 .55 

14 -.36 .05 1.00 .77 .55 

15 .26 .04 1.31 3.74 .47 



to logit +1.76 (category 6, SK). This signifies that the category of students’ understanding 

takes place consistently [27]. In addition, the high item separation index (logit 6.71) and the 

high item reliability (logit .98) (Table 3) indicate that the respondents (students) are sufficient 

to confirm the level of item difficulty, strengthening the instrument construct validity [27]. 

The higher the item separation and reliability index, the more confident the researchers are 

about replicating item placement in other suitable sample students [25, 27]. Person separation 

index and person reliability that reach logit 2.0 and logit .75 (Table 4), respectively, imply 

that the instrument is quite sensitive to differentiate the high and low abilities of the students 

[25, 27]. According to the Rasch model calculation, the coefficient of Cronbach Alpha of logit 

.81 (Table 4) reflects an interaction between 380 students and 15 items with an excellent 

category [24, 75]. In other words, the interaction between students and items is very 

significant. The instrument has an excellent internal psychometric consistency and is 

considered very reliable. 

Table 4. Person Separation and Reliability Statistics 

Paramete

r  

Measur

e 

S

D 

Separatio

n 

Reliabilit

y 

INFIT OUTFIT 

KR

-20 
MNS

Q 

ZST

D 

MNS

Q 

ZST

D 

Person 

(N=380) 

.67 .52 1.72 .75 1.00 .04 1.02 .10 .81 

Item 

(N=15) 

.00 .32 6.71 .98 1.07 .41 1.02 -.01 

 

The Difference in Students’ Understanding Ability of Hydrolysis 

Concept 



 The result of the Mann-Whitney test (Table 5) brings out the fact that statistically, 

there is a significant difference in the results of pre-test (U=3459.000), p<0.05) and post-test 

(U=1723.000,  p<0.05)  among students in experimental and control groups. Further, the 

Wilcoxon test result (Table 6) shows that the results of pre-test and post-test of students in the 

experimental group (Z=-8.076) and the control group (Z=-6.690) at the significant level (p) < 

0.05 are significantly different. This suggests that students’ understanding of the hydrolysis 

concept after the intervention (post-test) is higher than before the intervention (pre-test), both 

in experimental and control groups. However, the abilities of students in the experimental 

group are better than those in the control group. Accordingly, the learning process with the 

POGIL in the SSI context is better than the conventional learning.  

Table 5. The result of the Mann-Whitney U test based on Students’ Pre-Test and Post-

Test Abilities in Experimental and Control Groups (p<0.05) 

Test Experimental Group (N=97) Control Group (N=93) U p 

Pre-test 0.5026(-0.57-1.26)
a 

0.3029(-1.61-1.03)
a
 3459.000 0.005 

Post-test 1.1722(-0.09-3.00)
a
 0.7052(-1.06-1.47)

a
 1723.000 0.000 

 

Table 6. The result of the Wilcoxon test of Students’ Pre-Test and Post-Test in 

Experimental and Control Groups (p<0.05) 

Group Pre-test Post-test Z p
* 

Experimental 0.5026(-0.57-1.26)
a 

1.1722(-0.09-3.00)
a
 -8.076 0.000 

Control 0.3029(-1.61-1.03)
a
 0.7052(-1.06-1.47)

a
 -6.690 0.000 

 

The Changes in Students’ Understanding Ability of the Hydrolysis 

Concept 



  From the different changes in pre- and post-test (Table 7), students in the 

experimental and control groups have improved their understanding of the hydrolysis concept. 

The experimental group's mean of pre-test and post-test is logit .51 (S.E = logit .21) and logit 

1.50 (S.E = logit .32), respectively, with the mean difference of both tests is (logit .99). In 

contrast, the mean of pre-test and post-test of the control group gets logit .26 (S.E = logit .20) 

and logit .87 (S.E = logit .26), respectively, with the mean difference of pre- and post-test is 

logit .61. Such differences indicate different effects of interventions in the experimental and 

control group.  

Table 7. Logit of Mean of Pre- and Post-Test Items of Experimental and Control Groups 

Group Student Item 

Mean/SE (logit) 

Pre-test Post-test 

Pre- and Post-test 

Difference 

Experimental 97 15 .51/(.21) 1.50/(.32) .99  

Control 93 15 .26/(.20) .87/(.24) .61 

Description: SE = Standar Error.  

If the pre-test and post-test results of the experimental group are plotted in pairs 

(Figure 1), so that the mean difference in the sample pre- and post-test (logit +.99) is 

displayed as an intercept on the horizontal axis with the plotted slope = 1, several facts 

obtained: First, two lines that form the upper and lower curves separate 66 students around the 

empirical plot line, in which the pre-test and post-test mean is not significantly different from 

the mean difference in the pre- and post-test in the experimental group. Second, above the 

curve, 23 students experience significant changes; the mean of pre- and post-test is greater 

than the mean difference in sample pre-test and post-test. Third, seven students do not change, 

and ten students have negative changes (under the curve), so that they are under the curve. 

Similarly, the results of pre- and post-test of the control group (Figure 2) show that 53 



students are around the empirical plot line; the abilities of 25 students change significantly 

(greater than the mean of sample pre- and post-test (logit +.61); two students do not change; 

13 students experience negative changes in abilities. The difference in the plotting of pre-test 

and post-test results signifies different effects of interventions in the experimental and control 

groups.  

 
Figure 1.  Scatter Plots of Person Measures in Pre- and Post-test of the Experimental 

Group 

 

 
Figure 2. Scatter Plots of Person Measures in Pre- and Post-test of the Control Group 
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The Changes in Item Difficulty Level 

Table 8 presents the results of the racking analysis in connection with the changes in 

item difficulty level in the pre- and post-test of experimental and control groups. It is shown 

that in terms of item difficulty level, the mean of pre-test of the experimental group is (logit 

.32), the mean of post-test is (logit -.34), and the mean difference of the pre- and post-test is 

(logit -.66). Moreover, the mean of pre-test of the control group is (logit .25), the mean of 

post-test is (logit -.25), and the mean difference of the pre- and post-test is (logit -.50). This 

research also finds out that seven items have significant changes in the item difficulty level in 

the experimental group, lower than the pre- and post-test mean difference of (logit -.66), 

namely item 1, 2, 5, 7, 9, and 11. Eight items with a difficulty level greater than the mean are 

item 3, 4, 6, 8, 12, 13, 14, and 15. Item 10 has the same difficulty level as the mean. In the 

control group, eight items change significantly or less than the pre- and post-test mean 

difference of (logit -.50), including item 2, 3, 4, 5, 9, 11, 12, and 14; five items (item 1, 6, 7, 

8, 10, 13) are greater than the mean; one item (item 15) has negative changes or becomes 

more difficult. The most difficult item in the experimental group is item 1 (.80 logit) and the 

easiest one is item 14 (logit -.10). Meanwhile, the most difficult item in the control group is 

item 13 (logit .64), and item 3 (logit -.15) is the easiest one. These findings indicate 

differences in the item difficulty level changes between students taught by the POGIL in the 

SSI context and the conventional model.   

Table 8.  Data of item measures of pre- and post-test of experimental and control groups 

Item 

Experimental (Mean) Control (Mean) 

Pre-test Post-test 

Difference 

Pre- and 

Post-test 

Pre-test Post-test 

Difference 

Pre- and 

Post-test 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conceptual Changes in Students’ Ability and Item Difficulty 

Levels 

Item1 .16 -1.00 -1.16 -.06 -.76 -.7 

Item2 .80 .01 -.79 .39 -.40 -.79 

Item3 .20 -.63 -.43 -.15 -.83 -.68 

Item4 .62 .25 -.37 .54 .02 -.52 

Item5 .14 -.78 -.92 .10 -.49 -.59 

Item6 .26 .22 -.04 .41 .30 -.11 

Item7 .66 -.33 -.99 .33 -.06 -.39 

Item8 .59 .45 -.14 .49 .47 -.02 

Item9 -.04 -.85 -.81 -.08 -.93 -.85 

Item10 .40 -.26 -.66 .32 -.01 -.33 

Item11 .13 -.91 -1.04 .05 -.78 -.83 

Item12 .33 -.23 -.56 .25 -.51 -.76 

Item13 .77 .16 -.61 .64 .33 -.31 

Item14 -.10 -.80 -.7 .15 -.83 -.98 

Item15 .25 -.40 -.65 .39 .72 .33 

Mean .32 -.34 -.66 .25 -.25 -.50 



Apart from the effect of learning interventions, there are three other factors that tend to 

influence the changes in students’ ability and item difficulty levels, as follows: 1) guessing 

which happened to be correct or (lucky guess), 2) cheating, 3) carelessness. These factors can 

be identified from the student's item response pattern using a scalogram. For instance, the 

response pattern of post-test item 7 for student 353, 375, and 170 (Table 9). These three 

students, in the seventh and eighth row from the left, cannot understand item 12 (logit -.06) 

and item 10 (logit .08). Meanwhile, they can correctly explain the more difficult item, i.e., 

item 7 (logit .15). This situation implies a lucky guess, which in fact, these students have 

higher post-test abilities than the item 7 logit. Next is a cheating indication in the response 

pattern of student 128, 129, 134, 137, and 146. Such an indication is initially detected from 

the same post-test mean (logit 1.61) and item response pattern. The last one is carelessness, 

e.g., student 110, 118, and 139 are considered to be careless as they cannot correctly explain 

the easy item 4 (logit .33), yet can accurately understand item 13 (logit .46), which is harder 

than item 4. Moreover, they get very high post-test abilities. 

Table 8. Scalogram 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 

 

 

GUTTMAN SCALE OF RESPONSES: 
Person |Item 
       |   11 11   1 1   ID       Pre- Post-test  Pre Post   Item   
       |913415207265438  Person   Mean    Mean   Difference   Response Pattern 
       |---------------            
   353 +666555536665554  353MFCB    .8   .97    .17     Lucky Guess 
   375 +166566516133664  375MMCB  -.28   .40    .68     Guessing answer 
   170 +664666446566556  170NFEB   .33  1.17    .84     accidentaly correct 
    
   128 +666666666646555  128DFEB   .76  1.61    .85 
   129 +666666666646555  129DFEB   .51  1.61   1.10     Same response pattern 
   134 +666666666646555  134JFEB   .17  1.61   1.44     Cheating indication  
   137 +666666666646555  137MMEB   .04  1.61   1.21      
   146 +666666666646555  146NFEB   .30  1.61   1.31 
 
   110 +666666666666566  110NFEB   .85  3.00   2.15     Response pattern  
   118 +666666666666565  118RFEB   .85  2.36   1.51     “Careless”  
   139 +666666665666565  139MFEB   .62  2.01   1.39      

 
 



Negative Changes 

 Negative changes in conceptual understanding are detected from the changes in 

students’ post-test logit less than the pre-test logit. For example, two students from the 

experimental group (E18 and E75) and the control group (C225 and C247) are taken; they 

have negative changes (Table 9). This means that these four students experience decreased 

abilities after the intervention. The pre-test item mean and the post-item mean of student E18 

are (logit .76) and (logit .04), sequentially, with the mean difference of pre- and post-test 

arriving at (logit  -.72). Moreover, the pre- and post-test item standard errors of student E18 

are (logit .22) and (logit .18), respectively, with the combined standard error of logit .40. On 

account of the higher combined standard error than the pre- and post-test measures, the ability 

of student E18 in both tests is not significantly different. This also applied to student E75, 

C225, and C247.  

 

Table 9. Scalogram results of student E18, E75, C225, and 247 

 

 

Discussion and Conclusion 

 The findings show changes in students’ understanding abilities of the hydrolysis 

concept and items after the intervention. From the pre- and post-test mean difference, the 

ID 

Person 
Test 

Item Response Pattern Mean 

|   11 11   1 1 
|913415207265438 
|--------------- 

Item 

Logit  

S.E* 

Logit 

Pre- test 

and post-

test 

difference 

Combined 

S.E 

E18 
Pre-test +665666636366333 .76 .22 -.72 .40 
Post-test +666661322521161 .04 .18 

E75 
Pre-test +562664552566426 .58 .20 -.35 .38 
Post-test +655664322323463 .23 .18 

C225 
Pre-test +616665663261613 .36 .19 -.45 .37 
Post-test +611622566131613 -.09 .18 

C247 
Pre-test +663636666666435 .97 .25 -.87 .43 
Post-test +563345555314133 .10 .18 

Description: S.E = Standar Error 



experimental group has better positive changes than the control group [58]. In addition to the 

effect of the intervention, there is another factor contributing to the positive conceptual 

changes mentioned above, in terms of students’ ability and item difficulty levels [24, 58]. The 

factor refers to some students who ―accidentally‖ give a correct response pattern (in the post-

test). Even so, both groups have also experienced negative changes, implying that the 

intervention is specifically responded by students on account of the carelessness factor or a 

misconception-comprising response pattern [56, 58, 76]. Regarding this, not all learning 

objectives of the hydrolysis concept match the approach of POGIL in the SSI context. 

Negative changes of the students are because they are not epistemologically involved in the 

learning process, particularly in the observing, measuring, and calculating stages. These 

activities are interrelated up to group discussions as part of the stages of conceptual formation 

based on empirical facts [77]. Students are expected to explain and link the concepts they 

have learned following their epistemological reasoning [16, 78].  

 Furthermore, the interpretation of changes due to pedagogical interventions is 

exemplified by four students (Table 8) in item 5.  In the pre-test, the ability of student E18 

(logit .76), student E75 (logit .58), student C225 (logit .36), and student C247 (logit .96) is 

greater. They also respond to item 5 (-.25 logit) accurately. However, in the post-test item 5, 

the response of student E18, E75, C225, and C247 is incorrect due to their decreased post-test 

abilities. Therefore, the pre- and post-test mean difference is lower than item 5. Why do these 

changes occur? Such changes are exemplified by the response pattern of student E18 in item 

5.  This item measures students’ ability in determining the reaction of NaOCl reaction: 

                  
 , with the estimated pH = 7 and is alkaline. The question (Q1) 

of this item is, ―is it correct that NaOCl is alkaline?‖. E18 answers ―correct‖ in the pre-test, 

yet responds to ―incorrect‖ in the post-test. The question (Q2) of this item is ―what is your 

consideration for your answer in the Q1?‖. Four options are provided: (a) because NaOCl is 



formed of strong acids and weak bases; (b) because NaOCl is formed of weak acids and 

strong bases; (c) because NaOCl is formed of weak acids and weak bases; (d) because NaOCl 

is formed of strong acids and strong bases. In the pre-test, E18 chooses the correct answer (b), 

yet selects the incorrect answer (a) in the post-test that comprises misconception. Next, in the 

Q3 of this item, E18 chooses ―very sure‖ in the pre-test and ―not sure‖ in the post-test.  The 

item 5 response pattern of E18 becomes CCC (category of scientific knowledge - SK) in the 

pre-test and IIU (category of lack of knowledge - LOK) in the post-test. Accordingly, the 

response pattern changes from CCC to IIU. The pre- and post-test mean difference of E18 

(logit -.72) lower than item 5 (-.25) signifies that the error of response pattern results from 

misconception. This also applies to the response pattern of E75 (logit -.35), C225 (logit -.45), 

and C247 (logit -.87).  

 The misconception refers to the inability to identify the NaOCl salt hydrolysis that is 

formed of weak acids and strong bases. In short, the four students tend to not understand the 

concept of acid and base and acid-base reaction. These findings strengthen several previous 

studies [51, 53,54, 79]. A study on the understanding of the acid-base concept of senior high 

school students in Malaysia concludes that some students have little understanding of the 

function of detergents as the cleaning agent, the difference between strong acids and strong 

bases, and the treatment for soil acidity using fertilizers [53]. In the same tune, such little 

understanding is because they do not conceptualize acid-base strength as a property that arises 

from the interaction of many reaction factors [51]. Additionally, research on an alternative 

conception of salt hydrolysis among senior high school students contends that the concept of 

hydrolysis is challenging for the students [54]. They are usually able to state the acidity of a 

salt solution correctly, yet writing a chemical equation to explain such a phenomenon is a 

great challenge. Most of the alternative conceptions are identifiable, rooted in the 

misunderstanding of equilibrium process, acid and base, material structure and other basic 



problems, student tendency to use a wrong analogy, and the lack of laboratory practice. 

 This research findings and elaboration of negative changes (case E18) prove the 

advantages of the Rasch model, specifically its potential in linking the result of changes (pre- 

and post-test), the item difficulty level, and the content being measured [18]. Such 

information solely comes from the Rasch model-based stacking and racking analysis 

techniques. The stacking technique provides information regarding ―who has changed‖; in 

contrast, the racking technique offers information of ―what has changed‖ [56, 58], allowing 

the researchers to spell out the effect of the applied pedagogical innovation [18, 33, 34]. 

Although the instrument measurement result of this work is not data-rich, the analysis 

strength of the Rasch model can describe in detail the conceptual changes, both in the 

students’ ability and item difficulty levels. 

Limitations and Further Studies 

 The primary limitation of this research is that it did not take into account the aspects 

of learning style, culture, and motivation that can change due to learning interventions. Future 

studies, therefore, can address these aspects. The present study can be continued by 

considering the context of a problem that closely connects with the parameter of item 

difficulty level. The analysis will be more interesting if it can prove that different item 

difficulty levels are influenced by problem contexts in each item [80]. Further studies are also 

expected to find an analysis technique that can integrate problem contexts, item 

characteristics, and item difficulty levels in a measurement model. It is assumed that different 

problem contexts in each item will be more likely to affect measurement results because 

problem contexts have conceptual linkage with items and student activities in doing 

experiments, measuring, interpreting data/graphs, and others. Thus, the linkages between the 

learning process during the intervention and conceptual changes in students’ ability and item 



difficulty levels can be explained in detail;  which part of the process leads the students to 

change their understanding related to specific ideas taught to them.  
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    Unexplned variance in 2nd contrast =       1.5312   6.7%  10.2% 
    Unexplned variance in 3rd contrast =       1.3696   6.0%   9.1% 
    Unexplned variance in 4th contrast =       1.3124   5.8%   8.7% 
    Unexplned variance in 5th contrast =       1.1945   5.3%   8.0% 

 

 

 

Appendix 2. Summary of Category Structure.   

SUMMARY OF CATEGORY STRUCTURE.  Model="R" 
--------------------------------------------------------------------- 
|CATEGORY     OBSERVED|OBSVD SAMPLE|INFIT OUTFIT|| ANDRICH |CATEGORY| 
|LABEL   SCORE COUNT %|AVRGE EXPECT|  MNSQ  MNSQ||THRESHOLD| MEASURE| 
|---------------------+------------+------------++---------+--------| 
|    1   1     317   6|  -.18  -.20|  1.06  1.08||  NONE   |( -1.73)| 1 
|    2   2     190   3|   .10   .09|  1.03  1.18||     .46 |   -.77 | 2 
|    3   3     963  17|   .33   .31|  1.02   .93||   -1.43 |   -.22 | 3 
|    4   4     542  10|   .56   .52|  1.02   .97||     .98 |    .21 | 4 
|    5   5    1262  22|   .62   .73|  1.27   .99||    -.22 |    .74 | 5 
|    6   6    2425  43|  1.02   .98|   .97  1.04||     .20 |(  1.76)| 6 
|---------------------+------------+------------++---------+--------| 
| MISSING        1   0|  -.30      |            ||         |        | 
--------------------------------------------------------------------- 
OBSERVED AVERAGE is mean of measures in category. It is not a parameter estimate. 
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Abstract 

This research aimed to employ stacking and racking analysis techniques in the Rasch model to 

measure the hydrolysis conceptual changes of students taught by the process-oriented guided 

inquiry learning (POGIL) model in the context of socio-scientific issues (SSI) with the pretest-

posttest control group design. Such techniques were based on a person- and item-centered 

statistic to determine how students and items changed during interventions. Eleventh-grade 

students in one of the top-ranked senior high schools in the eastern part of Indonesia were 

involved as the participants. They provided written responses (pre- and post-test) to 15 three-

tier multiple-choice items. Their responses were assessed through a rubric that combines 

diagnostic measurement and certainty of response index.  Moreover, the data were analyzed 

following the Rasch Partial Credit Model, using the WINSTEPS 4.5.5 software. The results 

suggested that students in the experimental group taught by the POGIL approach in the SSI 

context had better positive conceptual changes than those in the control class learning with a 

conventional approach. Along with the intervention effect, in certain cases, it was found that 

positive conceptual changes were possibly due to student guessing, which happened to be 

correct (lucky guess), and cheating. In other cases, students who experienced negative 

conceptual changes may respond incorrectly due to carelessness, the boredom of problem-

solving, or misconception. Such findings have also proven that some students tend to give 

specific responses after the intervention in certain items, indicating that not all students fit the 

intervention. Besides, stacking and racking analyses are highly significant in detailing every 

change in students’ abilities, item difficulty levels, and learning progress. 

Keywords: stacking, racking, Rasch model, hydrolysis conceptual changes, inquiry model 

 

 



Introduction 

Central to defining the quality of pedagogical innovation in science classes is 

conceptual changes. The changes refer to how ideas or conceptions the students understand 

according to their ways of thinking [1, 2] become scientifically accurate [3]. It is because such 

ideas generally comprise misconceptions [4, 5, 6, 7], are not in accordance with scientific 

concepts [8, 9], tend to be resistant [10], changeable and varied [11], so that they should be 

improved if the correct conceptual understanding is to be taught [12, 13].  

Some studies have been conducted on learning innovation testing to form an accurate 

and scientific conceptual understanding of the students, e.g., inquiry-based learning. This 

model presents conceptual conflicts and participatory experiments to facilitate conceptual 

changes [14, 15, 16]. Conceptual understanding-based learning involves various strategies in 

identifying and analyzing students’ comprehension so that the investigation process can be 

designed to lead them to a more accurate and scientific conception [16, 17]. This research 

relied on a quasi-experimental design that assessed students’ pre-test and post-test, evaluated 

the changes in performances for testing significant differences. This type of testing informs the 

researcher about the presence of an effect, but does not provide detailed information on the 

level and trait of the changes [18]. What if the researcher is willing to compare the extent to 

which the pre- and post-test change (differences in learning outcomes) and interpret the 

changes (the reasoning why those changes occur) in terms of content? This is a core question 

regarding the changes in some latent traits or changes in traits measured after the intervention. 

In most studies, interpreting the changes in pre-test and post-test tends to be limited to 

identifying whether or not an effect prevails. 

Pre- and post-test changes should be given in detail regarding the students’ 

understanding ability and item difficulty levels. However, this has not been much revealed due 



to the limitations of its measurement techniques and analyses and has not been the main focus 

in chemistry education research to date. One reason for this issue is the debate in the 

psychometric community regarding the ability to measure changes accurately [18]. This 

debate questions the use of raw scores in the conventional psychometric analysis, which 

largely contains measurement biases [19], as follows: 1) the difference in pre- and post-test 

scores will be negatively correlated with the pre-test score, especially for students with low 

pre-test scores [18, 20]; 2) the difference in pre- and post-test scores shows low test reliability 

[21]; 3) low measurement properties due to different scales [22]. 

Raw scores are not final data, so that they do not have a great deal of information for 

drawing conclusions [23, 24]. Around the 1950s, Dr. Georg Rasch, a mathematician from 

Denmark, introduced the formulation of the Rasch measurement model [24]. The model has 

been widely applied to analyze various types of data, e.g., dichotomous, polytomous, multi-

rating, and multi-rater data. In the mid-2000s, the Rasch model was used as a probabilistic-

based psychometric measurement that went beyond the use of raw scores [25, 26], and was 

used to overcome the limitations of conventional psychometric measurement [19, 27]. Its 

analyses, including item fit, PCA (Principal Component Analysis), and Wright map, are 

commonly used for international test analyses, namely TIMSS and PISA [28].  

In chemistry education research, the Rasch model has been relied on to evaluate 

learning understanding and progress [29], to diagnose students’ preconceptions [1], 

misconceptions [13, 30, 31, 32], link the measurement of content knowledge with pedagogical 

content knowledge [33], and investigate item difficulty patterns [13, 34]. Even so, studies on 

the Rasch model to reveal the chemistry conceptual changes in students’ understanding and 

item difficulty levels are relatively hard to find as of today. The present study aims to employ 

stacking and racking analysis techniques in the Rasch model to measure the hydrolysis 

conceptual changes of students taught by the POGIL approach in the context of SSI and 

https://en.wikipedia.org/wiki/Georg_Rasch


students who learn conventionally. Such techniques are based on a person- and item-centered 

statistic to estimate how students and items change during the intervention.  

POGIL is a student-centered learning strategy that teaches content or process skills. 

The philosophical foundation of POGIL is the involvement of an interactive process of careful 

thinking, discussing ideas, perfecting understanding, practicing skills, reflecting progress, and 

evaluating performances [35]. POGIL is able to lead the process of designing a participatory 

experiment that presents a conceptual conflict as a strategy to encourage students to form an 

accurate concept [14]. Therefore, POGIL intervention is more likely to be potential in driving 

epistemological understanding and reasoning [36], making students have opportunities to 

change their conceptions to be more accurate and scientific [16]. Nevertheless, it is also worth 

noting that some students potentially have misconceptions resistant to changes [3].  

SSI functions as a learning context through the intergration of social problems that 

students are familiar with. It also has a conceptual connection with salt hydrolysis [37, 38], 

and its resolution requires many perspectives [39], including the dimension of moral and 

ethical evaluation of students [40]. The SSI context is a socio-scientific phenomenon that the 

students should explain based on their conceptual viewpoints. It encourages them to actively 

get involved in grasping problems [41], developing and utilizing their knowledge [42], 

improving their critical thinking [43], and being able to scientifically describe the discussed 

socio-scientific phenomenon [36, 44, 45]. For such reasons, the integration of SSI can build 

up students’ scientific literacy [39, 46, 47]. In the end, this integration enables the learning 

process to be more significant in enhancing students’ understanding [45, 48]. Besides, they 

are skilled in negotiating the social aspect of the studied phenomenon [49, 50]. For instance, 

the issues of global warming, climate change, and pollution [36]. 

Salt hydrolysis is a learning topic in high school that is strongly related to SSI. 

Students with a good understanding of hydrolysis will manage to clarify scientifically why 



detergents, bleaching agents (NaOCl), and fertilizers can pollute the environment. Despite 

this, the linkage of this issue as the problem in learning hydrolysis is rarely carried out. The 

learning process is more emphasized on mastering theoretical concepts [36]. As a 

consequence, students find it challenging to use their hydrolysis understanding to explain 

socio-scientific phenomena around them [37]. This challenge is on account of their 

misconceptions regarding acid-base reaction [51], making them unable to elaborate the 

concept of salt hydrolysis [52] and determine acid and base strength [53]. In addition, they 

are struggling with correctly explaining the dissolving process and the reaction of ionic 

compounds with water, writing down chemical equations, and having different interpretations 

of the dissolving process mentioned earlier [54]. On this ground, it is essential to reveal how 

the hydrolysis concept changes if intervened with the POGIL approach in the SSI context, 

through the following specific questions: (1) is there a significant hydrolysis conceptual 

change of the students after the learning process in experimental and control groups? (2) if 

compared, how is the hydrolysis conceptual change through the intervention of POGIL in the 

SSI context and conventional learning? (3) in addition to intervention, is there any other 

factor that also contributes to the students' hydrolysis conceptual changes? 

Method of Study 

This study relied on a quantitative approach with a quasi-experimental and pretest-

posttest control group design [55] by comparing the extent to which the hydrolysis concept 

changes after the intervention. Researchers carried out the learning process for 12 meetings, 

gave tests, and collected data on the results of the intervention and measurement. 

The changes of students and items were analyzed using the stacking and racking 

techniques in the Rasch model [56]. As standard techniques, racking and stacking were 

introduced by Benjamin Wright to measure the extent to which conceptual understanding of 



students and items change before and after interventions [57]. The referred changes are cases 

(item and student levels) caused by the learning intervention and can be diagnosed based on 

the estimated changes. 

In regards to students’ understanding, the measurement was to identify students who 

had specific hydrolysis conceptual changes in responding to the learning intervention. In terms 

of items, the measurement was done to identify which items had special characteristics and 

been understood by students differently during the learning intervention [57]. Thus, the 

scientific inquiry approach might not be suitable for some students, or some items might be 

too hard after the intervention. This insightful information is immensely helpful for 

researchers and education practitioners, especially in evaluating the weaknesses of 

pedagogical innovations being applied and devising learning strategies that meet students’ 

needs in learning [58].  

Participants 

Eleventh-grade students aged 16-17 years in one of the senior high schools in the 

eastern part of Indonesia were involved as the sample. This top-ranked school gets an ―A‖ 

accreditation (excellent)  from the National Accreditation Board for High School. The sample 

was determined by convenience sampling in six randomly assigned classes. Three classes 

(N=97) were experimental groups that applied the POGIL model in the SSI context. The other 

three classes (N=93), as control groups, applied conventional learning without the SSI context. 

The same teacher taught these classes following the Curriculum 2013 of Chemistry Subject 

(revised in 2016). There was no special classroom for learning the concept of hydrolysis, i.e., 

taking up the regular learning process at school. Before learning the hydrolysis concept, the 

students had previously learned the concept of acid and base to understand the concept of salt 

hydrolysis way better.  Research permission was obtained from the government and school 

administrators. In accordance with principles of research ethics, research purpose and 



procedures were informed to all the students being involved and that they were voluntarily 

participating. Additionally, their information is confidential and only used for science 

development [59].  

Learning implementation 

Students in the experimental group studied employing the process-oriented guided 

inquiry learning (POGIL) in the SSI context [35]. Meanwhile, in the control class, the 

learning process was performed conventionally; the teacher facilitated learning initiatives. 

The learning process focused more on content mastery and problem-solving practice. 

Applying the POGIL model in the SSI context highlights teacher assistance to guide the 

students to prepare their conceptual understanding based on epistemological reasoning they 

get from experiments, discussions, and collaborations [49, 60]. Researchers carried out the 

learning process for eight weeks to apply the intervention to the sample, gave tests, collected 

data on the results of the intervention and measurement. The first three weeks were the 

preparation stages when researchers and the teacher shared perceptions, and asked the teacher 

to perform a learning simulation under the scenario, including different assistance techniques 

in leading the students to conduct experiments, and to ask analytical questions. The pre-test 

was carried out in the third week. Further, the learning implementation was done for four 

weeks, and the post-test was executed in the eighth week.  

The learning stages with POGIL in the SSI context consist of orientation, exploration, 

concept formation, application, and closing. During the orientation stage, the teacher 

presented familiar contextual phenomena related to the concept of hydrolysis. The teacher 

asked initial questions to provoke curiosity and arouse motivation and interest of the students. 

While watching the video, had the students responded and explained the relationship between 

the phenomena and acids and bases, hydrolysis, and buffers. In the exploration stage, the 

teacher developed analytical questions with data, images, and multiple video clips to give 



perspectives on learning objectives and to delve into the concept that had been and would be 

learned. Next, the teacher assisted the students in doing experiments guided by a worksheet, 

and at the same time, asked analytical questions to lead them and strengthen their conceptual 

understanding. In the concept formation stage, the teacher asked students to build their 

conceptual understanding based on the exploration results, accompanied by critical and 

fundamental questions to guide students in building a conceptual understanding of the salt 

hydrolysis and buffer solution.  

Following the formation stage was the application stage when the teacher presented 

contextual problems in the SSI context, particularly those comprising social problems in 

society, that closely linked with the understanding of salt hydrolysis and buffer solution 

concepts. Such problems included 1) the use of bleaching agents (detergents), 2) the functions 

of alum KAl(SO₄)₂·12H₂O for water purification, 3) the harmful effects of detergent waste, 4) 

the beneficial and harmful effects of artificial fertilizer (NH4)2SO4 for soil fertility, and 5) the 

harmful effects of monosodium glutamate (MSG) for health. In this stage, the teacher guided 

the students through collaborative discussions and critical questions, intending to give them 

perspectives on SSI phenomena and encourage them to collect information and do 

experiments following student activity sheets.  Thereupon, the students had presentation and 

discussion sessions, during which they reported their experiment results and drew conclusions 

[61, 62]. The teacher asked them to describe the possible problems and solutions from their 

understanding of the studied concepts. This enabled the students to form their conceptual 

understanding that is closely related to contexts; the learning process was from contextual to 

abstract [37, 63]. From such a condition, the teacher led the students to apply their knowledge 

in different contexts and situations and solve problems. The final stage was closing or teacher 

assistance in guiding the students to explain the conclusion and reflection on the learning 

process as the end of the learning activities. 



Instrument 

Table 1 displays 15 items of diagnostic three-tier multiple choice test to measure 

students’ hydrolysis conceptual understanding. The test was constructed following the 

Competence Standard of 2013 Chemistry Curriculum of Senior High School under Regulation 

of the Minister of Education and Culture of the Republic of Indonesia Number 37 of 2018. 

The procedures of developing the instrument followed the recommendation by [64, 65, 66]. 

  

Table 1. Conceptual Map of Hydrolysis Concept Understanding. 

Problem Context Item Conceptual Understanding Ability Level 

Bleaching agents are 

formed of weak acid 

HOCl and strong base 

NaOH. Sodium 

hypochlorite salt 

(NaOCl) is reactive and 

dissolves the dye. In the 

water, the ion      will 

be hydrolyzed to HOCl 

and     -
 

1 Balancing the salt (NaOCl) 

hydrolysis reaction in the water 

2  

Level 3:  

 Students are 

able to 

calculate the 

pH of the 

hydrolyzed 

salt solution.  

 

 

Level 2:  

 Students are 

able to 

determine the 

hydrolysis 

2 Stating the partial hydrolysis 

reaction:            

       

2 

3 Determining corrosive alkali of 

sodium hypochlorite salt 

(NaOCl) 

1 

4 Calculating the pH of 

hydrolysis of sodium 

hypochlorite salt (NaOCl) with 

NaOCl = 0.1 M; Ka = 10
-5

) 

3 

5 Determining the property of 

NaOCl, in the reaction: 

                  
  

2 

 



6 Calculating the pH of sodium 

hypochlorite salt (NaOCl) that 

comes from a mixture of HOCl 

and NaOH (partially 

hydrolyzed), if the Ka HOCl is 

10
-5 

and there is an increase in 

the pH of the solution mixture.  

3 reaction from 

different types 

of salt  

 

 

Level 1:  

 Students are 

able to analyze 

the properties 

of the 

hydrolyzed 

salt 

 

 

Water purification with 

alum KAl(SO₄)₂·12H₂O 

is the concept of salt 

hydrolysis, formed of 

H2SO4 and Al(OH)3. 

7 Determining aluminum salt 

(Al2(SO4)3) properties in the 

water 

1 

8 Determining aluminum salt 

(Al2(SO4)3) properties in the 

water that is partially 

hydrolyzed by the Al
3+ 

ion 

1 

The sodium 

tripolyphosphate 

(STPP) in detergents 

can pollute the 

environment, a 

eutrophication process.  

9 Determining the properties of 

detergent solution causing 

eutrophication 

1 

10 Determining the properties of 

detergent solution (sodium 

tripolyphosphate salt) that is 

partially hydrolyzed  

1 

11 Determining the impact of the 

disposal of detergent waste on 

the environment 

2 



ZA fertilizer 

(NH4)2SO4 is an acidic 

salt. 

12 Determining the properties of 

ammonium sulfate salt 

(NH4)2SO4 

1 

13 Stating the equation of 

(NH4)2SO4 reaction in the 

water, partially hydrolyzed 

2 

Monosodium glutamate 

(C5H8NO4Na) is L-

glutamic acid salt, 

adversely impactful on 

human health 

14 Students’ attitude towards the 

use of monosodium glutamate 

(C5H8NO4Na) 

2 

15 Determining the properties of 

monosodium glutamate salt 

(C5H8NO4Na) 

1 

 

Each item was designed in three questions (Q1, Q2, Q3) that integrated diagnostic [67, 

68] and summative measurements [10] and certainty of response index (CRI) [69, 70]. 

Students’ responses to items (Q1, Q2, Q3) were evaluated based on the rubric (Table 2). For 

example, students’ responses to items were as follows: Q1, Q2 ―correct‖, and Q3 ―very sure‖ 

under the code CCC. Such a code indicated that students’ conceptual understanding was in 

level 6, category of Scientific Knowledge (SK).  On the other hand, if the response patterns in 

Q1, Q2 ―incorrect‖ and Q3 ―not sure‖, the code would be IIU, implying that students’ 

conceptual understanding was in the category of Lack of Knowledge (LOK), or level 1.  This 

instrument had been validated from the aspects of item conformity with the construct variable 

and language. The validity results by three experts were stated under Fleiss’ kappa (K = .96), 

meaning that the experts agreed that the item validity was categorized good.  

 Table 2  All Possibilities of Responses [69, 70, 71] 



 

 

Data collection and analysis  

 Before the intervention, this research underwent pre-test data collection; whereas, the 

post-test data collection was done after the intervention. The construction of pre- and post-test 

items was the same. Students wrote down their responses on the provided answer sheet. Both 

tests were supervised by teachers in the school. The students must work on all items 

according to the allocated time (45 minutes). The instrument was immediately collected and 

should have the same number as the total participants. 

The pre- and post-test measurement data were still ordinal data. The Rasch Partial 

Credit Model with WINSTEPS 4.5.5 software [27, 72] was used to convert ordinal data into 

(Q1) (Q2) (Q3) Code 

Conceptual Understanding 

Category 

Level 

Correct Correct Certain CCC Scientific Knowledge (SK) 6 

Correct Incorrect Certain 

CIC Misconception False Positive 

(MFP) 

5 

Incorrect Correct Certain 

ICC Misconception False Negative 

(MFN) 

4 

Incorrect Incorrect Certain IIC All-Misconception (ALM) 3 

Correct Correct Uncertain 

CCU Lack of Confidence/Lucky Guess. 

(LG) 

2 

Correct Incorrect Uncertain CIU Lack of Knowledge (LOK) 1 

Incorrect Correct Uncertain ICU Lack of Knowledge (LOK) 1 

Incorrect Incorrect Uncertain IIU Lack of Knowledge (LOK) 1 



interval data to have the same logit scale. The result was a data calibration of the levels of 

student's ability and item difficulty in the same interval.  

The stacking analysis technique put pre-test and post-test data vertically [73]; 

meanwhile, the items appeared once in the experimental and control groups, allowing the 

researchers to check out any changes of the students after the intervention [56]. The 

examination was based on the same item, making the changes in students’ ability during the 

pre- and post-test be measured [56]. Hence, each student created two measures of abilities, 

namely pre-test and post-test, and one measure for each item. The research hypothesis is that 

the students' conceptual understanding from pre-test to post-test changes, both in the 

experimental and control groups. 

Conversely, the racking analysis technique put both pre- and post-test data 

horizontally, in which each item appeared twice in data collection, and students’ ability only 

emerged once. This enabled the researchers to check out the effects of learning 

implementation on each student’s ability from the tests, especially the changes in item 

difficulty levels before and after the intervention [56].  

Results  

Rasch analysis properties of instrument 

 The summary of changes in concepts and items analyzed by the Rasch model is 

presented in Table 1. Table 2 provides the item fit statistic. An item is considered to 

experience a misfit if the measurement result is not in line with the following three criteria: 

Outfit mean-square residual (MNSQ): .5 < y < 1.5; Outfit standardized mean-square residual  

(ZSTD): -2 < Z < +2 ; and point measure correlation (PTMEA CORR): .4 < x < .8 [25]. All 

items comply with the Outfit MNSQ criterion; item 15 does not meet the Outfit MNSQ 

criterion; five items (item 1, 6, 12, 13, and 15) are not in accordance with the Outfit (ZSTD) 



criterion; all items meet the PTMEA CORR criterion. Simply put, all items fulfill those 

criteria mentioned previously (none having a misfit), and are fit and valid.  

Table 3.  Item Statistics:  Misfit Order 

 

 

 

 

 

 

 

 

 This instrument has a good unidimensionality (Appendix 1). Raw variant index arrives 

at above the standard of 20% (33.9%), indicating that the instrument can effectively measure 

students’ understanding of the hydrolysis concept [74]. The assessment scale analysis 

(Appendix 2) informs that the observation mean starts from logit -1.73 for category 1 (LOK) 

Item Difficult Error 

Outfit 

MNSQ 

Outfit 

ZSTD 

PTMEA 

CORR. 

1 -.38 .05 1.36 2.87 .47 

2 .20 .04 1.13 1.56 .49 

3 -.36 .05 .91 -.79 .43 

4 .33 .04 1.09 .77 .55 

5 -.25 .05 .94 -.55 .56 

6 .26 .04 1.20 2.44 .41 

7 .15 .04 .91 -1.17 .54 

8 .47 .04 .90 -1.45 .44 

9 -.47 .05 1.19 1.49 .46 

10 .08 .04 1.09 1.04 .55 

11 -.34 .05 1.04 .42 .51 

12 -.06 .04 .71 -3.50 .60 

13 .46 .04 .74 -4.12 .55 

14 -.36 .05 1.00 .77 .55 

15 .26 .04 1.31 3.74 .47 



to logit +1.76 (category 6, SK). This signifies that the category of students’ understanding 

takes place consistently [27]. In addition, the high item separation index (logit 6.71) and the 

high item reliability (logit .98) (Table 3) indicate that the respondents (students) are sufficient 

to confirm the level of item difficulty, strengthening the instrument construct validity [27]. 

The higher the item separation and reliability index, the more confident the researchers are 

about replicating item placement in other suitable sample students [25, 27]. Person separation 

index and person reliability that reach logit 2.0 and logit .75 (Table 4), respectively, imply 

that the instrument is quite sensitive to differentiate the high and low abilities of the students 

[25, 27]. According to the Rasch model calculation, the coefficient of Cronbach Alpha of logit 

.81 (Table 4) reflects an interaction between 380 students and 15 items with an excellent 

category [24, 75]. In other words, the interaction between students and items is very 

significant. The instrument has an excellent internal psychometric consistency and is 

considered very reliable. 

Table 4. Person Separation and Reliability Statistics 

Paramete

r  

Measur

e 

S

D 

Separatio

n 

Reliabilit

y 

INFIT OUTFIT 

KR

-20 
MNS

Q 

ZST

D 

MNS

Q 

ZST

D 

Person 

(N=380) 

.67 .52 1.72 .75 1.00 .04 1.02 .10 .81 

Item 

(N=15) 

.00 .32 6.71 .98 1.07 .41 1.02 -.01 

 

The Difference in Students’ Understanding Ability of Hydrolysis 

Concept 



 The result of the Mann-Whitney test (Table 5) brings out the fact that statistically, 

there is a significant difference in the results of pre-test (U=3459.000), p<0.05) and post-test 

(U=1723.000,  p<0.05)  among students in experimental and control groups. Further, the 

Wilcoxon test result (Table 6) shows that the results of pre-test and post-test of students in the 

experimental group (Z=-8.076) and the control group (Z=-6.690) at the significant level (p) < 

0.05 are significantly different. This suggests that students’ understanding of the hydrolysis 

concept after the intervention (post-test) is higher than before the intervention (pre-test), both 

in experimental and control groups. However, the abilities of students in the experimental 

group are better than those in the control group. Accordingly, the learning process with the 

POGIL in the SSI context is better than the conventional learning.  

Table 5. The result of the Mann-Whitney U test based on Students’ Pre-Test and Post-

Test Abilities in Experimental and Control Groups (p<0.05) 

Test Experimental Group (N=97) Control Group (N=93) U p 

Pre-test 0.5026(-0.57-1.26)
a 

0.3029(-1.61-1.03)
a
 3459.000 0.005 

Post-test 1.1722(-0.09-3.00)
a
 0.7052(-1.06-1.47)

a
 1723.000 0.000 

 

Table 6. The result of the Wilcoxon test of Students’ Pre-Test and Post-Test in 

Experimental and Control Groups (p<0.05) 

Group Pre-test Post-test Z p
* 

Experimental 0.5026(-0.57-1.26)
a 

1.1722(-0.09-3.00)
a
 -8.076 0.000 

Control 0.3029(-1.61-1.03)
a
 0.7052(-1.06-1.47)

a
 -6.690 0.000 

 

The Changes in Students’ Understanding Ability of the Hydrolysis 

Concept 



  From the different changes in pre- and post-test (Table 7), students in the 

experimental and control groups have improved their understanding of the hydrolysis concept. 

The experimental group's mean of pre-test and post-test is logit .51 (S.E = logit .21) and logit 

1.50 (S.E = logit .32), respectively, with the mean difference of both tests is (logit .99). In 

contrast, the mean of pre-test and post-test of the control group gets logit .26 (S.E = logit .20) 

and logit .87 (S.E = logit .26), respectively, with the mean difference of pre- and post-test is 

logit .61. Such differences indicate different effects of interventions in the experimental and 

control group.  

Table 7. Logit of Mean of Pre- and Post-Test Items of Experimental and Control Groups 

Group Student Item 

Mean/SE (logit) 

Pre-test Post-test 

Pre- and Post-test 

Difference 

Experimental 97 15 .51/(.21) 1.50/(.32) .99  

Control 93 15 .26/(.20) .87/(.24) .61 

Description: SE = Standar Error.  

If the pre-test and post-test results of the experimental group are plotted in pairs 

(Figure 1), so that the mean difference in the sample pre- and post-test (logit +.99) is 

displayed as an intercept on the horizontal axis with the plotted slope = 1, several facts 

obtained: First, two lines that form the upper and lower curves separate 66 students around the 

empirical plot line, in which the pre-test and post-test mean is not significantly different from 

the mean difference in the pre- and post-test in the experimental group. Second, above the 

curve, 23 students experience significant changes; the mean of pre- and post-test is greater 

than the mean difference in sample pre-test and post-test. Third, seven students do not change, 

and ten students have negative changes (under the curve), so that they are under the curve. 

Similarly, the results of pre- and post-test of the control group (Figure 2) show that 53 



students are around the empirical plot line; the abilities of 25 students change significantly 

(greater than the mean of sample pre- and post-test (logit +.61); two students do not change; 

13 students experience negative changes in abilities. The difference in the plotting of pre-test 

and post-test results signifies different effects of interventions in the experimental and control 

groups.  

 
Figure 1.  Scatter Plots of Person Measures in Pre- and Post-test of the Experimental 

Group 

 

 
Figure 2. Scatter Plots of Person Measures in Pre- and Post-test of the Control Group 
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The Changes in Item Difficulty Level 

Table 8 presents the results of the racking analysis in connection with the changes in 

item difficulty level in the pre- and post-test of experimental and control groups. It is shown 

that in terms of item difficulty level, the mean of pre-test of the experimental group is (logit 

.32), the mean of post-test is (logit -.34), and the mean difference of the pre- and post-test is 

(logit -.66). Moreover, the mean of pre-test of the control group is (logit .25), the mean of 

post-test is (logit -.25), and the mean difference of the pre- and post-test is (logit -.50). This 

research also finds out that seven items have significant changes in the item difficulty level in 

the experimental group, lower than the pre- and post-test mean difference of (logit -.66), 

namely item 1, 2, 5, 7, 9, and 11. Eight items with a difficulty level greater than the mean are 

item 3, 4, 6, 8, 12, 13, 14, and 15. Item 10 has the same difficulty level as the mean. In the 

control group, eight items change significantly or less than the pre- and post-test mean 

difference of (logit -.50), including item 2, 3, 4, 5, 9, 11, 12, and 14; five items (item 1, 6, 7, 

8, 10, 13) are greater than the mean; one item (item 15) has negative changes or becomes 

more difficult. The most difficult item in the experimental group is item 1 (.80 logit) and the 

easiest one is item 14 (logit -.10). Meanwhile, the most difficult item in the control group is 

item 13 (logit .64), and item 3 (logit -.15) is the easiest one. These findings indicate 

differences in the item difficulty level changes between students taught by the POGIL in the 

SSI context and the conventional model.   

Table 8.  Data of item measures of pre- and post-test of experimental and control groups 

Item 

Experimental (Mean) Control (Mean) 

Pre-test Post-test 

Difference 

Pre- and 

Post-test 

Pre-test Post-test 

Difference 

Pre- and 

Post-test 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conceptual Changes in Students’ Ability and Item Difficulty 

Levels 

Item1 .16 -1.00 -1.16 -.06 -.76 -.7 

Item2 .80 .01 -.79 .39 -.40 -.79 

Item3 .20 -.63 -.43 -.15 -.83 -.68 

Item4 .62 .25 -.37 .54 .02 -.52 

Item5 .14 -.78 -.92 .10 -.49 -.59 

Item6 .26 .22 -.04 .41 .30 -.11 

Item7 .66 -.33 -.99 .33 -.06 -.39 

Item8 .59 .45 -.14 .49 .47 -.02 

Item9 -.04 -.85 -.81 -.08 -.93 -.85 

Item10 .40 -.26 -.66 .32 -.01 -.33 

Item11 .13 -.91 -1.04 .05 -.78 -.83 

Item12 .33 -.23 -.56 .25 -.51 -.76 

Item13 .77 .16 -.61 .64 .33 -.31 

Item14 -.10 -.80 -.7 .15 -.83 -.98 

Item15 .25 -.40 -.65 .39 .72 .33 

Mean .32 -.34 -.66 .25 -.25 -.50 



Apart from the effect of learning interventions, there are three other factors that tend to 

influence the changes in students’ ability and item difficulty levels, as follows: 1) guessing 

which happened to be correct or (lucky guess), 2) cheating, 3) carelessness. These factors can 

be identified from the student's item response pattern using a scalogram. For instance, the 

response pattern of post-test item 7 for student 353, 375, and 170 (Table 9). These three 

students, in the seventh and eighth row from the left, cannot understand item 12 (logit -.06) 

and item 10 (logit .08). Meanwhile, they can correctly explain the more difficult item, i.e., 

item 7 (logit .15). This situation implies a lucky guess, which in fact, these students have 

higher post-test abilities than the item 7 logit. Next is a cheating indication in the response 

pattern of student 128, 129, 134, 137, and 146. Such an indication is initially detected from 

the same post-test mean (logit 1.61) and item response pattern. The last one is carelessness, 

e.g., student 110, 118, and 139 are considered to be careless as they cannot correctly explain 

the easy item 4 (logit .33), yet can accurately understand item 13 (logit .46), which is harder 

than item 4. Moreover, they get very high post-test abilities. 

Table 8. Scalogram 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 

 

 

GUTTMAN SCALE OF RESPONSES: 
Person |Item 
       |   11 11   1 1   ID       Pre- Post-test  Pre Post   Item   
       |913415207265438  Person   Mean    Mean   Difference   Response Pattern 
       |---------------            
   353 +666555536665554  353MFCB    .8   .97    .17     Lucky Guess 
   375 +166566516133664  375MMCB  -.28   .40    .68     Guessing answer 
   170 +664666446566556  170NFEB   .33  1.17    .84     accidentaly correct 
    
   128 +666666666646555  128DFEB   .76  1.61    .85 
   129 +666666666646555  129DFEB   .51  1.61   1.10     Same response pattern 
   134 +666666666646555  134JFEB   .17  1.61   1.44     Cheating indication  
   137 +666666666646555  137MMEB   .04  1.61   1.21      
   146 +666666666646555  146NFEB   .30  1.61   1.31 
 
   110 +666666666666566  110NFEB   .85  3.00   2.15     Response pattern  
   118 +666666666666565  118RFEB   .85  2.36   1.51     “Careless”  
   139 +666666665666565  139MFEB   .62  2.01   1.39      

 
 



Negative Changes 

 Negative changes in conceptual understanding are detected from the changes in 

students’ post-test logit less than the pre-test logit. For example, two students from the 

experimental group (E18 and E75) and the control group (C225 and C247) are taken; they 

have negative changes (Table 9). This means that these four students experience decreased 

abilities after the intervention. The pre-test item mean and the post-item mean of student E18 

are (logit .76) and (logit .04), sequentially, with the mean difference of pre- and post-test 

arriving at (logit  -.72). Moreover, the pre- and post-test item standard errors of student E18 

are (logit .22) and (logit .18), respectively, with the combined standard error of logit .40. On 

account of the higher combined standard error than the pre- and post-test measures, the ability 

of student E18 in both tests is not significantly different. This also applied to student E75, 

C225, and C247.  

 

Table 9. Scalogram results of student E18, E75, C225, and 247 

 

 

Discussion and Conclusion 

 The findings show changes in students’ understanding abilities of the hydrolysis 

concept and items after the intervention. From the pre- and post-test mean difference, the 

ID 

Person 
Test 

Item Response Pattern Mean 

|   11 11   1 1 
|913415207265438 
|--------------- 

Item 

Logit  

S.E* 

Logit 

Pre- test 

and post-

test 

difference 

Combined 

S.E 

E18 
Pre-test +665666636366333 .76 .22 -.72 .40 
Post-test +666661322521161 .04 .18 

E75 
Pre-test +562664552566426 .58 .20 -.35 .38 
Post-test +655664322323463 .23 .18 

C225 
Pre-test +616665663261613 .36 .19 -.45 .37 
Post-test +611622566131613 -.09 .18 

C247 
Pre-test +663636666666435 .97 .25 -.87 .43 
Post-test +563345555314133 .10 .18 

Description: S.E = Standar Error 



experimental group has better positive changes than the control group [58]. In addition to the 

effect of the intervention, there is another factor contributing to the positive conceptual 

changes mentioned above, in terms of students’ ability and item difficulty levels [24, 58]. The 

factor refers to some students who ―accidentally‖ give a correct response pattern (in the post-

test). Even so, both groups have also experienced negative changes, implying that the 

intervention is specifically responded by students on account of the carelessness factor or a 

misconception-comprising response pattern [56, 58, 76]. Regarding this, not all learning 

objectives of the hydrolysis concept match the approach of POGIL in the SSI context. 

Negative changes of the students are because they are not epistemologically involved in the 

learning process, particularly in the observing, measuring, and calculating stages. These 

activities are interrelated up to group discussions as part of the stages of conceptual formation 

based on empirical facts [77]. Students are expected to explain and link the concepts they 

have learned following their epistemological reasoning [16, 78].  

 Furthermore, the interpretation of changes due to pedagogical interventions is 

exemplified by four students (Table 8) in item 5.  In the pre-test, the ability of student E18 

(logit .76), student E75 (logit .58), student C225 (logit .36), and student C247 (logit .96) is 

greater. They also respond to item 5 (-.25 logit) accurately. However, in the post-test item 5, 

the response of student E18, E75, C225, and C247 is incorrect due to their decreased post-test 

abilities. Therefore, the pre- and post-test mean difference is lower than item 5. Why do these 

changes occur? Such changes are exemplified by the response pattern of student E18 in item 

5.  This item measures students’ ability in determining the reaction of NaOCl reaction: 

                  
 , with the estimated pH = 7 and is alkaline. The question (Q1) 

of this item is, ―is it correct that NaOCl is alkaline?‖. E18 answers ―correct‖ in the pre-test, 

yet responds to ―incorrect‖ in the post-test. The question (Q2) of this item is ―what is your 

consideration for your answer in the Q1?‖. Four options are provided: (a) because NaOCl is 



formed of strong acids and weak bases; (b) because NaOCl is formed of weak acids and 

strong bases; (c) because NaOCl is formed of weak acids and weak bases; (d) because NaOCl 

is formed of strong acids and strong bases. In the pre-test, E18 chooses the correct answer (b), 

yet selects the incorrect answer (a) in the post-test that comprises misconception. Next, in the 

Q3 of this item, E18 chooses ―very sure‖ in the pre-test and ―not sure‖ in the post-test.  The 

item 5 response pattern of E18 becomes CCC (category of scientific knowledge - SK) in the 

pre-test and IIU (category of lack of knowledge - LOK) in the post-test. Accordingly, the 

response pattern changes from CCC to IIU. The pre- and post-test mean difference of E18 

(logit -.72) lower than item 5 (-.25) signifies that the error of response pattern results from 

misconception. This also applies to the response pattern of E75 (logit -.35), C225 (logit -.45), 

and C247 (logit -.87).  

 The misconception refers to the inability to identify the NaOCl salt hydrolysis that is 

formed of weak acids and strong bases. In short, the four students tend to not understand the 

concept of acid and base and acid-base reaction. These findings strengthen several previous 

studies [51, 53,54, 79]. A study on the understanding of the acid-base concept of senior high 

school students in Malaysia concludes that some students have little understanding of the 

function of detergents as the cleaning agent, the difference between strong acids and strong 

bases, and the treatment for soil acidity using fertilizers [53]. In the same tune, such little 

understanding is because they do not conceptualize acid-base strength as a property that arises 

from the interaction of many reaction factors [51]. Additionally, research on an alternative 

conception of salt hydrolysis among senior high school students contends that the concept of 

hydrolysis is challenging for the students [54]. They are usually able to state the acidity of a 

salt solution correctly, yet writing a chemical equation to explain such a phenomenon is a 

great challenge. Most of the alternative conceptions are identifiable, rooted in the 

misunderstanding of equilibrium process, acid and base, material structure and other basic 



problems, student tendency to use a wrong analogy, and the lack of laboratory practice. 

 This research findings and elaboration of negative changes (case E18) prove the 

advantages of the Rasch model, specifically its potential in linking the result of changes (pre- 

and post-test), the item difficulty level, and the content being measured [18]. Such 

information solely comes from the Rasch model-based stacking and racking analysis 

techniques. The stacking technique provides information regarding ―who has changed‖; in 

contrast, the racking technique offers information of ―what has changed‖ [56, 58], allowing 

the researchers to spell out the effect of the applied pedagogical innovation [18, 33, 34]. 

Although the instrument measurement result of this work is not data-rich, the analysis 

strength of the Rasch model can describe in detail the conceptual changes, both in the 

students’ ability and item difficulty levels. 

Limitations and Further Studies 

 The primary limitation of this research is that it did not take into account the aspects 

of learning style, culture, and motivation that can change due to learning interventions. Future 

studies, therefore, can address these aspects. The present study can be continued by 

considering the context of a problem that closely connects with the parameter of item 

difficulty level. The analysis will be more interesting if it can prove that different item 

difficulty levels are influenced by problem contexts in each item [80]. Further studies are also 

expected to find an analysis technique that can integrate problem contexts, item 

characteristics, and item difficulty levels in a measurement model. It is assumed that different 

problem contexts in each item will be more likely to affect measurement results because 

problem contexts have conceptual linkage with items and student activities in doing 

experiments, measuring, interpreting data/graphs, and others. Thus, the linkages between the 

learning process during the intervention and conceptual changes in students’ ability and item 



difficulty levels can be explained in detail;  which part of the process leads the students to 

change their understanding related to specific ideas taught to them.  
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Appendix 1. Standardized Residual Variance in Eigen value Units. 

     Table of STANDARDIZED RESIDUAL variance in Eigenvalue units = Item 
information units 
                                           Eigenvalue   Observed   Expected 
Total raw variance in observations     =      22.7067 100.0%         100.0% 
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  Raw variance explained by measures   =       7.7067  33.9%          35.9% 
    Raw variance explained by persons  =       2.7733  12.2%          12.9% 
    Raw Variance explained by items    =       4.9334  21.7%          23.0% 
  Raw unexplained variance (total)     =      15.0000  66.1% 100.0%   64.1% 
    Unexplned variance in 1st contrast =       2.0698   9.1%  13.8% 
    Unexplned variance in 2nd contrast =       1.5312   6.7%  10.2% 
    Unexplned variance in 3rd contrast =       1.3696   6.0%   9.1% 
    Unexplned variance in 4th contrast =       1.3124   5.8%   8.7% 
    Unexplned variance in 5th contrast =       1.1945   5.3%   8.0% 

 

 

 

Appendix 2. Summary of Category Structure.   

SUMMARY OF CATEGORY STRUCTURE.  Model="R" 
--------------------------------------------------------------------- 
|CATEGORY     OBSERVED|OBSVD SAMPLE|INFIT OUTFIT|| ANDRICH |CATEGORY| 
|LABEL   SCORE COUNT %|AVRGE EXPECT|  MNSQ  MNSQ||THRESHOLD| MEASURE| 
|---------------------+------------+------------++---------+--------| 
|    1   1     317   6|  -.18  -.20|  1.06  1.08||  NONE   |( -1.73)| 1 
|    2   2     190   3|   .10   .09|  1.03  1.18||     .46 |   -.77 | 2 
|    3   3     963  17|   .33   .31|  1.02   .93||   -1.43 |   -.22 | 3 
|    4   4     542  10|   .56   .52|  1.02   .97||     .98 |    .21 | 4 
|    5   5    1262  22|   .62   .73|  1.27   .99||    -.22 |    .74 | 5 
|    6   6    2425  43|  1.02   .98|   .97  1.04||     .20 |(  1.76)| 6 
|---------------------+------------+------------++---------+--------| 
| MISSING        1   0|  -.30      |            ||         |        | 
--------------------------------------------------------------------- 
OBSERVED AVERAGE is mean of measures in category. It is not a parameter estimate. 
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Abstract 

This research aimed to employ stacking and racking analysis techniques in the Rasch model to 

measure the hydrolysis conceptual changes of students taught by the process-oriented guided 

inquiry learning (POGIL) model in the context of socio-scientific issues (SSI) with the pretest-

posttest control group design. Such techniques were based on a person- and item-centered 

statistic to determine how students and items changed during interventions. Eleventh-grade 

students in one of the top-ranked senior high schools in the eastern part of Indonesia were 

involved as the participants. They provided written responses (pre- and post-test) to 15 three-

tier multiple-choice items. Their responses were assessed through a rubric that combines 

diagnostic measurement and certainty of response index.  Moreover, the data were analyzed 

following the Rasch Partial Credit Model, using the WINSTEPS 4.5.5 software. The results 

suggested that students in the experimental group taught by the POGIL approach in the SSI 

context had better positive conceptual changes than those in the control class learning with a 

conventional approach. Along with the intervention effect, in certain cases, it was found that 

positive conceptual changes were possibly due to student guessing, which happened to be 

correct (lucky guess), and cheating. In other cases, students who experienced negative 

conceptual changes may respond incorrectly due to carelessness, the boredom of problem-

solving, or misconception. Such findings have also proven that some students tend to give 

specific responses after the intervention in certain items, indicating that not all students fit the 

intervention. Besides, stacking and racking analyses are highly significant in detailing every 

change in students’ abilities, item difficulty levels, and learning progress. 

Keywords: stacking, racking, Rasch model, hydrolysis conceptual changes, inquiry model 

 

 



Introduction 

Central to defining the quality of pedagogical innovation in science classes is 

conceptual changes. The changes refer to how ideas or conceptions the students understand 

according to their ways of thinking [1, 2] become scientifically accurate [3]. It is because such 

ideas generally comprise misconceptions [4, 5, 6, 7], are not in accordance with scientific 

concepts [8, 9], tend to be resistant [10], changeable and varied [11], so that they should be 

improved if the correct conceptual understanding is to be taught [12, 13].  

Some studies have been conducted on learning innovation testing to form an accurate 

and scientific conceptual understanding of the students, e.g., inquiry-based learning. This 

model presents conceptual conflicts and participatory experiments to facilitate conceptual 

changes [14, 15, 16]. Conceptual understanding-based learning involves various strategies in 

identifying and analyzing students’ comprehension so that the investigation process can be 

designed to lead them to a more accurate and scientific conception [16, 17]. This research 

relied on a quasi-experimental design that assessed students’ pre-test and post-test, evaluated 

the changes in performances for testing significant differences. This type of testing informs the 

researcher about the presence of an effect, but does not provide detailed information on the 

level and trait of the changes [18]. What if the researcher is willing to compare the extent to 

which the pre- and post-test change (differences in learning outcomes) and interpret the 

changes (the reasoning why those changes occur) in terms of content? This is a core question 

regarding the changes in some latent traits or changes in traits measured after the intervention. 

In most studies, interpreting the changes in pre-test and post-test tends to be limited to 

identifying whether or not an effect prevails. 

Pre- and post-test changes should be given in detail regarding the students’ 

understanding ability and item difficulty levels. However, this has not been much revealed due 



to the limitations of its measurement techniques and analyses and has not been the main focus 

in chemistry education research to date. One reason for this issue is the debate in the 

psychometric community regarding the ability to measure changes accurately [18]. This 

debate questions the use of raw scores in the conventional psychometric analysis, which 

largely contains measurement biases [19], as follows: 1) the difference in pre- and post-test 

scores will be negatively correlated with the pre-test score, especially for students with low 

pre-test scores [18, 20]; 2) the difference in pre- and post-test scores shows low test reliability 

[21]; 3) low measurement properties due to different scales [22]. 

Raw scores are not final data, so that they do not have a great deal of information for 

drawing conclusions [23, 24]. Around the 1950s, Dr. Georg Rasch, a mathematician from 

Denmark, introduced the formulation of the Rasch measurement model [24]. The model has 

been widely applied to analyze various types of data, e.g., dichotomous, polytomous, multi-

rating, and multi-rater data. In the mid-2000s, the Rasch model was used as a probabilistic-

based psychometric measurement that went beyond the use of raw scores [25, 26], and was 

used to overcome the limitations of conventional psychometric measurement [19, 27]. Its 

analyses, including item fit, PCA (Principal Component Analysis), and Wright map, are 

commonly used for international test analyses, namely TIMSS and PISA [28].  

In chemistry education research, the Rasch model has been relied on to evaluate 

learning understanding and progress [29], to diagnose students’ preconceptions [1], 

misconceptions [13, 30, 31, 32], link the measurement of content knowledge with pedagogical 

content knowledge [33], and investigate item difficulty patterns [13, 34]. Even so, studies on 

the Rasch model to reveal the chemistry conceptual changes in students’ understanding and 

item difficulty levels are relatively hard to find as of today. The present study aims to employ 

stacking and racking analysis techniques in the Rasch model to measure the hydrolysis 

conceptual changes of students taught by the POGIL approach in the context of SSI and 

https://en.wikipedia.org/wiki/Georg_Rasch


students who learn conventionally. Such techniques are based on a person- and item-centered 

statistic to estimate how students and items change during the intervention.  

POGIL is a student-centered learning strategy that teaches content or process skills. 

The philosophical foundation of POGIL is the involvement of an interactive process of careful 

thinking, discussing ideas, perfecting understanding, practicing skills, reflecting progress, and 

evaluating performances [35]. POGIL is able to lead the process of designing a participatory 

experiment that presents a conceptual conflict as a strategy to encourage students to form an 

accurate concept [14]. Therefore, POGIL intervention is more likely to be potential in driving 

epistemological understanding and reasoning [36], making students have opportunities to 

change their conceptions to be more accurate and scientific [16]. Nevertheless, it is also worth 

noting that some students potentially have misconceptions resistant to changes [3].  

SSI functions as a learning context through the intergration of social problems that 

students are familiar with. It also has a conceptual connection with salt hydrolysis [37, 38], 

and its resolution requires many perspectives [39], including the dimension of moral and 

ethical evaluation of students [40]. The SSI context is a socio-scientific phenomenon that the 

students should explain based on their conceptual viewpoints. It encourages them to actively 

get involved in grasping problems [41], developing and utilizing their knowledge [42], 

improving their critical thinking [43], and being able to scientifically describe the discussed 

socio-scientific phenomenon [36, 44, 45]. For such reasons, the integration of SSI can build 

up students’ scientific literacy [39, 46, 47]. In the end, this integration enables the learning 

process to be more significant in enhancing students’ understanding [45, 48]. Besides, they 

are skilled in negotiating the social aspect of the studied phenomenon [49, 50]. For instance, 

the issues of global warming, climate change, and pollution [36]. 

Salt hydrolysis is a learning topic in high school that is strongly related to SSI. 

Students with a good understanding of hydrolysis will manage to clarify scientifically why 



detergents, bleaching agents (NaOCl), and fertilizers can pollute the environment. Despite 

this, the linkage of this issue as the problem in learning hydrolysis is rarely carried out. The 

learning process is more emphasized on mastering theoretical concepts [36]. As a 

consequence, students find it challenging to use their hydrolysis understanding to explain 

socio-scientific phenomena around them [37]. This challenge is on account of their 

misconceptions regarding acid-base reaction [51], making them unable to elaborate the 

concept of salt hydrolysis [52] and determine acid and base strength [53]. In addition, they 

are struggling with correctly explaining the dissolving process and the reaction of ionic 

compounds with water, writing down chemical equations, and having different interpretations 

of the dissolving process mentioned earlier [54]. On this ground, it is essential to reveal how 

the hydrolysis concept changes if intervened with the POGIL approach in the SSI context, 

through the following specific questions: (1) is there a significant hydrolysis conceptual 

change of the students after the learning process in experimental and control groups? (2) if 

compared, how is the hydrolysis conceptual change through the intervention of POGIL in the 

SSI context and conventional learning? (3) in addition to intervention, is there any other 

factor that also contributes to the students' hydrolysis conceptual changes? 

Method of Study 

This study relied on a quantitative approach with a quasi-experimental and pretest-

posttest control group design [55] by comparing the extent to which the hydrolysis concept 

changes after the intervention. Researchers carried out the learning process for 12 meetings, 

gave tests, and collected data on the results of the intervention and measurement. 

The changes of students and items were analyzed using the stacking and racking 

techniques in the Rasch model [56]. As standard techniques, racking and stacking were 

introduced by Benjamin Wright to measure the extent to which conceptual understanding of 



students and items change before and after interventions [57]. The referred changes are cases 

(item and student levels) caused by the learning intervention and can be diagnosed based on 

the estimated changes. 

In regards to students’ understanding, the measurement was to identify students who 

had specific hydrolysis conceptual changes in responding to the learning intervention. In terms 

of items, the measurement was done to identify which items had special characteristics and 

been understood by students differently during the learning intervention [57]. Thus, the 

scientific inquiry approach might not be suitable for some students, or some items might be 

too hard after the intervention. This insightful information is immensely helpful for 

researchers and education practitioners, especially in evaluating the weaknesses of 

pedagogical innovations being applied and devising learning strategies that meet students’ 

needs in learning [58].  

Participants 

Eleventh-grade students aged 16-17 years in one of the senior high schools in the 

eastern part of Indonesia were involved as the sample. This top-ranked school gets an ―A‖ 

accreditation (excellent)  from the National Accreditation Board for High School. The sample 

was determined by convenience sampling in six randomly assigned classes. Three classes 

(N=97) were experimental groups that applied the POGIL model in the SSI context. The other 

three classes (N=93), as control groups, applied conventional learning without the SSI context. 

The same teacher taught these classes following the Curriculum 2013 of Chemistry Subject 

(revised in 2016). There was no special classroom for learning the concept of hydrolysis, i.e., 

taking up the regular learning process at school. Before learning the hydrolysis concept, the 

students had previously learned the concept of acid and base to understand the concept of salt 

hydrolysis way better.  Research permission was obtained from the government and school 

administrators. In accordance with principles of research ethics, research purpose and 



procedures were informed to all the students being involved and that they were voluntarily 

participating. Additionally, their information is confidential and only used for science 

development [59].  

Learning implementation 

Students in the experimental group studied employing the process-oriented guided 

inquiry learning (POGIL) in the SSI context [35]. Meanwhile, in the control class, the 

learning process was performed conventionally; the teacher facilitated learning initiatives. 

The learning process focused more on content mastery and problem-solving practice. 

Applying the POGIL model in the SSI context highlights teacher assistance to guide the 

students to prepare their conceptual understanding based on epistemological reasoning they 

get from experiments, discussions, and collaborations [49, 60]. Researchers carried out the 

learning process for eight weeks to apply the intervention to the sample, gave tests, collected 

data on the results of the intervention and measurement. The first three weeks were the 

preparation stages when researchers and the teacher shared perceptions, and asked the teacher 

to perform a learning simulation under the scenario, including different assistance techniques 

in leading the students to conduct experiments, and to ask analytical questions. The pre-test 

was carried out in the third week. Further, the learning implementation was done for four 

weeks, and the post-test was executed in the eighth week.  

The learning stages with POGIL in the SSI context consist of orientation, exploration, 

concept formation, application, and closing. During the orientation stage, the teacher 

presented familiar contextual phenomena related to the concept of hydrolysis. The teacher 

asked initial questions to provoke curiosity and arouse motivation and interest of the students. 

While watching the video, had the students responded and explained the relationship between 

the phenomena and acids and bases, hydrolysis, and buffers. In the exploration stage, the 

teacher developed analytical questions with data, images, and multiple video clips to give 



perspectives on learning objectives and to delve into the concept that had been and would be 

learned. Next, the teacher assisted the students in doing experiments guided by a worksheet, 

and at the same time, asked analytical questions to lead them and strengthen their conceptual 

understanding. In the concept formation stage, the teacher asked students to build their 

conceptual understanding based on the exploration results, accompanied by critical and 

fundamental questions to guide students in building a conceptual understanding of the salt 

hydrolysis and buffer solution.  

Following the formation stage was the application stage when the teacher presented 

contextual problems in the SSI context, particularly those comprising social problems in 

society, that closely linked with the understanding of salt hydrolysis and buffer solution 

concepts. Such problems included 1) the use of bleaching agents (detergents), 2) the functions 

of alum KAl(SO₄)₂·12H₂O for water purification, 3) the harmful effects of detergent waste, 4) 

the beneficial and harmful effects of artificial fertilizer (NH4)2SO4 for soil fertility, and 5) the 

harmful effects of monosodium glutamate (MSG) for health. In this stage, the teacher guided 

the students through collaborative discussions and critical questions, intending to give them 

perspectives on SSI phenomena and encourage them to collect information and do 

experiments following student activity sheets.  Thereupon, the students had presentation and 

discussion sessions, during which they reported their experiment results and drew conclusions 

[61, 62]. The teacher asked them to describe the possible problems and solutions from their 

understanding of the studied concepts. This enabled the students to form their conceptual 

understanding that is closely related to contexts; the learning process was from contextual to 

abstract [37, 63]. From such a condition, the teacher led the students to apply their knowledge 

in different contexts and situations and solve problems. The final stage was closing or teacher 

assistance in guiding the students to explain the conclusion and reflection on the learning 

process as the end of the learning activities. 



Instrument 

Table 1 displays 15 items of diagnostic three-tier multiple choice test to measure 

students’ hydrolysis conceptual understanding. The test was constructed following the 

Competence Standard of 2013 Chemistry Curriculum of Senior High School under Regulation 

of the Minister of Education and Culture of the Republic of Indonesia Number 37 of 2018. 

The procedures of developing the instrument followed the recommendation by [64, 65, 66]. 

  

Table 1. Conceptual Map of Hydrolysis Concept Understanding [67] 

Problem Context Item Conceptual Understanding Ability Level 

Bleaching agents are 

formed of weak acid 

HOCl and strong base 

NaOH. Sodium 

hypochlorite salt 

(NaOCl) is reactive and 

dissolves the dye. In the 

water, the ion      will 

be hydrolyzed to HOCl 

and     -
 

1 Balancing the salt (NaOCl) 

hydrolysis reaction in the water 

2  

Level 3:  

 Students are 

able to 

calculate the 

pH of the 

hydrolyzed 

salt solution.  

 

 

Level 2:  

 Students are 

able to 

determine the 

hydrolysis 

2 Stating the partial hydrolysis 

reaction:            

       

2 

3 Determining corrosive alkali of 

sodium hypochlorite salt 

(NaOCl) 

1 

4 Calculating the pH of 

hydrolysis of sodium 

hypochlorite salt (NaOCl) with 

NaOCl = 0.1 M; Ka = 10
-5

) 

3 

5 Determining the property of 

NaOCl, in the reaction: 

                  
  

2 

 



6 Calculating the pH of sodium 

hypochlorite salt (NaOCl) that 

comes from a mixture of HOCl 

and NaOH (partially 

hydrolyzed), if the Ka HOCl is 

10
-5 

and there is an increase in 

the pH of the solution mixture.  

3 reaction from 

different types 

of salt  

 

 

Level 1:  

 Students are 

able to analyze 

the properties 

of the 

hydrolyzed 

salt 

 

 

Water purification with 

alum KAl(SO₄)₂·12H₂O 

is the concept of salt 

hydrolysis, formed of 

H2SO4 and Al(OH)3. 

7 Determining aluminum salt 

(Al2(SO4)3) properties in the 

water 

1 

8 Determining aluminum salt 

(Al2(SO4)3) properties in the 

water that is partially 

hydrolyzed by the Al
3+ 

ion 

1 

The sodium 

tripolyphosphate 

(STPP) in detergents 

can pollute the 

environment, a 

eutrophication process.  

9 Determining the properties of 

detergent solution causing 

eutrophication 

1 

10 Determining the properties of 

detergent solution (sodium 

tripolyphosphate salt) that is 

partially hydrolyzed  

1 

11 Determining the impact of the 

disposal of detergent waste on 

the environment 

2 



ZA fertilizer 

(NH4)2SO4 is an acidic 

salt. 

12 Determining the properties of 

ammonium sulfate salt 

(NH4)2SO4 

1 

13 Stating the equation of 

(NH4)2SO4 reaction in the 

water, partially hydrolyzed 

2 

Monosodium glutamate 

(C5H8NO4Na) is L-

glutamic acid salt, 

adversely impactful on 

human health 

14 Students’ attitude towards the 

use of monosodium glutamate 

(C5H8NO4Na) 

2 

15 Determining the properties of 

monosodium glutamate salt 

(C5H8NO4Na) 

1 

 

Each item was designed in three questions (Q1, Q2, Q3) that integrated diagnostic [68, 

69] and summative measurements [10] and certainty of response index (CRI) [70, 71]. 

Students’ responses to items (Q1, Q2, Q3) were evaluated based on the rubric (Table 2). For 

example, students’ responses to items were as follows: Q1, Q2 ―correct‖, and Q3 ―very sure‖ 

under the code CCC. Such a code indicated that students’ conceptual understanding was in 

level 6, category of Scientific Knowledge (SK).  On the other hand, if the response patterns in 

Q1, Q2 ―incorrect‖ and Q3 ―not sure‖, the code would be IIU, implying that students’ 

conceptual understanding was in the category of Lack of Knowledge (LOK), or level 1.  This 

instrument had been validated from the aspects of item conformity with the construct variable 

and language. The validity results by three experts were stated under Fleiss’ kappa (K = .96), 

meaning that the experts agreed that the item validity was categorized good.  

 Table 2  All Possibilities of Responses [70, 71, 72] 



 

Data collection and analysis  

 Before the intervention, this research underwent pre-test data collection; whereas, the 

post-test data collection was done after the intervention. The construction of pre- and post-test 

items was the same. Students wrote down their responses on the provided answer sheet. Both 

tests were supervised by teachers in the school. The students must work on all items 

according to the allocated time (45 minutes). The instrument was immediately collected and 

should have the same number as the total participants. 

The pre- and post-test measurement data were still ordinal data. The Rasch Partial 

Credit Model with WINSTEPS 4.5.5 software [27, 73] was used to convert ordinal data into 

(Q1) (Q2) (Q3) Code 

Conceptual Understanding 

Category 

Level 

Correct Correct Certain CCC Scientific Knowledge (SK) 6 

Correct Incorrect Certain 

CIC Misconception False Positive 

(MFP) 

5 

Incorrect Correct Certain 

ICC Misconception False Negative 

(MFN) 

4 

Incorrect Incorrect Certain IIC All-Misconception (ALM) 3 

Correct Correct Uncertain 

CCU Lack of Confidence/Lucky Guess. 

(LG) 

2 

Correct Incorrect Uncertain CIU Lack of Knowledge (LOK) 1 

Incorrect Correct Uncertain ICU Lack of Knowledge (LOK) 1 

Incorrect Incorrect Uncertain IIU Lack of Knowledge (LOK) 1 



interval data to have the same logit scale. The result was a data calibration of the levels of 

student's ability and item difficulty in the same interval.  

The stacking analysis technique put pre-test and post-test data vertically [74]; 

meanwhile, the items appeared once in the experimental and control groups, allowing the 

researchers to check out any changes of the students after the intervention [56]. The 

examination was based on the same item, making the changes in students’ ability during the 

pre- and post-test be measured [56]. Hence, each student created two measures of abilities, 

namely pre-test and post-test, and one measure for each item. The research hypothesis is that 

the students' conceptual understanding from pre-test to post-test changes, both in the 

experimental and control groups. 

Conversely, the racking analysis technique put both pre- and post-test data 

horizontally, in which each item appeared twice in data collection, and students’ ability only 

emerged once. This enabled the researchers to check out the effects of learning 

implementation on each student’s ability from the tests, especially the changes in item 

difficulty levels before and after the intervention [56].  

Results  

Rasch analysis properties of instrument 

 The summary of changes in concepts and items analyzed by the Rasch model is 

presented in Table 1. Table 2 provides the item fit statistic. An item is considered to 

experience a misfit if the measurement result is not in line with the following three criteria: 

Outfit mean-square residual (MNSQ): .5 < y < 1.5; Outfit standardized mean-square residual  

(ZSTD): -2 < Z < +2 ; and point measure correlation (PTMEA CORR): .4 < x < .8 [25]. All 

items comply with the Outfit MNSQ criterion; item 15 does not meet the Outfit MNSQ 

criterion; five items (item 1, 6, 12, 13, and 15) are not in accordance with the Outfit (ZSTD) 



criterion; all items meet the PTMEA CORR criterion. Simply put, all items fulfill those 

criteria mentioned previously (none having a misfit), and are fit and valid.  

Table 3.  Item Statistics:  Misfit Order 

 

 

 

 

 

 

 

 

 This instrument has a good unidimensionality (Appendix 1). Raw variant index arrives 

at above the standard of 20% (33.9%), indicating that the instrument can effectively measure 

students’ understanding of the hydrolysis concept [75]. The assessment scale analysis 

(Appendix 2) informs that the observation mean starts from logit -1.73 for category 1 (LOK) 

Item Difficult Error 

Outfit 

MNSQ 

Outfit 

ZSTD 

PTMEA 

CORR. 

1 -.38 .05 1.36 2.87 .47 

2 .20 .04 1.13 1.56 .49 

3 -.36 .05 .91 -.79 .43 

4 .33 .04 1.09 .77 .55 

5 -.25 .05 .94 -.55 .56 

6 .26 .04 1.20 2.44 .41 

7 .15 .04 .91 -1.17 .54 

8 .47 .04 .90 -1.45 .44 

9 -.47 .05 1.19 1.49 .46 

10 .08 .04 1.09 1.04 .55 

11 -.34 .05 1.04 .42 .51 

12 -.06 .04 .71 -3.50 .60 

13 .46 .04 .74 -4.12 .55 

14 -.36 .05 1.00 .77 .55 

15 .26 .04 1.31 3.74 .47 



to logit +1.76 (category 6, SK). This signifies that the category of students’ understanding 

takes place consistently [27]. In addition, the high item separation index (logit 6.71) and the 

high item reliability (logit .98) (Table 3) indicate that the respondents (students) are sufficient 

to confirm the level of item difficulty, strengthening the instrument construct validity [27]. 

The higher the item separation and reliability index, the more confident the researchers are 

about replicating item placement in other suitable sample students [25, 27]. Person separation 

index and person reliability that reach logit 2.0 and logit .75 (Table 4), respectively, imply 

that the instrument is quite sensitive to differentiate the high and low abilities of the students 

[25, 27]. According to the Rasch model calculation, the coefficient of Cronbach Alpha of logit 

.81 (Table 4) reflects an interaction between 380 students and 15 items with an excellent 

category [24, 76]. In other words, the interaction between students and items is very 

significant. The instrument has an excellent internal psychometric consistency and is 

considered very reliable. 

Table 4. Person Separation and Reliability Statistics 

Paramete

r  

Measur

e 

S

D 

Separatio

n 

Reliabilit

y 

INFIT OUTFIT 

KR

-20 
MNS

Q 

ZST

D 

MNS

Q 

ZST

D 

Person 

(N=380) 

.67 .52 1.72 .75 1.00 .04 1.02 .10 .81 

Item 

(N=15) 

.00 .32 6.71 .98 1.07 .41 1.02 -.01 

 

The Difference in Students’ Understanding Ability of Hydrolysis 

Concept 



 The result of the Mann-Whitney test (Table 5) brings out the fact that statistically, 

there is a significant difference in the results of pre-test (U=3459.000), p<0.05) and post-test 

(U=1723.000,  p<0.05)  among students in experimental and control groups. Further, the 

Wilcoxon test result (Table 6) shows that the results of pre-test and post-test of students in the 

experimental group (Z=-8.076) and the control group (Z=-6.690) at the significant level (p) < 

0.05 are significantly different. This suggests that students’ understanding of the hydrolysis 

concept after the intervention (post-test) is higher than before the intervention (pre-test), both 

in experimental and control groups. However, the abilities of students in the experimental 

group are better than those in the control group. Accordingly, the learning process with the 

POGIL in the SSI context is better than the conventional learning.  

Table 5. The result of the Mann-Whitney U test based on Students’ Pre-Test and Post-

Test Abilities in Experimental and Control Groups (p<0.05) 

Test Experimental Group (N=97) Control Group (N=93) U p 

Pre-test 0.5026(-0.57-1.26)
a 

0.3029(-1.61-1.03)
a
 3459.000 0.005 

Post-test 1.1722(-0.09-3.00)
a
 0.7052(-1.06-1.47)

a
 1723.000 0.000 

 

Table 6. The result of the Wilcoxon test of Students’ Pre-Test and Post-Test in 

Experimental and Control Groups (p<0.05) 

Group Pre-test Post-test Z p
* 

Experimental 0.5026(-0.57-1.26)
a 

1.1722(-0.09-3.00)
a
 -8.076 0.000 

Control 0.3029(-1.61-1.03)
a
 0.7052(-1.06-1.47)

a
 -6.690 0.000 

 

The Changes in Students’ Understanding Ability of the Hydrolysis 

Concept 



  From the different changes in pre- and post-test (Table 7), students in the 

experimental and control groups have improved their understanding of the hydrolysis concept. 

The experimental group's mean of pre-test and post-test is logit .51 (S.E = logit .21) and logit 

1.50 (S.E = logit .32), respectively, with the mean difference of both tests is (logit .99). In 

contrast, the mean of pre-test and post-test of the control group gets logit .26 (S.E = logit .20) 

and logit .87 (S.E = logit .26), respectively, with the mean difference of pre- and post-test is 

logit .61. Such differences indicate different effects of interventions in the experimental and 

control group.  

Table 7. Logit of Mean of Pre- and Post-Test Items of Experimental and Control Groups 

Group Student Item 

Mean/SE (logit) 

Pre-test Post-test 

Pre- and Post-test 

Difference 

Experimental 97 15 .51/(.21) 1.50/(.32) .99  

Control 93 15 .26/(.20) .87/(.24) .61 

Description: SE = Standar Error.  

If the pre-test and post-test results of the experimental group are plotted in pairs 

(Figure 1), so that the mean difference in the sample pre- and post-test (logit +.99) is 

displayed as an intercept on the horizontal axis with the plotted slope = 1, several facts 

obtained: First, two lines that form the upper and lower curves separate 66 students around the 

empirical plot line, in which the pre-test and post-test mean is not significantly different from 

the mean difference in the pre- and post-test in the experimental group. Second, above the 

curve, 23 students experience significant changes; the mean of pre- and post-test is greater 

than the mean difference in sample pre-test and post-test. Third, seven students do not change, 

and ten students have negative changes (under the curve), so that they are under the curve. 

Similarly, the results of pre- and post-test of the control group (Figure 2) show that 53 



students are around the empirical plot line; the abilities of 25 students change significantly 

(greater than the mean of sample pre- and post-test (logit +.61); two students do not change; 

13 students experience negative changes in abilities. The difference in the plotting of pre-test 

and post-test results signifies different effects of interventions in the experimental and control 

groups.  

 
Figure 1.  Scatter Plots of Person Measures in Pre- and Post-test of the Experimental 

Group 

 

 
Figure 2. Scatter Plots of Person Measures in Pre- and Post-test of the Control Group 
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The Changes in Item Difficulty Level 

Table 8 presents the results of the racking analysis in connection with the changes in 

item difficulty level in the pre- and post-test of experimental and control groups. It is shown 

that in terms of item difficulty level, the mean of pre-test of the experimental group is (logit 

.32), the mean of post-test is (logit -.34), and the mean difference of the pre- and post-test is 

(logit -.66). Moreover, the mean of pre-test of the control group is (logit .25), the mean of 

post-test is (logit -.25), and the mean difference of the pre- and post-test is (logit -.50). This 

research also finds out that seven items have significant changes in the item difficulty level in 

the experimental group, lower than the pre- and post-test mean difference of (logit -.66), 

namely item 1, 2, 5, 7, 9, and 11. Eight items with a difficulty level greater than the mean are 

item 3, 4, 6, 8, 12, 13, 14, and 15. Item 10 has the same difficulty level as the mean. In the 

control group, eight items change significantly or less than the pre- and post-test mean 

difference of (logit -.50), including item 2, 3, 4, 5, 9, 11, 12, and 14; five items (item 1, 6, 7, 

8, 10, 13) are greater than the mean; one item (item 15) has negative changes or becomes 

more difficult. The most difficult item in the experimental group is item 1 (.80 logit) and the 

easiest one is item 14 (logit -.10). Meanwhile, the most difficult item in the control group is 

item 13 (logit .64), and item 3 (logit -.15) is the easiest one. These findings indicate 

differences in the item difficulty level changes between students taught by the POGIL in the 

SSI context and the conventional model.   

Table 8.  Data of item measures of pre- and post-test of experimental and control groups 

Item 

Experimental (Mean) Control (Mean) 

Pre-test Post-test 

Difference 

Pre- and 

Post-test 

Pre-test Post-test 

Difference 

Pre- and 

Post-test 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conceptual Changes in Students’ Ability and Item Difficulty 

Levels 

Item1 .16 -1.00 -1.16 -.06 -.76 -.7 

Item2 .80 .01 -.79 .39 -.40 -.79 

Item3 .20 -.63 -.43 -.15 -.83 -.68 

Item4 .62 .25 -.37 .54 .02 -.52 

Item5 .14 -.78 -.92 .10 -.49 -.59 

Item6 .26 .22 -.04 .41 .30 -.11 

Item7 .66 -.33 -.99 .33 -.06 -.39 

Item8 .59 .45 -.14 .49 .47 -.02 

Item9 -.04 -.85 -.81 -.08 -.93 -.85 

Item10 .40 -.26 -.66 .32 -.01 -.33 

Item11 .13 -.91 -1.04 .05 -.78 -.83 

Item12 .33 -.23 -.56 .25 -.51 -.76 

Item13 .77 .16 -.61 .64 .33 -.31 

Item14 -.10 -.80 -.7 .15 -.83 -.98 

Item15 .25 -.40 -.65 .39 .72 .33 

Mean .32 -.34 -.66 .25 -.25 -.50 



Apart from the effect of learning interventions, there are three other factors that tend to 

influence the changes in students’ ability and item difficulty levels, as follows: 1) guessing 

which happened to be correct or (lucky guess), 2) cheating, 3) carelessness. These factors can 

be identified from the student's item response pattern using a scalogram. For instance, the 

response pattern of post-test item 7 for student 353, 375, and 170 (Table 9). These three 

students, in the seventh and eighth row from the left, cannot understand item 12 (logit -.06) 

and item 10 (logit .08). Meanwhile, they can correctly explain the more difficult item, i.e., 

item 7 (logit .15). This situation implies a lucky guess, which in fact, these students have 

higher post-test abilities than the item 7 logit. Next is a cheating indication in the response 

pattern of student 128, 129, 134, 137, and 146. Such an indication is initially detected from 

the same post-test mean (logit 1.61) and item response pattern. The last one is carelessness, 

e.g., student 110, 118, and 139 are considered to be careless as they cannot correctly explain 

the easy item 4 (logit .33), yet can accurately understand item 13 (logit .46), which is harder 

than item 4. Moreover, they get very high post-test abilities. 

Table 8. Scalogram 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 

 

 

GUTTMAN SCALE OF RESPONSES: 
Person |Item 
       |   11 11   1 1   ID       Pre- Post-test  Pre Post   Item   
       |913415207265438  Person   Mean    Mean   Difference   Response Pattern 
       |---------------            
   353 +666555536665554  353MFCB    .8   .97    .17     Lucky Guess 
   375 +166566516133664  375MMCB  -.28   .40    .68     Guessing answer 
   170 +664666446566556  170NFEB   .33  1.17    .84     accidentaly correct 
    
   128 +666666666646555  128DFEB   .76  1.61    .85 
   129 +666666666646555  129DFEB   .51  1.61   1.10     Same response pattern 
   134 +666666666646555  134JFEB   .17  1.61   1.44     Cheating indication  
   137 +666666666646555  137MMEB   .04  1.61   1.21      
   146 +666666666646555  146NFEB   .30  1.61   1.31 
 
   110 +666666666666566  110NFEB   .85  3.00   2.15     Response pattern  
   118 +666666666666565  118RFEB   .85  2.36   1.51     “Careless”  
   139 +666666665666565  139MFEB   .62  2.01   1.39      

 
 



Negative Changes 

 Negative changes in conceptual understanding are detected from the changes in 

students’ post-test logit less than the pre-test logit. For example, two students from the 

experimental group (E18 and E75) and the control group (C225 and C247) are taken; they 

have negative changes (Table 9). This means that these four students experience decreased 

abilities after the intervention. The pre-test item mean and the post-item mean of student E18 

are (logit .76) and (logit .04), sequentially, with the mean difference of pre- and post-test 

arriving at (logit  -.72). Moreover, the pre- and post-test item standard errors of student E18 

are (logit .22) and (logit .18), respectively, with the combined standard error of logit .40. On 

account of the higher combined standard error than the pre- and post-test measures, the ability 

of student E18 in both tests is not significantly different. This also applied to student E75, 

C225, and C247.  

 

Table 9. Scalogram results of student E18, E75, C225, and 247 

 

 

Discussion and Conclusion 

 The findings show changes in students’ understanding abilities of the hydrolysis 

concept and items after the intervention. From the pre- and post-test mean difference, the 

ID 

Person 
Test 

Item Response Pattern Mean 

|   11 11   1 1 
|913415207265438 
|--------------- 

Item 

Logit  

S.E* 

Logit 

Pre- test 

and post-

test 

difference 

Combined 

S.E 

E18 
Pre-test +665666636366333 .76 .22 -.72 .40 
Post-test +666661322521161 .04 .18 

E75 
Pre-test +562664552566426 .58 .20 -.35 .38 
Post-test +655664322323463 .23 .18 

C225 
Pre-test +616665663261613 .36 .19 -.45 .37 
Post-test +611622566131613 -.09 .18 

C247 
Pre-test +663636666666435 .97 .25 -.87 .43 
Post-test +563345555314133 .10 .18 

Description: S.E = Standar Error 



experimental group has better positive changes than the control group [58]. In addition to the 

effect of the intervention, there is another factor contributing to the positive conceptual 

changes mentioned above, in terms of students’ ability and item difficulty levels [24, 58]. The 

factor refers to some students who ―accidentally‖ give a correct response pattern (in the post-

test). Even so, both groups have also experienced negative changes, implying that the 

intervention is specifically responded by students on account of the carelessness factor or a 

misconception-comprising response pattern [56, 58, 77]. Regarding this, not all learning 

objectives of the hydrolysis concept match the approach of POGIL in the SSI context. 

Negative changes of the students are because they are not epistemologically involved in the 

learning process, particularly in the observing, measuring, and calculating stages. These 

activities are interrelated up to group discussions as part of the stages of conceptual formation 

based on empirical facts [78]. Students are expected to explain and link the concepts they 

have learned following their epistemological reasoning [16, 79].  

 Furthermore, the interpretation of changes due to pedagogical interventions is 

exemplified by four students (Table 8) in item 5.  In the pre-test, the ability of student E18 

(logit .76), student E75 (logit .58), student C225 (logit .36), and student C247 (logit .96) is 

greater. They also respond to item 5 (-.25 logit) accurately. However, in the post-test item 5, 

the response of student E18, E75, C225, and C247 is incorrect due to their decreased post-test 

abilities. Therefore, the pre- and post-test mean difference is lower than item 5. Why do these 

changes occur? Such changes are exemplified by the response pattern of student E18 in item 

5.  This item measures students’ ability in determining the reaction of NaOCl reaction: 

                  
 , with the estimated pH = 7 and is alkaline. The question (Q1) 

of this item is, ―is it correct that NaOCl is alkaline?‖. E18 answers ―correct‖ in the pre-test, 

yet responds to ―incorrect‖ in the post-test. The question (Q2) of this item is ―what is your 

consideration for your answer in the Q1?‖. Four options are provided: (a) because NaOCl is 



formed of strong acids and weak bases; (b) because NaOCl is formed of weak acids and 

strong bases; (c) because NaOCl is formed of weak acids and weak bases; (d) because NaOCl 

is formed of strong acids and strong bases. In the pre-test, E18 chooses the correct answer (b), 

yet selects the incorrect answer (a) in the post-test that comprises misconception. Next, in the 

Q3 of this item, E18 chooses ―very sure‖ in the pre-test and ―not sure‖ in the post-test.  The 

item 5 response pattern of E18 becomes CCC (category of scientific knowledge - SK) in the 

pre-test and IIU (category of lack of knowledge - LOK) in the post-test. Accordingly, the 

response pattern changes from CCC to IIU. The pre- and post-test mean difference of E18 

(logit -.72) lower than item 5 (-.25) signifies that the error of response pattern results from 

misconception. This also applies to the response pattern of E75 (logit -.35), C225 (logit -.45), 

and C247 (logit -.87).  

 The misconception refers to the inability to identify the NaOCl salt hydrolysis that is 

formed of weak acids and strong bases. In short, the four students tend to not understand the 

concept of acid and base and acid-base reaction. These findings strengthen several previous 

studies [51, 53,54, 80]. A study on the understanding of the acid-base concept of senior high 

school students in Malaysia concludes that some students have little understanding of the 

function of detergents as the cleaning agent, the difference between strong acids and strong 

bases, and the treatment for soil acidity using fertilizers [53]. In the same tune, such little 

understanding is because they do not conceptualize acid-base strength as a property that arises 

from the interaction of many reaction factors [51]. Additionally, research on an alternative 

conception of salt hydrolysis among senior high school students contends that the concept of 

hydrolysis is challenging for the students [54]. They are usually able to state the acidity of a 

salt solution correctly, yet writing a chemical equation to explain such a phenomenon is a 

great challenge. Most of the alternative conceptions are identifiable, rooted in the 

misunderstanding of equilibrium process, acid and base, material structure and other basic 



problems, student tendency to use a wrong analogy, and the lack of laboratory practice. 

 This research findings and elaboration of negative changes (case E18) prove the 

advantages of the Rasch model, specifically its potential in linking the result of changes (pre- 

and post-test), the item difficulty level, and the content being measured [18]. Such 

information solely comes from the Rasch model-based stacking and racking analysis 

techniques. The stacking technique provides information regarding ―who has changed‖; in 

contrast, the racking technique offers information of ―what has changed‖ [56, 58], allowing 

the researchers to spell out the effect of the applied pedagogical innovation [18, 33, 34]. 

Although the instrument measurement result of this work is not data-rich, the analysis 

strength of the Rasch model can describe in detail the conceptual changes, both in the 

students’ ability and item difficulty levels. 

Limitations and Further Studies 

 The primary limitation of this research is that it did not take into account the aspects 

of learning style, culture, and motivation that can change due to learning interventions. Future 

studies, therefore, can address these aspects. The present study can be continued by 

considering the context of a problem that closely connects with the parameter of item 

difficulty level. The analysis will be more interesting if it can prove that different item 

difficulty levels are influenced by problem contexts in each item [81]. Further studies are also 

expected to find an analysis technique that can integrate problem contexts, item 

characteristics, and item difficulty levels in a measurement model. It is assumed that different 

problem contexts in each item will be more likely to affect measurement results because 

problem contexts have conceptual linkage with items and student activities in doing 

experiments, measuring, interpreting data/graphs, and others. Thus, the linkages between the 

learning process during the intervention and conceptual changes in students’ ability and item 



difficulty levels can be explained in detail;  which part of the process leads the students to 

change their understanding related to specific ideas taught to them.  
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Appendix 1. Standardized Residual Variance in Eigen value Units. 

     Table of STANDARDIZED RESIDUAL variance in Eigenvalue units = Item 
information units 
                                           Eigenvalue   Observed   Expected 
Total raw variance in observations     =      22.7067 100.0%         100.0% 
  Raw variance explained by measures   =       7.7067  33.9%          35.9% 
    Raw variance explained by persons  =       2.7733  12.2%          12.9% 
    Raw Variance explained by items    =       4.9334  21.7%          23.0% 
  Raw unexplained variance (total)     =      15.0000  66.1% 100.0%   64.1% 
    Unexplned variance in 1st contrast =       2.0698   9.1%  13.8% 
    Unexplned variance in 2nd contrast =       1.5312   6.7%  10.2% 
    Unexplned variance in 3rd contrast =       1.3696   6.0%   9.1% 
    Unexplned variance in 4th contrast =       1.3124   5.8%   8.7% 
    Unexplned variance in 5th contrast =       1.1945   5.3%   8.0% 

 

 

 

Appendix 2. Summary of Category Structure.   

SUMMARY OF CATEGORY STRUCTURE.  Model="R" 
--------------------------------------------------------------------- 
|CATEGORY     OBSERVED|OBSVD SAMPLE|INFIT OUTFIT|| ANDRICH |CATEGORY| 
|LABEL   SCORE COUNT %|AVRGE EXPECT|  MNSQ  MNSQ||THRESHOLD| MEASURE| 
|---------------------+------------+------------++---------+--------| 
|    1   1     317   6|  -.18  -.20|  1.06  1.08||  NONE   |( -1.73)| 1 
|    2   2     190   3|   .10   .09|  1.03  1.18||     .46 |   -.77 | 2 
|    3   3     963  17|   .33   .31|  1.02   .93||   -1.43 |   -.22 | 3 
|    4   4     542  10|   .56   .52|  1.02   .97||     .98 |    .21 | 4 
|    5   5    1262  22|   .62   .73|  1.27   .99||    -.22 |    .74 | 5 
|    6   6    2425  43|  1.02   .98|   .97  1.04||     .20 |(  1.76)| 6 
|---------------------+------------+------------++---------+--------| 
| MISSING        1   0|  -.30      |            ||         |        | 
--------------------------------------------------------------------- 
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OBSERVED AVERAGE is mean of measures in category. It is not a parameter estimate. 
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A B S T R A C T

This research aimed to employ stacking and racking analysis techniques in the Rasch model to measure the hy-
drolysis conceptual changes of students taught by the process-oriented guided inquiry learning (POGIL) model in
the context of socio-scientific issues (SSI) with the pretest-posttest control group design. Such techniques were
based on a person- and item-centered statistic to determine how students and items changed during interven-
tions. Eleventh-grade students in one of the top-ranked senior high schools in the eastern part of Indonesia were
involved as the participants. They provided written responses (pre- and post-test) to 15 three-tier multiple-choice
items. Their responses were assessed through a rubric that combines diagnostic measurement and certainty of re-
sponse index. Moreover, the data were analyzed following the Rasch Partial Credit Model, using the WINSTEPS
4.5.5 software. The results suggested that students in the experimental group taught by the POGIL approach in
the SSI context had better positive conceptual changes than those in the control class learning with a conven-
tional approach. Along with the intervention effect, in certain cases, it was found that positive conceptual
changes were possibly due to student guessing, which happened to be correct (lucky guess), and cheating. In
other cases, students who experienced negative conceptual changes may respond incorrectly due to carelessness,
the boredom of problem-solving, or misconception. Such findings have also proven that some students tend to
give specific responses after the intervention in certain items, indicating that not all students fit the intervention.
Besides, stacking and racking analyses are highly significant in detailing every change in students’ abilities, item
difficulty levels, and learning progress.

1. Introduction

Central to defining the quality of pedagogical innovation in science
classes is conceptual changes. The changes refer to how ideas or con-
ceptions the students understand according to their ways of thinking [1,
2] become scientifically accurate [3]. It is because such ideas generally
comprise misconceptions [4, 5, 6, 7], are not in accordance with scien-
tific concepts [8, 9], tend to be resistant [10], changeable and varied
[11], so that they should be improved if the correct conceptual under-
standing is to be taught [12, 13].

Some studies have been conducted on learning innovation testing to
form an accurate and scientific conceptual understanding of the stu-
dents, e.g., inquiry-based learning. This model presents conceptual con-
flicts and participatory experiments to facilitate conceptual changes
[14, 15, 16]. Conceptual understanding-based learning involves various
strategies in identifying and analyzing students' comprehension so that

the investigation process can be designed to lead them to a more accu-
rate and scientific conception [16, 17]. This research relied on a quasi-
experimental design that assessed students’ pre-test and post-test, eval-
uated the changes in performances for testing significant differences.
This type of testing informs the researcher about the presence of an ef-
fect, but does not provide detailed information on the level and trait of
the changes [18]. What if the researcher is willing to compare the ex-
tent to which the pre- and post-test change (differences in learning out-
comes) and interpret the changes (the reasoning why those changes oc-
cur) in terms of content? This is a core question regarding the changes
in some latent traits or changes in traits measured after the interven-
tion. In most studies, interpreting the changes in pre-test and post-test
tends to be limited to identifying whether or not an effect prevails.

Pre- and post-test changes should be given in detail regarding the
students’ understanding ability and item difficulty levels. However, this
has not been much revealed due to the limitations of its measurement
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techniques and analyses and has not been the main focus in chemistry
education research to date. One reason for this issue is the debate in the
psychometric community regarding the ability to measure changes ac-
curately [18]. This debate questions the use of raw scores in the con-
ventional psychometric analysis, which largely contains measurement
biases [19], as follows: 1) the difference in pre- and post-test scores will
be negatively correlated with the pre-test score, especially for students
with low pre-test scores [18,20]; 2) the difference in pre- and post-test
scores shows low test reliability [21]; 3) low measurement properties
due to different scales [22].

Raw scores are not final data, so that they do not have a great deal of
information for drawing conclusions [23, 24]. Around the 1950s, Dr.
Georg Rasch, a mathematician from Denmark, introduced the formula-
tion of the Rasch measurement model [24]. The model has been widely
applied to analyze various types of data, e.g., dichotomous, polyto-
mous, multi-rating, and multi-rater data. In the mid-2000s, the Rasch
model was used as a probabilistic-based psychometric measurement
that went beyond the use of raw scores [25, 26], and was used to over-
come the limitations of conventional psychometric measurement [19,
27]. Its analyses, including item fit, PCA (Principal Component Analy-
sis), and Wright map, are commonly used for international test analy-
ses, namely TIMSS and PISA [28].

In chemistry education research, the Rasch model has been relied on
to evaluate learning understanding and progress [29], to diagnose stu-
dents' preconceptions [1], misconceptions [13, 30, 31, 32], link the
measurement of content knowledge with pedagogical content knowl-
edge [33], and investigate item difficulty patterns [13, 34]. Even so,
studies on the Rasch model to reveal the chemistry conceptual changes
in students’ understanding and item difficulty levels are relatively hard
to find as of today. The present study aims to employ stacking and rack-
ing analysis techniques in the Rasch model to measure the hydrolysis
conceptual changes of students taught by the POGIL approach in the
context of SSI and students who learn conventionally. Such techniques
are based on a person- and item-centered statistic to estimate how stu-
dents and items change during the intervention.

POGIL is a student-centered learning strategy that teaches content
or process skills. The philosophical foundation of POGIL is the involve-
ment of an interactive process of careful thinking, discussing ideas, per-
fecting understanding, practicing skills, reflecting progress, and evalu-
ating performances [35]. POGIL is able to lead the process of designing
a participatory experiment that presents a conceptual conflict as a strat-
egy to encourage students to form an accurate concept [14]. Therefore,
POGIL intervention is more likely to be potential in driving epistemo-
logical understanding and reasoning [36], making students have oppor-
tunities to change their conceptions to be more accurate and scientific
[16]. Nevertheless, it is also worth noting that some students poten-
tially have misconceptions resistant to changes [3].

SSI functions as a learning context through the integration of social
problems that students are familiar with. It also has a conceptual con-
nection with salt hydrolysis [37, 38], and its resolution requires many
perspectives [39], including the dimension of moral and ethical evalua-
tion of students [40]. The SSI context is a socio-scientific phenomenon
that the students should explain based on their conceptual viewpoints.
It encourages them to actively get involved in grasping problems [41],
developing and utilizing their knowledge [42], improving their critical
thinking [43], and being able to scientifically describe the discussed so-
cio-scientific phenomenon [36, 44, 45]. For such reasons, the integra-
tion of SSI can build up students' scientific literacy [39, 46, 47]. In the
end, this integration enables the learning process to be more significant
in enhancing students’ understanding [45, 48]. Besides, they are skilled
in negotiating the social aspect of the studied phenomenon [49, 50].
For instance, the issues of global warming, climate change, and pollu-
tion [36].

Salt hydrolysis is a learning topic in high school that is strongly re-
lated to SSI. Students with a good understanding of hydrolysis will

manage to clarify scientifically why detergents, bleaching agents
(NaOCl), and fertilizers can pollute the environment. Despite this, the
linkage of this issue as the problem in learning hydrolysis is rarely car-
ried out. The learning process is more emphasized on mastering theo-
retical concepts [36]. As a consequence, students find it challenging to
use their hydrolysis understanding to explain socio-scientific phenom-
ena around them [37]. This challenge is on account of their misconcep-
tions regarding acid-base reaction [51], making them unable to elabo-
rate the concept of salt hydrolysis [52] and determine acid and base
strength [53]. In addition, they are struggling with correctly explaining
the dissolving process and the reaction of ionic compounds with water,
writing down chemical equations, and having different interpretations
of the dissolving process mentioned earlier [54]. On this ground, it is
essential to reveal how the hydrolysis concept changes if intervened
with the POGIL approach in the SSI context, through the following spe-
cific questions: (1) is there a significant hydrolysis conceptual change of
the students after the learning process in experimental and control
groups? (2) if compared, how is the hydrolysis conceptual change
through the intervention of POGIL in the SSI context and conventional
learning? (3) in addition to intervention, is there any other factor that
also contributes to the students' hydrolysis conceptual changes?

2. Method of study

This study relied on a quantitative approach with a quasi-
experimental and pretest-posttest control group design [55] by compar-
ing the extent to which the hydrolysis concept changes after the inter-
vention. Researchers carried out the learning process for 12 meetings,
gave tests, and collected data on the results of the intervention and
measurement.

The changes of students and items were analyzed using the stacking
and racking techniques in the Rasch model [56]. As standard tech-
niques, racking and stacking were introduced by Benjamin Wright to
measure the extent to which conceptual understanding of students and
items change before and after interventions [57]. The referred changes
are cases (item and student levels) caused by the learning intervention
and can be diagnosed based on the estimated changes.

In regards to students' understanding, the measurement was to iden-
tify students who had specific hydrolysis conceptual changes in re-
sponding to the learning intervention. In terms of items, the measure-
ment was done to identify which items had special characteristics and
been understood by students differently during the learning interven-
tion [57]. Thus, the scientific inquiry approach might not be suitable
for some students, or some items might be too hard after the interven-
tion. This insightful information is immensely helpful for researchers
and education practitioners, especially in evaluating the weaknesses of
pedagogical innovations being applied and devising learning strategies
that meet students’ needs in learning [58].

2.1. Participants

Eleventh-grade students aged 16–17 years in one of the senior high
schools in the eastern part of Indonesia were involved as the sample.
This top-ranked school gets an “A” accreditation (excellent) from the
National Accreditation Board for High School. The sample was deter-
mined by convenience sampling in six randomly assigned classes. Three
classes (N = 97) were experimental groups that applied the POGIL
model in the SSI context. The other three classes (N = 93), as control
groups, applied conventional learning without the SSI context. The
same teacher taught these classes following the Curriculum 2013 of
Chemistry Subject (revised in 2016). There was no special classroom for
learning the concept of hydrolysis, i.e., taking up the regular learning
process at school. Before learning the hydrolysis concept, the students
had previously learned the concept of acid and base to understand the
concept of salt hydrolysis way better. Research permission was ob-
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tained from the government and school administrators. In accordance
with principles of research ethics, research purpose and procedures
were informed to all the students being involved and that they were
voluntarily participating. Additionally, their information is confidential
and only used for science development [59].

2.2. Learning implementation

Students in the experimental group studied employing the process-
oriented guided inquiry learning (POGIL) in the SSI context [35]. Mean-
while, in the control class, the learning process was performed conven-
tionally; the teacher facilitated learning initiatives. The learning
process focused more on content mastery and problem-solving practice.
Applying the POGIL model in the SSI context highlights teacher assis-
tance to guide the students to prepare their conceptual understanding
based on epistemological reasoning they get from experiments, discus-
sions, and collaborations [49, 60]. Researchers carried out the learning
process for eight weeks to apply the intervention to the sample, gave
tests, collected data on the results of the intervention and measurement.
The first three weeks were the preparation stages when researchers and
the teacher shared perceptions, and asked the teacher to perform a
learning simulation under the scenario, including different assistance
techniques in leading the students to conduct experiments, and to ask
analytical questions. The pre-test was carried out in the third week. Fur-
ther, the learning implementation was done for four weeks, and the
post-test was executed in the eighth week.

The learning stages with POGIL in the SSI context consist of orienta-
tion, exploration, concept formation, application, and closing. During
the orientation stage, the teacher presented familiar contextual phe-
nomena related to the concept of hydrolysis. The teacher asked initial
questions to provoke curiosity and arouse motivation and interest of the
students. While watching the video, had the students responded and ex-
plained the relationship between the phenomena and acids and bases,
hydrolysis, and buffers. In the exploration stage, the teacher developed
analytical questions with data, images, and multiple video clips to give
perspectives on learning objectives and to delve into the concept that
had been and would be learned. Next, the teacher assisted the students
in doing experiments guided by a worksheet, and at the same time,
asked analytical questions to lead them and strengthen their conceptual
understanding. In the concept formation stage, the teacher asked stu-
dents to build their conceptual understanding based on the exploration
results, accompanied by critical and fundamental questions to guide
students in building a conceptual understanding of the salt hydrolysis
and buffer solution.

Following the formation stage was the application stage when the
teacher presented contextual problems in the SSI context, particularly
those comprising social problems in society, that closely linked with the
understanding of salt hydrolysis and buffer solution concepts. Such
problems included 1) the use of bleaching agents (detergents), 2) the
functions of alum KAl(SO₄)₂·12H₂O for water purification, 3) the harm-
ful effects of detergent waste, 4) the beneficial and harmful effects of ar-
tificial fertilizer (NH4)2SO4 for soil fertility, and 5) the harmful effects
of monosodium glutamate (MSG) for health. In this stage, the teacher
guided the students through collaborative discussions and critical ques-
tions, intending to give them perspectives on SSI phenomena and en-
courage them to collect information and do experiments following stu-
dent activity sheets. Thereupon, the students had presentation and dis-
cussion sessions, during which they reported their experiment results
and drew conclusions [61, 62]. The teacher asked them to describe the
possible problems and solutions from their understanding of the studied
concepts. This enabled the students to form their conceptual under-
standing that is closely related to contexts; the learning process was
from contextual to abstract [37, 63]. From such a condition, the teacher
led the students to apply their knowledge in different contexts and situ-
ations and solve problems. The final stage was closing or teacher assis-

tance in guiding the students to explain the conclusion and reflection on
the learning process as the end of the learning activities.

2.3. Instrument

Table 1 displays 15 items of diagnostic three-tier multiple choice
test to measure students’ hydrolysis conceptual understanding. The
test was constructed following the Competence Standard of 2013
Chemistry Curriculum of Senior High School under Regulation of the
Minister of Education and Culture of the Republic of Indonesia Num-
ber 37 of 2018. The procedures of developing the instrument fol-
lowed the recommendation by [64, 65, 66].

Each item was designed in three questions (Q1, Q2, Q3) that inte-
grated diagnostic [68, 69] and summative measurements [10] and cer-

Table 1
Conceptual map of hydrolysis concept understanding [67].
Problem Context Item Conceptual Understanding Ability Level

Bleaching agents are formed
of weak acid HOCl and
strong base NaOH.
Sodium hypochlorite salt
(NaOCl) is reactive and
dissolves the dye. In the
water, the ion will
be hydrolyzed to HOCl
and -

1 Balancing the salt (NaOCl)
hydrolysis reaction in the
water

2 Level 3:
Students
are able to
calculate
the pH of
the
hydrolyzed
salt
solution.
Level 2:
Students
are able to
determine
the
hydrolysis
reaction
from
different
types of
salt
Level 1:
Students
are able to
analyze
the
properties
of the
hydrolyzed
salt

2 Stating the partial hydrolysis
reaction:

2

3 Determining corrosive alkali
of sodium hypochlorite salt
(NaOCl)

1

4 Calculating the pH of
hydrolysis of sodium
hypochlorite salt (NaOCl)
with NaOCl = 0.1 M; Ka =
10−5)

3

5 Determining the property of
NaOCl, in the reaction:

2

6 Calculating the pH of sodium
hypochlorite salt (NaOCl)
that comes from a mixture of
HOCl and NaOH (partially
hydrolyzed), if the Ka HOCl
is 10−5 and there is an
increase in the pH of the
solution mixture.

3

Water purification with
alum KAl(SO₄)₂·12H₂O is
the concept of salt
hydrolysis, formed of
H2SO4 and Al(OH)3.

7 Determining aluminum salt
(Al2(SO4)3) properties in the
water

1

8 Determining aluminum salt
(Al2(SO4)3) properties in the
water that is partially
hydrolyzed by the Al3+ ion

1

The sodium
tripolyphosphate (STPP)
in detergents can pollute
the environment, a
eutrophication process.

9 Determining the properties of
detergent solution causing
eutrophication

1

10 Determining the properties of
detergent solution (sodium
tripolyphosphate salt) that is
partially hydrolyzed

1

11 Determining the impact of
the disposal of detergent
waste on the environment

2

ZA fertilizer (NH4)2SO4 is an
acidic salt.

12 Determining the properties of
ammonium sulfate salt
(NH4)2SO4

1

13 Stating the equation of
(NH4)2SO4 reaction in the
water, partially hydrolyzed

2

Monosodium glutamate
(C5H8NO4Na) is L-
glutamic acid salt,
adversely impactful on
human health

14 Students' attitude towards
the use of monosodium
glutamate (C5H8NO4Na)

2

15 Determining the properties of
monosodium glutamate salt
(C5H8NO4Na)

1

3
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tainty of response index (CRI) [70, 71]. Students' responses to items
(Q1, Q2, Q3) were evaluated based on the rubric (Table 2). For exam-
ple, students' responses to items were as follows: Q1, Q2 “correct”, and
Q3 “very sure” under the code CCC. Such a code indicated that students'
conceptual understanding was in level 6, category of Scientific Knowl-
edge (SK). On the other hand, if the response patterns in Q1, Q2 “incor-
rect” and Q3 “not sure”, the code would be IIU, implying that students'
conceptual understanding was in the category of Lack of Knowledge
(LOK), or level 1. This instrument had been validated from the aspects
of item conformity with the construct variable and language. The valid-
ity results by three experts were stated under Fleiss’ kappa (K = .96),
meaning that the experts agreed that the item validity was categorized
good.

2.4. Data collection and analysis

Before the intervention, this research underwent pre-test data col-
lection; whereas, the post-test data collection was done after the inter-
vention. The construction of pre- and post-test items was the same. Stu-
dents wrote down their responses on the provided answer sheet. Both
tests were supervised by teachers in the school. The students must work
on all items according to the allocated time (45 min). The instrument
was immediately collected and should have the same number as the to-
tal participants.

The pre- and post-test measurement data were still ordinal data. The
Rasch Partial Credit Model with WINSTEPS 4.5.5 software [27, 73] was
used to convert ordinal data into interval data to have the same logit
scale. The result was a data calibration of the levels of student's ability
and item difficulty in the same interval.

The stacking analysis technique put pre-test and post-test data verti-
cally [74]; meanwhile, the items appeared once in the experimental
and control groups, allowing the researchers to check out any changes
of the students after the intervention [56]. The examination was based
on the same item, making the changes in students’ ability during the
pre- and post-test be measured [56]. Hence, each student created two
measures of abilities, namely pre-test and post-test, and one measure
for each item. The research hypothesis is that the students' conceptual
understanding from pre-test to post-test changes, both in the experi-
mental and control groups.

Conversely, the racking analysis technique put both pre- and post-
test data horizontally, in which each item appeared twice in data collec-
tion, and students' ability only emerged once. This enabled the re-
searchers to check out the effects of learning implementation on each

Table 2
All possibilities of responses [70, 71, 72].
(Q1) (Q2) (Q3) Code Conceptual Understanding Category Level

Correct Correct Certain CCC Scientific Knowledge (SK) 6
Correct Incorrect Certain CIC Misconception False Positive (MFP) 5
Incorrect Correct Certain ICC Misconception False Negative (MFN) 4
Incorrect Incorrect Certain IIC All-Misconception (ALM) 3
Correct Correct Uncertain CCU Lack of Confidence/Lucky Guess.

(LG)
2

Correct Incorrect Uncertain CIU Lack of Knowledge (LOK) 1
Incorrect Correct Uncertain ICU Lack of Knowledge (LOK) 1
Incorrect Incorrect Uncertain IIU Lack of Knowledge (LOK) 1

student's ability from the tests, especially the changes in item difficulty
levels before and after the intervention [56].

3. Results

3.1. Rasch analysis properties of instrument

The summary of changes in concepts and items analyzed by the
Rasch model is presented in Table 1. Table 2 provides the item fit statis-
tic. An item is considered to experience a misfit if the measurement re-
sult is not in line with the following three criteria: Outfit mean-square
residual (MNSQ): .5 < y < 1.5; Outfit standardized mean-square resid-
ual (ZSTD): -2 < Z < +2; and point measure correlation (PTMEA
CORR): .4 < x < .8 [25]. All items comply with the Outfit MNSQ crite-
rion; item 15 does not meet the Outfit MNSQ criterion; five items (item
1, 6, 12, 13, and 15) are not in accordance with the Outfit (ZSTD) crite-
rion; all items meet the PTMEA CORR criterion. Simply put, all items
fulfill those criteria mentioned previously (none having a misfit), and
are fit and valid.

This instrument has a good unidimensionality (Appendix 1). Raw
variant index arrives at above the standard of 20% (33.9%), indicating
that the instrument can effectively measure students' understanding of
the hydrolysis concept [75]. The assessment scale analysis (Appendix 2)
informs that the observation mean starts from logit -1.73 for category 1
(LOK) to logit +1.76 (category 6, SK). This signifies that the category of
students’ understanding takes place consistently [27]. In addition, the
high item separation index (logit 6.71) and the high item reliability
(logit .98) (Table 3) indicate that the respondents (students) are suffi-
cient to confirm the level of item difficulty, strengthening the instru-
ment construct validity [27]. The higher the item separation and relia-
bility index, the more confident the researchers are about replicating
item placement in other suitable sample students [25, 27]. Person sepa-
ration index and person reliability that reach logit 2.0 and logit .75
(Table 4), respectively, imply that the instrument is quite sensitive to
differentiate the high and low abilities of the students [25, 27]. Accord-
ing to the Rasch model calculation, the coefficient of Cronbach Alpha of
logit .81 (Table 4) reflects an interaction between 380 students and 15
items with an excellent category [24, 76]. In other words, the interac-
tion between students and items is very significant. The instrument has

Table 3
Item statistics: Misfit order.
Item Difficult Error Outfit MNSQ Outfit ZSTD PTMEA CORR.

1 -.38 .05 1.36 2.87 .47
2 .20 .04 1.13 1.56 .49
3 -.36 .05 .91 -.79 .43
4 .33 .04 1.09 .77 .55
5 -.25 .05 .94 -.55 .56
6 .26 .04 1.20 2.44 .41
7 .15 .04 .91 -1.17 .54
8 .47 .04 .90 -1.45 .44
9 -.47 .05 1.19 1.49 .46
10 .08 .04 1.09 1.04 .55
11 -.34 .05 1.04 .42 .51
12 -.06 .04 .71 -3.50 .60
13 .46 .04 .74 -4.12 .55
14 -.36 .05 1.00 .77 .55
15 .26 .04 1.31 3.74 .47

Table 4
Person separation and reliability statistics.
Parameter Measure SD Separation Reliability INFIT OUTFIT KR-20

MNSQ ZSTD MNSQ ZSTD

Person (N = 380) .67 .52 1.72 .75 1.00 .04 1.02 .10 .81
Item (N = 15) .00 .32 6.71 .98 1.07 .41 1.02 -.01
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an excellent internal psychometric consistency and is considered very
reliable.

3.2. The difference in students’ understanding ability of hydrolysis concept

The result of the Mann-Whitney test (Table 5) brings out the fact
that statistically, there is a significant difference in the results of pre-
test (U = 3459.000), p < 0.05) and post-test (U = 1723.000, p <
0.05) among students in experimental and control groups. Further, the
Wilcoxon test result (Table 6) shows that the results of pre-test and
post-test of students in the experimental group (Z = -8.076) and the
control group (Z = -6.690) at the significant level (p) < 0.05 are signif-
icantly different. This suggests that students’ understanding of the hy-
drolysis concept after the intervention (post-test) is higher than before
the intervention (pre-test), both in experimental and control groups.
However, the abilities of students in the experimental group are better

Table 5
The result of the Mann-Whitney U test based on Students’ Pre-Test and Post-
Test Abilities in Experimental and Control Groups (p < 0.05).
Test Experimental Group (N =

97)
Control Group (N =
93)

U p

Pre-test 0.5026 (-0.57–1.26)a 0.3029 (-1.61–1.03)a 3459.000 0.005
Post-

test
1.1722 (-0.09–3.00)a 0.7052 (-1.06–1.47)a 1723.000 0.000

Table 6
The result of the Wilcoxon test of Students’ Pre-Test and Post-Test in Experi-
mental and Control Groups (p < 0.05).
Group Pre-test Post-test Z p*

Experimental 0.5026 (-0.57–1.26)a 1.1722 (-0.09–3.00)a -8.076 0.000
Control 0.3029 (-1.61–1.03)a 0.7052 (-1.06–1.47)a -6.690 0.000

Table 7
Logit of mean of pre- and post-test items of experimental and control groups.
Group Student Item Mean/SE (logit)

Pre-test Post-test Pre- and Post-test Difference

Experimental 97 15 .51/(.21) 1.50/(.32) .99
Control 93 15 .26/(.20) .87/(.24) .61

Description: SE = Standard Error.

than those in the control group. Accordingly, the learning process with
the POGIL in the SSI context is better than the conventional learning.

3.3. The changes in students’ understanding ability of the hydrolysis
concept

From the different changes in pre- and post-test (Table 7), students
in the experimental and control groups have improved their under-
standing of the hydrolysis concept. The experimental group's mean of
pre-test and post-test is logit .51 (S.E = logit .21) and logit 1.50 (S.E =
logit .32), respectively, with the mean difference of both tests is (logit
.99). In contrast, the mean of pre-test and post-test of the control group
gets logit .26 (S.E = logit .20) and logit .87 (S.E = logit .26), respec-
tively, with the mean difference of pre- and post-test is logit .61. Such
differences indicate different effects of interventions in the experimen-
tal and control group.

If the pre-test and post-test results of the experimental group are
plotted in pairs (Figure 1), so that the mean difference in the sample
pre- and post-test (logit +.99) is displayed as an intercept on the hori-
zontal axis with the plotted slope = 1, several facts obtained: First, two
lines that form the upper and lower curves separate 66 students around
the empirical plot line, in which the pre-test and post-test mean is not
significantly different from the mean difference in the pre- and post-test
in the experimental group. Second, above the curve, 23 students experi-
ence significant changes; the mean of pre- and post-test is greater than
the mean difference in sample pre-test and post-test. Third, seven stu-
dents do not change, and ten students have negative changes (under the
curve), so that they are under the curve. Similarly, the results of pre-
and post-test of the control group (Figure 2) show that 53 students are
around the empirical plot line; the abilities of 25 students change signif-
icantly (greater than the mean of sample pre- and post-test (logit +.61);
two students do not change; 13 students experience negative changes in
abilities. The difference in the plotting of pre-test and post-test results
signifies different effects of interventions in the experimental and con-
trol groups.

3.4. The changes in item difficulty level

Table 8 presents the results of the racking analysis in connection
with the changes in item difficulty level in the pre- and post-test of
experimental and control groups. It is shown that in terms of item dif-
ficulty level, the mean of pre-test of the experimental group is (logit
.32), the mean of post-test is (logit -.34), and the mean difference of
the pre- and post-test is (logit -.66). Moreover, the mean of pre-test of

Figure 1. Scatter plots of person measures in pre- and post-test of the experimental group.
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Figure 2. Scatter plots of person measures in pre- and post-test of the control group.

Table 8
Data of item measures of pre- and post-test of experimental and control
groups.
Item Experimental (Mean) Control (Mean)

Pre-
test

Post-
test

Difference
Pre- and Post-
test

Pre-
test

Post-
test

Difference
Pre- and Post-test

Item1 .16 -1.00 -1.16 -.06 -.76 -.7
Item2 .80 .01 -.79 .39 -.40 -.79
Item3 .20 -.63 -.43 -.15 -.83 -.68
Item4 .62 .25 -.37 .54 .02 -.52
Item5 .14 -.78 -.92 .10 -.49 -.59
Item6 .26 .22 -.04 .41 .30 -.11
Item7 .66 -.33 -.99 .33 -.06 -.39
Item8 .59 .45 -.14 .49 .47 -.02
Item9 -.04 -.85 -.81 -.08 -.93 -.85
Item10 .40 -.26 -.66 .32 -.01 -.33
Item11 .13 -.91 -1.04 .05 -.78 -.83
Item12 .33 -.23 -.56 .25 -.51 -.76
Item13 .77 .16 -.61 .64 .33 -.31
Item14 -.10 -.80 -.7 .15 -.83 -.98
Item15 .25 -.40 -.65 .39 .72 .33
Mean .32 -.34 -.66 .25 -.25 -.50

the control group is (logit .25), the mean of post-test is (logit -.25),
and the mean difference of the pre- and post-test is (logit -.50). This
research also finds out that seven items have significant changes in
the item difficulty level in the experimental group, lower than the
pre- and post-test mean difference of (logit -.66), namely item 1, 2, 5,
7, 9, and 11. Eight items with a difficulty level greater than the mean
are item 3, 4, 6, 8, 12, 13, 14, and 15. Item 10 has the same difficulty
level as the mean. In the control group, eight items change signifi-
cantly or less than the pre- and post-test mean difference of (logit
-.50), including item 2, 3, 4, 5, 9, 11, 12, and 14; five items (item 1,
6, 7, 8, 10, 13) are greater than the mean; one item (item 15) has neg-
ative changes or becomes more difficult. The most difficult item in the
experimental group is item 1 (.80 logit) and the easiest one is item 14
(logit -.10). Meanwhile, the most difficult item in the control group is
item 13 (logit .64), and item 3 (logit -.15) is the easiest one. These
findings indicate differences in the item difficulty level changes be-
tween students taught by the POGIL in the SSI context and the con-
ventional model.

3.5. Conceptual changes in students’ ability and item difficulty levels

Apart from the effect of learning interventions, there are three other
factors that tend to influence the changes in students' ability and item
difficulty levels, as follows: 1) guessing which happened to be correct or
(lucky guess), 2) cheating, 3) carelessness. These factors can be identi-
fied from the student's item response pattern using a scalogram. For in-
stance, the response pattern of post-test item 7 for student 353, 375,
and 170 (Table 9). These three students, in the seventh and eighth row
from the left, cannot understand item 12 (logit -.06) and item 10 (logit
.08). Meanwhile, they can correctly explain the more difficult item, i.e.,
item 7 (logit .15). This situation implies a lucky guess, which in fact,
these students have higher post-test abilities than the item 7 logit. Next
is a cheating indication in the response pattern of student 128, 129,
134, 137, and 146. Such an indication is initially detected from the
same post-test mean (logit 1.61) and item response pattern. The last one
is carelessness, e.g., student 110, 118, and 139 are considered to be
careless as they cannot correctly explain the easy item 4 (logit .33), yet
can accurately understand item 13 (logit .46), which is harder than
item 4. Moreover, they get very high post-test abilities.

3.6. Negative changes

Negative changes in conceptual understanding are detected from
the changes in students’ post-test logit less than the pre-test logit. For
example, two students from the experimental group (E18 and E75) and
the control group (C225 and C247) are taken; they have negative
changes (Table 10). This means that these four students experience de-
creased abilities after the intervention. The pre-test item mean and the
post-item mean of student E18 are (logit .76) and (logit .04), sequen-
tially, with the mean difference of pre- and post-test arriving at (logit
-.72). Moreover, the pre- and post-test item standard errors of student
E18 are (logit .22) and (logit .18), respectively, with the combined stan-
dard error of logit .40. On account of the higher combined standard er-
ror than the pre- and post-test measures, the ability of student E18 in
both tests is not significantly different. This also applied to student E75,
C225, and C247.

4. Discussion and conclusion

The findings show changes in students' understanding abilities of
the hydrolysis concept and items after the intervention. From the pre-
and post-test mean difference, the experimental group has better posi-
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Table 9
Scalogram.

tive changes than the control group [58]. In addition to the effect of the
intervention, there is another factor contributing to the positive concep-
tual changes mentioned above, in terms of students’ ability and item
difficulty levels [24, 58]. The factor refers to some students who “acci-
dently” give a correct response pattern (in the post-test). Even so, both
groups have also experienced negative changes, implying that the inter-
vention is specifically responded by students on account of the careless-
ness factor or a misconception-comprising response pattern [56, 58,
77]. Regarding this, not all learning objectives of the hydrolysis concept
match the approach of POGIL in the SSI context. Negative changes of
the students are because they are not epistemologically involved in the
learning process, particularly in the observing, measuring, and calculat-
ing stages. These activities are interrelated up to group discussions as
part of the stages of conceptual formation based on empirical facts [78].
Students are expected to explain and link the concepts they have
learned following their epistemological reasoning [16, 79].

Furthermore, the interpretation of changes due to pedagogical inter-
ventions is exemplified by four students (Table 8) in item 5. In the pre-
test, the ability of student E18 (logit .76), student E75 (logit .58), stu-
dent C225 (logit .36), and student C247 (logit .96) is greater. They also
respond to item 5 (-.25 logit) accurately. However, in the post-test item
5, the response of student E18, E75, C225, and C247 is incorrect due to
their decreased post-test abilities. Therefore, the pre- and post-test
mean difference is lower than item 5. Why do these changes occur?
Such changes are exemplified by the response pattern of student E18 in
item 5. This item measures students’ ability in determining the reaction
of NaOCl reaction: , with the estimated pH
= 7 and is alkaline. The question (Q1) of this item is, “is it correct that

NaOCl is alkaline?“. E18 answers “correct” in the pre-test, yet responds
to “incorrect” in the post-test. The question (Q2) of this item is “what is
your consideration for your answer in the Q1?“. Four options are pro-
vided: (a) because NaOCl is formed of strong acids and weak bases; (b)
because NaOCl is formed of weak acids and strong bases; (c) because
NaOCl is formed of weak acids and weak bases; (d) because NaOCl is
formed of strong acids and strong bases. In the pre-test, E18 chooses the
correct answer (b), yet selects the incorrect answer (a) in the post-test
that comprises misconception. Next, in the Q3 of this item, E18 chooses
“very sure” in the pre-test and “not sure” in the post-test. The item 5 re-
sponse pattern of E18 becomes CCC (category of scientific knowledge -
SK) in the pre-test and IIU (category of lack of knowledge - LOK) in the
post-test. Accordingly, the response pattern changes from CCC to IIU.
The pre- and post-test mean difference of E18 (logit -.72) lower than
item 5 (-.25) signifies that the error of response pattern results from
misconception. This also applies to the response pattern of E75 (logit
-.35), C225 (logit -.45), and C247 (logit -.87).

The misconception refers to the inability to identify the NaOCl salt
hydrolysis that is formed of weak acids and strong bases. In short, the
four students tend to not understand the concept of acid and base and
acid-base reaction. These findings strengthen several previous studies
[51, 53, 54, 80]. A study on the understanding of the acid-base concept
of senior high school students in Malaysia concludes that some students
have little understanding of the function of detergents as the cleaning
agent, the difference between strong acids and strong bases, and the
treatment for soil acidity using fertilizers [53]. In the same tune, such
little understanding is because they do not conceptualize acid-base
strength as a property that arises from the interaction of many reaction
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Table 10
Scalogram results of student E18, E75, C225, and 247.

factors [51]. Additionally, research on an alternative conception of salt
hydrolysis among senior high school students contends that the concept
of hydrolysis is challenging for the students [54]. They are usually able
to state the acidity of a salt solution correctly, yet writing a chemical
equation to explain such a phenomenon is a great challenge. Most of the
alternative conceptions are identifiable, rooted in the misunderstand-
ing of equilibrium process, acid and base, material structure and other
basic problems, student tendency to use a wrong analogy, and the lack
of laboratory practice.

This research findings and elaboration of negative changes (case
E18) prove the advantages of the Rasch model, specifically its potential
in linking the result of changes (pre- and post-test), the item difficulty
level, and the content being measured [18]. Such information solely
comes from the Rasch model-based stacking and racking analysis tech-
niques. The stacking technique provides information regarding “who
has changed”; in contrast, the racking technique offers information of
“what has changed” [56, 58], allowing the researchers to spell out the
effect of the applied pedagogical innovation [18, 33, 34]. Although the
instrument measurement result of this work is not data-rich, the analy-
sis strength of the Rasch model can describe in detail the conceptual
changes, both in the students’ ability and item difficulty levels.

4.1. Limitations and further studies

The primary limitation of this research is that it did not take into ac-
count the aspects of learning style, culture, and motivation that can
change due to learning interventions. Future studies, therefore, can ad-
dress these aspects. The present study can be continued by considering
the context of a problem that closely connects with the parameter of
item difficulty level. The analysis will be more interesting if it can prove
that different item difficulty levels are influenced by problem contexts
in each item [81]. Further studies are also expected to find an analysis
technique that can integrate problem contexts, item characteristics, and
item difficulty levels in a measurement model. It is assumed that differ-
ent problem contexts in each item will be more likely to affect measure-
ment results because problem contexts have conceptual linkage with

items and student activities in doing experiments, measuring, interpret-
ing data/graphs, and others. Thus, the linkages between the learning
process during the intervention and conceptual changes in students’
ability and item difficulty levels can be explained in detail; which part
of the process leads the students to change their understanding related
to specific ideas taught to them.
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H I G H L I G H T S

� Raw scores have a bias in a conventional psychometric measurement
� Stacking and racking measure students' ability and item difficulty level changes
� The learning process in socio-scientific issues improves students' understanding
� Misconceptions influence the negative values of students' pre-and post-test
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A B S T R A C T

This research aimed to employ stacking and racking analysis techniques in the Rasch model to measure the
hydrolysis conceptual changes of students taught by the process-oriented guided inquiry learning (POGIL) model
in the context of socio-scientific issues (SSI) with the pretest-posttest control group design. Such techniques were
based on a person- and item-centered statistic to determine how students and items changed during interventions.
Eleventh-grade students in one of the top-ranked senior high schools in the eastern part of Indonesia were
involved as the participants. They provided written responses (pre- and post-test) to 15 three-tier multiple-choice
items. Their responses were assessed through a rubric that combines diagnostic measurement and certainty of
response index. Moreover, the data were analyzed following the Rasch Partial Credit Model, using the WINSTEPS
4.5.5 software. The results suggested that students in the experimental group taught by the POGIL approach in the
SSI context had better positive conceptual changes than those in the control class learning with a conventional
approach. Along with the intervention effect, in certain cases, it was found that positive conceptual changes were
possibly due to student guessing, which happened to be correct (lucky guess), and cheating. In other cases,
students who experienced negative conceptual changes may respond incorrectly due to carelessness, the boredom
of problem-solving, or misconception. Such findings have also proven that some students tend to give specific
responses after the intervention in certain items, indicating that not all students fit the intervention. Besides,
stacking and racking analyses are highly significant in detailing every change in students’ abilities, item difficulty
levels, and learning progress.

1. Introduction

Central to defining the quality of pedagogical innovation in science
classes is conceptual changes. The changes refer to how ideas or con-
ceptions the students understand according to their ways of thinking [1,
2] become scientifically accurate [3]. It is because such ideas generally
comprise misconceptions [4, 5, 6, 7], are not in accordance with

scientific concepts [8, 9], tend to be resistant [10], changeable and varied
[11], so that they should be improved if the correct conceptual under-
standing is to be taught [12, 13].

Some studies have been conducted on learning innovation testing to
form an accurate and scientific conceptual understanding of the stu-
dents, e.g., inquiry-based learning. This model presents conceptual
conflicts and participatory experiments to facilitate conceptual changes
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[14, 15, 16]. Conceptual understanding-based learning involves various
strategies in identifying and analyzing students' comprehension so that
the investigation process can be designed to lead them to a more ac-
curate and scientific conception [16, 17]. This research relied on a
quasi-experimental design that assessed students’ pre-test and post-test,
evaluated the changes in performances for testing significant differ-
ences. This type of testing informs the researcher about the presence of
an effect, but does not provide detailed information on the level and
trait of the changes [18]. What if the researcher is willing to compare
the extent to which the pre- and post-test change (differences in
learning outcomes) and interpret the changes (the reasoning why those
changes occur) in terms of content? This is a core question regarding the
changes in some latent traits or changes in traits measured after the
intervention. In most studies, interpreting the changes in pre-test and
post-test tends to be limited to identifying whether or not an effect
prevails.

Pre- and post-test changes should be given in detail regarding the
students’ understanding ability and item difficulty levels. However, this
has not been much revealed due to the limitations of its measurement
techniques and analyses and has not been the main focus in chemistry
education research to date. One reason for this issue is the debate in the
psychometric community regarding the ability to measure changes
accurately [18]. This debate questions the use of raw scores in the con-
ventional psychometric analysis, which largely contains measurement
biases [19], as follows: 1) the difference in pre- and post-test scores will
be negatively correlated with the pre-test score, especially for students
with low pre-test scores [18,20]; 2) the difference in pre- and post-test
scores shows low test reliability [21]; 3) low measurement properties
due to different scales [22].

Raw scores are not final data, so that they do not have a great deal of
information for drawing conclusions [23, 24]. Around the 1950s, Dr.
Georg Rasch, a mathematician from Denmark, introduced the formula-
tion of the Rasch measurement model [24]. The model has been widely
applied to analyze various types of data, e.g., dichotomous, polytomous,
multi-rating, and multi-rater data. In the mid-2000s, the Rasch model
was used as a probabilistic-based psychometric measurement that went
beyond the use of raw scores [25, 26], and was used to overcome the
limitations of conventional psychometric measurement [19, 27]. Its an-
alyses, including item fit, PCA (Principal Component Analysis), and
Wright map, are commonly used for international test analyses, namely
TIMSS and PISA [28].

In chemistry education research, the Rasch model has been relied on
to evaluate learning understanding and progress [29], to diagnose stu-
dents' preconceptions [1], misconceptions [13, 30, 31, 32], link the
measurement of content knowledge with pedagogical content knowledge
[33], and investigate item difficulty patterns [13, 34]. Even so, studies on
the Rasch model to reveal the chemistry conceptual changes in students’
understanding and item difficulty levels are relatively hard to find as of
today. The present study aims to employ stacking and racking analysis
techniques in the Rasch model to measure the hydrolysis conceptual
changes of students taught by the POGIL approach in the context of SSI
and students who learn conventionally. Such techniques are based on a
person- and item-centered statistic to estimate how students and items
change during the intervention.

POGIL is a student-centered learning strategy that teaches content or
process skills. The philosophical foundation of POGIL is the involvement
of an interactive process of careful thinking, discussing ideas, perfecting
understanding, practicing skills, reflecting progress, and evaluating per-
formances [35]. POGIL is able to lead the process of designing a partic-
ipatory experiment that presents a conceptual conflict as a strategy to
encourage students to form an accurate concept [14]. Therefore, POGIL
intervention is more likely to be potential in driving epistemological
understanding and reasoning [36], making students have opportunities
to change their conceptions to be more accurate and scientific [16].
Nevertheless, it is also worth noting that some students potentially have
misconceptions resistant to changes [3].

SSI functions as a learning context through the integration of social
problems that students are familiar with. It also has a conceptual
connection with salt hydrolysis [37, 38], and its resolution requires many
perspectives [39], including the dimension of moral and ethical evalua-
tion of students [40]. The SSI context is a socio-scientific phenomenon
that the students should explain based on their conceptual viewpoints. It
encourages them to actively get involved in grasping problems [41],
developing and utilizing their knowledge [42], improving their critical
thinking [43], and being able to scientifically describe the discussed
socio-scientific phenomenon [36, 44, 45]. For such reasons, the inte-
gration of SSI can build up students' scientific literacy [39, 46, 47]. In the
end, this integration enables the learning process to be more significant
in enhancing students’ understanding [45, 48]. Besides, they are skilled
in negotiating the social aspect of the studied phenomenon [49, 50]. For
instance, the issues of global warming, climate change, and pollution
[36].

Salt hydrolysis is a learning topic in high school that is strongly
related to SSI. Students with a good understanding of hydrolysis will
manage to clarify scientifically why detergents, bleaching agents
(NaOCl), and fertilizers can pollute the environment. Despite this, the
linkage of this issue as the problem in learning hydrolysis is rarely carried
out. The learning process is more emphasized on mastering theoretical
concepts [36]. As a consequence, students find it challenging to use their
hydrolysis understanding to explain socio-scientific phenomena around
them [37]. This challenge is on account of their misconceptions
regarding acid-base reaction [51], making them unable to elaborate the
concept of salt hydrolysis [52] and determine acid and base strength
[53]. In addition, they are struggling with correctly explaining the dis-
solving process and the reaction of ionic compounds with water, writing
down chemical equations, and having different interpretations of the
dissolving process mentioned earlier [54]. On this ground, it is essential
to reveal how the hydrolysis concept changes if intervened with the
POGIL approach in the SSI context, through the following specific
questions: (1) is there a significant hydrolysis conceptual change of the
students after the learning process in experimental and control groups?
(2) if compared, how is the hydrolysis conceptual change through the
intervention of POGIL in the SSI context and conventional learning? (3)
in addition to intervention, is there any other factor that also contributes
to the students' hydrolysis conceptual changes?

2. Method of study

This study relied on a quantitative approach with a quasi-
experimental and pretest-posttest control group design [55] by
comparing the extent to which the hydrolysis concept changes after the
intervention. Researchers carried out the learning process for 12 meet-
ings, gave tests, and collected data on the results of the intervention and
measurement.

The changes of students and items were analyzed using the stacking
and racking techniques in the Rasch model [56]. As standard techniques,
racking and stacking were introduced by Benjamin Wright to measure
the extent to which conceptual understanding of students and items
change before and after interventions [57]. The referred changes are
cases (item and student levels) caused by the learning intervention and
can be diagnosed based on the estimated changes.

In regards to students' understanding, the measurement was to
identify students who had specific hydrolysis conceptual changes in
responding to the learning intervention. In terms of items, the mea-
surement was done to identify which items had special characteristics
and been understood by students differently during the learning inter-
vention [57]. Thus, the scientific inquiry approach might not be suitable
for some students, or some itemsmight be too hard after the intervention.
This insightful information is immensely helpful for researchers and
education practitioners, especially in evaluating the weaknesses of
pedagogical innovations being applied and devising learning strategies
that meet students’ needs in learning [58].
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2.1. Participants

Eleventh-grade students aged 16–17 years in one of the senior high
schools in the eastern part of Indonesia were involved as the sample. This
top-ranked school gets an “A” accreditation (excellent) from the National
Accreditation Board for High School. The sample was determined by
convenience sampling in six randomly assigned classes. Three classes (N
¼ 97) were experimental groups that applied the POGIL model in the SSI
context. The other three classes (N ¼ 93), as control groups, applied
conventional learning without the SSI context. The same teacher taught
these classes following the Curriculum 2013 of Chemistry Subject
(revised in 2016). There was no special classroom for learning the
concept of hydrolysis, i.e., taking up the regular learning process at
school. Before learning the hydrolysis concept, the students had previ-
ously learned the concept of acid and base to understand the concept of
salt hydrolysis way better. Research permission was obtained from the
government and school administrators. In accordance with principles of
research ethics, research purpose and procedures were informed to all
the students being involved and that they were voluntarily participating.
Additionally, their information is confidential and only used for science
development [59].

2.2. Learning implementation

Students in the experimental group studied employing the process-
oriented guided inquiry learning (POGIL) in the SSI context [35].
Meanwhile, in the control class, the learning process was performed
conventionally; the teacher facilitated learning initiatives. The learning
process focused more on content mastery and problem-solving practice.
Applying the POGIL model in the SSI context highlights teacher assis-
tance to guide the students to prepare their conceptual understanding
based on epistemological reasoning they get from experiments, discus-
sions, and collaborations [49, 60]. Researchers carried out the learning
process for eight weeks to apply the intervention to the sample, gave
tests, collected data on the results of the intervention and measurement.
The first three weeks were the preparation stages when researchers and
the teacher shared perceptions, and asked the teacher to perform a
learning simulation under the scenario, including different assistance
techniques in leading the students to conduct experiments, and to ask
analytical questions. The pre-test was carried out in the third week.
Further, the learning implementation was done for four weeks, and the
post-test was executed in the eighth week.

The learning stages with POGIL in the SSI context consist of orien-
tation, exploration, concept formation, application, and closing. During
the orientation stage, the teacher presented familiar contextual phe-
nomena related to the concept of hydrolysis. The teacher asked initial
questions to provoke curiosity and arouse motivation and interest of the
students. While watching the video, had the students responded and
explained the relationship between the phenomena and acids and bases,
hydrolysis, and buffers. In the exploration stage, the teacher developed
analytical questions with data, images, and multiple video clips to give
perspectives on learning objectives and to delve into the concept that had
been and would be learned. Next, the teacher assisted the students in
doing experiments guided by a worksheet, and at the same time, asked
analytical questions to lead them and strengthen their conceptual un-
derstanding. In the concept formation stage, the teacher asked students to
build their conceptual understanding based on the exploration results,
accompanied by critical and fundamental questions to guide students in
building a conceptual understanding of the salt hydrolysis and buffer
solution.

Following the formation stage was the application stage when the
teacher presented contextual problems in the SSI context, particularly
those comprising social problems in society, that closely linked with the
understanding of salt hydrolysis and buffer solution concepts. Such
problems included 1) the use of bleaching agents (detergents), 2) the
functions of alum KAl(SO₄)₂⋅12H₂O for water purification, 3) the

harmful effects of detergent waste, 4) the beneficial and harmful effects
of artificial fertilizer (NH4)2SO4 for soil fertility, and 5) the harmful
effects of monosodium glutamate (MSG) for health. In this stage, the
teacher guided the students through collaborative discussions and crit-
ical questions, intending to give them perspectives on SSI phenomena
and encourage them to collect information and do experiments
following student activity sheets. Thereupon, the students had presen-
tation and discussion sessions, during which they reported their
experiment results and drew conclusions [61, 62]. The teacher asked
them to describe the possible problems and solutions from their un-
derstanding of the studied concepts. This enabled the students to form
their conceptual understanding that is closely related to contexts; the
learning process was from contextual to abstract [37, 63]. From such a
condition, the teacher led the students to apply their knowledge in
different contexts and situations and solve problems. The final stage was
closing or teacher assistance in guiding the students to explain the
conclusion and reflection on the learning process as the end of the
learning activities.

2.3. Instrument

Table 1 displays 15 items of diagnostic three-tier multiple choice test
to measure students’ hydrolysis conceptual understanding. The test was
constructed following the Competence Standard of 2013 Chemistry
Curriculum of Senior High School under Regulation of the Minister of
Education and Culture of the Republic of Indonesia Number 37 of 2018.
The procedures of developing the instrument followed the recommen-
dation by [64, 65, 66].

Each item was designed in three questions (Q1, Q2, Q3) that inte-
grated diagnostic [68, 69] and summative measurements [10] and cer-
tainty of response index (CRI) [70, 71]. Students' responses to items (Q1,
Q2, Q3) were evaluated based on the rubric (Table 2). For example,
students' responses to items were as follows: Q1, Q2 “correct”, and Q3
“very sure” under the code CCC. Such a code indicated that students'
conceptual understanding was in level 6, category of Scientific Knowl-
edge (SK). On the other hand, if the response patterns in Q1, Q2
“incorrect” and Q3 “not sure”, the code would be IIU, implying that
students' conceptual understanding was in the category of Lack of
Knowledge (LOK), or level 1. This instrument had been validated from
the aspects of item conformity with the construct variable and language.
The validity results by three experts were stated under Fleiss’ kappa (K ¼
.96), meaning that the experts agreed that the item validity was cate-
gorized good.

2.4. Data collection and analysis

Before the intervention, this research underwent pre-test data
collection; whereas, the post-test data collection was done after the
intervention. The construction of pre- and post-test items was the same.
Students wrote down their responses on the provided answer sheet. Both
tests were supervised by teachers in the school. The students must work
on all items according to the allocated time (45 min). The instrument was
immediately collected and should have the same number as the total
participants.

The pre- and post-test measurement data were still ordinal data. The
Rasch Partial Credit Model with WINSTEPS 4.5.5 software [27, 73] was
used to convert ordinal data into interval data to have the same logit
scale. The result was a data calibration of the levels of student's ability
and item difficulty in the same interval.

The stacking analysis technique put pre-test and post-test data verti-
cally [74]; meanwhile, the items appeared once in the experimental and
control groups, allowing the researchers to check out any changes of the
students after the intervention [56]. The examination was based on the
same item, making the changes in students’ ability during the pre- and
post-test be measured [56]. Hence, each student created two measures of
abilities, namely pre-test and post-test, and one measure for each item.

L.A.R. Laliyo et al. Heliyon 8 (2022) e09126

3



The research hypothesis is that the students' conceptual understanding
from pre-test to post-test changes, both in the experimental and control
groups.

Conversely, the racking analysis technique put both pre- and post-test
data horizontally, in which each item appeared twice in data collection,
and students' ability only emerged once. This enabled the researchers to
check out the effects of learning implementation on each student's ability
from the tests, especially the changes in item difficulty levels before and
after the intervention [56].

3. Results

3.1. Rasch analysis properties of instrument

The summary of changes in concepts and items analyzed by the Rasch
model is presented in Table 1. Table 2 provides the item fit statistic. An
item is considered to experience a misfit if the measurement result is not
in line with the following three criteria: Outfit mean-square residual
(MNSQ): .5 < y < 1.5; Outfit standardized mean-square residual (ZSTD):
-2 < Z < þ2; and point measure correlation (PTMEA CORR): .4 < x < .8
[25]. All items comply with the Outfit MNSQ criterion; item 15 does not
meet the Outfit MNSQ criterion; five items (item 1, 6, 12, 13, and 15) are
not in accordance with the Outfit (ZSTD) criterion; all items meet the
PTMEA CORR criterion. Simply put, all items fulfill those criteria
mentioned previously (none having a misfit), and are fit and valid.

This instrument has a good unidimensionality (Appendix 1). Raw
variant index arrives at above the standard of 20% (33.9%), indicating
that the instrument can effectively measure students' understanding of
the hydrolysis concept [75]. The assessment scale analysis (Appendix 2)
informs that the observation mean starts from logit -1.73 for category 1
(LOK) to logit þ1.76 (category 6, SK). This signifies that the category of
students’ understanding takes place consistently [27]. In addition, the
high item separation index (logit 6.71) and the high item reliability (logit
.98) (Table 3) indicate that the respondents (students) are sufficient to
confirm the level of item difficulty, strengthening the instrument
construct validity [27]. The higher the item separation and reliability
index, the more confident the researchers are about replicating item
placement in other suitable sample students [25, 27]. Person separation
index and person reliability that reach logit 2.0 and logit .75 (Table 4),
respectively, imply that the instrument is quite sensitive to differentiate
the high and low abilities of the students [25, 27]. According to the Rasch
model calculation, the coefficient of Cronbach Alpha of logit .81
(Table 4) reflects an interaction between 380 students and 15 items with
an excellent category [24, 76]. In other words, the interaction between
students and items is very significant. The instrument has an excellent
internal psychometric consistency and is considered very reliable.

Table 1. Conceptual map of hydrolysis concept understanding [67].

Problem Context Item Conceptual
Understanding

Ability Level

Bleaching agents are
formed of weak acid
HOCl and strong base
NaOH. Sodium
hypochlorite salt
(NaOCl) is reactive and
dissolves the dye. In the
water, the ion OCl� will
be hydrolyzed to HOCl
and OH� -

1 Balancing the salt
(NaOCl) hydrolysis
reaction in the water

2 Level 3:
Students are able
to calculate the pH
of the hydrolyzed
salt solution.
Level 2:
Students are able
to determine the
hydrolysis
reaction from
different types of
salt
Level 1:
Students are able
to analyze the
properties of the
hydrolyzed salt

2
Stating the partial
hydrolysis reaction:
NaOCl → Naþ þ OCl�

2

3 Determining corrosive
alkali of sodium
hypochlorite salt
(NaOCl)

1

4 Calculating the pH of
hydrolysis of sodium
hypochlorite salt
(NaOCl) with NaOCl ¼
0.1 M; Ka ¼ 10�5)

3

5 Determining the
property of NaOCl, in
the reaction: OCl� þ
H2O → HOClþ OH�

2

6 Calculating the pH of
sodium hypochlorite salt
(NaOCl) that comes
from a mixture of HOCl
and NaOH (partially
hydrolyzed), if the Ka
HOCl is 10�5 and there
is an increase in the pH
of the solution mixture.

3

Water purification with
alum KAl(SO₄)₂⋅12H₂O is
the concept of salt
hydrolysis, formed of
H2SO4 and Al(OH)3.

7 Determining aluminum
salt (Al2(SO4)3)
properties in the water

1

8 Determining aluminum
salt (Al2(SO4)3)
properties in the water
that is partially
hydrolyzed by the Al3þ

ion

1

The sodium
tripolyphosphate (STPP)
in detergents can pollute
the environment, a
eutrophication process.

9 Determining the
properties of detergent
solution causing
eutrophication

1

10 Determining the
properties of detergent
solution (sodium
tripolyphosphate salt)
that is partially
hydrolyzed

1

11 Determining the impact
of the disposal of
detergent waste on the
environment

2

ZA fertilizer (NH4)2SO4

is an acidic salt.
12 Determining the

properties of ammonium
sulfate salt (NH4)2SO4

1

13 Stating the equation of
(NH4)2SO4 reaction in
the water, partially
hydrolyzed

2

Monosodium glutamate
(C5H8NO4Na) is L-
glutamic acid salt,
adversely impactful on
human health

14 Students' attitude
towards the use of
monosodium glutamate
(C5H8NO4Na)

2

15 Determining the
properties of
monosodium glutamate
salt (C5H8NO4Na)

1

Table 2. All possibilities of responses [70, 71, 72].

(Q1) (Q2) (Q3) Code Conceptual Understanding
Category

Level

Correct Correct Certain CCC Scientific Knowledge (SK) 6

Correct Incorrect Certain CIC Misconception False Positive
(MFP)

5

Incorrect Correct Certain ICC Misconception False Negative
(MFN)

4

Incorrect Incorrect Certain IIC All-Misconception (ALM) 3

Correct Correct Uncertain CCU Lack of Confidence/Lucky
Guess. (LG)

2

Correct Incorrect Uncertain CIU Lack of Knowledge (LOK) 1

Incorrect Correct Uncertain ICU Lack of Knowledge (LOK) 1

Incorrect Incorrect Uncertain IIU Lack of Knowledge (LOK) 1
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3.2. The difference in students’ understanding ability of hydrolysis concept

The result of the Mann-Whitney test (Table 5) brings out the fact that
statistically, there is a significant difference in the results of pre-test (U ¼
3459.000), p < 0.05) and post-test (U ¼ 1723.000, p < 0.05) among
students in experimental and control groups. Further, the Wilcoxon test
result (Table 6) shows that the results of pre-test and post-test of students
in the experimental group (Z ¼ -8.076) and the control group (Z ¼
-6.690) at the significant level (p) < 0.05 are significantly different. This
suggests that students’ understanding of the hydrolysis concept after the
intervention (post-test) is higher than before the intervention (pre-test),
both in experimental and control groups. However, the abilities of stu-
dents in the experimental group are better than those in the control
group. Accordingly, the learning process with the POGIL in the SSI
context is better than the conventional learning.

3.3. The changes in students’ understanding ability of the hydrolysis
concept

From the different changes in pre- and post-test (Table 7), students in
the experimental and control groups have improved their understanding
of the hydrolysis concept. The experimental group's mean of pre-test and
post-test is logit .51 (S.E ¼ logit .21) and logit 1.50 (S.E ¼ logit .32),
respectively, with the mean difference of both tests is (logit .99). In
contrast, the mean of pre-test and post-test of the control group gets logit
.26 (S.E ¼ logit .20) and logit .87 (S.E ¼ logit .26), respectively, with the
mean difference of pre- and post-test is logit .61. Such differences indi-
cate different effects of interventions in the experimental and control
group.

If the pre-test and post-test results of the experimental group are
plotted in pairs (Figure 1), so that the mean difference in the sample pre-
and post-test (logit þ.99) is displayed as an intercept on the horizontal
axis with the plotted slope¼ 1, several facts obtained: First, two lines that
form the upper and lower curves separate 66 students around the
empirical plot line, in which the pre-test and post-test mean is not
significantly different from the mean difference in the pre- and post-test
in the experimental group. Second, above the curve, 23 students

experience significant changes; the mean of pre- and post-test is greater
than the mean difference in sample pre-test and post-test. Third, seven
students do not change, and ten students have negative changes (under
the curve), so that they are under the curve. Similarly, the results of pre-
and post-test of the control group (Figure 2) show that 53 students are
around the empirical plot line; the abilities of 25 students change
significantly (greater than the mean of sample pre- and post-test (logit
þ.61); two students do not change; 13 students experience negative
changes in abilities. The difference in the plotting of pre-test and post-test
results signifies different effects of interventions in the experimental and
control groups.

3.4. The changes in item difficulty level

Table 8 presents the results of the racking analysis in connection with
the changes in item difficulty level in the pre- and post-test of experi-
mental and control groups. It is shown that in terms of item difficulty
level, the mean of pre-test of the experimental group is (logit .32), the
mean of post-test is (logit -.34), and the mean difference of the pre- and
post-test is (logit -.66). Moreover, the mean of pre-test of the control
group is (logit .25), the mean of post-test is (logit -.25), and the mean
difference of the pre- and post-test is (logit -.50). This research also finds
out that seven items have significant changes in the item difficulty level
in the experimental group, lower than the pre- and post-test mean dif-
ference of (logit -.66), namely item 1, 2, 5, 7, 9, and 11. Eight items with a
difficulty level greater than the mean are item 3, 4, 6, 8, 12, 13, 14, and
15. Item 10 has the same difficulty level as the mean. In the control
group, eight items change significantly or less than the pre- and post-test
mean difference of (logit -.50), including item 2, 3, 4, 5, 9, 11, 12, and 14;
five items (item 1, 6, 7, 8, 10, 13) are greater than the mean; one item

Table 3. Item statistics: misfit order.

Item Difficult Error Outfit MNSQ Outfit ZSTD PTMEA CORR.

1 -.38 .05 1.36 2.87 .47

2 .20 .04 1.13 1.56 .49

3 -.36 .05 .91 -.79 .43

4 .33 .04 1.09 .77 .55

5 -.25 .05 .94 -.55 .56

6 .26 .04 1.20 2.44 .41

7 .15 .04 .91 -1.17 .54

8 .47 .04 .90 -1.45 .44

9 -.47 .05 1.19 1.49 .46

10 .08 .04 1.09 1.04 .55

11 -.34 .05 1.04 .42 .51

12 -.06 .04 .71 -3.50 .60

13 .46 .04 .74 -4.12 .55

14 -.36 .05 1.00 .77 .55

15 .26 .04 1.31 3.74 .47

Table 4. Person separation and reliability statistics.

Parameter Measure SD Separation Reliability INFIT OUTFIT KR-20

MNSQ ZSTD MNSQ ZSTD

Person (N ¼ 380) .67 .52 1.72 .75 1.00 .04 1.02 .10 .81

Item (N ¼ 15) .00 .32 6.71 .98 1.07 .41 1.02 -.01

Table 5. The result of the Mann-Whitney U test based on students’ pre-test and
post-test abilities in experimental and control groups (p < 0.05).

Test Experimental Group (N ¼
97)

Control Group (N ¼
93)

U p

Pre-test 0.5026 (-0.57–1.26)a 0.3029 (-1.61–1.03)a 3459.000 0.005

Post-
test

1.1722 (-0.09–3.00)a 0.7052 (-1.06–1.47)a 1723.000 0.000

Table 6. The result of the Wilcoxon test of students’ pre-test and post-test in
experimental and control groups (p < 0.05).

Group Pre-test Post-test Z p*

Experimental 0.5026 (-0.57–1.26)a 1.1722 (-0.09–3.00)a -8.076 0.000

Control 0.3029 (-1.61–1.03)a 0.7052 (-1.06–1.47)a -6.690 0.000

Table 7. Logit of mean of pre- and post-test items of experimental and control
groups.

Group Student Item Mean/SE (logit)

Pre-test Post-test Pre- and Post-test
Difference

Experimental 97 15 .51/(.21) 1.50/(.32) .99

Control 93 15 .26/(.20) .87/(.24) .61

Description: SE ¼ Standard Error.
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(item 15) has negative changes or becomes more difficult. The most
difficult item in the experimental group is item 1 (.80 logit) and the
easiest one is item 14 (logit -.10). Meanwhile, the most difficult item in
the control group is item 13 (logit .64), and item 3 (logit -.15) is the
easiest one. These findings indicate differences in the item difficulty level
changes between students taught by the POGIL in the SSI context and the
conventional model.

3.5. Conceptual changes in students’ ability and item difficulty levels

Apart from the effect of learning interventions, there are three other
factors that tend to influence the changes in students' ability and item
difficulty levels, as follows: 1) guessing which happened to be correct or
(lucky guess), 2) cheating, 3) carelessness. These factors can be identified
from the student's item response pattern using a scalogram. For instance,
the response pattern of post-test item 7 for student 353, 375, and 170
(Table 9). These three students, in the seventh and eighth row from the
left, cannot understand item 12 (logit -.06) and item 10 (logit .08).
Meanwhile, they can correctly explain the more difficult item, i.e., item 7
(logit .15). This situation implies a lucky guess, which in fact, these
students have higher post-test abilities than the item 7 logit. Next is a

cheating indication in the response pattern of student 128, 129, 134, 137,
and 146. Such an indication is initially detected from the same post-test
mean (logit 1.61) and item response pattern. The last one is carelessness,
e.g., student 110, 118, and 139 are considered to be careless as they
cannot correctly explain the easy item 4 (logit .33), yet can accurately
understand item 13 (logit .46), which is harder than item 4. Moreover,
they get very high post-test abilities.

3.6. Negative changes

Negative changes in conceptual understanding are detected from the
changes in students’ post-test logit less than the pre-test logit. For
example, two students from the experimental group (E18 and E75) and
the control group (C225 and C247) are taken; they have negative
changes (Table 10). This means that these four students experience
decreased abilities after the intervention. The pre-test item mean and
the post-item mean of student E18 are (logit .76) and (logit .04),
sequentially, with the mean difference of pre- and post-test arriving at
(logit -.72). Moreover, the pre- and post-test item standard errors of
student E18 are (logit .22) and (logit .18), respectively, with the com-
bined standard error of logit .40. On account of the higher combined

Figure 1. Scatter plots of person measures in pre- and post-test of the experimental group.

Figure 2. Scatter plots of person measures in pre- and post-test of the control group.
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Table 9. Scalogram.

GUTTMAN SCALE OF RESPONSES:
Person |Item

| 11 11 1 1 ID Pre- Post-test Pre Post Item
|913415207265438 Person Mean Mean Difference Response Pattern
|---------------            

353 +666555536665554 353MFCB .8 .97 .17 Lucky Guess
375 +166566516133664 375MMCB  -.28 .40 .68 Guessing answer
170 +664666446566556 170NFEB .33 1.17 .84 accidentaly correct

128 +666666666646555 128DFEB .76 1.61 .85
129 +666666666646555 129DFEB .51 1.61 1.10 Same response pattern
134 +666666666646555 134JFEB .17 1.61 1.44 Cheating indication
137 +666666666646555 137MMEB .04 1.61 1.21
146 +666666666646555 146NFEB .30 1.61 1.31

110 +666666666666566 110NFEB .85 3.00 2.15 Response pattern
118 +666666666666565 118RFEB .85 2.36 1.51 “Careless”
139 +666666665666565 139MFEB .62 2.01 1.39

Table 8. Data of item measures of pre- and post-test of experimental and control groups.

Item Experimental (Mean) Control (Mean)

Pre-test Post-test Difference
Pre- and Post-test

Pre-test Post-test Difference
Pre- and Post-test

Item1 .16 -1.00 -1.16 -.06 -.76 -.7

Item2 .80 .01 -.79 .39 -.40 -.79

Item3 .20 -.63 -.43 -.15 -.83 -.68

Item4 .62 .25 -.37 .54 .02 -.52

Item5 .14 -.78 -.92 .10 -.49 -.59

Item6 .26 .22 -.04 .41 .30 -.11

Item7 .66 -.33 -.99 .33 -.06 -.39

Item8 .59 .45 -.14 .49 .47 -.02

Item9 -.04 -.85 -.81 -.08 -.93 -.85

Item10 .40 -.26 -.66 .32 -.01 -.33

Item11 .13 -.91 -1.04 .05 -.78 -.83

Item12 .33 -.23 -.56 .25 -.51 -.76

Item13 .77 .16 -.61 .64 .33 -.31

Item14 -.10 -.80 -.7 .15 -.83 -.98

Item15 .25 -.40 -.65 .39 .72 .33

Mean .32 -.34 -.66 .25 -.25 -.50

Table 10. Scalogram results of student E18, E75, C225, and 247.

ID 

Person 
Test 

naeMnrettaPesnopseRmetI

| 11 11 1 1
|913415207265438
|--------------- 

Item 

Logit  

S.E* 

Logit 

Pre- test 

and post-

test 

difference 

Combined 

S.E 

E18 
Pre-test +665666636366333 .76 .22 -.72 .40
Post-test +666661322521161 .04 .18

E75 
Pre-test +562664552566426 .58 .20 -.35 .38
Post-test +655664322323463 .23 .18

C225 
Pre-test +616665663261613 .36 .19 -.45 .37
Post-test +611622566131613 -.09 .18

C247 
Pre-test +663636666666435 .97 .25 -.87 .43
Post-test +563345555314133 .10 .18

Description: S.E = Standar Error 
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standard error than the pre- and post-test measures, the ability of stu-
dent E18 in both tests is not significantly different. This also applied to
student E75, C225, and C247.

4. Discussion and conclusion

The findings show changes in students' understanding abilities of the
hydrolysis concept and items after the intervention. From the pre- and
post-test mean difference, the experimental group has better positive
changes than the control group [58]. In addition to the effect of the
intervention, there is another factor contributing to the positive concep-
tual changes mentioned above, in terms of students’ ability and item dif-
ficulty levels [24, 58]. The factor refers to some studentswho “accidently”
give a correct responsepattern (in the post-test). Even so, bothgroupshave
also experienced negative changes, implying that the intervention is
specifically responded by students on account of the carelessness factor or
amisconception-comprising responsepattern [56, 58, 77].Regarding this,
not all learning objectives of the hydrolysis conceptmatch the approach of
POGIL in the SSI context. Negative changes of the students are because
they are not epistemologically involved in the learning process, particu-
larly in the observing, measuring, and calculating stages. These activities
are interrelated up to group discussions as part of the stages of conceptual
formation based on empirical facts [78]. Students are expected to explain
and link the concepts they have learned following their epistemological
reasoning [16, 79].

Furthermore, the interpretation of changes due to pedagogical in-
terventions is exemplified by four students (Table 8) in item 5. In the pre-
test, the ability of student E18 (logit .76), student E75 (logit .58), student
C225 (logit .36), and student C247 (logit .96) is greater. They also
respond to item 5 (-.25 logit) accurately. However, in the post-test item 5,
the response of student E18, E75, C225, and C247 is incorrect due to their
decreased post-test abilities. Therefore, the pre- and post-test mean dif-
ference is lower than item 5. Why do these changes occur? Such changes
are exemplified by the response pattern of student E18 in item 5. This
item measures students’ ability in determining the reaction of NaOCl
reaction: OCl� þ H2O → HOClþ OH�, with the estimated pH¼ 7 and is
alkaline. The question (Q1) of this item is, “is it correct that NaOCl is
alkaline?“. E18 answers “correct” in the pre-test, yet responds to
“incorrect” in the post-test. The question (Q2) of this item is “what is your
consideration for your answer in the Q1?“. Four options are provided: (a)
because NaOCl is formed of strong acids and weak bases; (b) because
NaOCl is formed of weak acids and strong bases; (c) because NaOCl is
formed of weak acids and weak bases; (d) because NaOCl is formed of
strong acids and strong bases. In the pre-test, E18 chooses the correct
answer (b), yet selects the incorrect answer (a) in the post-test that
comprises misconception. Next, in the Q3 of this item, E18 chooses “very
sure” in the pre-test and “not sure” in the post-test. The item 5 response
pattern of E18 becomes CCC (category of scientific knowledge - SK) in the
pre-test and IIU (category of lack of knowledge - LOK) in the post-test.
Accordingly, the response pattern changes from CCC to IIU. The pre-
and post-test mean difference of E18 (logit -.72) lower than item 5 (-.25)
signifies that the error of response pattern results from misconception.
This also applies to the response pattern of E75 (logit -.35), C225 (logit
-.45), and C247 (logit -.87).

The misconception refers to the inability to identify the NaOCl salt
hydrolysis that is formed of weak acids and strong bases. In short, the
four students tend to not understand the concept of acid and base and
acid-base reaction. These findings strengthen several previous studies
[51, 53, 54, 80]. A study on the understanding of the acid-base concept of
senior high school students in Malaysia concludes that some students
have little understanding of the function of detergents as the cleaning
agent, the difference between strong acids and strong bases, and the
treatment for soil acidity using fertilizers [53]. In the same tune, such
little understanding is because they do not conceptualize acid-base
strength as a property that arises from the interaction of many reaction
factors [51]. Additionally, research on an alternative conception of salt

hydrolysis among senior high school students contends that the concept
of hydrolysis is challenging for the students [54]. They are usually able to
state the acidity of a salt solution correctly, yet writing a chemical
equation to explain such a phenomenon is a great challenge. Most of the
alternative conceptions are identifiable, rooted in the misunderstanding
of equilibrium process, acid and base, material structure and other basic
problems, student tendency to use a wrong analogy, and the lack of
laboratory practice.

This research findings and elaboration of negative changes (case E18)
prove the advantages of the Rasch model, specifically its potential in
linking the result of changes (pre- and post-test), the item difficulty level,
and the content being measured [18]. Such information solely comes
from the Rasch model-based stacking and racking analysis techniques.
The stacking technique provides information regarding “who has
changed”; in contrast, the racking technique offers information of “what
has changed” [56, 58], allowing the researchers to spell out the effect of
the applied pedagogical innovation [18, 33, 34]. Although the instru-
ment measurement result of this work is not data-rich, the analysis
strength of the Rasch model can describe in detail the conceptual
changes, both in the students’ ability and item difficulty levels.

4.1. Limitations and further studies

The primary limitation of this research is that it did not take into
account the aspects of learning style, culture, and motivation that can
change due to learning interventions. Future studies, therefore, can
address these aspects. The present study can be continued by considering
the context of a problem that closely connects with the parameter of item
difficulty level. The analysis will be more interesting if it can prove that
different item difficulty levels are influenced by problem contexts in each
item [81]. Further studies are also expected to find an analysis technique
that can integrate problem contexts, item characteristics, and item dif-
ficulty levels in a measurement model. It is assumed that different
problem contexts in each item will be more likely to affect measurement
results because problem contexts have conceptual linkage with items and
student activities in doing experiments, measuring, interpreting data/-
graphs, and others. Thus, the linkages between the learning process
during the intervention and conceptual changes in students’ ability and
item difficulty levels can be explained in detail; which part of the process
leads the students to change their understanding related to specific ideas
taught to them.
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Appendix

Appendix 1. Standardized residual variance in eigen value units.

Table of STANDARDIZED RESIDUAL variance in Eigenvalue units = Item
information units

Eigenvalue Observed Expected
Total raw variance in observations = 22.7067 100.0% 100.0%

Raw variance explained by measures = 7.7067 33.9% 35.9%
Raw variance explained by persons = 2.7733 12.2% 12.9%
Raw Variance explained by items = 4.9334 21.7% 23.0%

Raw unexplained variance (total) = 15.0000 66.1% 100.0% 64.1%
Unexplned variance in 1st contrast = 2.0698 9.1% 13.8%
Unexplned variance in 2nd contrast = 1.5312 6.7% 10.2%
Unexplned variance in 3rd contrast = 1.3696 6.0% 9.1%
Unexplned variance in 4th contrast = 1.3124 5.8% 8.7%
Unexplned variance in 5th contrast = 1.1945 5.3% 8.0%

Appendix 2. Summary of category structure.

SUMMARY OF CATEGORY STRUCTURE. Model="R"
--------------------------------------------------------------------- 
|CATEGORY OBSERVED|OBSVD SAMPLE|INFIT OUTFIT|| ANDRICH |CATEGORY|
|LABEL SCORE COUNT %|AVRGE EXPECT| MNSQ MNSQ||THRESHOLD| MEASURE|
|---------------------+------------+------------++---------+--------|
| 1 1 317 6|  -.18  -.20| 1.06 1.08|| NONE |( -1.73)| 1
| 2 2 190 3| .10 .09| 1.03 1.18|| .46 |   -.77 | 2
| 3 3 963 17| .33 .31| 1.02 .93||   -1.43 |   -.22 | 3
| 4 4 542 10| .56 .52| 1.02 .97|| .98 | .21 | 4
| 5 5 1262 22| .62 .73| 1.27 .99||    -.22 | .74 | 5
| 6 6 2425 43| 1.02 .98| .97 1.04|| .20 |( 1.76)| 6
|---------------------+------------+------------++---------+--------|
| MISSING 1 0|  -.30 | || | |
--------------------------------------------------------------------- 
OBSERVED AVERAGE is mean of measures in category. It is not a parameter estimate.
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