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Abstract

We learn from the literature that most of time series datasets in real world application consist of positive data.
However, no method deals specifically with this rype of dataser. In this paper a model for such daraset using
geometric Brownian motion (GBM) is introduced and then employed in modelling electricity consumption in
Malaysia. We show that the model is not only better in terms of mean absolute percentage error but also in terms of
modelling running time. As far as we know, the use of GBM in developing time series model when data are positive
is unprecedented.
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1. Introduction:

In daily practice of time series modelling, most of time series datasets are positive datasets. Financial industry, the
biggest industry of all industries all over the world, deals with this type of datasets. Many university textbooks, for
examples, Box et al. (2008), Brockwell & Davis (1994), Cryer & Chan (2008), Harvey (1989), and Montgomery et
al. (2008) also show that such datasets are dominant in academic hands-on exercises. Surprisingly, among 1001
datasets used in Makridakis time series modelling competition (M-competition), see
https:/forecasters.org/resources/time-series-data/m-competition/, 999 datasets are positive and only two are non-
negative datasets. These phenomena show the important position of positive datasets in scientific investigation.

However, as far as we know, no one has focused on time series modelling for positive datasets. In this paper we
show that geometric Brownian motion (GBM) process, an expansion of Brownian motion, might be helpful in
describing the pattern hidden in a positive dataset. It is the process where the differences of the logarithms of two
data points are normally distributed (Mantegna & Stanley, 2000). Under this process, time series modelling becomes
very attractive. It is computationally efficient with low running time, simple to implement, and easy to digest even
by those who have a limited background in statistics. Therefore, it will be a good choice if its quality (here measured
by mean absolute percentage error, say MAPE is short) is as desired.
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In what follows, we begin our discussion in the next section with a development of GBM-based modelling. Later on,
in Section 3, its application to describe the pattern of daily maximum electricity consumption in Malaysia will be
presented. Then, we show that it is outperforms ARIMA and SARIMA not only in terms of MAPE but also in
running time.

2. GBM Modelling:
Many different processes in quantitative finance can effectively be described by GBM process. We can also find its
application in other areas such as in modelling the river flow (Lefebvre, 2002), accelerated testing (Park & Padgett,
2005), dynamic capacity planning (Chou er al., 2007), and supply chain management (Wattanarat et al., 2010).
Mathematically speaking, GBM process is the one where the differences of their logarithms are normally distributed.
As remarked in Oksendal (2002), Wilmott (2007), Hussain (2016) and Ross (2011) among others, it is the solution of
this stochastic differential equation (SDE),
dX, = uX,dt + aX,dW, (1)

where g is the mean of the process{X,}, o is its standard deviation g, and dW, is a Wiener process. However, in this
paper this equation will be approached by considering log-normal process. For this purpose, first, we consider {X,}a
time series where the lag-1 difference satisfies,

Xy =X+ 5 (2)
wheree, is time independent and & ~N(u, 2). In a general form, for any time interval T,

Xoor = X, + e where ep ~N(uT, a2T). 3)

Therefore, for time intervalAt, X,y 5 — X; = Eap ~N(pAt, a2 At). Now, if we write AX = X, — X; and make At

—» 0, the model (3) which deals with discrete units of time can be written in a continuous time domain. Indeed,
when At —» 0, (3) is equivalent to this SDE,

dX; = pdt + adW,,
with dW, = eVdt and the error term & ~N(0,1).

Second, sinceX, is normally distributed, its value could be positive, zero or negative. Therefore, if X, is positive and
log-normally distributed, an interesting property reveals. Specifically, if In(X,) satisfies (2),ie.,

In(X; 1) =In(X,) + & 4)

then,
din(X,) = pdt + adW,

This is equivalent with,
dX; = pXdt + aX, dW,;.

But, this differential equation is similar to (1). As a corollary, any stochastic process {X,} where X, is positive and

log-normally distributed satisfying (4) is a GBM process (Oksendal, 2002), Wilmott (2007) and Ross (2011).
Consequently, if Xis the initial value of X, satisfying this equation, the general solution of this equation is,

X, =Xgexp{(u - e+ aW,}. )
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Xt

From this solution, we can derive that the log-retums R, = ln( ) are independent and identically normally

t-1
distributed (iind) and Ry 1 = R; +& where & are iind with mean 0 and constant variance. This is similar to (2). In a
more general form, if {X;} is a GBM process, then {R;} is an AR(1) process with constant term ¢ (Wilmott (2007)
and Ross (2011)),1e.,

R, =c+0R,_j+&,. (6)

Finally, this equation leads to the predicted value ofX,,

X, =exp(é) - X,_; (i:)f? (7

where ¢ and # are the maximum likelihood estimates of ¢ and 8 in the simple linear regression model (6). We call
(7) GBM-based time series model for positive dataset or simply GBM model.

In the next section, this model will be used to describe the pattern of daily maximum electricity consumption in
Malaysia. The result will be compared with that issued from ARIMA and SARIMA. In terms of MAPE these three
models are similar. However, in terms of running time, GBM model outperforms ARIMA and SARIMA.

3. Model for Electricity Consumption in Malaysia:

Daily maximum electricity consumption in Malaysia during the period of one year (365 days), from September 2005
until August 2006 is investigated. Before we construct the model, we detect first whether the seasonal effect occurs
on the data and then, if it occurs, identify the seasonal period. For this purpose, the run chart, autocorrelation
function (ACF) plot and data scanning technique might be used.

(i) Run chart
It might be helpful for detecting the occurrence of seasonal effect in time series data. If the pattern of the run chart is
periodical, it is a strong indication that seasonal effect occurs.

(ii) Autocorrelation function (ACF) plot
This plot gives correlations between X, and lagged values X,_; for L=1,2, 3, .... If the seasonality is significantly
present, this plot should show spikes at lag L equal to the seasonal period.

(ii1) Data scanning

This technique is by looking at the time series data one by one to find the period.

For daily maximum electricity consumption in Malaysia, say X, the run chart is in Fig. 1. The horizontal axis is the
time axis (observation number) and the vertical axis refers to X. In this figure, the run chart shows a periodic
behaviour indicating the occurrence of seasonal effect. However, the ACF plot does an excellent job of showing
more clearly the seasonal difference in these data.

In Fig. 2, the ACF plot given by Minitab (Moore & McCabe, 2002) shows an oscillation, and the peaks occur at lags
of 7, 14,21, and so on. This means that the data of X have significant seasonal effect with periodicity 7. This result
given by ACF plot is the same as that issued from data scanning technique.
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Fig. 1: Run chart of daily maximum electricity consumption in Malaysia
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Fig. 2: Run chart of daily maximum electricity consumption in Malaysia
Deseasonalization

Deseasonalization process is to remove the seasonal effect from the data. As can be seen in Djauhari et al. (2016),

this process consists of four steps.

Step 1: Compute the centred moving average at time 1, say CMA,, of the original data value X, and the ratio rof X,
and CMA,. Since the data exhibits seasonal component with periodicity 7, ¢ runs from 4 (¢ = 4 is the mid-point of the
period of seven) to 361,

2
I X
cMA =—L—— T andr,=——4
2 cMA,
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8 9
2X XX
=2 + t=3 X
CMA; =% and r5 = CMT’%
CMAg and ry . CMA; and 74, ..., until
364 365
PIE EDIP
1=358 + 1=359 ¥
7 7 361
CMAy,y =———— and =,
361 2 and 7361 CMA,
Step 2: Compute the unadjusted factorUnAdj(F,).
UnAdj( F,)=UnAdj(Fy ) = UnAdj(Fy )= ...= UnAdj( Fygy ) =212 r15"1+ ot Pass
UnAdj (F, ) =UnAdj(F, ) = UnAdj( Fy ) = ... = UnAdj (Fyg, ) = 2147 ’;11+ s
UnAdj(F) = UnAdj(F) = UnAdj( Fs ) = ...= UnAdj( Fygs ) = w
UnAdj(F,) =UnAdj(Fy) = UnAdj( Fg ) = ... = UnAdj (Fysy) = w
UnAdj(F,) = UnAdj(F,y) = UnAdj( iy ) = .= UnAdj( Fygy ) = W

Step 3: Let MUAF = ; z:zl UnAdj(F,) is the average of unadjusted factors. Compute the adjusted

Unddj (F)
r=1.2 5
S 1= 1,2, ..., 365,

factor, Adj(F,) =

Step 4: Then, the deseasonalized data at time 7 is,

— Xe P
V= it 12 365, (8)

Forecasting model

According to (7), GBM model on ¥, is¥, = 0.9993Y,_, (Yr_l . If we replace Y, with the right-hand side of

)—0.1255
Ye-2

(8), we got,

—0.1255
Xr—l)

X, = 0.99934,X,_, T
=2

9

where A, = (Adj(F,)/Adj(F,_))(Adj(F,_3)/Adj(F,_;))~%'?%5 and Adj(F,) is the adjusted seasonal factor at time
1 described in the first section. It is surprising that this model has MAPE = 2.90% which means that it is highly
accurate (Lawrence et al., 2009).

Comparison with ARIMA and SARIMA

How good is the GBM model in (9) compared to ARIMA and SARIMA model? To answer this question, we try to

describe the pattern of daily maximum electricity consumption in Malaysia using ARIMA and SARIMA. The results
are in Table 1.
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Table 1: Comparison of GBM model with ARIMA and SARIMA models

No. Model Mathematical Expression MAPE
I ARIMAonraw X, =1.7959X, | —2.2243X, , +22171X, 5 -1.7743X,_, +0.9858X, ; +17%
data ~1.2101e,_; +1.6516¢,_» —13333¢,_3 +1.1442¢, 4 —04502¢, 5
2 ARIMA on _ 1 281%
deseasonalized X, = Adj(F, )[22 529566 +0.8030———— X, , J
Adj(F_y)
data
3 SARIMA X, =0.7991X, | + X, 7 —0.791X, ¢ —0.9663¢, 2.66%
4 GBM on raw data 00522 6.89%
X, =exp(-0.0006) X, , | ==
Xr—?

In this table, the ARIMA model in the first row is ARIMA(4,1,5) while SARIMA model, third row, is SARIMA
(1,00)(0,1,1)7. We see that the MAPE of GBM model (9) is 2.90% while those of ARIMA and SARIMA are 2.81%
and 2.66% respectively. These three models have similar MAPE and are highly accurate (MAPE less than 10%).
However, in terms of running time, GBM outperforms both ARIMA and SARIMA. By using the raw data, the
running time to get GBM model is 0.12 seconds (CPU time) while ARIMA needs 5.24 seconds. Meanwhile, the
running time of SARIMA is similar to that of ARIMA. Here, modelling process is conducted using R-Programming
Language.

4. Concluding Remarks:

We show how GBM model can help to describe the pattern of seasonal time series data in a very simple way with
greater computational efficiency and comparable accuracy compared to ARIMA and SARIMA models.

GBM modelling for seasonal time series data is as simple as for non-seasonal data. All what we need is to identify
the seasonal period and then remove the seasonal effect from the data. After we get the GBM model for
deseasonalized data, then we bring back it into the original data through inversion process.

The pattern of daily maximum electricity consumption in Malaysia is better described by GBM model rather than
ARIMA or SARIMA in the sense that (i) their MAPEs are comparable and small, and (ii) in terms of running time,
GBM model outperforms both ARIMA and SARIMA. It shows that GBM model is more preferable; it is simpler to
build with shorter running time.
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