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Abstract. Infectious disease and competition play importamﬁes in the dynamics of a population due to their
capability to increase the mortality rate for each organism. In this paper, the dynamical behaviors of a single
species population are studied by considering the existence of the infectious disease, intraspecific competition,
and interspecific competition. fractional-order derivative with a power-law kernel is utilized to involve the
impact of the memory eEL The population is divided into two compartments namely the susceptible class and
the infected class. The existence, uniqueness, non-ncgativihand boundedness of the solution are investigated
to confirm the biological validity. Three types of feasible equilibrium points are idelﬁed namely the origin,
the disease-free, and the endemic points. All biological conditions wh present the local and global stability
are investigated. The global sensitivity analysis is giﬁ to investigate the most influential parameter to the basic
reproduction number and the density of each class. Some numerical simulations including bifurcation diagrams
and time series are also portrayed to explore more the dynamical behaviors.
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1. INTRODUCTION

The spread of infectious disease still becomes a fundamental issue not only because of the
existence of the population but also to maintain the balance of biological systems. Several sci-
entific methods are developed to discover better ways to suppress and control the rate of disease
infection [1]. The preferred ways for the last decades for this epidemiological problems are
given by mathematical approach using a deterministic model which is considered efficacious to
understand the mechanisms of disease transmission and evaluate the appropriate control strate-
gies [2, 3, 4]. The fundamental one which has become the basis of epidemiological modeling
is given by [5] which develops the continuous-time deterministic model using first-order de-
rivative as the operator. This model is successtully developed in couple of ways such as the
continuous-time single species epidemiological modeling with first-order derivative [6, 7, 8, 9],
the discrete-time single species epidemiological modeling [10, 11, 12], the stochastic single-
species epidemiological modeling [13, 14], and the continuous-time eco-epidemiological mod-
eling [15, 16, 17].

Apart from those operators, several researchers prefer to use the fractional-order derivative
to accomplish their problems the biological modeling. See [18, 19, 20] and references therein
for some examples in epidemiological modeling. The actional-order derivative is chosen by
considering the capability of this operator to describe the current state of the biological object
the impact of all of its previous conditions which are known as memory effect 21, 22]. In
the epidemiological model, the transmission of disease may slow down and be forestalled by the
susceptible population as the impact of the memory [23]. Some fractional-order derivative has
been developed and successfully applied in epidemiological modeling ch as the Riemann-
Liouville, Caputo-Caputo-Fabrizio, and Atangana-Baleanu [24, 25, 26, 27]. From.all of the
given operators, tf: Caputo fractional-order derivative has the complete tools for namical
analysis such as the existence and uniqueness, non-negativity and boundedness, local dynamics,

global dynamics, and some bifurcation analysis. Consequently, the Caputo operator will be used

in this paper where defined later in the next section.
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In this work, we develop the epidemiological model based on the SIR model given by [5]. For
single-species conditions, this model is only popular for the infectious diseases that appeared
in the human population. In facts, infectious diseases also threaten the existence of the animal
population which disturbs the balance of the ecosystem. For examples, the infectious diseases
in endemic species such as Orangutans [28], Tarsius [29], Sumatran Tiger [30], and Komodo
dragon [31]. Moreover, the natural behaviors of animals that endanger the existence of their
populations are the intraspecific competition among them to preserve their food sources [32,
33, 34]. For these reasons, developing and investigating the dynamics of the epidemiological
model by considering the impact of intraspecific competition and the memory effect are critical
issues that become the novelty of our research.

The whole of this paper is organized in the following procedure: In Section 2, the math-
ematical modeling consists of model formulation, existence, uniqueness, non-negativity, and
boundedness are given. The analytical results including the existence of equilibrium points and
their lcal and global dynamics are completely investigated in Section 3. To show the most in-
fluential parameter of the model, the global sensitivity analysis is provided by Section 4. Some
numerical simulations as was bifurcation diagrams and time-series are presented in Sec-

tion 5 to explore more about the dynamical behaviors of the model. This work ends by giving a

conclusion in Section 6.

2. MATHEMATICAL MODELING

This stion studies about mathematical modeling consisting of the model formulation, ex-
istence, uniqueness, non-negativity, and boundedness of solution. The mathematical model is
constructed by a deterministic approach using a differential equation. We first give some as-
sumptions to restrain the model so it does not get too complicated. We next interpret the giving
assumptions to the mathematical formula using the first-order derivative as the operator. A di-
agram is presented to %ow the impact of each assumption on the flow of population density
for each compartment. To involve the impact of the memory effect, the Caputo fraction-order

derivative is applied to the model. For the mathematical model’s validity, we show that the

solution of the model always exists, unique, non-negative, and bounded.
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2.1. Model Formulation. In this work, the model is constructed from a single population
growth model. We first assume there exists a population in a habitat that grows proportionally
to its density and bounded due to the intraspecific competition. Let N(t) be the population
time t, r is the birth rate, i is the natural death rate, and @ is the death rate as a result of

competition. Thus, we have a first-order differential equation as follows.

dN

(1) o =(r— N - oN?.

Next, we assume that the population is exposed by infectious disease. The population N is
divided into two compartments namely the susceptible class (S) and infected class (1) where
N = S+1. The susceptible class is infected by disease bilinearly with infection rate B. The
competition is divided into two cases namely the intraspecific competition for each susceptible
and infected class, and the interspecific competition between susceptible and infected classes.

As result, the following model is received.

dS ]

== (r— S — iS* — (@, + B)SI.
(2) dl )

i (B — @4)SI — onI” — ul,

where @;, i =1, 2 respectively denote the death rate of the susceptible population as the results
of intraspecific and interspecific competitions between susceptible d susceptible classes, and
susceptible and infected classes. The parameters @, i = 3,4 denote the death rate of the infected
population as the result of competition between infected and infected classes, and susceptible
and infected classes. In our works, we also assume that each organism has the capability to
survive the disease. Thus, we define 1 as the recovery rate. Since each organism that survives

from the disease has a chance to be re-infected, this type of population will be again susceptible.

Finally, we have a mathematical model as follows.

ds

o= (r=)S— o8’ — (0 +p)SI+ 11,
@) dl 2

= (B — @4)SI— asl” — (n+ p)l.

All of the given assumptions and their mathematical modeling are described in Figure 1.

N-ow, the Caputo fractional-order derivative will be applied in order to conduct the impact
20

of the memory effect on the population growth rate. The similar procedure is adopted from
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FIGURE 1. Compartment diagram of model (3)

6 |
[35]. The first-order derivatives on the left-hand side of model (3) are replaced by the Caputo

fractional-order derivative defined as follows.

Definition 1. [36] Suppose 0 < o < l.e Caputo fractional derivative of order— ¢t is defined
by
@) € )= g [ =57 (5)ds

I'(l—a)Jo

where t > 0, f € C"([0,+2<).IR), and I" is the Gamma function.

Applying Definition 1 to eq. (3), the following model is obtained.

COIS = (r—pu)S—oS* — (02 + B)SI+ 1,
(&)
P01 = (B— 04)SI— 3* — (n+p)l.
Since the given process above makes the dimension of time at the left-hand side become 1%,
some parameters need to be rescaled so that there are no differences between the time’s dimen-
58
sions at the left-hand side with the right-hand side of model (5). By applying time rescale to

some parameters, we have the model as follows.

Cg2s = (r*— u®)S — of's> — (0 + B*)SI +n°1,

(6)
‘g1 = (B* — of)SI— o P — (n* +p*)L.
Letr* =7, u% = fl, 0f = @1, 0f = @y, 0f = @3, 0f = @y, % = P, and n* = 7). Thus, we
acquire
CPrs = (# —1)S — 5% — (@ + B)SI+ A1,

)
CP1 = (B — d4)SI — 1> — (A + D).
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For simplicity, by dropping ~ for ch parameter, we obtain the final model as follows.
. €97 = (r—w)S— oy 8* — (@, + P)SI+n1 = F(N(1)),
v CPT = (B — 03)SI— 3" — (N + )l = B(N(1)).

Equation (8) is the final proposed model in this paper. Although model (8) seems classic and
simple, this model will be powerful to solve and investigate the existence of a closed population
in a certain area without any outside intervention. Our literature review also shows that the
model (8) has heretofore never been studied. Now, the basic properties of model (8) such as

existence uniqueness, non-negativity, and boundedness are investigated to confirm its biological

validity.

2.2. Existence and Uniqueness. In this subsection, we will show that the model (8) has a
unique solution. A similar manner given by [37] is used. Thus, the following theorem is
presented to show the existence and uniqueness of the solution of model (8).

Theorem 1. The model (8) with initial condition S(0) = Sg > 0 and 1(0) = Iy > 0 has a uniqgue

solution.

Proof. Consider model (8) with positiveggjitial condition with F : [0,00) — R? where F(N) =

(Fi(N),F>(N)), N=N(t) and 6 = {(5,1) € R2 : max {|S|,[I|} < M} for sufficiently large M.
Then, for any N = (S,1) and N = (5,1), N,N € 0, we have
IF(N)—F(N)|
= |Fi(N) —=F(N)| + |R2(N) - B(N)|
= |[r=p)S— oS = (@4 B)SI+ni] = [(r = p)S — S = (@, +B)ST ] |+
|[(B—@4)SI— 3> — (n+ w)I] — [(B — 4)ST — 3 — (n +p)I |
< (r+1)[S=S|+ @[S =5 + (@2 +B) ST = ST| + 1 |5 7| + (B+ @3) | S = S]]
+as|P =P+ (m+p)l-1
=(r+p)|S=8|+ o |(S+8)(S—8)| + (@ +ws+2B) [I(S—5)+ S —1)|

+@n+p) [I=1|+ a3 |(I+1)(1-1)|
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<(r+u)|S—S|+20:M|S— S|+ (02 + @4 +2B)M |S—§|
+(a}z+a>4+2ﬁ)I—fl+(2n+u)ll—ﬂ+2wsMII—fI
= [(r+ 1) +20:M + (02 + w4 +2) M] |S - 5|
+ (0 + @y +2B) M + (21 + p) +203M| |1 - 1|

<L|N-NI,

where L= (n + @4+ 2B) M+ +max {r +20.M,2(n + @w3M)}. Therefore, F(N) stisfies the
Lipschitz condition. Obeying Lemma 5 in [38], we conclude that model (8) with positive initial

condition has a unique solution. O

(56

2.3. Non-negativity and Boundedness. The non-negativity and boundedness properties of

the solutions of the model (8) are given in the following theorem.

Theorem 2. All solution of the model (8), which  start in 2| =
{(S,1)[S >0, I>0,(5.1) € R?} are uniformly bounded and non-negative.

Proof. To prove the boundedness of the solutions of the model (8), the same approach of [38§]

is adopted. Let consider the function N = S+ 1. Then,
= (r—w)S— 8% — (0 + B)SI+ NI+ (B — ) SI— 031> — (N + )1

= (r—u)S — 8% — (ap + w4)SI — 31> — pul.
Hence, for each u > 0,

CYEN +UN = (r—p)S — S — (@ + 4)SI — 1> — I+ pS+ ul

= rS— 8% — (0, 4 04)SI — w31
2 2
— o (s- +L—(ab+w)51—a)312
! 2 4y - +
2
2
_40)1
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By using the comparison theorem in é‘)], we obtain N(t) < N(O)Eq(—pt*) +

+—t%Eg q+1(—ut?), where Eg and Eqy o1 is the Mittag-Leffler function with on%nd two

4!‘.1)]

parameters. According to Lemma 5 and Corollary 6 in [39], we have N(1) < 4;;] , St —¥ oo,

Therefore, all solutions of model (8) staﬁg in ]RZi are uniformly bounBEH in the region &P,

-

where & = {(SJ) ER?:S+I< Tio, TE €> 0} Next, we prove that all solutions of model

(8) are non-negative. By model (8), we haﬁc_@f‘ﬂg:n =nl>0and C.@,“Ih:o =0 >0. Based
77

on Lemmas 5 and 6 in [40], we conclude that the solutions of model (8) are non-negative. [

3. ANALYTICAL RESULTS

In this section, the dynamics of model (8) are shown analytically including the existence of

equilibrium points, and their local and global stability.

3.1. Existence of Equilibrium Points. To find the equilibrium points of model (8), we must

have
©) [(r— ) — S — (r +B)]S+nI=0,
(10) [(B—ay)S— a3l —(n+p)ll=0.

It 1 =0 is substituted to (9), we obtain

(11) [(r—1)— @S]S =0.
64

5, - Thus, we have two equilibrium points here namely

Fromeq. (11), we get S=0and § =
&y = (0,0), and &4 = (%0) The equilibrium point & is called the origin point which
represents the extinction of both susceptible and infected populations. Since & R?, this
equilibrium point always exists. Furthermore, the equilibrium point & is called the disease-
free equilibrium point (DFEP) which describes the condition where the infectious disease does
not exist anymore in the population. According to the biological condition, it is natural that the
birth rate r is greater than its death rate it. By assumiﬁ r > W, the origin point & € R? also
always exists. By simple calculation, we also obtain the basic reproduction number %, given
by

(r—p)B

12 Ty = .
(12 O oy + (n+ po
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2
e basic reproduction number is utilized to show the dynamical behavior of each equilibrium
point and to describe whether the infectious disease becomes endemic or not. Since r > U, the
value of % is always positive. Now, let’s concern the eq. (9) and (10). By solving eq. (10), we
attain

_ oI+ (M+u)

13 S
(13) ——

If we substitute eq. (13) to (9), the following polynomial equation holds.

(14) kP + kol +k3 =0

where

(72
ki = (B — @1)(B + @) + w1 a3) 03,

ky = (B —@4)((B+ @)t + (@ + @)1 — (r — ) @3) +2(N + p) 0y s,

(1=Zo)(r—u)(n+un)p

ky = .
3 A

Therefore, we acquire the endemic point (EEP)

(15) &z(@%%%Fﬂj)

where ¥ is the positive root of polynomial equation (14). From (15), we find that § > @4 must
be fulfilled so that &; € ]Rzl . Moreover, EEP exists if ¥ > 0. From eq. (14), we have k, is always
positive. Thus, the value of the ¥ depends on k> and k3. Furthermore, eq. (14) has real number
roots if k3 > 4k k3. By applying simple algebra, if k3 > 0 and k> < 0 then we have two positive
roots of eq. (14), if k3 > 0 and k> > 0 then we do not ha any positive roots of eq. (14), and if

k3 < 0 then we have a positive root of eq. (14). Finally, we have the following theorem.

Theorem 3. Let B > wy. The existence of EEP & is shown by the following statement.
(i) If k3 < 4kks then & does not exist.
(ii) If k3 = 4kik3 and
(ii.i) if ko > 0 then & does not exist.
(ii.ii) if k» < O then & exists and unique.

(iii) If k3 > dkk3 and
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(iii.i) if k3 > 0 and ky < 0 then we have a pair of &].

Denote that k% > 4k ks is always satisfied and k3 < 0 for % > 1, then the following lemma
holds.

Lemma 4. EEP & exists and unique if %o > 1.

3.2. Local Dynamics. The local dynamics of model (8) are obtained by applying the
Matignon condition which is defined as follows.

Theorem S. [Matignon condition [36]] An equilibrium point X* is locally asymptotically stgffe

(LAS) if all eigenvalues A; of the Jacobian matrix J = % at X* satisfy |arg (l_;)| > &L If there

exists at least one eigenvalue satisfy |arg (A )| > % while |arg(A;)| < %, k # 1, then X" is a

saddle-point.

Therefore, to study the local dynamics of model (8), we first compute its Jacobian matrix at

the point (S§,7) which gives

(r—p) =208 — (0 +p)1 —(+B)S+n

(B — )i (B —@4)S =231 — (N + 1)
Obeying Theorem 5 and using Jacobian matrix (16), we discuss the local stability for each

(16) F(S.1)=

equilibrium point in the next subsection.

3.3. Dynamig behavior around &p. LAS condition of &p is obtained by identifying the
54

eigenvalues of the Jacobian matrix (16) at the point (S,1) = (0,0). We receive

r—Hu n
j(SI)ldu =
0 —(Mm+u
Therefore, we have A} =r—p and A = —(1 4+ ). Since r > p and Ay < 0, we have |arg (4;)| =
0 < %F and |arg (A2)| = 7 > %F. According to Theorem 5, the following theorem holds.

Theorem 6. The origin point &y is always a saddle point.
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3.4. Dynamical behavior around &. For (x,y) = (" “:0), the Jacobian matrix (16) be-

L)
comes
(19 (r—p) - lethrw
= !
8Dl 0 (1) (r—p)B
%y

which gives a pair of eigenvalues 4y = —(r — ) and A = w Denote |arg(A2)| =
nt > %F as the impact of 4; < 0. Hence, the sign of A, takes the role in describing local dynamics
around &4 . To obtain |arg (A)| =7 > %, we need A, < 0 which is fulfilled if % < 1. If % > 1
then |arg (A2)| = 0 < %F. Following the Matignon condition given in Theorem 5, the following

theorem is successfully attained.
Theorem 7. If %y < | then & is LAS and a saddle point if %y > 1.

3.5. Dynamical behavior around &;. To identify the local stability of &7, we first compute

the Jacobian matrix (16) evaluated at &;. We generate

_ | (es¥n4men | (B-—au)ny| _ (en+B){@s¥+n+p)
[ By +ﬂ?s?|ﬂ|.ﬂ} B-ay 1

(17 .-j(S:I)ld'} =
(B — 1)y — 37

The eigenvalues of (17) are given by A; = % (& +4/&2 —452) and A, = % (§| — /&P —452)

where

_ [(esy+n+wer | B-—w)ny
é'_[ B—au +m3_]_,+n+#+aw}=

o= (2 +arp) @prnew+ (o2 —+1) (6-ain] 7

It is easy to proof that & < 0 and &, > 0 since 8 > @, becomes the existence condition. As the
impact, |arg(4;)| > &, i = 1,2 and hence the LAS always hold for EEP. Thus, the following

theorem holds.
Theorem 8. EEP & is always LAS.

3.6. Global Dynamics. In this subsection, the global dynamics of model (8) are studied. The
biological conditions of equilibrium points are investigated so that those points are globally
asymptotically stable (GAS). Since the origin is always a saddle point, we focus on studying

GAS conditions for DFEP and EEP. The next two theorems are given for the global dynamics.
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Theorem 9. DFEP &, is GAS if o > (228"

Proof. We define a positive Lyapunov function as follows.
(18) 'm(sif):(s—’_“—’"_”ln m'S)H.
(] (] r—nu

If we calculate the Caputo fractional derivative of ¥, (S,I) along the solution of model (8) and

use Lemma 3.1 in [41], we get

COAA(S.1)

sk
—_ ( Swl )C@ra5+C@ra1

— (@ + @4)ST — x> — ul
u

— o (5_ "—#)2+ (r—w)(ex+p)I  (r—p)ni
o ] oS

o) (v e

Since @, > %, we have C.@,“')‘f},(SJ)é 0 for all (8,7) € R%, and 2% ¥4(S,I) = 0 only

VAN

when (8,1) = (%0) This means that the singleton {&} is the only invariant set where
C.@,“'%,(SJ) =0. By Lemma 4.6 in [42], we can conclude that every solution of model (8)

tends to DFEP &}.
O

Theorem 10. EEP & is GAS if ¢+ %+ + 55 <min{o;, 03}.
Proof. We first define ¥ = % and hence &7 = (1, ¥). Now, a positive Lyapunov function

is presented as follows.

(19) Y(S,1) = (S—ﬂ—ﬂln£)+(1—-]7—-]7ln£)
@ 14
Following Lemma 3.1 in [41], we reach

C(S.1)

(S;ﬁ)c_@;as‘f' (1_]/) C_(Z};SEI

I

(S—5%) ((Y—H)—WIS_(@+ﬁ)I+%I) +{I=7)((B—04)S— sl —(n+p))
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—o (S—9) w3 (I-7)" — (o + @) (S— ) (I-7)

~ (- (@Jr el i)) (5 )~ (- (%+%+1)) (1-77°

2

2

29 2 2 2%

Denote that € 2%7(S,1) <0 for all (S,1) € R? as a result of ¢+ % + 75 < min{@;,3}. We

also have that € 2% 7;(S,I) = 0 only when (S,1) = (¥, 7). Therefore, the singleton {&}} is the

only invariant set where 2% ¥;(S,I) = 0. Obeying Lemma 4.6 in [42], every solution of model

(8) tends to EEP &7.

Wy

£

Parameters

O

=33

=tz

27T

T T T
R ositive relationship with Ry
E epative relationship with Ry

T

|
—0.4

| |
—02 LIXI} 02 0.4 LLKi} 0.8
PROC

FIGURE 2. PRCC results for the parameters of %

-1
20 > 10

(A) Contour plot on (@), wy)— plane

2.50 6.0
2.35 33
5.
2.20
1.5
2.5 4.0
l.mlg)‘:" 35,5
1.75 340
25
1600 =
2.0
145 .
1.5
130 0
1.5 2.0 < [
w107t 3 x 107!
-

(8) Contour ploton (8,1)— plane

FIGURE 3. Contour plots for the parameters respect to %




I. DJAKARIA, H.S. PANIGORO, E. BONYAH, E. RAHMI, W. MUSA

—_—

0.0

PRCC

—0.2F

—4F

—LGf

. I I I
—U.oﬁ{

1 10 20 4l

Time {days)

FIGURE 4. PRCC results for the parameters of I(¢)

]

Al

TABLE 1. PRCC results in respect to the population density of infected class

PRCC Rank Relationship with (1)

Parameter &escriplion

(0]

The death rate of susceptible population due to the

'ﬁlraspeciﬁc competition

The death rate of susceptible population due to the

interspecific competition

The death rate of infected population due to the in-
saspecific competition

The death rate of infected population due to the inter-

specific competition

The infection rate

The recovery rate

-0.00851

-0.01938

-0.01990

-0.54635

0.54631
-0.43606

6

Negative relationship

Negative relationship

Negative relationship

Negative relationship

Positive relationship

Negative relationship
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FIGURE 5. Bifurcation diagram and times-series of model (8) driven by the

infection rate () with parameter values given by eq. (20)
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recovery rate (1)) with parameter values given by eq. (20)
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4. GLOBAL SENSITIVITY ANALYSIS

In this section, the global sensitivity analysis is studied to investigate the most influential
parameters of model (8). Global sensitivity analysis is calculated using Partial Rank Coefficient
Correlation (PRCC) [43], where the random data processed in PRCC is generated using Saltelli

17

the basic reprodﬁtion number (%) and the population density of infected class (I(1)). We
26

first investigate the most influential parameter to the basic reproduction number (%). Fam
21

%mpling [44]. Two biological components become the objective function for the PRCC namely

eq. (12), we acquire that only r, 1, @y, @y, and 1 have the influence on the value of %,. The
birth rate and the natural death rate also can be fixed since some cases in the epidemiological
model has the values of these parameters. Thus, only 8, 17, @y, and @4 will be computed for
PRCC. The Figure 2 is given for the results. We have § = 0.763, ®; = —0.352, oy = —0.33,
and 11 = —0.277 as the coefficient correlation such that the infection rate () becomes the most
influential parameter to %y and followed by @, @4, and 1, respectively. It shows that the
infection rate () as the most influential parameter has a positive relationship with e basic
reproduction number (%) which means that % will significantly increases when f increases.
The rest @, w4, and 1 have a negative relationship with %, which means that by reducing
the value of those parameters, the basic reproduction number (%) will increases. To show the
impact of these parameters on %y, the contour plots are also portrayed in Figure 3.

Next, we identify the most influential parameter to the population density of infected class
(I(¢)). Quite similar to previous work, the value of r and p are fixed but the rest of the pa-
rameters are involved to compute PRCC. PRCC values are computed for 0 < ¢ < 50 which
is considered sufficient enough to see the convergence for each parameter through the PRCC.
We portray the PRCC results in Figure 4 while the PRC-C values, ranks, and the relationship
between each parameter and I(¢) are given in Table 1. om those simulations, we conclude
that the death rate of infected population due to interspecific competition between susceptible
and infected classes (@;) become the most influential parameter to the population density (I(¢))

followed respectively by 8, 1, @3, @», and @;. In the next section, the numerical simulations

including bifurcation diagram and time-series are presented to show the impact of the infection
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rate (f3), recci!ery rate (17), intraspecific competition (@; and @3), and interspecific competition
1

(@ and @4) to the dynamical behaviors of model (8).

S. NUMERICAL SIMULATIONS

In this section, the dynamical behaviors of model (8) including bifurcation diagram and time-
series are studied numerically. To obtain the bifurcation diagram and the corresponding time-

1

series of model (8), the predictor-corrector scheme developed by Diethelm et al. is employed
[45]. Since the model does not investigateéspeciﬁc epidemiological case, we use hypothetical
parameters for all numerical simulations. we set the parameter values as follows.
(20)

r=06 u=0.1 0 =01 =01 =01 04 =0.1, =04, n1=0.2,and x =0.9

We start our work by investigating the impact of infection rate () on the dynamics of model
(8). The value of B is varied in the interval 0 < 3 < 1 and we then compute the numerical
solutions. To obtain the bifurcation diagram, we plot the tail of solutions for each B together
with the LAS condition of £4. As result, we obtain a bifurcation diagram as in Figure 5a. When
0 < B < B* B* =0.16, the EEP &; does not exist and Theorem 7 is satisfied which means
that DFE &} is LAS. The solution is convergent to &4 which indicates the population free from
disease. When f passes through %, &4 losses its stability, and unique LAS EEP &} occurs
in the interior. The infectious disease becomes endemic in the population and still exists for
all t — e. From the concatenation of those biological circumstances, we conclude that forward
bifurcation occurs around &, where f3 is the bifurcation parameter and 8 = 3* is the bifurcation
point. It is easy to examine that the bifurcation point f = * is equal to % = 1. The dynamical
behaviors are maintained for B* < 8 < 1. To support these conditions, some time series are
given in Figure 5b to show the convergence of solutions for different values of f3.

Next, the impact of recover rate (1) is studied. A _similar numerical scheme as the previous
way is applied. To depicts the bifurcation diagram, f: parameter is fixed as in eq. (20) and the
recovery rate (1) is varied in interval 0 <7 < 1. We have Figure 6a as the result. Denote that the
bifurcation does not exist for this interval. Both DFEP and EEP exist with distinct stability. The

DFEP & is a saddle point while the EEP &7 is LAS which confirm the validity of Theorems 6
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and 7. We also confirm that the EEP &} attains GAS which means that all initial conditions
will go right to the EEP and the infectious disease will exist all the time. Although the disease
becomes endemic, the numerical simulation shows that the value of 1 is directly proportional
to S(t) and inversely proportional to I(t), see Figure 6b. This means the population density of
the infected class can be reduced by increasing the recovery rate (1).

For the next simulation, the impact of intraspecific competition is investigated. The death
rate parameters caused by intraspecific competition on susceptible and infected classes (@, and
;) are varied in interval [0, 1]. It is found that forward bifurcation occurs when @ is driven
where the bifurcation point is given by @ = 0.5, see Figure 7a. The population density of
both susceptible and infected classes reduces when the death rate of S(¢) due to intraspecific
competition increases as given by Figure 7b. Particularly, Figure 8a shows that bifurcation does
not exists in interval 0 < @; < 1 when o, is varied but the dynamical behaviors show that S(¢)
increases and (t) decrease when @, increase. We confirm this condition by giving time-series
in Figure 8b.

Now, we study the impact of interspecific competition on the dynamical behaviors of model
(8). Both susceptible and infected classes have died due to the existence of interspecific com-
petition given by parameters @, and w,. By varying @, and @y in interval [0, 1], we obtain
Figures 9a and 10a as the bifurcation diagram. We find forward bifurcation driven by @4 which
does not exist when varying ;. This means, the EEP still exists and LAS for 0 << @» < 1.
The EEP will disappear via forward bifurcation and the saddle DFEP becomes LAS when @y
crosses @; = 0.34. This guarantees that the infectious disease may eliminate the disease in pop-
ulation when the death rate of the infected population due to interspecific competition increases
as shown in Figure 10b. Although the disease does not disappear when @, is driven, we also can
see in Figure 9b that by increasing @, the population density of the infected class will reduce
and the susceptible class will increase.

Finally, the impact of memory effect (&) is investigated. The numerical simulation is given
by Figure 11. For o =0.7,0.8,0.9, 1 and similar initial values, all solution converge to single
equilibrium point given by & ~ (1.3465,1.0395), see Figure 11(a,b). We then plot the local

amplification to show the difference of solutions when « is varied. We find that the difference
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lies in the convergence rate where for larger values of o, the convergence rate increase and
vice versa as shown in Figure 11(e,f). In the beginning, Figure 11(c,d) we show that when o
decrease, the population density of the infected class reduce. From a biological point of view,
we can say that biological memory has an impact on density of both susceptible and infected

classes.

6. CONCLUSION

The dynamics of a fractional-order SIS-epidemic model with intraspecific and interspecific
competitio.n have been studied. The validity of the model has been confirmed analytically by

24
showing the existence, uniqueness, non-negativity, andundedness of solutions. Three equi-
librium points have been obtained namely the origin, the disease-free equilibrium point, and
the f:nd.f:mjc equilibrium point. Both origin and disease-free equilibrium points always exist
while te endemic equilibrium point conditionally exists. The basic reproduction number %

has been given which has a relationship with local stability of the model. (9’?,’0 < 1 then the
disease-free equilibrium point is locally asymptotically stable and if % > 1 then the disease-
free ec&ilibrium point losses its stability along with the existence of a locally asymptotically
stable endemic equilibrium point. The global stability conditions of equilibrium points also
have been found. The PRCC has been worked to invtigate the most influential parameter.
We have successfully shown that the infection rate and the death rate of the infected population
due to interspecific competition becomes the most influential parameter for sic reproduction
number and the population density of the infected class. We then investigate the impact of sev-
eral parameters using numerical simulations including the infection rate, the recovery rate, the
intraspecific competition, the interspecific competition, and the memory effect on the dynamics
of the model. Bifurcation diagrams and time series have been given which show the existence

of forward bifurcation, the decrease of susceptible and infected classes, and the decrease of

convergence rate caused by the memory effect.
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