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Abstract

Infectious disease and competition play important roles in the dynamics of a population due to their capabil-
ity to increase the mortality rate for each organism. In this paper, the dynamical behaviors of a single species
population are studied by considering the existence of the infectious disease, intraspecific competition, and
interspecific competition. The fractional-order derivative with a power-law kernel is utilized to involve the
impact of the memory effect. The population is divided into two compartments namely the susceptible class
and the infected class. The existence, uniqueness, non-negativity, and boundedness of the solution are in-
vestigated to confirm the biological validity. Three types of feasible equilibrium points are identified namely
the origin, the disease-free, and the endemic points. All biological conditions which present the local and
global stability are investigated. The global sensitivity analysis is given to investigate the most influential
parameter to the basic reproduction number and the density of each class. Some numerical simulations
including bifurcation diagrams and time series are also portrayed to explore more the dynamical behaviors.

Keywords: Infectious Disease, Competition, Fractional Derivative, Caputo Operator, Dynamical Behaviors

1. Introduction1

The spread of infectious disease still becomes a fundamental issue not only because of the existence of the2

population but also to maintain the balance of biological systems. Several scientific methods are developed3

to discover better ways to suppress and control the rate of disease infection [1]. The preferred ways for the4

last decades for this epidemiological problems are given by mathematical approach using a deterministic5

model which is considered efficacious to understand the mechanisms of disease transmission and evaluate6

the appropriate control strategies [2–4]. The fundamental one which has become the basis of epidemiological7

modeling is given by [5] which develops the continuous-time deterministic model using first-order derivative as8

the operator. This model is successfully developed in couple of ways such as the continuous-time single species9

epidemiological modeling with first-order derivative [6–9], the discrete-time single species epidemiological10

modeling [10–12], the stochastic single-species epidemiological modeling [13, 14], and the continuous-time11

eco-epidemiological modeling [15–17].12

Apart from those operators, several researchers prefer to use the fractional-order derivative to accom-13

plish their problems the biological modeling. See [18–20] and references therein for some examples in14

epidemiological modeling. The fractional-order derivative is chosen by considering the capability of this15

operator to describe the current state of the biological object as the impact of all of its previous conditions16
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which are known as the memory effect [21, 22]. In the epidemiological model, the transmission of disease17

may slow down and be forestalled by the susceptible population as the impact of the memory [23]. Some18

fractional-order derivative has been developed and successfully applied in epidemiological modeling such19

as the Riemann-Liouville, Caputo, Caputo-Fabrizio, and Atangana-Baleanu [24–27]. From all of the given20

operators, the Caputo fractional-order derivative has the complete tools for dynamical analysis such as the21

existence and uniqueness, non-negativity and boundedness, local dynamics, global dynamics, and some bi-22

furcation analysis. Consequently, the Caputo operator will be used in this paper where defined later in the23

next section.24

In this work, we develop the epidemiological model based on the SIR model given by [5]. For single-species25

conditions, this model is only popular for the infectious diseases that appeared in the human population.26

In facts, infectious diseases also threaten the existence of the animal population which disturbs the balance27

of the ecosystem. For examples, the infectious diseases in endemic species such as Orangutans [28], Tarsius28

[29], Sumatran Tiger [30], and Komodo dragon [31]. Moreover, the natural behaviors of animals that29

endanger the existence of their populations are the intraspecific competition among them to preserve their30

food sources [32–34]. For these reasons, developing and investigating the dynamics of the epidemiological31

model by considering the impact of intraspecific competition and the memory effect are critical issues that32

become the novelty of our research.33

The whole of this paper is organized in the following procedure: In Section 2, the mathematical mod-34

eling consists of model formulation, existence, uniqueness, non-negativity, and boundedness are given. The35

analytical results including the existence of equilibrium points and their local and global dynamics are com-36

pletely investigated in Section 3. To show the most influential parameter of the model, the global sensitivity37

analysis is provided by Section 4. Some numerical simulations as well as bifurcation diagrams and time-series38

are presented in Section 5 to explore more about the dynamical behaviors of the model. This work ends by39

giving a conclusion in Section 6.40

2. Mathematical Modeling41

This section studies about mathematical modeling consisting of the model formulation, existence, unique-42

ness, non-negativity, and boundedness of solution. The mathematical model is constructed by a deterministic43

approach using a differential equation. We first give some assumptions to restrain the model so it does not44

get too complicated. We next interpret the giving assumptions to the mathematical formula using the first-45

order derivative as the operator. A diagram is presented to show the impact of each assumption on the46

flow of population density for each compartment. To involve the impact of the memory effect, the Caputo47

fractional-order derivative is applied to the model. For the mathematical model’s validity, we show that the48

solution of the model always exists, unique, non-negative, and bounded.49

2.1. Model Formulation50

In this work, the model is constructed from a single population growth model. We first assume there51

exists a population in a habitat that grows proportionally to its density and bounded due to the intraspecific52

competition. Let N(t) be the population at time t, r is the birth rate, µ is the natural death rate, and ω is53

the death rate as a result of competition. Thus, we have a first-order differential equation as follows.54

dN

dt
= (r − µ)N − ωN2. (1)

Next, we assume that the population is exposed by infectious disease. The population N is divided into two55

compartments namely the susceptible class (S) and infected class (I) where N = S+I. The susceptible class56

is infected by disease bilinearly with infection rate β. The competition is divided into two cases namely the57

intraspecific competition for each susceptible and infected class, and the interspecific competition between58

susceptible and infected classes. As result, the following model is received.59

dS

dt
= (r − µ)S − ω1S

2 − (ω2 + β)SI,

dI

dt
= (β − ω4)SI − ω3I

2 − µI,

(2)

2



where ωi, i = 1, 2 respectively denote the death rate of the susceptible population as the results of intraspe-60

cific and interspecific competitions between susceptible and susceptible classes, and susceptible and infected61

classes. The parameters ωi, i = 3, 4 denote the death rate of the infected population as the result of com-62

petition between infected and infected classes, and susceptible and infected classes. In our works, we also63

assume that each organism has the capability to survive the disease. Thus, we define η as the recovery rate.64

Since each organism that survives from the disease has a chance to be re-infected, this type of population65

will be again susceptible. Finally, we have a mathematical model as follows.66

dS

dt
= (r − µ)S − ω1S

2 − (ω2 + β)SI + ηI,

dI

dt
= (β − ω4)SI − ω3I

2 − (η + µ)I.

(3)

All of the given assumptions and their mathematical modeling are described in Figure 1.67

Figure 1: Compartment diagram of model (3)

Now, the Caputo fractional-order derivative will be applied in order to conduct the impact of the memory68

effect on the population growth rate. The similar procedure is adopted from [35]. The first-order derivatives69

on the left-hand side of model (3) are replaced by the Caputo fractional-order derivative defined as follows.70

Definition 1. [36] Suppose 0 < α ≤ 1. The Caputo fractional derivative of order−α is defined by71

CDα
t f(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αf ′(s)ds, (4)

where t ≥ 0, f ∈ Cn([0,+∞),R), and Γ is the Gamma function.72

Applying Definition 1 to eq. (3), the following model is obtained.73

CDα
t S = (r − µ)S − ω1S

2 − (ω2 + β)SI + ηI,
CDα

t I = (β − ω4)SI − ω3I
2 − (η + µ)I.

(5)

Since the given process above makes the dimension of time at the left-hand side become tα, some parameters74

need to be rescaled so that there are no differences between the time’s dimensions at the left-hand side with75

the right-hand side of model (5). By applying time rescale to some parameters, we have the model as follows.76

CDα
t S = (rα − µα)S − ωα

1 S
2 − (ωα

2 + βα)SI + ηαI,
CDα

t I = (βα − ωα
4 )SI − ωα

3 I
2 − (ηα + µα)I.

(6)

Let rα = r̂, µα = µ̂, ωα
1 = ω̂1, ω

α
2 = ω̂2, ω

α
3 = ω̂3, ω

α
4 = ω̂4, β

α = β̂, and ηα = η̂. Thus, we acquire77

CDα
t S = (r̂ − µ̂)S − ω̂1S

2 − (ω̂2 + β̂)SI + η̂I,

CDα
t I = (β̂ − ω̂4)SI − ω̂3I

2 − (η̂ + µ̂)I.
(7)

For simplicity, by dropping .̂ for each parameter, we obtain the final model as follows.78

CDα
t S = (r − µ)S − ω1S

2 − (ω2 + β)SI + ηI = F1(N(t)),
CDα

t I = (β − ω4)SI − ω3I
2 − (η + µ)I = F2(N(t)).

(8)

3



Equation (8) is the final proposed model in this paper. Although model (8) seems classic and simple,79

this model will be powerful to solve and investigate the existence of a closed population in a certain area80

without any outside intervention. Our literature review also shows that the model (8) has heretofore never81

been studied. Now, the basic properties of model (8) such as the existence uniqueness, non-negativity, and82

boundedness are investigated to confirm its biological validity.83

2.2. Existence and Uniqueness84

In this subsection, we will show that the model (8) has a unique solution. A similar manner given by85

[37] is used. Thus, the following theorem is presented to show the existence and uniqueness of the solution86

of model (8).87

Theorem 1. The model (8) with initial condition S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0 has a unique solution.88

Proof. Consider model (8) with positive initial condition with F : [0,∞) → R2 where F (N) = (F1(N), F2(N)),89

N ≡ N(t) and θ ≡
{
(S, I) ∈ R2

+ : max {|S| , |I|} ≤ M
}
for sufficiently large M . Then, for any N = (S, I)90

and N̄ = (S̄, Ī), N, N̄ ∈ θ, we have91 ∥∥F (N)− F (N̄)
∥∥ =

∣∣F1(N)− F1(N̄)
∣∣+ ∣∣F2(N)− F2(N̄)

∣∣
=
∣∣[(r − µ)S − ω1S

2 − (ω2 + β)SI + ηI
]
−
[
(r − µ)S̄ − ω1S̄

2 − (ω2 + β)S̄Ī + ηĪ
]∣∣+∣∣[(β − ω4)SI − ω3I

2 − (η + µ)I
]
−
[
(β − ω4)S̄Ī − ω3Ī

2 − (η + µ)Ī
]∣∣

≤ (r + µ)
∣∣S − S̄

∣∣+ ω1

∣∣S2 − S̄2
∣∣+ (ω2 + β)

∣∣SI − S̄Ī
∣∣+ η

∣∣I − Ī
∣∣+ (β + ω4)

∣∣SI − S̄Ī
∣∣

+ ω3

∣∣I2 − Ī2
∣∣+ (η + µ)

∣∣I − Ī
∣∣

= (r + µ)
∣∣S − S̄

∣∣+ ω1

∣∣(S + S̄)(S − S̄)
∣∣+ (ω2 + ω4 + 2β)

∣∣I(S − S̄) + S̄(I − Ī)
∣∣

+ (2η + µ)
∣∣I − Ī

∣∣+ ω3

∣∣(I + Ī)(I − Ī)
∣∣

≤ (r + µ)
∣∣S − S̄

∣∣+ 2ω1M
∣∣S − S̄

∣∣+ (ω2 + ω4 + 2β)M
∣∣S − S̄

∣∣
+ (ω2 + ω4 + 2β)M

∣∣I − Ī
∣∣+ (2η + µ)

∣∣I − Ī
∣∣+ 2ω3M

∣∣I − Ī
∣∣

= [(r + µ) + 2ω1M + (ω2 + ω4 + 2β)M ]
∣∣S − S̄

∣∣+ [(ω2 + ω4 + 2β)M + (2η + µ) + 2ω3M ]
∣∣I − Ī

∣∣
≤ L

∥∥N − N̄
∥∥ ,

where L = (ω2 + ω4 + 2β)M + µ + max {r + 2ω1M, 2(η + ω3M)}. Therefore, F (N) stisfies the Lipschitz92

condition. Obeying Lemma 5 in [38], we conclude that model (8) with positive initial condition has a unique93

solution.94

2.3. Non-negativity and Boundedness95

The non-negativity and boundedness properties of the solutions of the model (8) are given in the following96

theorem.97

Theorem 2. All solution of the model (8), which start in R2
+ :=

{
(S, I) |S ≥ 0, I ≥ 0, (S, I) ∈ R2

}
are98

uniformly bounded and non-negative.99

Proof. To prove the boundedness of the solutions of the model (8), the same approach of [38] is adopted.100

Let consider the function N = S + I. Then,101

CDα
t N = CDα

t S + CDα
t I

= (r − µ)S − ω1S
2 − (ω2 + β)SI + ηI + (β − ω4)SI − ω3I

2 − (η + µ)I

= (r − µ)S − ω1S
2 − (ω2 + ω4)SI − ω3I

2 − µI.

Hence, for each µ > 0,102

CDα
t N + µN = (r − µ)S − ω1S

2 − (ω2 + ω4)SI − ω3I
2 − µI + µS + µI

4



= rS − ω1S
2 − (ω2 + ω4)SI − ω3I

2

= − ω1

(
S − r

2ω1

)2

+
r2

4ω1
− (ω2 + ω4)SI − ω3I

2

≤ r2

4ω1

By using the comparison theorem in [39], we obtain N(t) ≤ N(0)Eα(−µtα) + r2

4ω1
tαEα,α+1(−µtα), where103

Eα and Eα,α+1 is the Mittag-Leffler function with one and two parameters. According to Lemma 5 and104

Corollary 6 in [39], we have N(t) ≤ r2

4µω1
, as t → ∞. Therefore, all solutions of model (8) starting in105

R2
+ are uniformly bounded in the region Φ, where Φ =

{
(S, I) ∈ R2

+ : S + I ≤ r2

4µω1
+ ϵ, ϵ > 0

}
Next, we106

prove that all solutions of model (8) are non-negative. By model (8), we have CDα
t S|S=0 = ηI ≥ 0 and107

CDα
t I|I=0 = 0 ≥ 0. Based on Lemmas 5 and 6 in [40], we conclude that the solutions of model (8) are108

non-negative.109

3. Analytical Results110

In this section, the dynamics of model (8) are shown analytically including the existence of equilibrium111

points, and their local and global stability.112

3.1. Existence of Equilibrium Points113

To find the equilibrium points of model (8), we must have114

[(r − µ)− ω1S − (ω2 + β)I]S + ηI = 0, (9)

[(β − ω4)S − ω3I − (η + µ)]I = 0. (10)

If I = 0 is substituted to (9), we obtain115

[(r − µ)− ω1S]S = 0. (11)

From eq. (11), we get S = 0 and S = r−µ
ω1

. Thus, we have two equilibrium points here namely E0 = (0, 0),116

and EA =
(

r−µ
ω1

, 0
)
. The equilibrium point E0 is called the origin point which represents the extinction of117

both susceptible and infected populations. Since E0 ∈ R2
+, this equilibrium point always exists. Furthermore,118

the equilibrium point EA is called the disease-free equilibrium point (DFEP) which describes the condition119

where the infectious disease does not exist anymore in the population. According to the biological condition,120

it is natural that the birth rate r is greater than its death rate µ. By assuming r > µ, the origin point121

EA ∈ R2
+ also always exists. By simple calculation, we also obtain the basic reproduction number R0 given122

by123

R0 =
(r − µ)β

(r − µ)ω4 + (η + µ)ω1
. (12)

The basic reproduction number is utilized to show the dynamical behavior of each equilibrium point and124

to describe whether the infectious disease becomes endemic or not. Since r > µ, the value of R0 is always125

positive. Now, let’s concern the eq. (9) and (10). By solving eq. (10), we attain126

S =
ω3I + (η + µ)

β − ω4
. (13)

If we substitute eq. (13) to (9), the following polynomial equation holds.127

k1I
2 + k2I + k3 = 0, (14)

5



where128

k1 = ((β − ω4)(β + ω2) + ω1ω3)ω3,

k2 = (β − ω4)((β + ω2)µ+ (ω2 + ω4)η − (r − µ)ω3) + 2(η + µ)ω1ω3,

k3 =
(1−R0)(r − µ)(η + µ)β

R0
.

Therefore, we acquire the endemic point (EEP)129

EI =

(
ω3γ̄ + (η + µ)

β − ω4
, γ̄

)
, (15)

where γ̄ is the positive root of polynomial equation (14). From (15), we find that β > ω4 must be fulfilled so130

that EI ∈ R2
+. Moreover, EEP exists if γ̄ > 0. From eq. (14), we have k1 is always positive. Thus, the value131

of the γ̄ depends on k2 and k3. Furthermore, eq. (14) has real number roots if k22 ≥ 4k1k3. By applying132

simple algebra, if k3 > 0 and k2 < 0 then we have two positive roots of eq. (14), if k3 > 0 and k2 > 0 then133

we do not have any positive roots of eq. (14), and if k3 < 0 then we have a positive root of eq. (14). Finally,134

we have the following theorem.135

Theorem 3. Let β > ω4. The existence of EEP EI is shown by the following statement.136

(i) If k22 < 4k1k3 then EI does not exist.137

(ii) If k22 = 4k1k3 and138

(ii.i) if k2 > 0 then EI does not exist.139

(ii.ii) if k2 < 0 then EI exists and unique.140

(iii) If k22 > 4k1k3 and141

(iii.i) if k3 > 0 and k2 < 0 then we have a pair of EI .142

(iii.ii) if k3 > 0 and k2 > 0 then EI does not exist.143

(iii.iii) if k3 < 0 then EI exists and unique.144

Denote that k22 > 4k1k3 is always satisfied and k3 < 0 for R0 > 1, then the following lemma holds.145

Lemma 4. EEP EI exists and unique if R0 > 1.146

3.2. Local Dynamics147

The local dynamics of model (8) are obtained by applying the Matignon condition which is defined as148

follows.149

Theorem 5. [Matignon condition [36]] An equilibrium point x⃗∗ is locally asymptotically stable (LAS) if150

all eigenvalues λj of the Jacobian matrix J = ∂f⃗
∂x⃗ at x⃗∗ satisfy |arg (λj)| > απ

2 . If there exists at least one151

eigenvalue satisfy |arg (λk)| > απ
2 while |arg (λl)| < απ

2 , k ̸= l, then x⃗∗ is a saddle-point.152

Therefore, to study the local dynamics of model (8), we first compute its Jacobian matrix at the point153

(S, I) which gives154

J (S, I) =

[
(r − µ)− 2ω1S − (ω2 + β)I −(ω2 + β)S + η

(β − ω4)I (β − ω4)S − 2ω3I − (η + µ)

]
. (16)

Obeying Theorem 5 and using Jacobian matrix (16), we discuss the local stability for each equilibrium point155

in the next subsection.156
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3.3. Dynamical behavior around E0157

LAS condition of E0 is obtained by identifying the eigenvalues of the Jacobian matrix (16) at the point158

(S, I) = (0, 0). We receive159

J (S, I)|E0
=

[
r − µ η
0 −(η + µ)

]
.

Therefore, we have λ1 = r − µ and λ2 = −(η + µ). Since r > µ and λ2 < 0, we have |arg (λ1)| = 0 < απ
2160

and |arg (λ2)| = π > απ
2 . According to Theorem 5, the following theorem holds.161

Theorem 6. The origin point E0 is always a saddle point.162

3.4. Dynamical behavior around EA163

For (x, y) =
(

r−µ
ω1

, 0
)
, the Jacobian matrix (16) becomes

J (S, I)|EA
=

[
−(r − µ) η − (ω2+β)(r−µ)

ω1

0 (R0−1)(r−µ)β
ω1R0

]
,

which gives a pair of eigenvalues λ1 = −(r − µ) and λ2 = (R0−1)(r−µ)β
ω1R0

. Denote |arg (λ2)| = π > απ
2 as the164

impact of λ1 < 0. Hence, the sign of λ2 takes the role in describing local dynamics around EA. To obtain165

|arg (λ2)| = π > απ
2 , we need λ2 < 0 which is fulfilled if R0 < 1. If R0 > 1 then |arg (λ2)| = 0 < απ

2 .166

Following the Matignon condition given in Theorem 5, the following theorem is successfully attained.167

Theorem 7. If R0 < 1 then EA is LAS and a saddle point if R0 > 1.168

3.5. Dynamical behavior around EI169

To identify the local stability of EI , we first compute the Jacobian matrix (16) evaluated at EI . We170

generate171

J (S, I)|EI
=

[
−
[
(ω3γ̄+η+µ)ω1

β−ω4
+ (β−ω4)ηγ̄

ω3γ̄+η+µ

]
− (ω2+β)(ω3γ̄+η+µ)

β−ω4
+ η

(β − ω4)γ̄ −ω3γ̄

]
. (17)

The eigenvalues of (17) are given by λ1 = 1
2

(
ξ1 +

√
ξ21 − 4ξ2

)
and λ2 = 1

2

(
ξ1 −

√
ξ21 − 4ξ2

)
where172

ξ1 = −
[
(ω3γ̄ + η + µ)ω1

β − ω4
+

(β − ω4)ηγ̄

ω3γ̄ + η + µ
+ ω3γ̄

]
,

ξ2 =

[(
ω1ω3

β − ω4
+ ω2 + β

)
(ω3γ̄ + η + µ) +

(
ω3γ̄

ω3γ̄ + η + µ
+ 1

)
(β − ω4)η

]
γ̄.

It is easy to proof that ξ1 < 0 and ξ2 > 0 since β > ω4 becomes the existence condition. As the impact,173

|arg (λi)| > απ
2 , i = 1, 2 and hence the LAS always hold for EEP. Thus, the following theorem holds.174

Theorem 8. EEP EI is always LAS.175

3.6. Global Dynamics176

In this subsection, the global dynamics of model (8) are studied. The biological conditions of equilibrium177

points are investigated so that those points are globally asymptotically stable (GAS). Since the origin is178

always a saddle point, we focus on studying GAS conditions for DFEP and EEP. The next two theorems179

are given for the global dynamics.180

Theorem 9. DFEP EA is GAS if ω1 > (ω2+β)r
µ .181
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Proof. We define a positive Lyapunov function as follows.182

VA(S, I) =

(
S − r − µ

ω1
− r − µ

ω1
ln

ω1S

r − µ

)
+ I. (18)

If we calculate the Caputo fractional derivative of VA(S, I) along the solution of model (8) and use Lemma183

3.1 in [41], we get184

CDα
t VA(S, I) =

(
S − r−µ

ω1

S

)
CDα

t S + CDα
t I

= − ω1

(
S − r − µ

ω1

)2

+
(r − µ)(ω2 + β)I

ω1
− (r − µ)ηI

ω1S
− (ω2 + ω4)SI − ω3I

2 − µI

≤ − ω1

(
S − r − µ

ω1

)2

−
(
µ− (ω2 + β)r

ω1

)
I

Since ω1 > (ω2+β)r
µ , we have CDα

t VA(S, I) ≤ 0 for all (S, I) ∈ R2
+, and CDα

t VA(S, I) = 0 only when185

(S, I) =
(

r−µ
ω1

, 0
)
. This means that the singleton {EA} is the only invariant set where CDα

t VA(S, I) = 0.186

By Lemma 4.6 in [42], we can conclude that every solution of model (8) tends to DFEP EA.187

188

Theorem 10. EEP EI is GAS if ω2

2 + ω4

2 + η
2ϑ < min {ω1, ω3}.189

Proof. We first define ϑ = ω3γ̄+(η+µ)
β−ω4

and hence EI = (ϑ, γ̄). Now, a positive Lyapunov function is presented190

as follows.191

VI(S, I) =

(
S − ϑ− ϑ ln

S

φ

)
+

(
I − γ̄ − γ̄ ln

S

γ̄

)
(19)

Following Lemma 3.1 in [41], we reach192

CDα
t VI(S, I) =

(
S − ϑ

S

)
CDα

t S +

(
I − γ̄

I

)
CDα

t I

= (S − S∗)

(
(r − µ)− ω1S − (ω2 + β)I +

ηI

S

)
+ (I − γ̄) ((β − ω4)S − ω3I − (η + µ))

= − ω1 (S − ϑ)
2 − ω3 (I − γ̄)

2 − (ω2 + ω4) (S − S∗) (I − γ̄)

≤ −
(
ω1 −

(ω2

2
+

ω4

2
+

η

2ϑ

))
(S − ϑ)

2 −
(
ω3 −

(ω2

2
+

ω4

2
+

η

2ϑ

))
(I − γ̄)

2

Denote that CDα
t VI(S, I) ≤ 0 for all (S, I) ∈ R2

+ as a result of ω2

2 + ω4

2 + η
2ϑ < min {ω1, ω3}. We also have193

that CDα
t VI(S, I) = 0 only when (S, I) = (ϑ, γ̄). Therefore, the singleton {EI} is the only invariant set194

where CDα
t VI(S, I) = 0. Obeying Lemma 4.6 in [42], every solution of model (8) tends to EEP EI .195

4. Global Sensitivity Analysis196

In this section, the global sensitivity analysis is studied to investigate the most influential parameters197

of model (8). Global sensitivity analysis is calculated using Partial Rank Coefficient Correlation (PRCC)198

[43], where the random data processed in PRCC is generated using Saltelli sampling [44]. Two biological199

components become the objective function for the PRCC namely the basic reproduction number (R0) and200

the population density of infected class (I(t)). We first investigate the most influential parameter to the201

basic reproduction number (R0). From eq. (12), we acquire that only r, µ, ω1, ω4, and η have the influence202
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Figure 3: Contour plots for the parameters respect to R0

on the value of R0. The birth rate and the natural death rate also can be fixed since some cases in the203

epidemiological model has the values of these parameters. Thus, only β, η, ω1, and ω4 will be computed for204

PRCC. The Figure 2 is given for the results. We have β = 0.763, ω1 = −0.352, ω4 = −0.33, and η = −0.277205

as the coefficient correlation such that the infection rate (β) becomes the most influential parameter to R0206

and followed by ω1, ω4, and η, respectively. It shows that the infection rate (β) as the most influential207

parameter has a positive relationship with the basic reproduction number (R0) which means that R0 will208

significantly increases when β increases. The rest ω1, ω4, and η have a negative relationship with R0 which209

means that by reducing the value of those parameters, the basic reproduction number (R0) will increases.210

To show the impact of these parameters on R0, the contour plots are also portrayed in Figure 3.211

Next, we identify the most influential parameter to the population density of infected class (I(t)). Quite212

similar to previous work, the value of r and µ are fixed but the rest of the parameters are involved to213
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Table 1: PRCC results in respect to the population density of infected class

Parameter Description PRCC Rank Relationship with I(t)
ω1 The death rate of susceptible population due to the in-

traspecific competition
-0.00851 6 Negative relationship

ω2 The death rate of susceptible population due to the inter-
specific competition

-0.01938 5 Negative relationship

ω3 The death rate of infected population due to the intraspe-
cific competition

-0.01990 4 Negative relationship

ω4 The death rate of infected population due to the interspe-
cific competition

-0.54635 1 Negative relationship

β The infection rate 0.54631 2 Positive relationship
η The recovery rate -0.43606 3 Negative relationship

compute PRCC. PRCC values are computed for 0 ≤ t ≤ 50 which is considered sufficient enough to see the214

convergence for each parameter through the PRCC. We portray the PRCC results in Figure 4 while the215

PRCC values, ranks, and the relationship between each parameter and I(t) are given in Table 1. From those216

simulations, we conclude that the death rate of infected population due to interspecific competition between217

susceptible and infected classes (ω4) become the most influential parameter to the population density (I(t))218

followed respectively by β, η, ω3, ω2, and ω1. In the next section, the numerical simulations including219

bifurcation diagram and time-series are presented to show the impact of the infection rate (β), recovery220

rate (η), intraspecific competition (ω1 and ω3), and interspecific competition (ω2 and ω4) to the dynamical221

behaviors of model (8).222

5. Numerical Simulations223

In this section, the dynamical behaviors of model (8) including bifurcation diagram and time-series are224

studied numerically. To obtain the bifurcation diagram and the corresponding time-series of model (8),225

the predictor-corrector scheme developed by Diethelm et al. is employed [45]. Since the model does not226

investigate a specific epidemiological case, we use hypothetical parameters for all numerical simulations. we227

set the parameter values as follows.228

r = 0.6, µ = 0.1, ω1 = 0.1, ω2 = 0.1, ω3 = 0.1, ω4 = 0.1, β = 0.4, η = 0.2, and α = 0.9 (20)

We start our work by investigating the impact of infection rate (β) on the dynamics of model (8). The229

value of β is varied in the interval 0 ≤ β ≤ 1 and we then compute the numerical solutions. To obtain the230
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eq. (20)

bifurcation diagram, we plot the tail of solutions for each β together with the LAS condition of EA. As231

result, we obtain a bifurcation diagram as in Figure 5a. When 0 ≤ β < β∗, β∗ = 0.16, the EEP EI does not232

exist and Theorem 7 is satisfied which means that DFE EA is LAS. The solution is convergent to EA which233

indicates the population free from disease. When β passes through β∗, EA losses its stability, and unique234

LAS EEP EI occurs in the interior. The infectious disease becomes endemic in the population and still235

exists for all t → ∞. From the concatenation of those biological circumstances, we conclude that forward236

bifurcation occurs around EA where β is the bifurcation parameter and β = β∗ is the bifurcation point. It237

is easy to examine that the bifurcation point β = β∗ is equal to R0 = 1. The dynamical behaviors are238

maintained for β∗ < β ≤ 1. To support these conditions, some time series are given in Figure 5b to show239

the convergence of solutions for different values of β.240

Next, the impact of recover rate (η) is studied. A similar numerical scheme as the previous way is applied.241

To depicts the bifurcation diagram, the parameter is fixed as in eq. (20) and the recovery rate (η) is varied242

in interval 0 ≤ η ≤ 1. We have Figure 6a as the result. Denote that the bifurcation does not exist for this243

interval. Both DFEP and EEP exist with distinct stability. The DFEP EA is a saddle point while the EEP244

EI is LAS which confirm the validity of Theorems 6 and 7. We also confirm that the EEP EI attains GAS245

which means that all initial conditions will go right to the EEP and the infectious disease will exist all the246

time. Although the disease becomes endemic, the numerical simulation shows that the value of η is directly247

proportional to S(t) and inversely proportional to I(t), see Figure 6b. This means the population density248

of the infected class can be reduced by increasing the recovery rate (η).249

For the next simulation, the impact of intraspecific competition is investigated. The death rate parame-250
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ters caused by intraspecific competition on susceptible and infected classes (ω1 and ω3) are varied in interval251

[0, 1]. It is found that forward bifurcation occurs when ω1 is driven where the bifurcation point is given by252

ω∗
1 = 0.5, see Figure 7a. The population density of both susceptible and infected classes reduces when the253

death rate of S(t) due to intraspecific competition increases as given by Figure 7b. Particularly, Figure 8a254

shows that bifurcation does not exists in interval 0 ≤ ω1 ≤ 1 when ω1 is varied but the dynamical behaviors255

show that S(t) increases and I(t) decrease when ω1 increase. We confirm this condition by giving time-series256

in Figure 8b.257

Now, we study the impact of interspecific competition on the dynamical behaviors of model (8). Both258

susceptible and infected classes have died due to the existence of interspecific competition given by param-259

eters ω2 and ω4. By varying ω2 and ω4 in interval [0, 1], we obtain Figures 9a and 10a as the bifurcation260

diagram. We find forward bifurcation driven by ω4 which does not exist when varying ω1. This means, the261

EEP still exists and LAS for 0 ≤< ω2 ≤ 1. The EEP will disappear via forward bifurcation and the saddle262

DFEP becomes LAS when ω4 crosses ω∗
4 = 0.34. This guarantees that the infectious disease may eliminate263

the disease in population when the death rate of the infected population due to interspecific competition264

increases as shown in Figure 10b. Although the disease does not disappear when ω2 is driven, we also can265

see in Figure 9b that by increasing ω2, the population density of the infected class will reduce and the266

susceptible class will increase.267

Finally, the impact of memory effect (α) is investigated. The numerical simulation is given by Figure 11.268

For α = 0.7, 0.8, 0.9, 1 and similar initial values, all solution converge to single equilibrium point given by269

EI ≈ (1.3465, 1.0395), see Figure 11(a,b). We then plot the local amplification to show the difference of270
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solutions when α is varied. We find that the difference lies in the convergence rate where for larger values of271

α, the convergence rate increase and vice versa as shown in Figure 11(e,f). In the beginning, Figure 11(c,d)272

we show that when α decrease, the population density of the infected class reduce. From a biological point273

of view, we can say that biological memory has an impact on the density of both susceptible and infected274

classes.275

6. Conclusion276

The dynamics of a fractional-order SIS-epidemic model with intraspecific and interspecific competition277

have been studied. The validity of the model has been confirmed analytically by showing the existence,278

uniqueness, non-negativity, and boundedness of solutions. Three equilibrium points have been obtained279

namely the origin, the disease-free equilibrium point, and the endemic equilibrium point. Both origin and280

disease-free equilibrium points always exist while the endemic equilibrium point conditionally exists. The281

basic reproduction number R0 has been given which has a relationship with the local stability of the model.282

If R0 < 1 then the disease-free equilibrium point is locally asymptotically stable and if R0 > 1 then the283

disease-free equilibrium point losses its stability along with the existence of a locally asymptotically stable284

endemic equilibrium point. The global stability conditions of equilibrium points also have been found. The285

PRCC has been worked to investigate the most influential parameter. We have successfully shown that the286

infection rate and the death rate of the infected population due to interspecific competition becomes the287

most influential parameter for basic reproduction number and the population density of the infected class.288
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We then investigate the impact of several parameters using numerical simulations including the infection289

rate, the recovery rate, the intraspecific competition, the interspecific competition, and the memory effect on290

the dynamics of the model. Bifurcation diagrams and time series have been given which show the existence291

of forward bifurcation, the decrease of susceptible and infected classes, and the decrease of convergence rate292

caused by the memory effect.293
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Abstract. Infectious disease and competition play important roles in the dynamics of a population due to their

capability to increase the mortality rate for each organism. In this paper, the dynamical behaviors of a single

species population are studied by considering the existence of the infectious disease, intraspecific competition,

and interspecific competition. The fractional-order derivative with a power-law kernel is utilized to involve the

impact of the memory effect. The population is divided into two compartments namely the susceptible class and

the infected class. The existence, uniqueness, non-negativity, and boundedness of the solution are investigated

to confirm the biological validity. Three types of feasible equilibrium points are identified namely the origin,

the disease-free, and the endemic points. All biological conditions which present the local and global stability

are investigated. The global sensitivity analysis is given to investigate the most influential parameter to the basic

reproduction number and the density of each class. Some numerical simulations including bifurcation diagrams

and time series are also portrayed to explore more the dynamical behaviors.
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1. INTRODUCTION

The spread of infectious disease still becomes a fundamental issue not only because of the existence of the

population but also to maintain the balance of biological systems. Several scientific methods are developed to

discover better ways to suppress and control the rate of disease infection [1]. The preferred ways for the last

decades for this epidemiological problems are given by mathematical approach using a deterministic model which

is considered efficacious to understand the mechanisms of disease transmission and evaluate the appropriate control

strategies [2–4]. The fundamental one which has become the basis of epidemiological modeling is given by [5]

which develops the continuous-time deterministic model using first-order derivative as the operator. This model

is successfully developed in couple of ways such as the continuous-time single species epidemiological modeling

with first-order derivative [6–9], the discrete-time single species epidemiological modeling [10–12], the stochastic

single-species epidemiological modeling [13, 14], and the continuous-time eco-epidemiological modeling [15–17].

Apart from those operators, several researchers prefer to use the fractional-order derivative to accomplish their

problems the biological modeling. See [18–20] and references therein for some examples in epidemiological

modeling. The fractional-order derivative is chosen by considering the capability of this operator to describe the

current state of the biological object as the impact of all of its previous conditions which are known as the memory

effect [21, 22]. In the epidemiological model, the transmission of disease may slow down and be forestalled by

the susceptible population as the impact of the memory [23]. Some fractional-order derivative has been developed

and successfully applied in epidemiological modeling such as the Riemann-Liouville, Caputo, Caputo-Fabrizio,

and Atangana-Baleanu [24–27]. From all of the given operators, the Caputo fractional-order derivative has the

complete tools for dynamical analysis such as the existence and uniqueness, non-negativity and boundedness,

local dynamics, global dynamics, and some bifurcation analysis. Consequently, the Caputo operator will be used

in this paper where defined later in the next section.

In this work, we develop the epidemiological model based on the SIR model given by [5]. For single-species

conditions, this model is only popular for the infectious diseases that appeared in the human population. In facts,

infectious diseases also threaten the existence of the animal population which disturbs the balance of the ecosystem.

For examples, the infectious diseases in endemic species such as Orangutans [28], Tarsius [29], Sumatran Tiger

[30], and Komodo dragon [31]. Moreover, the natural behaviors of animals that endanger the existence of their

populations are the intraspecific competition among them to preserve their food sources [32–34]. For these reasons,

developing and investigating the dynamics of the epidemiological model by considering the impact of intraspecific

competition and the memory effect are critical issues that become the novelty of our research.

The whole of this paper is organized in the following procedure: In Section 2, the mathematical modeling

consists of model formulation, existence, uniqueness, non-negativity, and boundedness are given. The analytical

results including the existence of equilibrium points and their local and global dynamics are completely investi-

gated in Section 3. To show the most influential parameter of the model, the global sensitivity analysis is provided
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by Section 4. Some numerical simulations as well as bifurcation diagrams and time-series are presented in Sec-

tion 5 to explore more about the dynamical behaviors of the model. This work ends by giving a conclusion in

Section 6.

2. MATHEMATICAL MODELING

This section studies about mathematical modeling consisting of the model formulation, existence, uniqueness,

non-negativity, and boundedness of solution. The mathematical model is constructed by a deterministic approach

using a differential equation. We first give some assumptions to restrain the model so it does not get too com-

plicated. We next interpret the giving assumptions to the mathematical formula using the first-order derivative as

the operator. A diagram is presented to show the impact of each assumption on the flow of population density for

each compartment. To involve the impact of the memory effect, the Caputo fractional-order derivative is applied

to the model. For the mathematical model’s validity, we show that the solution of the model always exists, unique,

non-negative, and bounded.

2.1. Model Formulation. In this work, the model is constructed from a single population growth model. We

first assume there exists a population in a habitat that grows proportionally to its density and bounded due to the

intraspecific competition. Let N(t) be the population at time t, r is the birth rate, µ is the natural death rate, and ω

is the death rate as a result of competition. Thus, we have a first-order differential equation as follows.

(1)
dN
dt

= (r−µ)N −ωN2.

Next, we assume that the population is exposed by infectious disease. The population N is divided into two com-

partments namely the susceptible class (S) and infected class (I) where N = S+ I. The susceptible class is infected

by disease bilinearly with infection rate β . The competition is divided into two cases namely the intraspecific com-

petition for each susceptible and infected class, and the interspecific competition between susceptible and infected

classes. As result, the following model is received.

dS
dt

= (r−µ)S−ω1S2 − (ω2 +β )SI,

dI
dt

= (β −ω4)SI −ω3I2 −µI,
(2)

where ωi, i = 1,2 respectively denote the death rate of the susceptible population as the results of intraspecific and

interspecific competitions between susceptible and susceptible classes, and susceptible and infected classes. The

parameters ωi, i= 3,4 denote the death rate of the infected population as the result of competition between infected

and infected classes, and susceptible and infected classes. In our works, we also assume that each organism has

the capability to survive the disease. Thus, we define η as the recovery rate. Since each organism that survives

from the disease has a chance to be re-infected, this type of population will be again susceptible. Finally, we have
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a mathematical model as follows.

dS
dt

= (r−µ)S−ω1S2 − (ω2 +β )SI +ηI,

dI
dt

= (β −ω4)SI −ω3I2 − (η +µ)I.
(3)

All of the given assumptions and their mathematical modeling are described in Figure 1.

FIGURE 1. Compartment diagram of model (3)

Now, the Caputo fractional-order derivative will be applied in order to conduct the impact of the memory effect

on the population growth rate. The similar procedure is adopted from [35]. The first-order derivatives on the

left-hand side of model (3) are replaced by the Caputo fractional-order derivative defined as follows.

Definition 1. [36] Suppose 0 < α ≤ 1. The Caputo fractional derivative of order−α is defined by

(4) CDα
t f (t) =

1
Γ(1−α)

∫ t

0
(t − s)−α f ′(s)ds,

where t ≥ 0, f ∈Cn([0,+∞),R), and Γ is the Gamma function.

Applying Definition 1 to eq. (3), the following model is obtained.

CDα
t S = (r−µ)S−ω1S2 − (ω2 +β )SI +ηI,

CDα
t I = (β −ω4)SI −ω3I2 − (η +µ)I.

(5)

Since the given process above makes the dimension of time at the left-hand side become tα , some parameters

need to be rescaled so that there are no differences between the time’s dimensions at the left-hand side with the

right-hand side of model (5). By applying time rescale to some parameters, we have the model as follows.

CDα
t S = (rα −µ

α)S−ω
α
1 S2 − (ωα

2 +β
α)SI +η

α I,

CDα
t I = (β α −ω

α
4 )SI −ω

α
3 I2 − (ηα +µ

α)I.
(6)

Let rα = r̂, µα = µ̂ , ωα
1 = ω̂1, ωα

2 = ω̂2, ωα
3 = ω̂3, ωα

4 = ω̂4, β α = β̂ , and ηα = η̂ . Thus, we acquire

CDα
t S = (r̂− µ̂)S− ω̂1S2 − (ω̂2 + β̂ )SI + η̂I,

CDα
t I = (β̂ − ω̂4)SI − ω̂3I2 − (η̂ + µ̂)I.

(7)
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For simplicity, by dropping .̂ for each parameter, we obtain the final model as follows.

CDα
t S = (r−µ)S−ω1S2 − (ω2 +β )SI +ηI = F1(N(t)),

CDα
t I = (β −ω4)SI −ω3I2 − (η +µ)I = F2(N(t)).

(8)

Equation (8) is the final proposed model in this paper. Although model (8) seems classic and simple, this model

will be powerful to solve and investigate the existence of a closed population in a certain area without any outside

intervention. Our literature review also shows that the model (8) has heretofore never been studied. Now, the

basic properties of model (8) such as the existence uniqueness, non-negativity, and boundedness are investigated

to confirm its biological validity.

2.2. Existence and Uniqueness. In this subsection, we will show that the model (8) has a unique solution.

A similar manner given by [37] is used. Thus, the following theorem is presented to show the existence and

uniqueness of the solution of model (8).

Theorem 1. The model (8) with initial condition S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0 has a unique solution.

Proof. Consider model (8) with positive initial condition with F : [0,∞) → R2 where F(N) = (F1(N),F2(N)),

N ≡ N(t) and θ ≡
{
(S, I) ∈ R2

+ : max{|S| , |I|} ≤ M
}

for sufficiently large M. Then, for any N = (S, I) and N̄ =

(S̄, Ī), N, N̄ ∈ θ , we have

∥F(N)−F(N̄)∥= |F1(N)−F1(N̄)|+ |F2(N)−F2(N̄)|

=
∣∣[(r−µ)S−ω1S2 − (ω2 +β )SI +ηI

]
−
[
(r−µ)S̄−ω1S̄2 − (ω2 +β )S̄Ī +η Ī

]∣∣+∣∣[(β −ω4)SI −ω3I2 − (η +µ)I
]
−
[
(β −ω4)S̄Ī −ω3 Ī2 − (η +µ)Ī

]∣∣
≤ (r+µ)

∣∣S− S̄
∣∣+ω1

∣∣S2 − S̄2∣∣+(ω2 +β )
∣∣SI − S̄Ī

∣∣+η |I − Ī|+(β +ω4)
∣∣SI − S̄Ī

∣∣
+ω3

∣∣I2 − Ī2∣∣+(η +µ) |I − Ī|

= (r+µ)
∣∣S− S̄

∣∣+ω1
∣∣(S+ S̄)(S− S̄)

∣∣+(ω2 +ω4 +2β )
∣∣I(S− S̄)+ S̄(I − Ī)

∣∣
+(2η +µ) |I − Ī|+ω3 |(I + Ī)(I − Ī)|

≤ (r+µ)
∣∣S− S̄

∣∣+2ω1M
∣∣S− S̄

∣∣+(ω2 +ω4 +2β )M
∣∣S− S̄

∣∣
+(ω2 +ω4 +2β )M |I − Ī|+(2η +µ) |I − Ī|+2ω3M |I − Ī|

= [(r+µ)+2ω1M+(ω2 +ω4 +2β )M]
∣∣S− S̄

∣∣+[(ω2 +ω4 +2β )M+(2η +µ)+2ω3M] |I − Ī|

≤ L∥N − N̄∥ ,

where L = (ω2 +ω4 +2β )M + µ +max{r+2ω1M,2(η +ω3M)}. Therefore, F(N) stisfies the Lipschitz condi-

tion. Obeying Lemma 5 in [38], we conclude that model (8) with positive initial condition has a unique solu-

tion. □
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2.3. Non-negativity and Boundedness. The non-negativity and boundedness properties of the solutions of the

model (8) are given in the following theorem.

Theorem 2. All solution of the model (8), which start in R2
+ :=

{
(S, I) |S ≥ 0, I ≥ 0,(S, I) ∈ R2

}
are uniformly

bounded and non-negative.

Proof. To prove the boundedness of the solutions of the model (8), the same approach of [38] is adopted. Let

consider the function N = S+ I. Then,

CDα
t N = CDα

t S+CDα
t I

= (r−µ)S−ω1S2 − (ω2 +β )SI +ηI +(β −ω4)SI −ω3I2 − (η +µ)I

= (r−µ)S−ω1S2 − (ω2 +ω4)SI −ω3I2 −µI.

Hence, for each µ > 0,

CDα
t N +µN = (r−µ)S−ω1S2 − (ω2 +ω4)SI −ω3I2 −µI +µS+µI

= rS−ω1S2 − (ω2 +ω4)SI −ω3I2

= −ω1

(
S− r

2ω1

)2

+
r2

4ω1
− (ω2 +ω4)SI −ω3I2

≤ r2

4ω1

By using the comparison theorem in [39], we obtain N(t)≤ N(0)Eα(−µtα)+ r2

4ω1
tα Eα,α+1(−µtα), where Eα and

Eα,α+1 is the Mittag-Leffler function with one and two parameters. According to Lemma 5 and Corollary 6 in

[39], we have N(t)≤ r2

4µω1
, as t → ∞. Therefore, all solutions of model (8) starting in R2

+ are uniformly bounded

in the region Φ, where Φ =
{
(S, I) ∈ R2

+ : S+ I ≤ r2

4µω1
+ ε, ε > 0

}
Next, we prove that all solutions of model (8)

are non-negative. By model (8), we have CDα
t S|S=0 = ηI ≥ 0 and CDα

t I|I=0 = 0 ≥ 0. Based on Lemmas 5 and 6

in [40], we conclude that the solutions of model (8) are non-negative. □

3. ANALYTICAL RESULTS

In this section, the dynamics of model (8) are shown analytically including the existence of equilibrium points,

and their local and global stability.

3.1. Existence of Equilibrium Points. To find the equilibrium points of model (8), we must have

[(r−µ)−ω1S− (ω2 +β )I]S+ηI = 0,(9)

[(β −ω4)S−ω3I − (η +µ)]I = 0.(10)
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If I = 0 is substituted to (9), we obtain

(11) [(r−µ)−ω1S]S = 0.

From eq. (11), we get S = 0 and S = r−µ

ω1
. Thus, we have two equilibrium points here namely E0 = (0,0),

and EA =
(

r−µ

ω1
,0
)

. The equilibrium point E0 is called the origin point which represents the extinction of both

susceptible and infected populations. Since E0 ∈ R2
+, this equilibrium point always exists. Furthermore, the

equilibrium point EA is called the disease-free equilibrium point (DFEP) which describes the condition where the

infectious disease does not exist anymore in the population. According to the biological condition, it is natural that

the birth rate r is greater than its death rate µ . By assuming r > µ , the origin point EA ∈R2
+ also always exists. By

simple calculation, we also obtain the basic reproduction number R0 given by

(12) R0 =
(r−µ)β

(r−µ)ω4 +(η +µ)ω1
.

The basic reproduction number is utilized to show the dynamical behavior of each equilibrium point and to describe

whether the infectious disease becomes endemic or not. Since r > µ , the value of R0 is always positive. Now, let’s

concern the eq. (9) and (10). By solving eq. (10), we attain

(13) S =
ω3I +(η +µ)

β −ω4
.

If we substitute eq. (13) to (9), the following polynomial equation holds.

(14) k1I2 + k2I + k3 = 0,

where

k1 = ((β −ω4)(β +ω2)+ω1ω3)ω3,

k2 = (β −ω4)((β +ω2)µ +(ω2 +ω4)η − (r−µ)ω3)+2(η +µ)ω1ω3,

k3 =
(1−R0)(r−µ)(η +µ)β

R0
.

Therefore, we acquire the endemic point (EEP)

(15) EI =

(
ω3γ̄ +(η +µ)

β −ω4
, γ̄

)
,

where γ̄ is the positive root of polynomial equation (14). From (15), we find that β > ω4 must be fulfilled so that

EI ∈ R2
+. Moreover, EEP exists if γ̄ > 0. From eq. (14), we have k1 is always positive. Thus, the value of the γ̄

depends on k2 and k3. Furthermore, eq. (14) has real number roots if k2
2 ≥ 4k1k3. By applying simple algebra, if

k3 > 0 and k2 < 0 then we have two positive roots of eq. (14), if k3 > 0 and k2 > 0 then we do not have any positive

roots of eq. (14), and if k3 < 0 then we have a positive root of eq. (14). Finally, we have the following theorem.
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Theorem 3. Let β > ω4. The existence of EEP EI is shown by the following statement.

(i) If k2
2 < 4k1k3 then EI does not exist.

(ii) If k2
2 = 4k1k3 and

(ii.i) if k2 > 0 then EI does not exist.

(ii.ii) if k2 < 0 then EI exists and unique.

(iii) If k2
2 > 4k1k3 and

(iii.i) if k3 > 0 and k2 < 0 then we have a pair of EI .

(iii.ii) if k3 > 0 and k2 > 0 then EI does not exist.

(iii.iii) if k3 < 0 then EI exists and unique.

Denote that k2
2 > 4k1k3 is always satisfied and k3 < 0 for R0 > 1, then the following lemma holds.

Lemma 4. EEP EI exists and unique if R0 > 1.

3.2. Local Dynamics. The local dynamics of model (8) are obtained by applying the Matignon condition which

is defined as follows.

Theorem 5. [Matignon condition [36]] An equilibrium point x⃗∗ is locally asymptotically stable (LAS) if all eigen-

values λ j of the Jacobian matrix J = ∂ f⃗
∂ x⃗ at x⃗∗ satisfy

∣∣arg(λ j)
∣∣> απ

2 . If there exists at least one eigenvalue satisfy

|arg(λk)|> απ

2 while |arg(λl)|< απ

2 , k ̸= l, then x⃗∗ is a saddle-point.

Therefore, to study the local dynamics of model (8), we first compute its Jacobian matrix at the point (S, I)

which gives

(16) J (S, I) =

 (r−µ)−2ω1S− (ω2 +β )I −(ω2 +β )S+η

(β −ω4)I (β −ω4)S−2ω3I − (η +µ)

 .
Obeying Theorem 5 and using Jacobian matrix (16), we discuss the local stability for each equilibrium point in the

next subsection.

3.3. Dynamical behavior around E0. LAS condition of E0 is obtained by identifying the eigenvalues of the

Jacobian matrix (16) at the point (S, I) = (0,0). We receive

J (S, I)|E0
=

 r−µ η

0 −(η +µ)

 .
Therefore, we have λ1 = r− µ and λ2 = −(η + µ). Since r > µ and λ2 < 0, we have |arg(λ1)| = 0 < απ

2 and

|arg(λ2)|= π > απ

2 . According to Theorem 5, the following theorem holds.

Theorem 6. The origin point E0 is always a saddle point.
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3.4. Dynamical behavior around EA. For (x,y) =
(

r−µ

ω1
,0
)

, the Jacobian matrix (16) becomes

J (S, I)|EA
=

 −(r−µ) η − (ω2+β )(r−µ)
ω1

0 (R0−1)(r−µ)β
ω1R0

 ,
which gives a pair of eigenvalues λ1 =−(r−µ) and λ2 =

(R0−1)(r−µ)β
ω1R0

. Denote |arg(λ2)|= π > απ

2 as the impact

of λ1 < 0. Hence, the sign of λ2 takes the role in describing local dynamics around EA. To obtain |arg(λ2)|= π >

απ

2 , we need λ2 < 0 which is fulfilled if R0 < 1. If R0 > 1 then |arg(λ2)| = 0 < απ

2 . Following the Matignon

condition given in Theorem 5, the following theorem is successfully attained.

Theorem 7. If R0 < 1 then EA is LAS and a saddle point if R0 > 1.

3.5. Dynamical behavior around EI . To identify the local stability of EI , we first compute the Jacobian matrix

(16) evaluated at EI . We generate

(17) J (S, I)|EI
=

 −
[
(ω3 γ̄+η+µ)ω1

β−ω4
+ (β−ω4)ηγ̄

ω3 γ̄+η+µ

]
− (ω2+β )(ω3 γ̄+η+µ)

β−ω4
+η

(β −ω4)γ̄ −ω3γ̄

 .
The eigenvalues of (17) are given by λ1 =

1
2

(
ξ1 +

√
ξ 2

1 −4ξ2

)
and λ2 =

1
2

(
ξ1 −

√
ξ 2

1 −4ξ2

)
where

ξ1 = −
[
(ω3γ̄ +η +µ)ω1

β −ω4
+

(β −ω4)ηγ̄

ω3γ̄ +η +µ
+ω3γ̄

]
,

ξ2 =

[(
ω1ω3

β −ω4
+ω2 +β

)
(ω3γ̄ +η +µ)+

(
ω3γ̄

ω3γ̄ +η +µ
+1
)
(β −ω4)η

]
γ̄.

It is easy to proof that ξ1 < 0 and ξ2 > 0 since β > ω4 becomes the existence condition. As the impact, |arg(λi)|>
απ

2 , i = 1,2 and hence the LAS always hold for EEP. Thus, the following theorem holds.

Theorem 8. EEP EI is always LAS.

3.6. Global Dynamics. In this subsection, the global dynamics of model (8) are studied. The biological condi-

tions of equilibrium points are investigated so that those points are globally asymptotically stable (GAS). Since the

origin is always a saddle point, we focus on studying GAS conditions for DFEP and EEP. The next two theorems

are given for the global dynamics.

Theorem 9. DFEP EA is GAS if ω1 >
(ω2+β )r

µ
.

Proof. We define a positive Lyapunov function as follows.

(18) VA(S, I) =
(

S− r−µ

ω1
− r−µ

ω1
ln

ω1S
r−µ

)
+ I.

If we calculate the Caputo fractional derivative of VA(S, I) along the solution of model (8) and use Lemma 3.1 in

[41], we get

CDα
t VA(S, I) =

(
S− r−µ

ω1

S

)
CDα

t S+CDα
t I
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= −ω1

(
S− r−µ

ω1

)2

+
(r−µ)(ω2 +β )I

ω1
− (r−µ)ηI

ω1S
− (ω2 +ω4)SI −ω3I2 −µI

≤ −ω1

(
S− r−µ

ω1

)2

−
(

µ − (ω2 +β )r
ω1

)
I

Since ω1 > (ω2+β )r
µ

, we have CDα
t VA(S, I) ≤ 0 for all (S, I) ∈ R2

+, and CDα
t VA(S, I) = 0 only when (S, I) =(

r−µ

ω1
,0
)

. This means that the singleton {EA} is the only invariant set where CDα
t VA(S, I) = 0. By Lemma 4.6 in

[42], we can conclude that every solution of model (8) tends to DFEP EA.

□

Theorem 10. EEP EI is GAS if ω2
2 + ω4

2 + η

2ϑ
< min{ω1,ω3}.

Proof. We first define ϑ = ω3 γ̄+(η+µ)
β−ω4

and hence EI = (ϑ , γ̄). Now, a positive Lyapunov function is presented as

follows.

(19) VI(S, I) =
(

S−ϑ −ϑ ln
S
ϕ

)
+

(
I − γ̄ − γ̄ ln

S
γ̄

)
Following Lemma 3.1 in [41], we reach

CDα
t VI(S, I) =

(
S−ϑ

S

)
CDα

t S+
(

I − γ̄

I

)
CDα

t I

= (S−S∗)
(
(r−µ)−ω1S− (ω2 +β )I +

ηI
S

)
+(I − γ̄)((β −ω4)S−ω3I − (η +µ))

= −ω1 (S−ϑ)2 −ω3 (I − γ̄)2 − (ω2 +ω4)(S−S∗)(I − γ̄)

≤ −
(

ω1 −
(

ω2

2
+

ω4

2
+

η

2ϑ

))
(S−ϑ)2 −

(
ω3 −

(
ω2

2
+

ω4

2
+

η

2ϑ

))
(I − γ̄)2

Denote that CDα
t VI(S, I) ≤ 0 for all (S, I) ∈ R2

+ as a result of ω2
2 + ω4

2 + η

2ϑ
< min{ω1,ω3}. We also have

that CDα
t VI(S, I) = 0 only when (S, I) = (ϑ , γ̄). Therefore, the singleton {EI} is the only invariant set where

CDα
t VI(S, I) = 0. Obeying Lemma 4.6 in [42], every solution of model (8) tends to EEP EI . □

4. GLOBAL SENSITIVITY ANALYSIS

In this section, the global sensitivity analysis is studied to investigate the most influential parameters of model

(8). Global sensitivity analysis is calculated using Partial Rank Coefficient Correlation (PRCC) [43], where the

random data processed in PRCC is generated using Saltelli sampling [44]. Two biological components become

the objective function for the PRCC namely the basic reproduction number (R0) and the population density of

infected class (I(t)). We first investigate the most influential parameter to the basic reproduction number (R0).

From eq. (12), we acquire that only r, µ , ω1, ω4, and η have the influence on the value of R0. The birth rate

and the natural death rate also can be fixed since some cases in the epidemiological model has the values of these

parameters. Thus, only β , η , ω1, and ω4 will be computed for PRCC. The Figure 2 is given for the results. We
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FIGURE 3. Contour plots for the parameters respect to R0

have β = 0.763, ω1 =−0.352, ω4 =−0.33, and η =−0.277 as the coefficient correlation such that the infection

rate (β ) becomes the most influential parameter to R0 and followed by ω1, ω4, and η , respectively. It shows

that the infection rate (β ) as the most influential parameter has a positive relationship with the basic reproduction

number (R0) which means that R0 will significantly increases when β increases. The rest ω1, ω4, and η have a

negative relationship with R0 which means that by reducing the value of those parameters, the basic reproduction

number (R0) will increases. To show the impact of these parameters on R0, the contour plots are also portrayed

in Figure 3.
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TABLE 1. PRCC results in respect to the population density of infected class

Parameter Description PRCC Rank Relationship with I(t)

ω1 The death rate of susceptible population due to the

intraspecific competition

-0.00851 6 Negative relationship

ω2 The death rate of susceptible population due to the

interspecific competition

-0.01938 5 Negative relationship

ω3 The death rate of infected population due to the in-

traspecific competition

-0.01990 4 Negative relationship

ω4 The death rate of infected population due to the inter-

specific competition

-0.54635 1 Negative relationship

β The infection rate 0.54631 2 Positive relationship

η The recovery rate -0.43606 3 Negative relationship

Next, we identify the most influential parameter to the population density of infected class (I(t)). Quite similar

to previous work, the value of r and µ are fixed but the rest of the parameters are involved to compute PRCC.

PRCC values are computed for 0 ≤ t ≤ 50 which is considered sufficient enough to see the convergence for each

parameter through the PRCC. We portray the PRCC results in Figure 4 while the PRCC values, ranks, and the

relationship between each parameter and I(t) are given in Table 1. From those simulations, we conclude that the

death rate of infected population due to interspecific competition between susceptible and infected classes (ω4)

become the most influential parameter to the population density (I(t)) followed respectively by β , η , ω3, ω2, and

ω1. In the next section, the numerical simulations including bifurcation diagram and time-series are presented to
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FIGURE 5. Bifurcation diagram and times-series of model (8) driven by the

infection rate (β ) with parameter values given by eq. (20)

show the impact of the infection rate (β ), recovery rate (η), intraspecific competition (ω1 and ω3), and interspecific

competition (ω2 and ω4) to the dynamical behaviors of model (8).

5. NUMERICAL SIMULATIONS

In this section, the dynamical behaviors of model (8) including bifurcation diagram and time-series are studied

numerically. To obtain the bifurcation diagram and the corresponding time-series of model (8), the predictor-

corrector scheme developed by Diethelm et al. is employed [45]. Since the model does not investigate a specific

epidemiological case, we use hypothetical parameters for all numerical simulations. we set the parameter values

as follows.

(20) r = 0.6, µ = 0.1, ω1 = 0.1, ω2 = 0.1, ω3 = 0.1, ω4 = 0.1, β = 0.4, η = 0.2, and α = 0.9

We start our work by investigating the impact of infection rate (β ) on the dynamics of model (8). The value

of β is varied in the interval 0 ≤ β ≤ 1 and we then compute the numerical solutions. To obtain the bifurcation

diagram, we plot the tail of solutions for each β together with the LAS condition of EA. As result, we obtain a
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FIGURE 6. Bifurcation diagram and times-series of model (8) driven by the

recovery rate (η) with parameter values given by eq. (20)

bifurcation diagram as in Figure 5a. When 0 ≤ β < β ∗, β ∗ = 0.16, the EEP EI does not exist and Theorem 7 is

satisfied which means that DFE EA is LAS. The solution is convergent to EA which indicates the population free

from disease. When β passes through β ∗, EA losses its stability, and unique LAS EEP EI occurs in the interior.

The infectious disease becomes endemic in the population and still exists for all t → ∞. From the concatenation of

those biological circumstances, we conclude that forward bifurcation occurs around EA where β is the bifurcation

parameter and β = β ∗ is the bifurcation point. It is easy to examine that the bifurcation point β = β ∗ is equal to

R0 = 1. The dynamical behaviors are maintained for β ∗ < β ≤ 1. To support these conditions, some time series

are given in Figure 5b to show the convergence of solutions for different values of β .

Next, the impact of recover rate (η) is studied. A similar numerical scheme as the previous way is applied. To

depicts the bifurcation diagram, the parameter is fixed as in eq. (20) and the recovery rate (η) is varied in interval

0 ≤ η ≤ 1. We have Figure 6a as the result. Denote that the bifurcation does not exist for this interval. Both DFEP

and EEP exist with distinct stability. The DFEP EA is a saddle point while the EEP EI is LAS which confirm the

validity of Theorems 6 and 7. We also confirm that the EEP EI attains GAS which means that all initial conditions

will go right to the EEP and the infectious disease will exist all the time. Although the disease becomes endemic,
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FIGURE 7. Bifurcation diagram and times-series of model (8) driven by the

death rate of susceptible population due to intraspecific competition (ω1) with

parameter values given by eq. (20)

the numerical simulation shows that the value of η is directly proportional to S(t) and inversely proportional to I(t),

see Figure 6b. This means the population density of the infected class can be reduced by increasing the recovery

rate (η).

For the next simulation, the impact of intraspecific competition is investigated. The death rate parameters

caused by intraspecific competition on susceptible and infected classes (ω1 and ω3) are varied in interval [0,1]. It

is found that forward bifurcation occurs when ω1 is driven where the bifurcation point is given by ω∗
1 = 0.5, see

Figure 7a. The population density of both susceptible and infected classes reduces when the death rate of S(t) due

to intraspecific competition increases as given by Figure 7b. Particularly, Figure 8a shows that bifurcation does

not exists in interval 0 ≤ ω1 ≤ 1 when ω1 is varied but the dynamical behaviors show that S(t) increases and I(t)

decrease when ω1 increase. We confirm this condition by giving time-series in Figure 8b.

Now, we study the impact of interspecific competition on the dynamical behaviors of model (8). Both suscep-

tible and infected classes have died due to the existence of interspecific competition given by parameters ω2 and

ω4. By varying ω2 and ω4 in interval [0,1], we obtain Figures 9a and 10a as the bifurcation diagram. We find
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FIGURE 8. Bifurcation diagram and times-series of model (8) driven by the

death rate of infected population due to intraspecific competition (ω3) with pa-

rameter values given by eq. (20)

forward bifurcation driven by ω4 which does not exist when varying ω1. This means, the EEP still exists and LAS

for 0 ≤< ω2 ≤ 1. The EEP will disappear via forward bifurcation and the saddle DFEP becomes LAS when ω4

crosses ω∗
4 = 0.34. This guarantees that the infectious disease may eliminate the disease in population when the

death rate of the infected population due to interspecific competition increases as shown in Figure 10b. Although

the disease does not disappear when ω2 is driven, we also can see in Figure 9b that by increasing ω2, the population

density of the infected class will reduce and the susceptible class will increase.

Finally, the impact of memory effect (α) is investigated. The numerical simulation is given by Figure 11.

For α = 0.7,0.8,0.9,1 and similar initial values, all solution converge to single equilibrium point given by EI ≈
(1.3465,1.0395), see Figure 11(a,b). We then plot the local amplification to show the difference of solutions when

α is varied. We find that the difference lies in the convergence rate where for larger values of α , the convergence

rate increase and vice versa as shown in Figure 11(e,f). In the beginning, Figure 11(c,d) we show that when α

decrease, the population density of the infected class reduce. From a biological point of view, we can say that

biological memory has an impact on the density of both susceptible and infected classes.
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6. CONCLUSION

The dynamics of a fractional-order SIS-epidemic model with intraspecific and interspecific competition have

been studied. The validity of the model has been confirmed analytically by showing the existence, uniqueness,

non-negativity, and boundedness of solutions. Three equilibrium points have been obtained namely the origin, the

disease-free equilibrium point, and the endemic equilibrium point. Both origin and disease-free equilibrium points

always exist while the endemic equilibrium point conditionally exists. The basic reproduction number R0 has been

given which has a relationship with the local stability of the model. If R0 < 1 then the disease-free equilibrium

point is locally asymptotically stable and if R0 > 1 then the disease-free equilibrium point losses its stability along

with the existence of a locally asymptotically stable endemic equilibrium point. The global stability conditions of

equilibrium points also have been found. The PRCC has been worked to investigate the most influential parameter.

We have successfully shown that the infection rate and the death rate of the infected population due to interspecific

competition becomes the most influential parameter for basic reproduction number and the population density of
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the infected class. We then investigate the impact of several parameters using numerical simulations including the

infection rate, the recovery rate, the intraspecific competition, the interspecific competition, and the memory effect

on the dynamics of the model. Bifurcation diagrams and time series have been given which show the existence of

forward bifurcation, the decrease of susceptible and infected classes, and the decrease of convergence rate caused

by the memory effect.

ACKNOWLEDGEMENTS

This research is funded by LPPM-UNG via PNBP-Universitas Negeri Gorontalo according to DIPA-UNG No.

023.17.2.677521/2021, under contract No. B/125/UN47.DI/PT.01.03/2022.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.



DYNAMICS OF A SIS–EPIDEMIC MODEL 19

0 100 200 300 400 500

1.
3

1.
4

1.
5

S
(t

)

(a)

0 100 200 300 400 500

0.
8

0.
9

1.
0

1.
1

I
(t

)

(b)

0 2 4 6 8 10

1.
3

1.
4

1.
5

S
(t

)

(c)

0 1 2 3 4 5

0.
8

0.
9

1.
0

1.
1

I
(t

)

(d)

100 200 300 400 500
t1.

34
5

1.
35

0
1.

35
5

1.
36

0
1.

36
5

S
(t

)

(e)

100 200 300 400 500
t1.

03
80

1.
03

85
1.

03
90

1.
03

95
1.

04
00

I
(t

)
(f)

α = 0.7 α = 0.8 α = 0.9 α = 1

FIGURE 11. Time series of model (8) with parameter values given by eq. (20)

for α = 0.7,0.8,0.9,1. (a,b) Time-series for 0 ≤ t ≤ 500, (c,d) Local amplifica-

tion of (a,b) around 0 ≤ t ≤ 10, and (c,d) Local amplification of (a,b) around

100 ≤ t ≤ 500

REFERENCES

[1] H. Cao, H. Wu, X. Wang, Bifurcation analysis of a discrete sir epidemic model with constant recovery, Adv.

Differ. Equ. 2020 (2020), Article ID 49.

[2] H. W. Hethcote,The mathematics of infectious diseases, SIAM Rev. 42 (2000) 599–653.

[3] F. Brauer, Mathematical epidemiology: Past, present, and future, Infect. Dis. Model. 2 (2017) 113–127.

[4] R. Sanft, A. Walter, Exploring Mathematical Modeling in Biology Through Case Studies and Experimental

Activities, Academic Press, London, United Kingdom, 2020.

[5] W. O. Kermack, A. G. McKendrick, Proceedings of the Royal Society of London. Series A, Containing

Papers of a Mathematical and Physical Character 115 (1927) 700–721.

[6] M. Liu, X. Fu, D. Zhao, Dynamical analysis of an SIS epidemic model with migration and residence time,

Int. J. Biomath. 14 (2021) Article ID 2150023.



20 I. DJAKARIA ET AL.

[7] X. Liu, K. Zhao, J. Wang, H. Chen, Stability analysis of a SEIQRS epidemic model on the finite scale-free

network, Fractals 30 (2022) Article ID 2240054.

[8] M. M. Ojo, O. J. Peter, E. F. D. Goufo, H. S. Panigoro, F. A. Oguntolu, Mathematical model for control of

tuberculosis epidemiology, J. Appl. Math. Comput. (2022).

[9] I. Darti, A. Suryanto, H. S. Panigoro, and H. Susanto, Forecasting COVID-19 Epidemic in Spain and Italy Us-

ing A Generalized Richards Model with Quantified Uncertainty, Commun. Biomath. Sci. 3 (2022), 90–100.

[10] M. Lu, C. Xiang, J. Huang, Bogdanov-takens bifurcation in a SIRS epidemic model with a generalized

nonmonotone incidence rate, Discrete Contin. Dyn. Syst. - S. 13 (2020), 3125–3138.

[11] B. Li, C. Qin, X. I. Wang, Analysis of an sirs epidemic model with nonlinear incidence and vaccination,

Commun. Math. Biol. Neurosci. 2020 (2020) 1–14.

[12] F. F. Eshmatov, U. U. Jamilov, K. O. Khudoyberdiev, Discrete time dynamics of a SIRD reinfection model,

Int. J. Biomath. (2022).

[13] A. Miao, X. Wang, T. Zhang, W. Wang, B. S. A. Pradeep, Dynamical analysis of a stochastic SIS epidemic

model with nonlinear incidence rate and double epidemic hypothesis, Adv. Differ. Equ. 2017 (2017), Article

ID 226.

[14] D. Zhao, S. Yuan, H. Liu, Random periodic solution for a stochastic SIS epidemic model with constant

population size, Adv. Differ. Equ. 2018 (2018), Article ID 64.

[15] J. Liu, B. Liu, P. Lv, T. Zhang, An eco-epidemiological model with fear effect and hunting cooperation, Chaos

Solitons Fractals 142 (2021), Article ID 110494.

[16] S. Kumar, H. Kharbanda, Sensitivity and chaotic dynamics of an eco-epidemiological system with vaccina-

tion and migration in prey, Braz. J. Phys. 51 (2021) 986–1006.

[17] D. Bhattacharjee, A. J. Kashyap, H. K. Sarmah, R. Paul, Dynamics in a ratio-dependent eco-epidemiological

predator-prey model having cross species disease transmission, Commun. Biomath. Sci. (2021), 1–45.

[18] S. Jana, M. Mandal, S. K. Nandi, T. K. Kar, Analysis of a fractional-order sis epidemic model with saturated

treatment, Int. J. Model. Simul. Sci. Comput. 12 (2021), Article ID 2150004.

[19] A. Lahrouz, H. E. Mahjour, A. Settati, M. Erriani, H. E. Jarroudi, Bifurcation from an epidemic model in the

presence of memory effects, Int. J. Bifurc. Chaos 32 (2022), Article ID 2250077.

[20] E. Bonyah, M. L. Juga, C. W. Chukwu, Fatmawati, A fractional order dengue fever model in the context of

protected travelers, Alex. Eng. J. 61 (2022), 927–936.

[21] C. Maji, Dynamical analysis of a fractional-order predator–prey model incorporating a constant prey refuge

and nonlinear incident rate, Model. Earth Syst. Environ. 8 (2022), 47–57.

[22] H. S. Panigoro, A. Suryanto, W. M. Kusumawinahyu, I. Darti, A Rosenzweig–MacArthur Model with Contin-

uous Threshold Harvesting in Predator Involving Fractional Derivatives with Power Law and Mittag–Leffler

Kernel, Axioms 9 (2020), Article ID 122.



DYNAMICS OF A SIS–EPIDEMIC MODEL 21

[23] S. Majee, S. Adak, S. Jana, M. Mandal, T. K. Kar, Complex dynamics of a fractional-order SIR system in the

context of covid-19, J. Appl. Math. Comput. (2021).

[24] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential

equations, to methods of their solution and some of their applications, Academic Press, San Diego CA, 1999.

[25] M. Caputo, Linear Models of Dissipation whose Q is almost Frequency Independent–II, Geophys. J. Int. 13

(1967), 529–539.

[26] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ.

Appl. 1 (2015), 73–85.

[27] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and

application to heat transfer model, Therm. Sci. 20 (2016), 763–769.

[28] J. Philippa, R. Dench, Infectious Diseases of Orangutans in their Home Ranges and in Zoos, Fowler’s Zoo

and Wild Animal Medicine Current Therapy 9 (80) (2019) 565–573.

[29] A. Aswad, A. Katzourakis, The First Endogenous Herpesvirus, Identified in the Tarsier Genome, and Novel

Sequences from Primate Rhadinoviruses and Lymphocryptoviruses, PLoS Genet. 10 (2014), Article ID

e1004332.

[30] B. H. Mulia, S. Mariya, J. Bodgener, D. Iskandriati, S. R. Liwa, T. Sumampau, J. Manansang, H. S. Darus-

man, S. A. Osofsky, N. Techakriengkrai, M. Gilbert, Exposure of Wild Sumatran Tiger (Panthera tigris suma-

trae) to Canine Distemper Virus, J. Wildl. Dis. 57 (2021), 464-466.

[31] M. Skoric, V. Mrlik, J. Svobodova, V. Beran, M. Slany, P. Fictum, J. Pokorny, I. Pavlik, Infection in a female

Komodo dragon (Varanus komodoensis) caused by Mycobacterium intracellulare: a case report, Vet. Med.

57 (2012), 163–168.

[32] D. Mukherjee, Role of fear in predator–prey system with intraspecific competition, Math. Comput. Simul.

177 (2020), 263–275.

[33] C. Arancibia-Ibarra, P. Aguirre, J. Flores, P. van Heijster, Bifurcation analysis of a predator-prey model with

predator intraspecific interactions and ratio-dependent functional response, Appl. Math. Comput. 402 (2021),

Article ID 126152.

[34] E. N. Bodine, A. E. Yust, Predator–prey dynamics with intraspecific competition and an Allee effect in the

predator population, Lett. Biomath. 4 (2017), 23–38.

[35] M. Moustafa, M. H. Mohd, A. I. Ismail, F. A. Abdullah, Dynamical analysis of a fractional order eco-

epidemiological model with nonlinear incidence rate and prey refuge, J. Appl. Math. Comput. 65 (2021),

623–650.

[36] I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer London, Beijing,

2011.



22 I. DJAKARIA ET AL.

[37] H. S. Panigoro, A. Suryanto, W. M. Kusumahwinahyu, I. Darti, Dynamics of a Fractional-Order Predator-

Prey Model with Infectious Diseases in Prey, Commun. Biomath. Sci. 2 (2019), 105-117.

[38] H.-L. Li, L. Zhang, C. Hu, Y.-L. Jiang, Z. Teng, Dynamical analysis of a fractional-order predator-prey model

incorporating a prey refuge, J. Appl. Math. Comput. 54 (2017), 435–449.

[39] S. K. Choi, B. Kang, N. Koo, Stability for Caputo fractional differential systems, Abstr. Appl. Anal. 2014

(2014), Article ID 631419.

[40] A. Boukhouima, K. Hattaf, N. Yousfi, Dynamics of a Fractional Order HIV Infection Model with Specific

Functional Response and Cure Rate, Int. J. Differ. Equ. 2017 (2017), Article ID 8372140.

[41] C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Non-

linear Sci. Numer. Simul. 24 (2015), 75–85.

[42] J. Huo, H. Zhao, L. Zhu, The effect of vaccines on backward bifurcation in a fractional order HIV model,

Nonlinear Anal.: Real World Appl. 26 (2015), 289–305.

[43] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and

sensitivity analysis in systems biology, J. Theor. Biol. 254 (2008), 178–196.

[44] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance based sensitivity analysis

of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun. 181 (2010),

259–270.

[45] K. Diethelm, N. J. Ford, A. D. Freed, A Predictor-Corrector Approach for the Numerical Solution of Frac-

tional Differential Equations, Nonlinear Dyn. 29 (2002), 3–22.



Payment Confirmation  

10 October 2022 at 02:49 PM 

  



Ismail Djakaria <iskar@ung.ac.id>

[cmbn] Editor Decision #7730
Ismail Djakaria <iskar@ung.ac.id> 10 Oktober 2022 pukul 14.49
Kepada: CMBN Editorial Office <cmbn@scik.org>

Dear Editor, 
please inform me if the fee payment is receipted.

Sincerely,
Ismil Djakaria
Author
[Kutipan teks disembunyikan]



Payment Confirmation  

10 October 2022 at 05:49 PM 

  



Ismail Djakaria <iskar@ung.ac.id>

[cmbn] Editor Decision #7730
CMBN Editorial Office <cmbn@scik.org> 10 Oktober 2022 pukul 17.49
Kepada: Ismail Djakaria <iskar@ung.ac.id>

Dear Ismail Djakaria:

This is to confirm the receipt of your payment and the source files. A PDF file of the galley-proofs will
be sent via email to you for proofreading.

Sincerely,

Bruce Young

Editorial Office

SCIK Publishing Corporation

http://scik.org
 

------------------ Original ------------------

From: "Ismail Djakaria" <iskar@ung.ac.id>;
Date: Mon, Oct 10, 2022 06:51 AM
To: "CMBN Editorial Office"<cmbn@scik.org>;
Subject: Re: [cmbn] Editor Decision #7730

[Kutipan teks disembunyikan]

http://scik.org/
mailto:iskar@ung.ac.id
mailto:cmbn@scik.org


Galley-Proof Confirmation  

17 October 2022 at 08:40 AM 

  



Ismail Djakaria <iskar@ung.ac.id>

[cmbn] Editor Decision #7730
Ismail Djakaria <iskar@ung.ac.id> 17 Oktober 2022 pukul 08.40
Kepada: CMBN Editorial Office <cmbn@scik.org>

Dear Managing editor of SCIK-CMBN,

As a continuation of the progress of our article with manuscript ID:7730, please inform us of the galley-proof
process.

Regards,
Ismail Djakaria
[Kutipan teks disembunyikan]



Galley-Proof Request  

17 October 2022 at 04:40 PM 

  



Ismail Djakaria <iskar@ung.ac.id>

[cmbn] Editor Decision #7730
CMBN Editorial Office <cmbn@scik.org> 17 Oktober 2022 pukul 16.40
Kepada: Ismail Djakaria <iskar@ung.ac.id>

Dear Ismail Djakaria:

Please find the attached galley-proofs of your accepted manuscript. Please check it and send us your corrections
(preferable as a list, indicating the pages, line numbers) within one week.
Please ensure that the following important items are correct (this is the last chance to make changes to your paper):
title of your paper; names of all authors; addresses and postcodes; e-mail address of corresponding author; funding
(if any); equations.

Please also send us a confirmation email if no corrections are needed.

Sincerely,

Bruce Young

Editorial Office

SCIK Publishing Corporation

http://scik.org
 

------------------ Original ------------------

From: "Ismail Djakaria" <iskar@ung.ac.id>;
Date: Mon, Oct 17, 2022 08:40 AM
[Kutipan teks disembunyikan]

[Kutipan teks disembunyikan]

CMBN-7730.pdf
419K

http://scik.org/
mailto:iskar@ung.ac.id
https://mail.google.com/mail/u/7/?ui=2&ik=1cb2a8ca62&view=att&th=183e519fd708c238&attid=0.1&disp=attd&safe=1&zw


Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2022, 2022:X

https://doi.org/10.28919/cmbn/7730

ISSN: 2052-2541

DYNAMICS OF SIS–EPIDEMIC MODEL WITH COMPETITION INVOLVING1

FRACTIONAL-ORDER DERIVATIVE WITH POWER-LAW KERNEL2

ISMAIL DJAKARIA1,∗, HASAN S. PANIGORO2, EBENEZER BONYAH3, EMLI RAHMI2, WAHAB MUSA43

1Magister Mathematics Education Programme, Post-Graduate, Universitas Negeri Gorontalo,4

Gorontalo 96128, Indonesia5

2Biomathematics Research Group, Department of Mathematics, Faculty of Mathematics and Natural Sciences,6

Universitas Negeri Gorontalo, Bone Bolango 96119, Indonesia7

3Department of Mathematics Education, Akenten Appiah-Menka University of Skills Training and8

Entrepreneurial Development, Kumasi 00233, Ghana9

4Department of Electrical Engineering, Universitas Negeri Gorontalo, Gorontalo 96128, Indonesia10

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits11

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.12

Abstract. Infectious disease and competition play important roles in the dynamics of a population due to their13

capability to increase the mortality rate for each organism. In this paper, the dynamical behaviors of a single14

species population are studied by considering the existence of the infectious disease, intraspecific competition,15

and interspecific competition. The fractional-order derivative with a power-law kernel is utilized to involve the16

impact of the memory effect. The population is divided into two compartments namely the susceptible class and17

the infected class. The existence, uniqueness, non-negativity, and boundedness of the solution are investigated18

to confirm the biological validity. Three types of feasible equilibrium points are identified namely the origin,19

the disease-free, and the endemic points. All biological conditions which present the local and global stability20

are investigated. The global sensitivity analysis is given to investigate the most influential parameter to the basic21

reproduction number and the density of each class. Some numerical simulations including bifurcation diagrams22

and time series are also portrayed to explore more the dynamical behaviors.23
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1. INTRODUCTION26

The spread of infectious disease still becomes a fundamental issue not only because of the27

existence of the population but also to maintain the balance of biological systems. Several sci-28

entific methods are developed to discover better ways to suppress and control the rate of disease29

infection [1]. The preferred ways for the last decades for this epidemiological problems are30

given by mathematical approach using a deterministic model which is considered efficacious to31

understand the mechanisms of disease transmission and evaluate the appropriate control strate-32

gies [2, 3, 4]. The fundamental one which has become the basis of epidemiological modeling33

is given by [5] which develops the continuous-time deterministic model using first-order de-34

rivative as the operator. This model is successfully developed in couple of ways such as the35

continuous-time single species epidemiological modeling with first-order derivative [6, 7, 8, 9],36

the discrete-time single species epidemiological modeling [10, 11, 12], the stochastic single-37

species epidemiological modeling [13, 14], and the continuous-time eco-epidemiological mod-38

eling [15, 16, 17].39

Apart from those operators, several researchers prefer to use the fractional-order derivative40

to accomplish their problems the biological modeling. See [18, 19, 20] and references therein41

for some examples in epidemiological modeling. The fractional-order derivative is chosen by42

considering the capability of this operator to describe the current state of the biological object43

as the impact of all of its previous conditions which are known as the memory effect [21, 22]. In44

the epidemiological model, the transmission of disease may slow down and be forestalled by the45

susceptible population as the impact of the memory [23]. Some fractional-order derivative has46

been developed and successfully applied in epidemiological modeling such as the Riemann-47

Liouville, Caputo, Caputo-Fabrizio, and Atangana-Baleanu [24, 25, 26, 27]. From all of the48

given operators, the Caputo fractional-order derivative has the complete tools for dynamical49

analysis such as the existence and uniqueness, non-negativity and boundedness, local dynamics,50

global dynamics, and some bifurcation analysis. Consequently, the Caputo operator will be used51

in this paper where defined later in the next section.52
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In this work, we develop the epidemiological model based on the SIR model given by [5]. For53

single-species conditions, this model is only popular for the infectious diseases that appeared54

in the human population. In facts, infectious diseases also threaten the existence of the animal55

population which disturbs the balance of the ecosystem. For examples, the infectious diseases56

in endemic species such as Orangutans [28], Tarsius [29], Sumatran Tiger [30], and Komodo57

dragon [31]. Moreover, the natural behaviors of animals that endanger the existence of their58

populations are the intraspecific competition among them to preserve their food sources [32,59

33, 34]. For these reasons, developing and investigating the dynamics of the epidemiological60

model by considering the impact of intraspecific competition and the memory effect are critical61

issues that become the novelty of our research.62

The whole of this paper is organized in the following procedure: In Section 2, the math-63

ematical modeling consists of model formulation, existence, uniqueness, non-negativity, and64

boundedness are given. The analytical results including the existence of equilibrium points and65

their local and global dynamics are completely investigated in Section 3. To show the most in-66

fluential parameter of the model, the global sensitivity analysis is provided by Section 4. Some67

numerical simulations as well as bifurcation diagrams and time-series are presented in Sec-68

tion 5 to explore more about the dynamical behaviors of the model. This work ends by giving a69

conclusion in Section 6.70

2. MATHEMATICAL MODELING71

This section studies about mathematical modeling consisting of the model formulation, ex-72

istence, uniqueness, non-negativity, and boundedness of solution. The mathematical model is73

constructed by a deterministic approach using a differential equation. We first give some as-74

sumptions to restrain the model so it does not get too complicated. We next interpret the giving75

assumptions to the mathematical formula using the first-order derivative as the operator. A di-76

agram is presented to show the impact of each assumption on the flow of population density77

for each compartment. To involve the impact of the memory effect, the Caputo fractional-order78

derivative is applied to the model. For the mathematical model’s validity, we show that the79

solution of the model always exists, unique, non-negative, and bounded.80
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2.1. Model Formulation. In this work, the model is constructed from a single population81

growth model. We first assume there exists a population in a habitat that grows proportionally82

to its density and bounded due to the intraspecific competition. Let N(t) be the population83

at time t, r is the birth rate, µ is the natural death rate, and ω is the death rate as a result of84

competition. Thus, we have a first-order differential equation as follows.85

(1)
dN
dt

= (r−µ)N−ωN2.86

Next, we assume that the population is exposed by infectious disease. The population N is87

divided into two compartments namely the susceptible class (S) and infected class (I) where88

N = S+ I. The susceptible class is infected by disease bilinearly with infection rate β . The89

competition is divided into two cases namely the intraspecific competition for each susceptible90

and infected class, and the interspecific competition between susceptible and infected classes.91

As result, the following model is received.92

dS
dt

= (r−µ)S−ω1S2− (ω2 +β )SI,

dI
dt

= (β −ω4)SI−ω3I2−µI,
(2)93

where ωi, i = 1,2 respectively denote the death rate of the susceptible population as the results94

of intraspecific and interspecific competitions between susceptible and susceptible classes, and95

susceptible and infected classes. The parameters ωi, i= 3,4 denote the death rate of the infected96

population as the result of competition between infected and infected classes, and susceptible97

and infected classes. In our works, we also assume that each organism has the capability to98

survive the disease. Thus, we define η as the recovery rate. Since each organism that survives99

from the disease has a chance to be re-infected, this type of population will be again susceptible.100

Finally, we have a mathematical model as follows.101

dS
dt

= (r−µ)S−ω1S2− (ω2 +β )SI +ηI,

dI
dt

= (β −ω4)SI−ω3I2− (η +µ)I.
(3)102

All of the given assumptions and their mathematical modeling are described in Figure 1.103

Now, the Caputo fractional-order derivative will be applied in order to conduct the impact104

of the memory effect on the population growth rate. The similar procedure is adopted from105
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FIGURE 1. Compartment diagram of model (3)

[35]. The first-order derivatives on the left-hand side of model (3) are replaced by the Caputo106

fractional-order derivative defined as follows.107

Definition 1. [36] Suppose 0 < α ≤ 1. The Caputo fractional derivative of order−α is defined108

by109

(4) CDα
t f (t) =

1
Γ(1−α)

∫ t

0
(t− s)−α f ′(s)ds,110

where t ≥ 0, f ∈Cn([0,+∞),R), and Γ is the Gamma function.111

Applying Definition 1 to eq. (3), the following model is obtained.112

CDα
t S = (r−µ)S−ω1S2− (ω2 +β )SI +ηI,

CDα
t I = (β −ω4)SI−ω3I2− (η +µ)I.

(5)113

Since the given process above makes the dimension of time at the left-hand side become tα ,114

some parameters need to be rescaled so that there are no differences between the time’s dimen-115

sions at the left-hand side with the right-hand side of model (5). By applying time rescale to116

some parameters, we have the model as follows.117

CDα
t S = (rα −µ

α)S−ω
α
1 S2− (ωα

2 +β
α)SI +η

α I,

CDα
t I = (β α −ω

α
4 )SI−ω

α
3 I2− (ηα +µ

α)I.
(6)118

Let rα = r̂, µα = µ̂ , ωα
1 = ω̂1, ωα

2 = ω̂2, ωα
3 = ω̂3, ωα

4 = ω̂4, β α = β̂ , and ηα = η̂ . Thus, we119

acquire120

CDα
t S = (r̂− µ̂)S− ω̂1S2− (ω̂2 + β̂ )SI + η̂I,

CDα
t I = (β̂ − ω̂4)SI− ω̂3I2− (η̂ + µ̂)I.

(7)121
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For simplicity, by dropping .̂ for each parameter, we obtain the final model as follows.122

CDα
t S = (r−µ)S−ω1S2− (ω2 +β )SI +ηI = F1(N(t)),

CDα
t I = (β −ω4)SI−ω3I2− (η +µ)I = F2(N(t)).

(8)123

Equation (8) is the final proposed model in this paper. Although model (8) seems classic and124

simple, this model will be powerful to solve and investigate the existence of a closed population125

in a certain area without any outside intervention. Our literature review also shows that the126

model (8) has heretofore never been studied. Now, the basic properties of model (8) such as the127

existence uniqueness, non-negativity, and boundedness are investigated to confirm its biological128

validity.129

2.2. Existence and Uniqueness. In this subsection, we will show that the model (8) has a130

unique solution. A similar manner given by [37] is used. Thus, the following theorem is131

presented to show the existence and uniqueness of the solution of model (8).132

Theorem 1. The model (8) with initial condition S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0 has a unique133

solution.134

Proof. Consider model (8) with positive initial condition with F : [0,∞)→ R2 where F(N) =

(F1(N),F2(N)), N ≡ N(t) and θ ≡
{
(S, I) ∈ R2

+ : max{|S| , |I|} ≤M
}

for sufficiently large M.

Then, for any N = (S, I) and N̄ = (S̄, Ī), N, N̄ ∈ θ , we have

‖F(N)−F(N̄)‖

= |F1(N)−F1(N̄)|+ |F2(N)−F2(N̄)|

=
∣∣[(r−µ)S−ω1S2− (ω2 +β )SI +ηI

]
−
[
(r−µ)S̄−ω1S̄2− (ω2 +β )S̄Ī +η Ī

]∣∣+∣∣[(β −ω4)SI−ω3I2− (η +µ)I
]
−
[
(β −ω4)S̄Ī−ω3Ī2− (η +µ)Ī

]∣∣
≤ (r+µ)

∣∣S− S̄
∣∣+ω1

∣∣S2− S̄2∣∣+(ω2 +β )
∣∣SI− S̄Ī

∣∣+η |I− Ī|+(β +ω4)
∣∣SI− S̄Ī

∣∣
+ω3

∣∣I2− Ī2∣∣+(η +µ) |I− Ī|

= (r+µ)
∣∣S− S̄

∣∣+ω1
∣∣(S+ S̄)(S− S̄)

∣∣+(ω2 +ω4 +2β )
∣∣I(S− S̄)+ S̄(I− Ī)

∣∣
+(2η +µ) |I− Ī|+ω3 |(I + Ī)(I− Ī)|
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≤ (r+µ)
∣∣S− S̄

∣∣+2ω1M
∣∣S− S̄

∣∣+(ω2 +ω4 +2β )M
∣∣S− S̄

∣∣
+(ω2 +ω4 +2β )M |I− Ī|+(2η +µ) |I− Ī|+2ω3M |I− Ī|

= [(r+µ)+2ω1M+(ω2 +ω4 +2β )M]
∣∣S− S̄

∣∣
+[(ω2 +ω4 +2β )M+(2η +µ)+2ω3M] |I− Ī|

≤ L‖N− N̄‖ ,

where L = (ω2 +ω4 +2β )M+µ+max{r+2ω1M,2(η +ω3M)}. Therefore, F(N) stisfies the135

Lipschitz condition. Obeying Lemma 5 in [38], we conclude that model (8) with positive initial136

condition has a unique solution. �137

2.3. Non-negativity and Boundedness. The non-negativity and boundedness properties of138

the solutions of the model (8) are given in the following theorem.139

Theorem 2. All solution of the model (8), which start in R2
+ :=140 {

(S, I) |S≥ 0, I ≥ 0,(S, I) ∈ R2} are uniformly bounded and non-negative.141

Proof. To prove the boundedness of the solutions of the model (8), the same approach of [38]

is adopted. Let consider the function N = S+ I. Then,

CDα
t N = CDα

t S+CDα
t I

= (r−µ)S−ω1S2− (ω2 +β )SI +ηI +(β −ω4)SI−ω3I2− (η +µ)I

= (r−µ)S−ω1S2− (ω2 +ω4)SI−ω3I2−µI.

Hence, for each µ > 0,

CDα
t N +µN = (r−µ)S−ω1S2− (ω2 +ω4)SI−ω3I2−µI +µS+µI

= rS−ω1S2− (ω2 +ω4)SI−ω3I2

= −ω1

(
S− r

2ω1

)2

+
r2

4ω1
− (ω2 +ω4)SI−ω3I2

≤ r2

4ω1
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By using the comparison theorem in [39], we obtain N(t) ≤ N(0)Eα(−µtα) +142

r2

4ω1
tαEα,α+1(−µtα), where Eα and Eα,α+1 is the Mittag-Leffler function with one and two143

parameters. According to Lemma 5 and Corollary 6 in [39], we have N(t) ≤ r2

4µω1
, as t → ∞.144

Therefore, all solutions of model (8) starting in R2
+ are uniformly bounded in the region Φ,145

where Φ =
{
(S, I) ∈ R2

+ : S+ I ≤ r2

4µω1
+ ε, ε > 0

}
Next, we prove that all solutions of model146

(8) are non-negative. By model (8), we have CDα
t S|S=0 = ηI ≥ 0 and CDα

t I|I=0 = 0≥ 0. Based147

on Lemmas 5 and 6 in [40], we conclude that the solutions of model (8) are non-negative. �148

3. ANALYTICAL RESULTS149

In this section, the dynamics of model (8) are shown analytically including the existence of150

equilibrium points, and their local and global stability.151

3.1. Existence of Equilibrium Points. To find the equilibrium points of model (8), we must

have

[(r−µ)−ω1S− (ω2 +β )I]S+ηI = 0,(9)

[(β −ω4)S−ω3I− (η +µ)]I = 0.(10)

If I = 0 is substituted to (9), we obtain152

(11) [(r−µ)−ω1S]S = 0.153

From eq. (11), we get S = 0 and S = r−µ

ω1
. Thus, we have two equilibrium points here namely154

E0 = (0,0), and EA =
(

r−µ

ω1
,0
)

. The equilibrium point E0 is called the origin point which155

represents the extinction of both susceptible and infected populations. Since E0 ∈ R2
+, this156

equilibrium point always exists. Furthermore, the equilibrium point EA is called the disease-157

free equilibrium point (DFEP) which describes the condition where the infectious disease does158

not exist anymore in the population. According to the biological condition, it is natural that the159

birth rate r is greater than its death rate µ . By assuming r > µ , the origin point EA ∈ R2
+ also160

always exists. By simple calculation, we also obtain the basic reproduction number R0 given161

by162

(12) R0 =
(r−µ)β

(r−µ)ω4 +(η +µ)ω1
.163
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The basic reproduction number is utilized to show the dynamical behavior of each equilibrium164

point and to describe whether the infectious disease becomes endemic or not. Since r > µ , the165

value of R0 is always positive. Now, let’s concern the eq. (9) and (10). By solving eq. (10), we166

attain167

(13) S =
ω3I +(η +µ)

β −ω4
.168

If we substitute eq. (13) to (9), the following polynomial equation holds.169

(14) k1I2 + k2I + k3 = 0,170

where

k1 = ((β −ω4)(β +ω2)+ω1ω3)ω3,

k2 = (β −ω4)((β +ω2)µ +(ω2 +ω4)η− (r−µ)ω3)+2(η +µ)ω1ω3,

k3 =
(1−R0)(r−µ)(η +µ)β

R0
.

Therefore, we acquire the endemic point (EEP)171

(15) EI =

(
ω3γ̄ +(η +µ)

β −ω4
, γ̄

)
,172

where γ̄ is the positive root of polynomial equation (14). From (15), we find that β > ω4 must173

be fulfilled so that EI ∈R2
+. Moreover, EEP exists if γ̄ > 0. From eq. (14), we have k1 is always174

positive. Thus, the value of the γ̄ depends on k2 and k3. Furthermore, eq. (14) has real number175

roots if k2
2 ≥ 4k1k3. By applying simple algebra, if k3 > 0 and k2 < 0 then we have two positive176

roots of eq. (14), if k3 > 0 and k2 > 0 then we do not have any positive roots of eq. (14), and if177

k3 < 0 then we have a positive root of eq. (14). Finally, we have the following theorem.178

Theorem 3. Let β > ω4. The existence of EEP EI is shown by the following statement.179

(i) If k2
2 < 4k1k3 then EI does not exist.180

(ii) If k2
2 = 4k1k3 and181

(ii.i) if k2 > 0 then EI does not exist.182

(ii.ii) if k2 < 0 then EI exists and unique.183

(iii) If k2
2 > 4k1k3 and184
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(iii.i) if k3 > 0 and k2 < 0 then we have a pair of EI .185

(iii.ii) if k3 > 0 and k2 > 0 then EI does not exist.186

(iii.iii) if k3 < 0 then EI exists and unique.187

Denote that k2
2 > 4k1k3 is always satisfied and k3 < 0 for R0 > 1, then the following lemma188

holds.189

Lemma 4. EEP EI exists and unique if R0 > 1.190

3.2. Local Dynamics. The local dynamics of model (8) are obtained by applying the191

Matignon condition which is defined as follows.192

Theorem 5. [Matignon condition [36]] An equilibrium point~x∗ is locally asymptotically stable193

(LAS) if all eigenvalues λ j of the Jacobian matrix J = ∂~f
∂~x at~x∗ satisfy

∣∣arg(λ j)
∣∣> απ

2 . If there194

exists at least one eigenvalue satisfy |arg(λk)| > απ

2 while |arg(λl)| < απ

2 , k 6= l, then ~x∗ is a195

saddle-point.196

Therefore, to study the local dynamics of model (8), we first compute its Jacobian matrix at197

the point (S, I) which gives198

(16) J (S, I) =

 (r−µ)−2ω1S− (ω2 +β )I −(ω2 +β )S+η

(β −ω4)I (β −ω4)S−2ω3I− (η +µ)

 .199

Obeying Theorem 5 and using Jacobian matrix (16), we discuss the local stability for each200

equilibrium point in the next subsection.201

3.3. Dynamical behavior around E0. LAS condition of E0 is obtained by identifying the

eigenvalues of the Jacobian matrix (16) at the point (S, I) = (0,0). We receive

J (S, I)|E0
=

 r−µ η

0 −(η +µ)

 .
Therefore, we have λ1 = r−µ and λ2 =−(η+µ). Since r > µ and λ2 < 0, we have |arg(λ1)|=202

0 < απ

2 and |arg(λ2)|= π > απ

2 . According to Theorem 5, the following theorem holds.203

Theorem 6. The origin point E0 is always a saddle point.204
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3.4. Dynamical behavior around EA. For (x,y) =
(

r−µ

ω1
,0
)

, the Jacobian matrix (16) be-

comes

J (S, I)|EA
=

 −(r−µ) η− (ω2+β )(r−µ)
ω1

0 (R0−1)(r−µ)β
ω1R0

 ,
which gives a pair of eigenvalues λ1 = −(r− µ) and λ2 =

(R0−1)(r−µ)β
ω1R0

. Denote |arg(λ2)| =205

π > απ

2 as the impact of λ1 < 0. Hence, the sign of λ2 takes the role in describing local dynamics206

around EA. To obtain |arg(λ2)|= π > απ

2 , we need λ2 < 0 which is fulfilled if R0 < 1. If R0 > 1207

then |arg(λ2)|= 0 < απ

2 . Following the Matignon condition given in Theorem 5, the following208

theorem is successfully attained.209

Theorem 7. If R0 < 1 then EA is LAS and a saddle point if R0 > 1.210

3.5. Dynamical behavior around EI . To identify the local stability of EI , we first compute211

the Jacobian matrix (16) evaluated at EI . We generate212

(17) J (S, I)|EI
=

 −[ (ω3γ̄+η+µ)ω1
β−ω4

+ (β−ω4)ηγ̄

ω3γ̄+η+µ

]
− (ω2+β )(ω3γ̄+η+µ)

β−ω4
+η

(β −ω4)γ̄ −ω3γ̄

 .213

The eigenvalues of (17) are given by λ1 =
1
2

(
ξ1 +

√
ξ 2

1 −4ξ2

)
and λ2 =

1
2

(
ξ1−

√
ξ 2

1 −4ξ2

)
where

ξ1 = −
[
(ω3γ̄ +η +µ)ω1

β −ω4
+

(β −ω4)ηγ̄

ω3γ̄ +η +µ
+ω3γ̄

]
,

ξ2 =

[(
ω1ω3

β −ω4
+ω2 +β

)
(ω3γ̄ +η +µ)+

(
ω3γ̄

ω3γ̄ +η +µ
+1
)
(β −ω4)η

]
γ̄.

It is easy to proof that ξ1 < 0 and ξ2 > 0 since β > ω4 becomes the existence condition. As the214

impact, |arg(λi)| > απ

2 , i = 1,2 and hence the LAS always hold for EEP. Thus, the following215

theorem holds.216

Theorem 8. EEP EI is always LAS.217

3.6. Global Dynamics. In this subsection, the global dynamics of model (8) are studied. The218

biological conditions of equilibrium points are investigated so that those points are globally219

asymptotically stable (GAS). Since the origin is always a saddle point, we focus on studying220

GAS conditions for DFEP and EEP. The next two theorems are given for the global dynamics.221
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Theorem 9. DFEP EA is GAS if ω1 >
(ω2+β )r

µ
.222

Proof. We define a positive Lyapunov function as follows.223

(18) VA(S, I) =
(

S− r−µ

ω1
− r−µ

ω1
ln

ω1S
r−µ

)
+ I.224

If we calculate the Caputo fractional derivative of VA(S, I) along the solution of model (8) and

use Lemma 3.1 in [41], we get

CDα
t VA(S, I)

=

(
S− r−µ

ω1

S

)
CDα

t S+CDα
t I

= −ω1

(
S− r−µ

ω1

)2

+
(r−µ)(ω2 +β )I

ω1
− (r−µ)ηI

ω1S
− (ω2 +ω4)SI−ω3I2−µI

≤ −ω1

(
S− r−µ

ω1

)2

−
(

µ− (ω2 +β )r
ω1

)
I

Since ω1 >
(ω2+β )r

µ
, we have CDα

t VA(S, I) ≤ 0 for all (S, I) ∈ R2
+, and CDα

t VA(S, I) = 0 only225

when (S, I) =
(

r−µ

ω1
,0
)

. This means that the singleton {EA} is the only invariant set where226

CDα
t VA(S, I) = 0. By Lemma 4.6 in [42], we can conclude that every solution of model (8)227

tends to DFEP EA.228

�229

Theorem 10. EEP EI is GAS if ω2
2 + ω4

2 + η

2ϑ
< min{ω1,ω3}.230

Proof. We first define ϑ = ω3γ̄+(η+µ)
β−ω4

and hence EI =(ϑ , γ̄). Now, a positive Lyapunov function231

is presented as follows.232

(19) VI(S, I) =
(

S−ϑ −ϑ ln
S
ϕ

)
+

(
I− γ̄− γ̄ ln

S
γ̄

)
233

Following Lemma 3.1 in [41], we reach

CDα
t VI(S, I)

=

(
S−ϑ

S

)
CDα

t S+
(

I− γ̄

I

)
CDα

t I

= (S−S∗)
(
(r−µ)−ω1S− (ω2 +β )I +

ηI
S

)
+(I− γ̄)((β −ω4)S−ω3I− (η +µ))
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= −ω1 (S−ϑ)2−ω3 (I− γ̄)2− (ω2 +ω4)(S−S∗)(I− γ̄)

≤ −
(

ω1−
(

ω2

2
+

ω4

2
+

η

2ϑ

))
(S−ϑ)2−

(
ω3−

(
ω2

2
+

ω4

2
+

η

2ϑ

))
(I− γ̄)2

Denote that CDα
t VI(S, I)≤ 0 for all (S, I) ∈R2

+ as a result of ω2
2 + ω4

2 + η

2ϑ
< min{ω1,ω3}. We234

also have that CDα
t VI(S, I) = 0 only when (S, I) = (ϑ , γ̄). Therefore, the singleton {EI} is the235

only invariant set where CDα
t VI(S, I) = 0. Obeying Lemma 4.6 in [42], every solution of model236

(8) tends to EEP EI . �237

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8
PRCC

β

η

ω1

ω4

P
ar

am
et

er
s

positive relationship with R0

negative relationship with R0

0.763

-0.277

-0.352

-0.33

FIGURE 2. PRCC results for the parameters of R0

1.0 1.2 1.4 1.6 1.8 2.0

ω1
×10−1

1.0

1.2

1.4

1.6

1.8

2.0

ω
4

×10−1

1.35
1.50

1.65

1.80
1.95

2.102.25
1.30

1.45

1.60

1.75

1.90

2.05

2.20

2.35

2.50

R
0

(A) Contour plot on (ω1,ω4)− plane

2 3 4 5 6 7

β ×10−1

0

1

2

3

4

5

6

η

×10−1

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.0 1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0
R

0

(B) Contour plot on (β ,η)− plane

FIGURE 3. Contour plots for the parameters respect to R0



14 I. DJAKARIA, H.S. PANIGORO, E. BONYAH, E. RAHMI, W. MUSA

0 10 20 30 40 50

Time (days)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

P
R

C
C

ω1

ω2

ω3

ω4

β

η

FIGURE 4. PRCC results for the parameters of I(t)

TABLE 1. PRCC results in respect to the population density of infected class

Parameter Description PRCC Rank Relationship with I(t)

ω1 The death rate of susceptible population due to the

intraspecific competition

-0.00851 6 Negative relationship

ω2 The death rate of susceptible population due to the

interspecific competition

-0.01938 5 Negative relationship

ω3 The death rate of infected population due to the in-

traspecific competition

-0.01990 4 Negative relationship

ω4 The death rate of infected population due to the inter-

specific competition

-0.54635 1 Negative relationship

β The infection rate 0.54631 2 Positive relationship

η The recovery rate -0.43606 3 Negative relationship
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4. GLOBAL SENSITIVITY ANALYSIS238

In this section, the global sensitivity analysis is studied to investigate the most influential239

parameters of model (8). Global sensitivity analysis is calculated using Partial Rank Coefficient240

Correlation (PRCC) [43], where the random data processed in PRCC is generated using Saltelli241

sampling [44]. Two biological components become the objective function for the PRCC namely242

the basic reproduction number (R0) and the population density of infected class (I(t)). We243

first investigate the most influential parameter to the basic reproduction number (R0). From244

eq. (12), we acquire that only r, µ , ω1, ω4, and η have the influence on the value of R0. The245

birth rate and the natural death rate also can be fixed since some cases in the epidemiological246

model has the values of these parameters. Thus, only β , η , ω1, and ω4 will be computed for247

PRCC. The Figure 2 is given for the results. We have β = 0.763, ω1 = −0.352, ω4 = −0.33,248

and η =−0.277 as the coefficient correlation such that the infection rate (β ) becomes the most249

influential parameter to R0 and followed by ω1, ω4, and η , respectively. It shows that the250

infection rate (β ) as the most influential parameter has a positive relationship with the basic251

reproduction number (R0) which means that R0 will significantly increases when β increases.252

The rest ω1, ω4, and η have a negative relationship with R0 which means that by reducing253

the value of those parameters, the basic reproduction number (R0) will increases. To show the254

impact of these parameters on R0, the contour plots are also portrayed in Figure 3.255

Next, we identify the most influential parameter to the population density of infected class256

(I(t)). Quite similar to previous work, the value of r and µ are fixed but the rest of the pa-257

rameters are involved to compute PRCC. PRCC values are computed for 0 ≤ t ≤ 50 which258

is considered sufficient enough to see the convergence for each parameter through the PRCC.259

We portray the PRCC results in Figure 4 while the PRCC values, ranks, and the relationship260

between each parameter and I(t) are given in Table 1. From those simulations, we conclude261

that the death rate of infected population due to interspecific competition between susceptible262

and infected classes (ω4) become the most influential parameter to the population density (I(t))263

followed respectively by β , η , ω3, ω2, and ω1. In the next section, the numerical simulations264

including bifurcation diagram and time-series are presented to show the impact of the infection265
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rate (β ), recovery rate (η), intraspecific competition (ω1 and ω3), and interspecific competition266

(ω2 and ω4) to the dynamical behaviors of model (8).267

5. NUMERICAL SIMULATIONS268

In this section, the dynamical behaviors of model (8) including bifurcation diagram and time-269

series are studied numerically. To obtain the bifurcation diagram and the corresponding time-270

series of model (8), the predictor-corrector scheme developed by Diethelm et al. is employed271

[45]. Since the model does not investigate a specific epidemiological case, we use hypothetical272

parameters for all numerical simulations. we set the parameter values as follows.273

(20)

r = 0.6, µ = 0.1, ω1 = 0.1, ω2 = 0.1, ω3 = 0.1, ω4 = 0.1, β = 0.4, η = 0.2, and α = 0.9274

We start our work by investigating the impact of infection rate (β ) on the dynamics of model275

(8). The value of β is varied in the interval 0 ≤ β ≤ 1 and we then compute the numerical276

solutions. To obtain the bifurcation diagram, we plot the tail of solutions for each β together277

with the LAS condition of EA. As result, we obtain a bifurcation diagram as in Figure 5a. When278

0 ≤ β < β ∗, β ∗ = 0.16, the EEP EI does not exist and Theorem 7 is satisfied which means279

that DFE EA is LAS. The solution is convergent to EA which indicates the population free from280

disease. When β passes through β ∗, EA losses its stability, and unique LAS EEP EI occurs281

in the interior. The infectious disease becomes endemic in the population and still exists for282

all t→ ∞. From the concatenation of those biological circumstances, we conclude that forward283

bifurcation occurs around EA where β is the bifurcation parameter and β = β ∗ is the bifurcation284

point. It is easy to examine that the bifurcation point β = β ∗ is equal to R0 = 1. The dynamical285

behaviors are maintained for β ∗ < β ≤ 1. To support these conditions, some time series are286

given in Figure 5b to show the convergence of solutions for different values of β .287

Next, the impact of recover rate (η) is studied. A similar numerical scheme as the previous288

way is applied. To depicts the bifurcation diagram, the parameter is fixed as in eq. (20) and the289

recovery rate (η) is varied in interval 0≤η ≤ 1. We have Figure 6a as the result. Denote that the290

bifurcation does not exist for this interval. Both DFEP and EEP exist with distinct stability. The291

DFEP EA is a saddle point while the EEP EI is LAS which confirm the validity of Theorems 6292
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and 7. We also confirm that the EEP EI attains GAS which means that all initial conditions293

will go right to the EEP and the infectious disease will exist all the time. Although the disease294

becomes endemic, the numerical simulation shows that the value of η is directly proportional295

to S(t) and inversely proportional to I(t), see Figure 6b. This means the population density of296

the infected class can be reduced by increasing the recovery rate (η).297

For the next simulation, the impact of intraspecific competition is investigated. The death298

rate parameters caused by intraspecific competition on susceptible and infected classes (ω1 and299

ω3) are varied in interval [0,1]. It is found that forward bifurcation occurs when ω1 is driven300

where the bifurcation point is given by ω∗1 = 0.5, see Figure 7a. The population density of301

both susceptible and infected classes reduces when the death rate of S(t) due to intraspecific302

competition increases as given by Figure 7b. Particularly, Figure 8a shows that bifurcation does303

not exists in interval 0≤ ω1 ≤ 1 when ω1 is varied but the dynamical behaviors show that S(t)304

increases and I(t) decrease when ω1 increase. We confirm this condition by giving time-series305

in Figure 8b.306

Now, we study the impact of interspecific competition on the dynamical behaviors of model307

(8). Both susceptible and infected classes have died due to the existence of interspecific com-308

petition given by parameters ω2 and ω4. By varying ω2 and ω4 in interval [0,1], we obtain309

Figures 9a and 10a as the bifurcation diagram. We find forward bifurcation driven by ω4 which310

does not exist when varying ω1. This means, the EEP still exists and LAS for 0 ≤< ω2 ≤ 1.311

The EEP will disappear via forward bifurcation and the saddle DFEP becomes LAS when ω4312

crosses ω∗4 = 0.34. This guarantees that the infectious disease may eliminate the disease in pop-313

ulation when the death rate of the infected population due to interspecific competition increases314

as shown in Figure 10b. Although the disease does not disappear when ω2 is driven, we also can315

see in Figure 9b that by increasing ω2, the population density of the infected class will reduce316

and the susceptible class will increase.317

Finally, the impact of memory effect (α) is investigated. The numerical simulation is given318

by Figure 11. For α = 0.7,0.8,0.9,1 and similar initial values, all solution converge to single319

equilibrium point given by EI ≈ (1.3465,1.0395), see Figure 11(a,b). We then plot the local320

amplification to show the difference of solutions when α is varied. We find that the difference321
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lies in the convergence rate where for larger values of α , the convergence rate increase and322

vice versa as shown in Figure 11(e,f). In the beginning, Figure 11(c,d) we show that when α323

decrease, the population density of the infected class reduce. From a biological point of view,324

we can say that biological memory has an impact on the density of both susceptible and infected325

classes.326

6. CONCLUSION327

The dynamics of a fractional-order SIS-epidemic model with intraspecific and interspecific328

competition have been studied. The validity of the model has been confirmed analytically by329

showing the existence, uniqueness, non-negativity, and boundedness of solutions. Three equi-330

librium points have been obtained namely the origin, the disease-free equilibrium point, and331

the endemic equilibrium point. Both origin and disease-free equilibrium points always exist332

while the endemic equilibrium point conditionally exists. The basic reproduction number R0333

has been given which has a relationship with the local stability of the model. If R0 < 1 then the334

disease-free equilibrium point is locally asymptotically stable and if R0 > 1 then the disease-335

free equilibrium point losses its stability along with the existence of a locally asymptotically336

stable endemic equilibrium point. The global stability conditions of equilibrium points also337

have been found. The PRCC has been worked to investigate the most influential parameter.338

We have successfully shown that the infection rate and the death rate of the infected population339

due to interspecific competition becomes the most influential parameter for basic reproduction340

number and the population density of the infected class. We then investigate the impact of sev-341

eral parameters using numerical simulations including the infection rate, the recovery rate, the342

intraspecific competition, the interspecific competition, and the memory effect on the dynamics343

of the model. Bifurcation diagrams and time series have been given which show the existence344

of forward bifurcation, the decrease of susceptible and infected classes, and the decrease of345

convergence rate caused by the memory effect.346
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Abstract. Infectious disease and competition play important roles in the dynamics of a population due to their

capability to increase the mortality rate for each organism. In this paper, the dynamical behaviors of a single

species population are studied by considering the existence of the infectious disease, intraspecific competition,

and interspecific competition. The fractional-order derivative with a power-law kernel is utilized to involve the

impact of the memory effect. The population is divided into two compartments namely the susceptible class and

the infected class. The existence, uniqueness, non-negativity, and boundedness of the solution are investigated

to confirm the biological validity. Three types of feasible equilibrium points are identified namely the origin,

the disease-free, and the endemic points. All biological conditions which present the local and global stability

are investigated. The global sensitivity analysis is given to investigate the most influential parameter to the basic

reproduction number and the density of each class. Some numerical simulations including bifurcation diagrams

and time series are also portrayed to explore more the dynamical behaviors.
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1. INTRODUCTION

The spread of infectious disease still becomes a fundamental issue not only because of the

existence of the population but also to maintain the balance of biological systems. Several sci-

entific methods are developed to discover better ways to suppress and control the rate of disease

infection [1]. The preferred ways for the last decades for this epidemiological problems are

given by mathematical approach using a deterministic model which is considered efficacious to

understand the mechanisms of disease transmission and evaluate the appropriate control strate-

gies [2, 3, 4]. The fundamental one which has become the basis of epidemiological modeling

is given by [5] which develops the continuous-time deterministic model using first-order de-

rivative as the operator. This model is successfully developed in couple of ways such as the

continuous-time single species epidemiological modeling with first-order derivative [6, 7, 8, 9],

the discrete-time single species epidemiological modeling [10, 11, 12], the stochastic single-

species epidemiological modeling [13, 14], and the continuous-time eco-epidemiological mod-

eling [15, 16, 17].

Apart from those operators, several researchers prefer to use the fractional-order derivative

to accomplish their problems the biological modeling. See [18, 19, 20] and references therein

for some examples in epidemiological modeling. The fractional-order derivative is chosen by

considering the capability of this operator to describe the current state of the biological object

as the impact of all of its previous conditions which are known as the memory effect [21, 22]. In

the epidemiological model, the transmission of disease may slow down and be forestalled by the

susceptible population as the impact of the memory [23]. Some fractional-order derivative has

been developed and successfully applied in epidemiological modeling such as the Riemann-

Liouville, Caputo, Caputo-Fabrizio, and Atangana-Baleanu [24, 25, 26, 27]. From all of the

given operators, the Caputo fractional-order derivative has the complete tools for dynamical

analysis such as the existence and uniqueness, non-negativity and boundedness, local dynamics,

global dynamics, and some bifurcation analysis. Consequently, the Caputo operator will be used

in this paper where defined later in the next section.
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In this work, we develop the epidemiological model based on the SIR model given by [5]. For

single-species conditions, this model is only popular for the infectious diseases that appeared

in the human population. In facts, infectious diseases also threaten the existence of the animal

population which disturbs the balance of the ecosystem. For examples, the infectious diseases

in endemic species such as Orangutans [28], Tarsius [29], Sumatran Tiger [30], and Komodo

dragon [31]. Moreover, the natural behaviors of animals that endanger the existence of their

populations are the intraspecific competition among them to preserve their food sources [32,

33, 34]. For these reasons, developing and investigating the dynamics of the epidemiological

model by considering the impact of intraspecific competition and the memory effect are critical

issues that become the novelty of our research.

The whole of this paper is organized in the following procedure: In Section 2, the math-

ematical modeling consists of model formulation, existence, uniqueness, non-negativity, and

boundedness are given. The analytical results including the existence of equilibrium points and

their local and global dynamics are completely investigated in Section 3. To show the most in-

fluential parameter of the model, the global sensitivity analysis is provided by Section 4. Some

numerical simulations as well as bifurcation diagrams and time-series are presented in Sec-

tion 5 to explore more about the dynamical behaviors of the model. This work ends by giving a

conclusion in Section 6.

2. MATHEMATICAL MODELING

This section studies about mathematical modeling consisting of the model formulation, ex-

istence, uniqueness, non-negativity, and boundedness of solution. The mathematical model is

constructed by a deterministic approach using a differential equation. We first give some as-

sumptions to restrain the model so it does not get too complicated. We next interpret the giving

assumptions to the mathematical formula using the first-order derivative as the operator. A di-

agram is presented to show the impact of each assumption on the flow of population density

for each compartment. To involve the impact of the memory effect, the Caputo fractional-order

derivative is applied to the model. For the mathematical model’s validity, we show that the

solution of the model always exists, unique, non-negative, and bounded.
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2.1. Model Formulation. In this work, the model is constructed from a single population

growth model. We first assume there exists a population in a habitat that grows proportionally

to its density and bounded due to the intraspecific competition. Let N(t) be the population

at time t, r is the birth rate, µ is the natural death rate, and ω is the death rate as a result of

competition. Thus, we have a first-order differential equation as follows.

(1)
dN
dt

= (r−µ)N−ωN2.

Next, we assume that the population is exposed by infectious disease. The population N is

divided into two compartments namely the susceptible class (S) and infected class (I) where

N = S+ I. The susceptible class is infected by disease bilinearly with infection rate β . The

competition is divided into two cases namely the intraspecific competition for each susceptible

and infected class, and the interspecific competition between susceptible and infected classes.

As result, the following model is received.

dS
dt

= (r−µ)S−ω1S2− (ω2 +β )SI,

dI
dt

= (β −ω4)SI−ω3I2−µI,
(2)

where ωi, i = 1,2 respectively denote the death rate of the susceptible population as the results

of intraspecific and interspecific competitions between susceptible and susceptible classes, and

susceptible and infected classes. The parameters ωi, i= 3,4 denote the death rate of the infected

population as the result of competition between infected and infected classes, and susceptible

and infected classes. In our works, we also assume that each organism has the capability to

survive the disease. Thus, we define η as the recovery rate. Since each organism that survives

from the disease has a chance to be re-infected, this type of population will be again susceptible.

Finally, we have a mathematical model as follows.

dS
dt

= (r−µ)S−ω1S2− (ω2 +β )SI +ηI,

dI
dt

= (β −ω4)SI−ω3I2− (η +µ)I.
(3)

All of the given assumptions and their mathematical modeling are described in Figure 1.

Now, the Caputo fractional-order derivative will be applied in order to conduct the impact

of the memory effect on the population growth rate. The similar procedure is adopted from
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FIGURE 1. Compartment diagram of model (3)

[35]. The first-order derivatives on the left-hand side of model (3) are replaced by the Caputo

fractional-order derivative defined as follows.

Definition 1. [36] Suppose 0 < α ≤ 1. The Caputo fractional derivative of order−α is defined

by

(4) CDα
t f (t) =

1
Γ(1−α)

∫ t

0
(t− s)−α f ′(s)ds,

where t ≥ 0, f ∈Cn([0,+∞),R), and Γ is the Gamma function.

Applying Definition 1 to eq. (3), the following model is obtained.

CDα
t S = (r−µ)S−ω1S2− (ω2 +β )SI +ηI,

CDα
t I = (β −ω4)SI−ω3I2− (η +µ)I.

(5)

Since the given process above makes the dimension of time at the left-hand side become tα ,

some parameters need to be rescaled so that there are no differences between the time’s dimen-

sions at the left-hand side with the right-hand side of model (5). By applying time rescale to

some parameters, we have the model as follows.

CDα
t S = (rα −µ

α)S−ω
α
1 S2− (ωα

2 +β
α)SI +η

α I,

CDα
t I = (β α −ω

α
4 )SI−ω

α
3 I2− (ηα +µ

α)I.
(6)

Let rα = r̂, µα = µ̂ , ωα
1 = ω̂1, ωα

2 = ω̂2, ωα
3 = ω̂3, ωα

4 = ω̂4, β α = β̂ , and ηα = η̂ . Thus, we

acquire

CDα
t S = (r̂− µ̂)S− ω̂1S2− (ω̂2 + β̂ )SI + η̂I,

CDα
t I = (β̂ − ω̂4)SI− ω̂3I2− (η̂ + µ̂)I.

(7)
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For simplicity, by dropping .̂ for each parameter, we obtain the final model as follows.

CDα
t S = (r−µ)S−ω1S2− (ω2 +β )SI +ηI = F1(N(t)),

CDα
t I = (β −ω4)SI−ω3I2− (η +µ)I = F2(N(t)).

(8)

Equation (8) is the final proposed model in this paper. Although model (8) seems classic and

simple, this model will be powerful to solve and investigate the existence of a closed population

in a certain area without any outside intervention. Our literature review also shows that the

model (8) has heretofore never been studied. Now, the basic properties of model (8) such as the

existence uniqueness, non-negativity, and boundedness are investigated to confirm its biological

validity.

2.2. Existence and Uniqueness. In this subsection, we will show that the model (8) has a

unique solution. A similar manner given by [37] is used. Thus, the following theorem is

presented to show the existence and uniqueness of the solution of model (8).

Theorem 1. The model (8) with initial condition S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0 has a unique

solution.

Proof. Consider model (8) with positive initial condition with F : [0,∞)→ R2 where F(N) =

(F1(N),F2(N)), N ≡ N(t) and θ ≡
{
(S, I) ∈ R2

+ : max{|S| , |I|} ≤M
}

for sufficiently large M.

Then, for any N = (S, I) and N̄ = (S̄, Ī), N, N̄ ∈ θ , we have

‖F(N)−F(N̄)‖

= |F1(N)−F1(N̄)|+ |F2(N)−F2(N̄)|

=
∣∣[(r−µ)S−ω1S2− (ω2 +β )SI +ηI

]
−
[
(r−µ)S̄−ω1S̄2− (ω2 +β )S̄Ī +η Ī

]∣∣+∣∣[(β −ω4)SI−ω3I2− (η +µ)I
]
−
[
(β −ω4)S̄Ī−ω3Ī2− (η +µ)Ī

]∣∣
≤ (r+µ)

∣∣S− S̄
∣∣+ω1

∣∣S2− S̄2∣∣+(ω2 +β )
∣∣SI− S̄Ī

∣∣+η |I− Ī|+(β +ω4)
∣∣SI− S̄Ī

∣∣
+ω3

∣∣I2− Ī2∣∣+(η +µ) |I− Ī|

= (r+µ)
∣∣S− S̄

∣∣+ω1
∣∣(S+ S̄)(S− S̄)

∣∣+(ω2 +ω4 +2β )
∣∣I(S− S̄)+ S̄(I− Ī)

∣∣
+(2η +µ) |I− Ī|+ω3 |(I + Ī)(I− Ī)|
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≤ (r+µ)
∣∣S− S̄

∣∣+2ω1M
∣∣S− S̄

∣∣+(ω2 +ω4 +2β )M
∣∣S− S̄

∣∣
+(ω2 +ω4 +2β )M |I− Ī|+(2η +µ) |I− Ī|+2ω3M |I− Ī|

= [(r+µ)+2ω1M+(ω2 +ω4 +2β )M]
∣∣S− S̄

∣∣
+[(ω2 +ω4 +2β )M+(2η +µ)+2ω3M] |I− Ī|

≤ L‖N− N̄‖ ,

where L = (ω2 +ω4 +2β )M+µ+max{r+2ω1M,2(η +ω3M)}. Therefore, F(N) stisfies the

Lipschitz condition. Obeying Lemma 5 in [38], we conclude that model (8) with positive initial

condition has a unique solution. �

2.3. Non-negativity and Boundedness. The non-negativity and boundedness properties of

the solutions of the model (8) are given in the following theorem.

Theorem 2. All solution of the model (8), which start in R2
+ :={

(S, I) |S≥ 0, I ≥ 0,(S, I) ∈ R2} are uniformly bounded and non-negative.

Proof. To prove the boundedness of the solutions of the model (8), the same approach of [38]

is adopted. Let consider the function N = S+ I. Then,

CDα
t N = CDα

t S+CDα
t I

= (r−µ)S−ω1S2− (ω2 +β )SI +ηI +(β −ω4)SI−ω3I2− (η +µ)I

= (r−µ)S−ω1S2− (ω2 +ω4)SI−ω3I2−µI.

Hence, for each µ > 0,

CDα
t N +µN = (r−µ)S−ω1S2− (ω2 +ω4)SI−ω3I2−µI +µS+µI

= rS−ω1S2− (ω2 +ω4)SI−ω3I2

= −ω1

(
S− r

2ω1

)2

+
r2

4ω1
− (ω2 +ω4)SI−ω3I2

≤ r2

4ω1
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By using the comparison theorem in [39], we obtain N(t) ≤ N(0)Eα(−µtα) +

r2

4ω1
tαEα,α+1(−µtα), where Eα and Eα,α+1 is the Mittag-Leffler function with one and two

parameters. According to Lemma 5 and Corollary 6 in [39], we have N(t) ≤ r2

4µω1
, as t → ∞.

Therefore, all solutions of model (8) starting in R2
+ are uniformly bounded in the region Φ,

where Φ =
{
(S, I) ∈ R2

+ : S+ I ≤ r2

4µω1
+ ε, ε > 0

}
Next, we prove that all solutions of model

(8) are non-negative. By model (8), we have CDα
t S|S=0 = ηI ≥ 0 and CDα

t I|I=0 = 0≥ 0. Based

on Lemmas 5 and 6 in [40], we conclude that the solutions of model (8) are non-negative. �

3. ANALYTICAL RESULTS

In this section, the dynamics of model (8) are shown analytically including the existence of

equilibrium points, and their local and global stability.

3.1. Existence of Equilibrium Points. To find the equilibrium points of model (8), we must

have

[(r−µ)−ω1S− (ω2 +β )I]S+ηI = 0,(9)

[(β −ω4)S−ω3I− (η +µ)]I = 0.(10)

If I = 0 is substituted to (9), we obtain

(11) [(r−µ)−ω1S]S = 0.

From eq. (11), we get S = 0 and S = r−µ

ω1
. Thus, we have two equilibrium points here namely

E0 = (0,0), and EA =
(

r−µ

ω1
,0
)

. The equilibrium point E0 is called the origin point which

represents the extinction of both susceptible and infected populations. Since E0 ∈ R2
+, this

equilibrium point always exists. Furthermore, the equilibrium point EA is called the disease-

free equilibrium point (DFEP) which describes the condition where the infectious disease does

not exist anymore in the population. According to the biological condition, it is natural that the

birth rate r is greater than its death rate µ . By assuming r > µ , the origin point EA ∈ R2
+ also

always exists. By simple calculation, we also obtain the basic reproduction number R0 given

by

(12) R0 =
(r−µ)β

(r−µ)ω4 +(η +µ)ω1
.
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The basic reproduction number is utilized to show the dynamical behavior of each equilibrium

point and to describe whether the infectious disease becomes endemic or not. Since r > µ , the

value of R0 is always positive. Now, let’s concern the eq. (9) and (10). By solving eq. (10), we

attain

(13) S =
ω3I +(η +µ)

β −ω4
.

If we substitute eq. (13) to (9), the following polynomial equation holds.

(14) k1I2 + k2I + k3 = 0,

where

k1 = ((β −ω4)(β +ω2)+ω1ω3)ω3,

k2 = (β −ω4)((β +ω2)µ +(ω2 +ω4)η− (r−µ)ω3)+2(η +µ)ω1ω3,

k3 =
(1−R0)(r−µ)(η +µ)β

R0
.

Therefore, we acquire the endemic point (EEP)

(15) EI =

(
ω3γ̄ +(η +µ)

β −ω4
, γ̄

)
,

where γ̄ is the positive root of polynomial equation (14). From (15), we find that β > ω4 must

be fulfilled so that EI ∈R2
+. Moreover, EEP exists if γ̄ > 0. From eq. (14), we have k1 is always

positive. Thus, the value of the γ̄ depends on k2 and k3. Furthermore, eq. (14) has real number

roots if k2
2 ≥ 4k1k3. By applying simple algebra, if k3 > 0 and k2 < 0 then we have two positive

roots of eq. (14), if k3 > 0 and k2 > 0 then we do not have any positive roots of eq. (14), and if

k3 < 0 then we have a positive root of eq. (14). Finally, we have the following theorem.

Theorem 3. Let β > ω4. The existence of EEP EI is shown by the following statement.

(i) If k2
2 < 4k1k3 then EI does not exist.

(ii) If k2
2 = 4k1k3 and

(ii.i) if k2 > 0 then EI does not exist.

(ii.ii) if k2 < 0 then EI exists and unique.

(iii) If k2
2 > 4k1k3 and
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(iii.i) if k3 > 0 and k2 < 0 then we have a pair of EI .

(iii.ii) if k3 > 0 and k2 > 0 then EI does not exist.

(iii.iii) if k3 < 0 then EI exists and unique.

Denote that k2
2 > 4k1k3 is always satisfied and k3 < 0 for R0 > 1, then the following lemma

holds.

Lemma 4. EEP EI exists and unique if R0 > 1.

3.2. Local Dynamics. The local dynamics of model (8) are obtained by applying the

Matignon condition which is defined as follows.

Theorem 5. [Matignon condition [36]] An equilibrium point~x∗ is locally asymptotically stable

(LAS) if all eigenvalues λ j of the Jacobian matrix J = ∂~f
∂~x at~x∗ satisfy

∣∣arg(λ j)
∣∣> απ

2 . If there

exists at least one eigenvalue satisfy |arg(λk)| > απ

2 while |arg(λl)| < απ

2 , k 6= l, then ~x∗ is a

saddle-point.

Therefore, to study the local dynamics of model (8), we first compute its Jacobian matrix at

the point (S, I) which gives

(16) J (S, I) =

 (r−µ)−2ω1S− (ω2 +β )I −(ω2 +β )S+η

(β −ω4)I (β −ω4)S−2ω3I− (η +µ)

 .
Obeying Theorem 5 and using Jacobian matrix (16), we discuss the local stability for each

equilibrium point in the next subsection.

3.3. Dynamical behavior around E0. LAS condition of E0 is obtained by identifying the

eigenvalues of the Jacobian matrix (16) at the point (S, I) = (0,0). We receive

J (S, I)|E0
=

 r−µ η

0 −(η +µ)

 .
Therefore, we have λ1 = r−µ and λ2 =−(η+µ). Since r > µ and λ2 < 0, we have |arg(λ1)|=
0 < απ

2 and |arg(λ2)|= π > απ

2 . According to Theorem 5, the following theorem holds.

Theorem 6. The origin point E0 is always a saddle point.
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3.4. Dynamical behavior around EA. For (x,y) =
(

r−µ

ω1
,0
)

, the Jacobian matrix (16) be-

comes

J (S, I)|EA
=

 −(r−µ) η− (ω2+β )(r−µ)
ω1

0 (R0−1)(r−µ)β
ω1R0

 ,
which gives a pair of eigenvalues λ1 = −(r− µ) and λ2 =

(R0−1)(r−µ)β
ω1R0

. Denote |arg(λ2)| =
π > απ

2 as the impact of λ1 < 0. Hence, the sign of λ2 takes the role in describing local dynamics

around EA. To obtain |arg(λ2)|= π > απ

2 , we need λ2 < 0 which is fulfilled if R0 < 1. If R0 > 1

then |arg(λ2)|= 0 < απ

2 . Following the Matignon condition given in Theorem 5, the following

theorem is successfully attained.

Theorem 7. If R0 < 1 then EA is LAS and a saddle point if R0 > 1.

3.5. Dynamical behavior around EI . To identify the local stability of EI , we first compute

the Jacobian matrix (16) evaluated at EI . We generate

(17) J (S, I)|EI
=

 −[ (ω3γ̄+η+µ)ω1
β−ω4

+ (β−ω4)ηγ̄

ω3γ̄+η+µ

]
− (ω2+β )(ω3γ̄+η+µ)

β−ω4
+η

(β −ω4)γ̄ −ω3γ̄

 .
The eigenvalues of (17) are given by λ1 =

1
2

(
ξ1 +

√
ξ 2

1 −4ξ2

)
and λ2 =

1
2

(
ξ1−

√
ξ 2

1 −4ξ2

)
where

ξ1 = −
[
(ω3γ̄ +η +µ)ω1

β −ω4
+

(β −ω4)ηγ̄

ω3γ̄ +η +µ
+ω3γ̄

]
,

ξ2 =

[(
ω1ω3

β −ω4
+ω2 +β

)
(ω3γ̄ +η +µ)+

(
ω3γ̄

ω3γ̄ +η +µ
+1
)
(β −ω4)η

]
γ̄.

It is easy to proof that ξ1 < 0 and ξ2 > 0 since β > ω4 becomes the existence condition. As the

impact, |arg(λi)| > απ

2 , i = 1,2 and hence the LAS always hold for EEP. Thus, the following

theorem holds.

Theorem 8. EEP EI is always LAS.

3.6. Global Dynamics. In this subsection, the global dynamics of model (8) are studied. The

biological conditions of equilibrium points are investigated so that those points are globally

asymptotically stable (GAS). Since the origin is always a saddle point, we focus on studying

GAS conditions for DFEP and EEP. The next two theorems are given for the global dynamics.
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Theorem 9. DFEP EA is GAS if ω1 >
(ω2+β )r

µ
.

Proof. We define a positive Lyapunov function as follows.

(18) VA(S, I) =
(

S− r−µ

ω1
− r−µ

ω1
ln

ω1S
r−µ

)
+ I.

If we calculate the Caputo fractional derivative of VA(S, I) along the solution of model (8) and

use Lemma 3.1 in [41], we get

CDα
t VA(S, I)

=

(
S− r−µ

ω1

S

)
CDα

t S+CDα
t I

= −ω1

(
S− r−µ

ω1

)2

+
(r−µ)(ω2 +β )I

ω1
− (r−µ)ηI

ω1S
− (ω2 +ω4)SI−ω3I2−µI

≤ −ω1

(
S− r−µ

ω1

)2

−
(

µ− (ω2 +β )r
ω1

)
I

Since ω1 >
(ω2+β )r

µ
, we have CDα

t VA(S, I) ≤ 0 for all (S, I) ∈ R2
+, and CDα

t VA(S, I) = 0 only

when (S, I) =
(

r−µ

ω1
,0
)

. This means that the singleton {EA} is the only invariant set where
CDα

t VA(S, I) = 0. By Lemma 4.6 in [42], we can conclude that every solution of model (8)

tends to DFEP EA.

�

Theorem 10. EEP EI is GAS if ω2
2 + ω4

2 + η

2ϑ
< min{ω1,ω3}.

Proof. We first define ϑ = ω3γ̄+(η+µ)
β−ω4

and hence EI =(ϑ , γ̄). Now, a positive Lyapunov function

is presented as follows.

(19) VI(S, I) =
(

S−ϑ −ϑ ln
S
ϕ

)
+

(
I− γ̄− γ̄ ln

S
γ̄

)
Following Lemma 3.1 in [41], we reach

CDα
t VI(S, I)

=

(
S−ϑ

S

)
CDα

t S+
(

I− γ̄

I

)
CDα

t I

= (S−S∗)
(
(r−µ)−ω1S− (ω2 +β )I +

ηI
S

)
+(I− γ̄)((β −ω4)S−ω3I− (η +µ))
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= −ω1 (S−ϑ)2−ω3 (I− γ̄)2− (ω2 +ω4)(S−S∗)(I− γ̄)

≤ −
(

ω1−
(

ω2

2
+

ω4

2
+

η

2ϑ

))
(S−ϑ)2−

(
ω3−

(
ω2

2
+

ω4

2
+

η

2ϑ

))
(I− γ̄)2

Denote that CDα
t VI(S, I)≤ 0 for all (S, I) ∈R2

+ as a result of ω2
2 + ω4

2 + η

2ϑ
< min{ω1,ω3}. We

also have that CDα
t VI(S, I) = 0 only when (S, I) = (ϑ , γ̄). Therefore, the singleton {EI} is the

only invariant set where CDα
t VI(S, I) = 0. Obeying Lemma 4.6 in [42], every solution of model

(8) tends to EEP EI . �
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TABLE 1. PRCC results in respect to the population density of infected class

Parameter Description PRCC Rank Relationship with I(t)

ω1 The death rate of susceptible population due to the

intraspecific competition

-0.00851 6 Negative relationship

ω2 The death rate of susceptible population due to the

interspecific competition

-0.01938 5 Negative relationship

ω3 The death rate of infected population due to the in-

traspecific competition

-0.01990 4 Negative relationship

ω4 The death rate of infected population due to the inter-

specific competition

-0.54635 1 Negative relationship

β The infection rate 0.54631 2 Positive relationship

η The recovery rate -0.43606 3 Negative relationship



DYNAMICS OF SIS–EPIDEMIC MODEL 15

0.0 0.2 0.4 0.6 0.8 1.0
β

0
1

2
3

4
5

6
S

(t
)

0.0 0.2 0.4 0.6 0.8 1.0
β

0.
00

0.
25

0.
50

0.
75

1.
00

I
(t

)

EI−stable EA−stable EA−unstable β∗ = 0.16

(A) Bifurcation diagram driven by β in interval 0≤ β ≤ 1

0 20 40 60 80 100
t

1
2

3
4

5
S

(t
)

0 20 40 60 80 100
t

0.
0

0.
5

1.
0

1.
5

2.
0

I
(t

)

β = 0.1 β = 0.2 β = 0.4 β = 0.6

(B) Time-series for β = 0.1,0.2,0.4, and 0.6

FIGURE 5. Bifurcation diagram and times-series of model (8) driven by the

infection rate (β ) with parameter values given by eq. (20)



16 I. DJAKARIA, H.S. PANIGORO, E. BONYAH, E. RAHMI, W. MUSA

0.0 0.2 0.4 0.6 0.8 1.0
η

1

2

3

4

5

S
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
η

0.0

0.2

0.4

0.6

0.8

1.0

I
(t

)

EI−stable EA−unstable

(A) Bifurcation diagram driven by η in interval 0≤ η ≤ 1

0 20 40 60 80 100
t

1.
5

2.
0

2.
5

3.
0

3.
5

S
(t

)

0 20 40 60 80 100
t

0.
4

0.
6

0.
8

1.
0

I
(t

)

η = 0.2 η = 0.4 η = 0.6 η = 0.8

(B) Time-series for η = 0.2,0.4,0.6, and 0.8

FIGURE 6. Bifurcation diagram and times-series of model (8) driven by the

recovery rate (η) with parameter values given by eq. (20)



DYNAMICS OF SIS–EPIDEMIC MODEL 17

0.0 0.2 0.4 0.6 0.8 1.0
ω1

0.5

1.0

1.5

2.0

2.5

S
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
ω1

0.0

0.5

1.0

I
(t

)

EI−stable EA−unstable EA−stable ω∗1 = 0.5

(A) Bifurcation diagram driven by ω1 in interval 0≤ ω1 ≤ 1

0 50 100 150 200 250 300
t

0.
8

1.
0

1.
2

1.
4

S
(t

)

0 50 100 150 200 250 300
t

0.
0

0.
2

0.
4

0.
6

I
(t

)

ω1 = 0.2 ω1 = 0.3 ω1 = 0.4 ω1 = 0.7

(B) Time-series for ω1 = 0.2,0.3,0.4, and 0.7

FIGURE 7. Bifurcation diagram and times-series of model (8) driven by the

death rate of susceptible population due to intraspecific competition (ω1) with

parameter values given by eq. (20)



18 I. DJAKARIA, H.S. PANIGORO, E. BONYAH, E. RAHMI, W. MUSA

0.2 0.4 0.6 0.8 1.0
ω3

1

2

3

4

5

S
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
ω3

0.00

0.25

0.50

0.75

1.00

1.25

I
(t

)

EI−stable EA−unstable

(A) Bifurcation diagram driven by ω3 in interval 0≤ ω3 ≤ 1

0 20 40 60 80 100
t

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

S
(t

)

0 20 40 60 80 100
t

0.
5

0.
6

0.
7

0.
8

0.
9

I
(t

)

ω3 = 0.2 ω3 = 0.4 ω3 = 0.6 ω3 = 0.8

(B) Time-series for ω3 = 0.2,0.4,0.6, and 0.8

FIGURE 8. Bifurcation diagram and times-series of model (8) driven by the

death rate of infected population due to intraspecific competition (ω3) with pa-

rameter values given by eq. (20)



DYNAMICS OF SIS–EPIDEMIC MODEL 19

0.0 0.2 0.4 0.6 0.8 1.0
ω2

1

2

3

4

5

S
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
ω2

0.00

0.25

0.50

0.75

1.00

1.25

I
(t

)

EI−stable EA−unstable

(A) Bifurcation diagram driven by ω2 in interval 0≤ ω2 ≤ 1

0 20 40 60 80 100
t

1.
0

1.
2

1.
4

1.
6

S
(t

)

0 20 40 60 80 100
t

0.
4

0.
6

0.
8

I
(t

)

ω2 = 0.2 ω2 = 0.4 ω2 = 0.6 ω2 = 0.8

(B) Time-series for ω2 = 0.2,0.4,0.6, and 0.8

FIGURE 9. Bifurcation diagram and times-series of model (8) driven by the

death rate of susceptible population due to interspecific competition (ω2) with

parameter values given by eq. (20)



20 I. DJAKARIA, H.S. PANIGORO, E. BONYAH, E. RAHMI, W. MUSA

0.0 0.2 0.4 0.6 0.8 1.0
ω4

1

2

3

4

5

S
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
ω4

0.00

0.25

0.50

0.75

1.00

1.25

I
(t

)

EI−stable EA−unstable EA−stable ω∗4 = 0.34

(A) Bifurcation diagram driven by ω4 in interval 0≤ ω4 ≤ 1

0 20 40 60 80 100
t

2
3

4
5

S
(t

)

0 20 40 60 80 100
t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

I
(t

)

ω4 = 0.1 ω4 = 0.2 ω4 = 0.3 ω4 = 0.4

(B) Time-series for ω4 = 0.2,0.4,0.6, and 0.8

FIGURE 10. Bifurcation diagram and times-series of model (8) driven by the

death rate of infected population due to interspecific competition (ω4) with pa-

rameter values given by eq. (20)



DYNAMICS OF SIS–EPIDEMIC MODEL 21

0 100 200 300 400 500

1.
3

1.
4

1.
5

S
(t

)

(a)

0 100 200 300 400 500

0.
8

0.
9

1.
0

1.
1

I
(t

)

(b)

0 2 4 6 8 10

1.
3

1.
4

1.
5

S
(t

)

(c)

0 1 2 3 4 5

0.
8

0.
9

1.
0

1.
1

I
(t

)

(d)

100 200 300 400 500
t1.

34
5

1.
35

0
1.

35
5

1.
36

0
1.

36
5

S
(t

)

(e)

100 200 300 400 500
t1.

03
80

1.
03

85
1.

03
90

1.
03

95
1.

04
00

I
(t

)
(f)

α = 0.7 α = 0.8 α = 0.9 α = 1

FIGURE 11. Time series of model (8) with parameter values given by eq. (20)

for α = 0.7,0.8,0.9,1. (a,b) Time-series for 0≤ t ≤ 500, (c,d) Local amplifica-

tion of (a,b) around 0 ≤ t ≤ 10, and (c,d) Local amplification of (a,b) around

100≤ t ≤ 500



22 I. DJAKARIA, H.S. PANIGORO, E. BONYAH, E. RAHMI, W. MUSA

4. GLOBAL SENSITIVITY ANALYSIS

In this section, the global sensitivity analysis is studied to investigate the most influential

parameters of model (8). Global sensitivity analysis is calculated using Partial Rank Coefficient

Correlation (PRCC) [43], where the random data processed in PRCC is generated using Saltelli

sampling [44]. Two biological components become the objective function for the PRCC namely

the basic reproduction number (R0) and the population density of infected class (I(t)). We

first investigate the most influential parameter to the basic reproduction number (R0). From

eq. (12), we acquire that only r, µ , ω1, ω4, and η have the influence on the value of R0. The

birth rate and the natural death rate also can be fixed since some cases in the epidemiological

model has the values of these parameters. Thus, only β , η , ω1, and ω4 will be computed for

PRCC. The Figure 2 is given for the results. We have β = 0.763, ω1 = −0.352, ω4 = −0.33,

and η =−0.277 as the coefficient correlation such that the infection rate (β ) becomes the most

influential parameter to R0 and followed by ω1, ω4, and η , respectively. It shows that the

infection rate (β ) as the most influential parameter has a positive relationship with the basic

reproduction number (R0) which means that R0 will significantly increases when β increases.

The rest ω1, ω4, and η have a negative relationship with R0 which means that by reducing

the value of those parameters, the basic reproduction number (R0) will increases. To show the

impact of these parameters on R0, the contour plots are also portrayed in Figure 3.

Next, we identify the most influential parameter to the population density of infected class

(I(t)). Quite similar to previous work, the value of r and µ are fixed but the rest of the pa-

rameters are involved to compute PRCC. PRCC values are computed for 0 ≤ t ≤ 50 which

is considered sufficient enough to see the convergence for each parameter through the PRCC.

We portray the PRCC results in Figure 4 while the PRCC values, ranks, and the relationship

between each parameter and I(t) are given in Table 1. From those simulations, we conclude

that the death rate of infected population due to interspecific competition between susceptible

and infected classes (ω4) become the most influential parameter to the population density (I(t))

followed respectively by β , η , ω3, ω2, and ω1. In the next section, the numerical simulations

including bifurcation diagram and time-series are presented to show the impact of the infection
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rate (β ), recovery rate (η), intraspecific competition (ω1 and ω3), and interspecific competition

(ω2 and ω4) to the dynamical behaviors of model (8).

5. NUMERICAL SIMULATIONS

In this section, the dynamical behaviors of model (8) including bifurcation diagram and time-

series are studied numerically. To obtain the bifurcation diagram and the corresponding time-

series of model (8), the predictor-corrector scheme developed by Diethelm et al. is employed

[45]. Since the model does not investigate a specific epidemiological case, we use hypothetical

parameters for all numerical simulations. we set the parameter values as follows.

(20)

r = 0.6, µ = 0.1, ω1 = 0.1, ω2 = 0.1, ω3 = 0.1, ω4 = 0.1, β = 0.4, η = 0.2, and α = 0.9

We start our work by investigating the impact of infection rate (β ) on the dynamics of model

(8). The value of β is varied in the interval 0 ≤ β ≤ 1 and we then compute the numerical

solutions. To obtain the bifurcation diagram, we plot the tail of solutions for each β together

with the LAS condition of EA. As result, we obtain a bifurcation diagram as in Figure 5a. When

0 ≤ β < β ∗, β ∗ = 0.16, the EEP EI does not exist and Theorem 7 is satisfied which means

that DFE EA is LAS. The solution is convergent to EA which indicates the population free from

disease. When β passes through β ∗, EA losses its stability, and unique LAS EEP EI occurs

in the interior. The infectious disease becomes endemic in the population and still exists for

all t→ ∞. From the concatenation of those biological circumstances, we conclude that forward

bifurcation occurs around EA where β is the bifurcation parameter and β = β ∗ is the bifurcation

point. It is easy to examine that the bifurcation point β = β ∗ is equal to R0 = 1. The dynamical

behaviors are maintained for β ∗ < β ≤ 1. To support these conditions, some time series are

given in Figure 5b to show the convergence of solutions for different values of β .

Next, the impact of recover rate (η) is studied. A similar numerical scheme as the previous

way is applied. To depicts the bifurcation diagram, the parameter is fixed as in eq. (20) and the

recovery rate (η) is varied in interval 0≤η ≤ 1. We have Figure 6a as the result. Denote that the

bifurcation does not exist for this interval. Both DFEP and EEP exist with distinct stability. The

DFEP EA is a saddle point while the EEP EI is LAS which confirm the validity of Theorems 6
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and 7. We also confirm that the EEP EI attains GAS which means that all initial conditions

will go right to the EEP and the infectious disease will exist all the time. Although the disease

becomes endemic, the numerical simulation shows that the value of η is directly proportional

to S(t) and inversely proportional to I(t), see Figure 6b. This means the population density of

the infected class can be reduced by increasing the recovery rate (η).

For the next simulation, the impact of intraspecific competition is investigated. The death

rate parameters caused by intraspecific competition on susceptible and infected classes (ω1 and

ω3) are varied in interval [0,1]. It is found that forward bifurcation occurs when ω1 is driven

where the bifurcation point is given by ω∗1 = 0.5, see Figure 7a. The population density of

both susceptible and infected classes reduces when the death rate of S(t) due to intraspecific

competition increases as given by Figure 7b. Particularly, Figure 8a shows that bifurcation does

not exists in interval 0≤ ω1 ≤ 1 when ω1 is varied but the dynamical behaviors show that S(t)

increases and I(t) decrease when ω1 increase. We confirm this condition by giving time-series

in Figure 8b.

Now, we study the impact of interspecific competition on the dynamical behaviors of model

(8). Both susceptible and infected classes have died due to the existence of interspecific com-

petition given by parameters ω2 and ω4. By varying ω2 and ω4 in interval [0,1], we obtain

Figures 9a and 10a as the bifurcation diagram. We find forward bifurcation driven by ω4 which

does not exist when varying ω1. This means, the EEP still exists and LAS for 0 ≤< ω2 ≤ 1.

The EEP will disappear via forward bifurcation and the saddle DFEP becomes LAS when ω4

crosses ω∗4 = 0.34. This guarantees that the infectious disease may eliminate the disease in pop-

ulation when the death rate of the infected population due to interspecific competition increases

as shown in Figure 10b. Although the disease does not disappear when ω2 is driven, we also can

see in Figure 9b that by increasing ω2, the population density of the infected class will reduce

and the susceptible class will increase.

Finally, the impact of memory effect (α) is investigated. The numerical simulation is given

by Figure 11. For α = 0.7,0.8,0.9,1 and similar initial values, all solution converge to single

equilibrium point given by EI ≈ (1.3465,1.0395), see Figure 11(a,b). We then plot the local

amplification to show the difference of solutions when α is varied. We find that the difference
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lies in the convergence rate where for larger values of α , the convergence rate increase and

vice versa as shown in Figure 11(e,f). In the beginning, Figure 11(c,d) we show that when α

decrease, the population density of the infected class reduce. From a biological point of view,

we can say that biological memory has an impact on the density of both susceptible and infected

classes.

6. CONCLUSION

The dynamics of a fractional-order SIS-epidemic model with intraspecific and interspecific

competition have been studied. The validity of the model has been confirmed analytically by

showing the existence, uniqueness, non-negativity, and boundedness of solutions. Three equi-

librium points have been obtained namely the origin, the disease-free equilibrium point, and

the endemic equilibrium point. Both origin and disease-free equilibrium points always exist

while the endemic equilibrium point conditionally exists. The basic reproduction number R0

has been given which has a relationship with the local stability of the model. If R0 < 1 then the

disease-free equilibrium point is locally asymptotically stable and if R0 > 1 then the disease-

free equilibrium point losses its stability along with the existence of a locally asymptotically

stable endemic equilibrium point. The global stability conditions of equilibrium points also

have been found. The PRCC has been worked to investigate the most influential parameter.

We have successfully shown that the infection rate and the death rate of the infected population

due to interspecific competition becomes the most influential parameter for basic reproduction

number and the population density of the infected class. We then investigate the impact of sev-

eral parameters using numerical simulations including the infection rate, the recovery rate, the

intraspecific competition, the interspecific competition, and the memory effect on the dynamics

of the model. Bifurcation diagrams and time series have been given which show the existence

of forward bifurcation, the decrease of susceptible and infected classes, and the decrease of

convergence rate caused by the memory effect.
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