SUBMISSION

≡	M Gmail	Q iseprolocal@unib.ac.id	× ∄	
Mail	🖉 Tulis			14 dari 14 < > 🎤 🗸
	🕞 Kotak Masuk 1	[iseprolocal] Editorial Decision on Abstract Eksterna	al 🔉	令 亿
Chat	☆ Berbintang	ISEPROLOCAL COMMITTEE <iseprolocal@unib.ac.id></iseprolocal@unib.ac.id>		26 Agu 2020 04.03 🙀 🕤 🗄
ŝ	🕓 Ditunda	kepada saya, Mochtar, Soemarno, Sudarto 🔻		
Spaces	∑ Penting	Nurdin Kyai Baderan:		
	▷ Terkirim	Congratulations, your abstract Analysis of Quality and Land Characteristics		
Meet	Draf 2	that Controlling of Local Maize Productivity in Gorontalo has been accepted for presentation at The 2nd Iseprolocal 2020 which is being held 2020-10-08		
	🗹 Semua Email	at Bengkulu. You may now submit your paper for further review.		
	() Spam	Thank you and looking forward to your participation in this event.		
	🔟 Sampah	ISEPROLOCAL COMMITTEE		
	🕶 D Kategori	iseprolocal@unib.ac.id		
	<mark>ළ</mark> Sosial 4	THE 2nd INTERNATIONAL CONFERENCE LOCAL RESOURCES FOR SUSTAIN	ABLE	
	(i) Update 278	AGRICULTURE AND DEVELOPMENT THE 2nd INTERNATIONAL CONFERENCE RESOURCES FOR SUSTAINABLE AGRICULTURE AND DEVELOPMENT	E LOCAL	
	Forum 17	https://semcon.unib.ac.id/index.php/iseprolocal/iseprolocal/index		
	Promosi 62			

Analysis of Quality and Land Characteristics that Controlling of Local Maize Productivity in Gorontalo

Nurdin^{1*}, M. L Rayes², Soemarno², Sudarto²

¹Agrotechnology Department, Agriculture Faculty, Gorontalo State University. Jl. Jenderal Sudirman No. 6 Kota Gorontalo-Indonesia. 96122 ³Soil Science Departmen, Agriculture Faculty, Brawijaya University. Jl. Veteran Kota Malang,

Jawa Timur-Indonesia. 65145

*e-mail: nurdin@ung.ac.id

Abstracts. Increased productivity of maize is one of the main indicators in the development of the food crop sub-sector, but the yield is still low because maize is grown on land that is not suitable with land quality. This study aims to determine the land quality that control local maize productivity. This research was conducted in the Gorontalo Regency. A total of 33 mapping units has been established which contain data of soil properties, climate and terrain divided into land quality, as well as data of local maize productivity. Partial least square of structural equation models (PLS-SEM) analysis was used to determine the land quality and characteristics that controlling of local maize productivity through testing the validity and reliability of variables, as well as testing structural models. The results showed that the manifest variables were air temperature, rainfall, wet months, dry months, LGP, drainage, coarse materials, effective depth, pH H₂O, pH KCl, C-organic, total N, available P, available K, ESP, slopes, soil erosion, inundation height, inundation time, surface rock, and rock outcrops were valid and able to explain well the latent variables. Furthermore, the latent variables temperature, water availability, oxygen availability, nutrient retention, nutrients availability, sodicity, erosion hazard, flood hazard, and land preparation used has good composite reliability and high reliability because of the composite reliability and alpha cronbach >0.6. Land quality that most influences of local maize productivity were the oxygen availability (X1), rooting media (X2), nutrient retention (X3), nutrients availability (X4), erosion hazard (X5), and land preparation (X6) with the best equation: Y = 1.805 + 0.276X1 + 0.303X2 + 0.353X3 + 0.346X4 -0.337X5 - 0.303X6. The land characteristics that most influence of local maize productivity were drainage (X1), coarse material (X2), effective depth (X3), pH KCl (X4), C-organic (X5), total N (X6), available K (X7), slope (X8), soil erosion (X9), surface rock (X10) and rock outcrop (X11) with the best equation: Y = 2.447 + 0.187X1 - 0.212X2 + 0.153X3 + 0.349X4 + 0.166X5 + 0.169X6+ 0.313X7 - 0.352X8 - 0.230X9 - 0.237X10 - 0.187X11.

Keywords: Quality, characteristic, land, productivity, maize, local.

≡	M Gmail	Q iseprolocal@unib.ac.id	× 幸	• • ⑦ 🔅 🏭 UNGMail 🔮
Mail	🖉 Tulis			13 dari 14 < > 🎤 🗸
	🕞 Kotak Masuk 1	[iseprolocal] Editorial Decision on Paper Eksterr	nal 🗩	母 亿
Chat	🕁 Berbintang	ISEPROLOCAL COMMITTEE <iseprolocal@unib.ac.id></iseprolocal@unib.ac.id>		Rab, 26 Agu 2020 04.04 🛛 🛧 🕤 🚦
<u> </u>	🕚 Ditunda	kepada saya, Mochtar, Soemarno, Sudarto 🔻		
Spaces	∑ Penting	Nurdin Kyai Baderan:		
	▷ Terkirim	Congratulations, your submission Analysis of Quality and Land		
Meet	Draf 2	Characteristics that Controlling of Local Maize Productivity in Gorontalo has been accepted for presentation at The 2nd Iseprolocal 2020 which is		
	🗹 Semua Email	being held 2020-10-08 at Bengkulu.		
	() Spam	Thank you and looking forward to your participation in this event.		
	III Sampah	ISEPROLOCAL COMMITTEE		
		University of Bengkulu		
	Kategori			
	😩 Sosial 4	THE 2nd INTERNATIONAL CONFERENCE LOCAL RESOURCES FOR SUS	STAINABLE	
	i) Update 278	AGRICULTURE AND DEVELOPMENT THE 2nd INTERNATIONAL CONFER RESOURCES FOR SUSTAINABLE AGRICULTURE AND DEVELOPMENT	RENCE LOCAL	
	Forum 17	https://semcon.unib.ac.id/index.php/iseprolocal/iseprolocal/index		
	Promosi 62			
	Colored a colore			

Analysis of Quality and Land Characteristics that Controlling of Local Maize Productivity in Gorontalo

Nurdin^{1*}, M. L Rayes², Soemarno², Sudarto²

 ¹Agrotechnology Department, Agriculture Faculty, Gorontalo State University. Jl. Jenderal Sudirman No. 6 Kota Gorontalo-Indonesia. 96122
 ³Soil Science Departmen, Agriculture Faculty, Brawijaya University. Jl. Veteran Kota Malang, Jawa Timur-Indonesia. 65145

*e-mail: nurdin@ung.ac.id

Abstracts. Increased productivity of maize is one of the main indicators in the development of the food crop sub-sector, but the yield is still low because maize is grown on land that is not suitable with land quality. This study aims to determine the land quality that controlling of local maize productivity. This research was conducted in the Gorontalo Regency. A total of 33 mapping units has been established which contain data of soil properties, climate and terrain divided into land quality, as well as data of local maize productivity. Partial least square of structural equation models (PLS-SEM) analysis was used to determine the land quality and characteristics that controlling of local maize productivity through testing the validity and reliability of variables, as well as testing structural models. The results showed that the manifest variables were air temperature, rainfall, wet months, dry months, LGP, drainage, coarse materials, effective depth, pH H₂O, pH KCl, C-organic, total N, available P, available K, ESP, slopes, soil erosion, inundation height, inundation time, surface rock, and rock outcrops were valid and able to explain well the latent variables. Furthermore, the latent variables temperature, water availability, oxygen availability, nutrient retention, nutrients availability, sodicity, erosion hazard, flood hazard, and land preparation used has good composite reliability and high reliability because of the composite reliability and alpha cronbach >0.6. Land quality that most influences of local maize productivity were the oxygen availability (X_1) , rooting media (X_2) , nutrient retention (X_3) , nutrients availability (X_4) , erosion hazard (X_5) , and land preparation (X₆) with the best equation: $Y = 1.805 + 0.276X_1 + 0.303X_2 + 0.353X_3 + 0.346X_4$ - $0.337X_5$ - $0.303X_6$. The land characteristics that most influence of local maize productivity were drainage (X1), coarse material (X2), effective depth (X3), pH KCl (X4), C-organic (X5), total N (X6), available K (X_7), slope (X_8), soil erosion (X_9), surface rock (X_{10}) and rock outcrop (X_{11}) with the best equation: $Y = 2.447 + 0.187X_1 - 0.212X_2 + 0.153X_3 + 0.349X_4 + 0.166X_5 + 0.169X_6 + 0.313X_7$ $-0.352X_8 - 0.230X_9 - 0.237X_{10} - 0.187X_{11}$

Keywords: Quality, characteristic, land, productivity, maize, local.

INTRODUCTION

Increased productivity of maize is one of the main indicators in the development of the food crop sub-sector. Various activities have been carried out in order to achieve these goals, but the results has not yet reached the expected potential results. This was indicated by the achievement of increasing maize production in an agricultural area which has not been followed by an increase of maize productivity per unit area. Nationally, the achievement of maize productivity was 5.5 tonnes ha⁻¹ (BPS RI, 2019). In fact, maize in Indonesia can produce 10-11 tonnes ha⁻¹, but productivity in farmers' lands was still in the range of 3.2-8 tonnes ha⁻¹ (Yasin *et al.* 2014).

Sustainable agricultural areas in Gorontalo Regency also experience this phenomenon. Until 2019, maize productivity in this area averaged only 5.2 tonnes ha⁻¹ or still far below the average national maize productivity (BPS Kabupaten Gorontalo, 2019). Meanwhile, the

average of local maize productivity has only reached 3.0 tonnes ha⁻¹ (IAARD, 2009). One of the maize local varieties of Gorontalo is Motoro Kiki (Yasin *et al.* 2007). This local maize, aged of 70-80 day after planting, resistant to downy mildew and leaf rust, and well planted in the lowlands to the highlands (IAARD, 2009). In addition, local maize has better growth than hybrid and composite maize, but yield components show the opposite pattern (Kaihatu and Pesireron, 2016). The existence of maize local Gorontalo was starting to become extinct because farmers prefer to plant composite and hybrid maize with the free maize seed subsidize program from the Government through the agriculture agency.

One of the causes of low maize productivity was caused maize grown on land with low productivity potential (Swastika, 2002). Land productivity was determined by the land quality and characteristics. Land quality has a close relationship with maize productivity (Subardja and Sudarsono, 2005) and each land quality has a significant effect on land suitability for certain uses (FAO, 1976) especially for maize crops. Research on land quality that controls maize productivity has been conducted by Subardja (2005) on sukmaraga maize composite varieties in the Bogor area with stepwise regression analysis. Meanwhile, the use of structural equation model (SEM) analysis in determining the land quality and characteristics that control plant productivity was only carried out by Syaf (2014) but on mature cocoa trees in Kolaka Timur Regency, Southeast Sulawesi Province. There is no research report on the use of SEM analysis to assess the relationship between land quality and maize productivity.

Land quality that controlling of maize productivity is important to know because the response of maize to various land quality and characteristics will vary. The dynamics of various land qualities and characteristics require a comprehensive analysis technique capable of describing the complexity in one analysis system. The use of SEM analysis is one option that can be done. How much influence each indicator (manifest) of soil physical and chemical properties (latent) has on production can be determined by SEM analysis (Syaf, 2014). The use of SEM is very helpful in determining the effect of indicators and producing better models than other multivariate analyzes (Elisanti et al. 2013). Partial Least Square (PLS) is a variant of SEM which has a higher level of flexibility because PLS based on variants, so the number of samples used does not need to be large, ranging from 30-100, while CB-SEM has a minimum data sample size of 100 and requires that the data is multivariate normal distribution (Hair et al. 2013). Therefore, based on the consideration of the complexity of the land quality and characteristics, as well as the limitations of the land mapping unit of the study area, a research on land quality that controls the local maize productivity was carried out using SEM-PLS analysis. This study aims to determine the land quality and characteristics that controlling of maize local productivity in Gorontalo.

MATERIALS AND METHOD

This research was conducted in the Sustainable Agriculture Area of Gorontalo Regency and the Soil Laboratory, Faculty of Agriculture, Brawijaya University. The timing of this research was started in December 2019 - March 2020. The tools used consisted of SmatPLS version 2.0 and the SPSS software. The materials studied were data on soil characteristics, climate and terrain characteristics, as well as local maize productivity data. Soil characteristics, climate and terrain characteristics data from the study area were divided into land quality. Furthermore, local maize productivity data were obtained from the results of ubinan as well as the results of direct interviews with farmers in each LMU. Then, land characteristics data of various sizes and units (ratio data) are converted into interval data which is represented as follows: 1 (very low), 2 (low), 3 (medium), 4 (high), and 5 (very high) followed by an analysis using a SEM-PLS.

In this study, the latent variable was the land quality which were consisting of: temperature (X₁), water availability (X₂), oxygen availability (X₃), rooting media (X₄), nutrient retention (X₅), nutrient availability (X₆), sodicity (X₇), erosion hazard (X₈), flood hazard (X₉), and land preparation (X₁₀). Meanwhile, the manifest variable was the land characteristic which were consists of: air temperature (X_{1.1}), rainfall (X_{2.1}), wet months (X_{2.2}), dry months (X_{2.3}), long growth periods-LGP (X_{2.4}), drainage (X_{3.1}), texture (X_{4.1}), coarse material (X_{4.2}), effective depth (X_{4.3}), pH H₂O (X_{5.1}), pH KCI (X_{5.2}), C-organic (X_{5.3}), cation exchange capacity-CEC (X_{5.4}), base saturation (X_{5.5}), total N (X_{6.1}), available of P (X_{6.2}), available of K (X_{6.3}), exchangeable sodium percentage-ESP (X_{7.1}), slopes (X_{8.1}), soil erosion (X_{8.2}), inundation height (X_{9.1}), inundation period (X_{9.2}), surface rock (X_{10.1}), and rock outcrop (X_{10.2}). The use of SEM-PLS in this study consists of:

Testing the Validity and Reliability of Research Variables. The basic evaluation carried out in the SEM-PLS analysis is to evaluate the measurement model (outer model) with the aim of knowing the validity and reliability of indicators in measuring research latent variables through convergent validity, discriminant validity, and composite reliability. Convergent validity testing on SEM-PLS is seen from the size of the outer loading of each indicator against its latent variable. A loading factor value above 0.70 is highly recommended, but a loading factor value of 0.50-0.60 can still be tolerated with a t-statistic value of more than 1.96 or a small p-value of 0.05. The loading factor of an indicator with the highest value is the strongest or most important measure in reflecting the latent variable in question. Discriminant validity is an evaluation of the outer model in SEM-PLS using cross loading values to test valid and reliable indicators in explaining or reflecting latent variables. If the correlation of the latent variable with the measurement core of each indicator is greater than the other latent variables, then the latent variable is able to predict the indicator better than other latent variables and is said to be valid. Composite reliability and alpha cronbach were used to test the reliability value between the indicators of the latent variables that formed them. The composite reliability value and Cronbach's alpha are said to be good, if the value is >0.60.

Structural Model Testing. Testing of the structural model (*inner model*) is carried out after the relationship model is built in accordance with the observed data and the suitability of the overall model (*goodness of fit model*). Testing of structural models and hypotheses is carried out by looking at the estimated value of the path coefficient and the critical point value (t-statistic) which is significant at $\alpha = 0.05$. Testing the relationship model and hypothesis between variables can be done by testing the direct correlation coefficient between variables. The results of testing the relationship between the X variables and the Y variable in this study are shown by the correlation coefficient and t-statistic, and also seen in the path diagram.

a. Validity of research variables

The loading factor value of the research variables on the indicators was mostly more than the critical limit of 0.7 with a confidence level of 95% (Table 1). The value of the loading factor which was below the tolerance value of 0.5 at the 95% confidence level where the t-statistic value of each indicator was smaller than the t-table (1,960) on the soil texture indicator of the latent variable root media which was amounting to 0.173 only.

Effect of indi	Loading factors	Status		
Air temperature $(X_{1.1})$	->	Temperature (X_1)	1.000	Valid
Rainfall (X _{2.1})	->		0.981	Valid
Wet months $(X_{2.2})$	->	Water evailability (\mathbf{V})	0.989	Valid
Dry months $(X_{2.3})$	->	water availability (X_2)	0.827	Valid
LGP $(X_{2.4})$	->		0.968	Valid
Drainage $(X_{3.1})$	->	Oxygen availability (X ₃)	1.000	Valid
Texture $(X_{4.1})$	->		0.173	Not valid
Coarse material $(X_{4.2})$	->	Rooting media (X ₄)	-0.921	Valid
Effective depth $(X_{4.3})$	->		0.912	Valid
pH H ₂ O (X _{5.1})	->		0.768	Valid
pH KCI (X _{5.2})	->		0.772	Valid
C-Organic (X _{5.3})	->	Nutrient retention (X_5)	0.710	Valid
$CEC(X_{5.4})$			0.399	Not valid
Base saturation $(X_{5.5})$	->		0.482	Not valid
N Total $(X_{6.1})$	->		0.799	Valid
Available P $(X_{6.2})$	->	Nutrient availability (X_6)	0.521	Valid
Available $K(X_{6.3})$	->		0.886	Valid
$ESP(X_{7.1})$	->	Sodicity (X ₇)	1.000	Valid
Slope $(X_{8.1})$	->	Emotion borond (\mathbf{V})	0.974	Valid
Soil erosion $(X_{8.2})$	->	Elosion nazaru (Λ_8)	0.957	Valid
Inundation height $(X_{9.1})$	->	Elogding hozard (\mathbf{V})	0.993	Valid
Inundation period (X _{9.2})	->	Flooding hazard (A9)	0.991	Valid
Surface rock $(X_{10.1})$	->	L and propagation (\mathbf{V}_{ij})	0.998	Valid
Rock outcrop $(X_{10.2})$	->	Land preparation (\mathbf{X}_{10})	0.998	Valid
Productivity $(Y_{1.1})$	->	Local maize productivity (Y ₁)	1.000	Valid

Table	1. Outer	loading	research	variat	bles
10010		roading	100001011		

It also the CEC indicator and the base saturation indicator of the nutrient retention latent variable which were only 0.399 and 0.482 respectively. This means that these indicators has not been able to properly form or explain their latent variables. The standard of loading factor was greater than 0.50 (Igbaria *et al.* 1997; Mattjik and Sumertajaya, 2011; Ulum *et al.* 2014). However, in general, based on the indicated values, it can be concluded that the latent variables of land quality has been able to be well established or explained by each indicator and can be said to be convergent valid on these indicators.

The cross loading value for the indicators of latent variables on average was above the cross loading value of the indicators for other latent variables (Table 2). The greatest cross loading value on the indicator was found in the latent variable too, except for the texture indicator of the root media variable, the CEC indicator and base saturation of the nutrient

retention variable whose cross loading value was still smaller (<0.5) than the cross loading value of other latent variables. The standard of loading factor was \geq 0.50 (Igbaria *et al.* 1997; Mattjik and Sumertajaya, 2011; Ulum *et al.* 2014). Thus, the indicators of each of these latent variables were mostly able to explain their own latent variables better than other variables, so that the research variables are said to be discriminant valid.

b. Reliability test of research variables

Composite reliability and Cronbach alpha were used to test the reliability value between the indicators of the latent variables that make up them. The composite reliability value and Cronbach alpha were said to be good, if the value was above 0.60 (Sujarweni 2014). The composite reliability value on each research variable was more than the limit value (> 0.6), except for the root media variable (Table 3). The composite reliability value and Cronbach's alpha value are 0.6 so that the latent variable has good composite reliability and high reliability. A construct was said to be reliable if the Cronbach Alpha value must be> 0.6 (Abdilah and Hartono, 2015). Thus, all indicators used in this study have met the criteria or are feasible to be used in the measurement of all latent variables because they have good validity and high reliability. The results of the evaluation of convergent validity and discriminant validity of indicators or variables as well as composite reliability and alpha cronbach for indicators or variables can be concluded that indicators as measures of latent variables are valid and reliable measures respectively.

- 1 J	1	
Laten variables	Composite reliability	Alpha Cronbach
Temperature (X ₁)	1.000000	1.000000
Water availability (X ₂)	0.970030	0.965126
Oxygen availability (X ₃)	1.000000	1.000000
Rooting media (X ₄)	0.020314	-1.055192
Nutrient retention (X ₅)	0.770518	0.628062
Nutrient availability (X ₆)	0.788289	0.681393
Sodicity (X ₇)	1.000000	1.000000
Erosion hazard (X ₈)	0.964615	0.927731
Flooding hazard (X ₉)	0.992053	0.984010
Land preparation (X_{10})	0.997657	0.995304

Table 3. Composite reliability and Cronbach's Alpha values of research variables

c. Structural Model Testing

The structural model (*inner model*) was evaluated by looking at the coefficient value of the path coefficient parameter between latent variables. It seems that the land quality of oxygen availability, rooting media, nutrient retention, and nutrient availability shows a positive correlation and has a significant effect on local maize productivity (Table 4).

The 2nd ISEPROLOCAL International Seminar on Promoting Local Resources for Sustainable Agriculture and Development Bengkulu, Indonesia

Indikator	Temperature (X ₁)	Water availability (X ₂)	Oxygen availability (X ₃)	Rooting media (X ₄)	Nutrient retention (X ₅)	Nutrient availability (X ₆)	Sodicity (X7)	Erosion hazard (X ₈)	Flooding hazard (X ₉)	Land preparation (X ₁₀)	Productivity (Y1)
Air temperature $(X_{1.1})$	1	0.952309	0.059098	-0.08736	-0.37805	-0.06653	0.38176	0.016269	-0.10297	0.19833	0.042282
Rainfall (X _{2.1})	0.968555	0.980906	0.114576	0.052348	-0.24379	0.058536	0.356547	-0.0379	-0.04621	0.056015	0.156751
Wet months $(X_{2,2})$	0.926635	0.989185	0.173659	-0.005903	-0.25644	0.062873	0.374745	-0.06373	-0.04367	0.060342	0.177251
Dry months $(X_{2.3})$	0.759123	0.82697	0.141078	-0.238735	-0.42612	-0.10563	0.47553	-0.11715	0.027746	0.215367	0.076041
LGP $(X_{2.4})$	0.900431	0.96821	0.13569	-0.003834	-0.28223	0.056251	0.459669	-0.12209	-0.04398	0.059938	0.193991
Drainage $(X_{3.1})$	0.059098	0.144225	1	0.129338	-0.24128	0.057861	0.084339	-0.50344	0.236555	-0.22277	0.400657
Texture $(X_{4.1})$	-0.02057	-0.01261	-0.16957	0.172551	0.242032	0.12283	0.217308	0.196875	-0.00074	-0.02261	0.09248
Coarse material (X _{4.2})	-0.00333	-0.1005	-0.13244	-0.921096	-0.38256	-0.6112	0.18822	0.322934	-0.26391	0.846957	-0.35202
Effective depth $(X_{4.3})$	-0.17758	-0.09256	0.165016	0.912088	0.3519	0.355112	-0.23141	-0.19005	0.095721	-0.76736	0.180089
pH H ₂ O (X _{5.1})	-0.40346	-0.38437	-0.3719	0.29356	0.767791	0.27088	-0.17175	0.151553	-0.02966	-0.08478	0.186569
pH KCl (X _{5.2})	-0.25953	-0.22811	-0.44804	0.342269	0.771872	0.272936	-0.02729	0.167533	0.098977	-0.18312	0.268161
C-Organic (X _{5.3})	-0.29516	-0.13852	0.096529	0.248076	0.710022	0.612498	0.073184	-0.4692	0.063874	-0.1793	0.384332
$CEC(X_{5.4})$	0.066756	0.115697	0.003345	0.084182	0.399393	0.421251	0.373179	-0.05735	0.15285	-0.01387	0.281455
Base saturation $(X_{5.5})$	-0.30026	-0.25724	-0.10527	0.412102	0.481624	0.361795	-0.60079	-0.0895	-0.13592	-0.48759	0.136266
N Total $(X_{6.1})$	0.002878	0.137879	0.07154	0.268606	0.545283	0.798694	0.030267	-0.37884	-0.10212	-0.2485	0.427705
Available P $(X_{6.2})$	-0.09821	-0.09791	-0.44547	0.211821	0.409315	0.520984	-0.28705	-0.057	0.033581	-0.26033	-0.02547
Available $K(X_{6.3})$	-0.09732	-0.01031	0.06693	0.614343	0.51245	0.885686	-0.3292	-0.29441	0.237691	-0.6422	0.49531
ESP (X _{7.1})	0.38176	0.405078	0.084339	-0.186069	-0.06947	-0.21259	1	-0.01035	0.201152	0.361936	-0.0249
Slope $(X_{8.1})$	-0.02207	-0.12714	-0.51717	-0.295103	-0.1643	-0.40295	-0.03466	0.973779	-0.34215	0.324431	-0.64795
Soil erosion $(X_{8.2})$	0.064136	-0.00224	-0.44709	-0.166166	-0.11161	-0.32907	0.021581	0.956588	-0.12926	0.257787	-0.48649
Inundation height (X _{9.1})	-0.08956	-0.02635	0.225421	0.194354	0.082178	0.127762	0.193925	-0.26735	0.992798	-0.13415	0.175472
Inundation period $(X_{9.2})$	-0.11594	-0.06329	0.244833	0.199427	0.048584	0.078386	0.205739	-0.2425	0.991369	-0.11616	0.135302
Surface rock $(X_{10.1})$	0.212772	0.074279	-0.23401	-0.854273	-0.28568	-0.55023	0.376036	0.319248	-0.13208	0.997623	-0.28655
Rock outcrop $(X_{10.2})$	0.183196	0.051703	-0.21067	-0.868319	-0.29655	-0.55537	0.34638	0.290608	-0.12053	0.997697	-0.28228
Productivity (Y _{1.1})	0.042282	0.177277	0.400657	0.304774	0.418519	0.534535	-0.0249	-0.59733	0.157534	-0.28507	1

Table 2. Cross loading of research variables

The 2nd ISEPROLOCAL International Seminar on Promoting Local Resources for Sustainable Agriculture and Development Bengkulu, Indonesia

	6				
·	Endogen	ous variables			
Exogenous variables	Local maize productivity (Y)				
	Path coeffisient	t-statistics ($t_{critics} = 2.00$)			
Temperature (X ₁)	-0.315	-0.012			
Water availability (X_2)	0.583	0.912			
Oxygen availability (X ₃)	0.326*	2.540			
Rooting media (X ₄)	0.037*	2.470			
Nutrient retention (X_5)	0.452**	2.936			
Nutrient availability (X ₆)	0.104*	2.642			
Sodicity (X ₇)	-0.186	-1.217			
Erosion hazard (X_8)	-0.333**	-2.992			
Flooding hazard (X ₉)	0.003	0.400			
Land preparation (X_{10})	-0.204*	-2.476			

Table 4. Path coefficient and significance testing

*Significant on level test of 5%; ** Significant on level test of 1%

The land quality of erosion hazards and land preparation shows a negative correlation and has a significant effect on local maize productivity. This indicates that the increasing of oxygen availability, rooting media, nutrient availability, and nutrient retention and a decrease of erosion hazard and land preparation along with the increase in local maize productivity. The physical properties of rooting media, especially drainage and aeration conditions will directly or indirectly affect of root formation (Taghvaei *et al.* 2012). Land quality that greatly influenced the maize productivity were nutrient retention and nutrient availability (Subardja and Sudarsono, 2005). Furthermore, Nurhayati *et al.* (2015) reported that an increase of erosion hazard will result in a decrease of land productivity, conversely a decrease of erosion hazard results in an increase in land productivity.

c. Land quality and characteristics that controlling of local maize productivity

Based on the previous structural model testing, the land quality that most influences of local maize productivity were oxygen availability, rooting media, nutrient retention, nutrient availability, erosion hazard, and land preparation. This was also based on the results of multiple regression tests with the best equation (equation 1) of land quality that affects local maize productivity as follows:

 $Y = 1,805 + 0,276X_1 + 0,303X_2 + 0,353X_3 + 0,346X_4 - 0,337X_5 - 0,303X_6 \dots (1)$ Where: X₁ = oxygen availability, X₂ = rooting media, X₃ = nutrient retention, X₄ = nutrient availability, X₅ = erosion hazard, X₆ = land preparation

The land characteristics that most influence of local maize productivity were drainage, coarse material, effective depth, pH KCI, C-Organic, N total, K availability, slopes, soil erosion, surface rock and rock outcrops. This was also based on the results of multiple regression tests with the best equation (equation 2) of land characteristics that affect local maize productivity as follows:

 $Y = 2,447 + 0,187X_1 - 0,212X_2 + 0,153X_3 + 0,349X_4 + 0,166X_5 + 0,169X_6 + 0,313X_7 + 0,169X_6 + 0,100X_7 + 0,100X_7 + 0,100X_7 + 0,100X_7 + 0,00X_7 +$

- $0,352X_8 - 0,230X_9 - 0,237X_{10} - 0,187X_{11}$(2) Where: X₁ = drainage, X₂ = coarse material, X₃ = effective depth, X₄ = pH KCl, X₅ = C-Organic, X₆ = N total, X₇ = K availability, X₈ = slope, X₉ = soil erosion, X₁₀ = surface rock, X₁₁ = rock outcrops. The correlation of each land characteristic and its contribution to land quality on local maize productivity was presented in Table 5 and Figure 1. Land characteristics such as drainage, effective depth, pH of KCI, C-Organic, N total and K availability had a positive correlation and significant to very significant effected on local maize productivity. This indicates that the better drainage, effective depth, pH of KCI, C-Organic, N total, and K availability with an increase of 1% will be followed by an increasing of local maize productivity on 29.4% to 43.6%. Conversely, coarse material, slopes, soil erosion, surface rock and rock outcrops had a negative correlation and had a significant to very significant effected on local maize productivity. This indicates that decrease of 1% in coarse material, slopes, soil erosion, surface rock and rock outcrops will be followed by an increasing of local maize material, slopes, soil erosion, surface rock and rock outcrops will be followed by an increasing of local maize productivity on 40.3% to 71.7%.

The correlation of each land characteristics was quite strong and strong to influencing of local maize productivity. Coarse material is rock fragments measuring in 2 mm of diameter or more which affected to soil moisture storage, infiltration, erosion, and land use (Indonesian Soil Research Institute, 2004). Slopes had a significant effect on local maize production, where the steeper the slopes of local maize production are lower (Nurdin *et al.* 2020). Soil erosion is the same, the more erosion increases, the lower the production of maize (Suparwata *et al.* 2012). Surface rocks and rock outcrops are limiting factors in the land suitability of maize (Elfayetti and Hedi, 2015).

Land characteristics	Coefficient of correlation	Contribution on land quality (%)
Air temperature $(X_{1.1})$	-0,033	2,9
Rainfall (X _{2.1})	0,089	18,5
Wet months $(X_{2.2})$	0,098	19,8
Dry months $(X_{2.3})$	-0,013	3,8
LGP $(X_{2.4})$	0,123	20,3
Drainage $(X_{3.1})$	0,350*	40,4
Texture (X _{4.1})	0,098	5,0
Coarse material $(X_{4.2})$	-0,455**	-74,9
Effective depth $(X_{4.3})$	0,294*	54,5
pH H ₂ O (X _{5.1})	0,234	13,7
pH KCl (X _{5.2})	0,333*	18,7
C-Organic $(X_{5.3})$	0,405**	59,7
$CEC(X_{5.4})$	0,249	33,2
Base saturation $(X_{5.5})$	0,278	30,7
N Total (X _{6.1})	0,436**	63,0
Available P (X _{6.2})	0,076	25,3
Available K(X _{6.3})	0,569**	73,2
ESP (X _{7.1})	-0,107	-2,6
Slope $(X_{8.1})$	-0,717**	-75,9
Soil erosion $(X_{8.2})$	-0,516**	-62,9
Inundation height $(X_{9.1})$	0,195	34,5
Inundation period (X _{9.2})	0,168	30,5
Surface rock (X _{10.1})	-0,403*	-68,4
Rock outcrop $(X_{10.2})$	-0,408**	-68,0

Table 5. Coefficient of correlation and contribution level on land quality of the land characteristics and local maize productivity

*Significant on level test of 5%; ** Significant on level test of 1%.

CONCLUSION

The manifest variables were air temperature, rainfall, wet months, dry months, LGP, drainage, coarse materials, effective depth, pH H₂O, pH KCl, C-organic, total N, available P, available K, ESP, slopes, soil erosion, inundation height, inundation time, surface rock, and rock outcrops were valid and able to explain well the latent variables. Furthermore, the latent variables were temperature, water availability, oxygen availability, nutrient retention, nutrients availability, sodicity, erosion hazard, flood hazard, and land preparation used has good composite reliability and high reliability because of the composite reliability and alpha cronbach >0.6. Land quality that most influences of local maize productivity were the oxygen availability (X_1) , rooting media (X_2) , nutrient retention (X_3) , nutrients availability (X₄), erosion hazard (X₅), and land preparation (X₆) with the best equation: Y = 1.805 + 1.005 $0.276X_1 + 0.303X_2 + 0.353X_3 + 0.346X_4 - 0.337X_5 - 0.303X_6$. The land characteristics that most influence of local maize productivity were drainage (X_1) , coarse material (X_2) , effective depth (X₃), pH KCl (X₄), C-organic (X₅), total N (X₆), available K (X₇), slope (X₈), soil erosion (X₉), surface rock (X₁₀) and rock outcrop (X₁₁) with the best equation: Y = 2.447 $+ 0.187X_1 - 0.212X_2 + 0.153X_3 + 0.349X_4 + 0.166X_5 + 0.169X_6 + 0.313X_7 - 0.352X_8 - 0.169X_6 + 0.169X_6 + 0.101X_7 - 0.101X_8 - 0.101X_$ $0.230X_9 - 0.237X_{10} - 0.187X_{11}$.

ACKNOWLEDGMENT

Thank you to Ecan Adam, SE, MM for helping with SEM-PLS analysis. Thank you also went to Rival Rahman, SP, MSi for helping of the land resources mapping.

REFERENCES

- Abdilah, W., and J. Hartono. 2015. Partial least square (PLS): Alternative structural equation modeling (SEM) in business research. Andi Offset, Yogyakarta.
- Soil Research Institute. 2004. Technical guidelines for soil observation. Research and Development Center for Soil and Agro-climate, Bogor.
- BPS RI. 2019. Maize production by province (tonnes), 1993-2018. Central Bureau of Statistics of the Republic of Indonesia, Jakarta.
- BPS Kabupaten Gorontalo. 2018. Gorontalo regency in figures on 2018. Gorontalo Regency Statistics Agency, Limboto.
- Elisanti, A. D., W. Purnomo., and S. Melaniani. 2013. Application of partial least square health status of children under 5 years In Indonesia. J. Biometrika dan Kependudukan 2(2): 99 107. DOI: 10.31227/osf.io/gtbq6
- Elfayetti and Herdi. 2015. Evaluation of land suitability for maize crops in Saentis Village, Percut Sei Tuan. J Social Sciences Education 7(1): 33-40. DOI: <u>https://doi.org/10.24114/jupiis.v7i1.2295</u>
- FAO. 1976. A Framework for land evaluation. Food and Agriculture Organization Soil Bull. No. 32, Rome.

- Hair, J. F., Ringle, C. M., and M. Sarstedt. 2013. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning 46: 1-12.
- Igbaria, M., N. Zinatelli, P. Cragg, and A. L. M. Cavaye. 1997. Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly 21(3): 279-305. DOI: 10.2307/249498
- Indonesian Soil Research Institute. 2004. Soil observation technical instructions. Research and Development Center for Soil and Agro-climate, Bogor.
- IAARD. 2009. Indonesian agricultural research and development agency statistics in 2009. Indonesian Agency of Agricultural Research and Development. Jakarta, Indonesia.
- Kaihatu, S. S., and M. Pesireron. 2016. Adaptation of several varieties of maize in dry land agro-ecosystems in Maluku. J Food Crops Research 35(2): 141-147. DOI: <u>http://dx.doi.org/10.21082/jpptp.v35n2.2016.p141-148</u>
- Mattjik, A. A., and I. M. Sumertajaya. 2011. Investigate multiple variables using SAS. IPB Press, Bogor.
- Nurhayati, L., S. Nugraha, and P. Wijayanti. 2012. The effect of erosion on the productivity of the Wali watershed in Karanganyar and Wonogiri regencies. Geography Education Study Program, FKIP UNS, Surakarta.
- Nurdin, M. L. Rayes, Soemarno, Sudarto, N. Musa and M. Dunggio. 2020. Effect of slopes and compound NPK fertilizer on growth and yield of maize local varieties, relative agronomic and economic fertilizer effectiveness to Inceptisol Bumela, Indonesia. RJOAS 6(102): 18-28. DOI: 10.18551/rjoas.2020-06.03
- Swastika, D. K. S. 2002. Corn self sufficiency in Indonesia: The past 30 years and future prospect. J Indonesian Agricultural Research and Development 21(3): 75-83.
- Subardja, D. 2005. Land suitability criteria for land use types based on maize and peanuts in the Bogor area. Dissertation. IPB Postgraduate School, Bogor.
- Subardja, D., and Sudarsono. 2005. The influence of land quality on productivity of maize in soils derived from volcanic and sedimentary rocks in the Bogor area. J Soils and Climate 23: 38-47. DOI: <u>http://dx.doi.org/10.21082/jti.v0n23.2005.%25p</u>
- Suparwata, D. O., Nurmi, and M. I. Bahua. 2012. Use of vertical mulch on dry land to reduce erosion, runoff and its effects on maize growth and yields. J Agro techno trop 1(3): 138-145.
- Sujarweni, V. W. 2014. SPSS for research. Pustaka Baru, Yogyakarta.
- Syaf, H. 2014. Evaluation of the relationship between land quality, growth and yield of aged cocoa in East Kolaka Regency, Southeast Sulawesi Province. J Bioeducation 3(1): 267 276.
- Taghvaei, M., N. Khaef, and H. Sadeghi. 2012. The effects of salt stress and prime on improvement and seedling growth of *Calotropisprocera* L. seeds. J Ecol Field Biol 35(2): 73-78.
- Ulum, M., I. M. Tirta, and D. Anggraeni. 2014. Analysis of structural equation modeling (SEM) for small samples using the partial least square (PLS) approach. Proceedings of the National Mathematics Seminar, University of Jember, 19 November 2014. pp 1-15.

- Yasin, M. H. G., Singgih, S., Hamdani, M., and Santoso, S. B. 2007. Biodiversity of maize germplasm. In Hermanto, Suyamto, Sumarno (2007). Maize: production and development techniques. Center for research and development of food crops, Agricultural research and development agency, Indonesian ministry of agriculture, Jakarta.
- Yasin, H. G. M., W. Langgo, and Faesal. 2014. White seed maize as an alternative staple food. J Food Crops Science and Technology 9(2): 108 - 117. DOI: https://doi.org/10.1007/3-540-11494-7_22

Figure 1. The coefficient pathways diagram of land quality on the level of local maize productivity

≡	M Gmail	Q iseprolocal@unib.ac.id × ⅔ ● → ⑦ ऄ III UNGmail	
	🖉 Tulis	← 🗹 ① 🔟 🗠 ⓒ ᡤ 🛃 🗅 : 12 dari 14 < >	
	🕞 Kotak Masuk 1	Letter of Acceptance - Oral Presentation > Kotak Masuk × @	2
Chat	☆ Berbintang	ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id></iseprolocal@unib.ac.id>	
Spaces	Σ Penting	Dear Mr. Nurdin Kyai Baderan	
	▶ Terkirim	We are pleased to inform you that your paper has been accepted for an oral presentation in The 2nd Iseprolocal 2020, and I herewith attached a Letter	of
Meet	Draf 2	Acceptance. The deadline for full paper submission is September 20 th , 2020.	
	🗹 Semua Email	A Whatsapp group is organized for the purpose of sharing further information and communication (<u>https://chat.whatsapp.com/BUF1Hv0rvLO5SBnERgvgVj</u>).	
	() Spam	Hope to see you at the seminar.	
	🔟 Sampah	Best regards	
	🕶 D Kategori	Dr. Nurmeiliasari	
	Sosial 4	Secretary	
	i Update 278	Satu lampiran • Dipindai dengan Gmail 🛈	4
	Forum 17	The P ⁴ SERVECCU Interactional Service as Propulsion Long Reserves	
	Promosi 62	Information de factories et discontegenet basic de la disconte et discontegenet basic de la discontegenet basic de la discontegenet basic de la discontegenet basic de la discontegenet	(

The 2nd ISEPROLOCAL International Seminar on Promoting Local Resources for Sustainable Agriculture and Development University of Bengkulu, Bengkulu, Sumatera-INDONESIA *e-mail: iseprolocal@unib.ac.id website: iseprolocal.unib.ac.id*

		==
Ref. No	: 205-344-1-SP-8	
Date	: August 26, 2020	
Registration No	: 205-344-1-SP	

Dear Mr. Nurdin Kyai Baderan

Thank you for submitting an abstract titled:

"Analysis of Quality and Land Characteristics that Controlling of Local Maize Productivity in Gorontalo."

We are pleased to inform you that your research has been **accepted** for ORAL PRESENTATION at the 2nd International Seminar on Promoting Local Resources for Sustainable Agriculture and Development 2020 (2nd ISEPROLOCAL 2020). The scientific program, including date and time of presentation, will be sent to you soon. The full paper, after review and meeting the criteria, will be published in Web of Science (WOS) - indexed proceeding managed by ATLANTIS PRESS. Please follow author guideline for full paper template at *https://semcon.unib.ac.id/index.php/iseprolocal/iseprolocal.* The deadline for

full paper submission is September 20, 2020.

The payment for registration and publication fee can be made through this account.

Account name	: RPL 016 UNIB UTK DANA KELOLA
Account number	: 0072004772
Bank's name	: Bank Negara Indonesia
Late Payment	: September 26, 2020

Please send a copy of transfer receipt to email: *iseprolocal@unib.ac.id* and joint our Whatsapp Grup (WAG): *https://chat.whatsapp.com/BUF1Hv0rvLO5SBnERgvgVj* for further information and communication.

Thank you very much and hope to see you in the seminar.

Dr. Agustin Zarkani (Chair of Organizing Committee)

The 2nd ISEPROLOCAL

International Seminar on Promoting Local Resources for Sustainable Agriculture and Development Faculty of Agriculture, University of Bengkulu, Bengkulu, Sumatera- INDONESIA e-mail: iseprolocal@unib.ac.id; website: iseprolocal.unib.ac.id

November, 30, 2020

LETTER OF CONFIRMATION

To who it may concern

I hereby confirm that

Nurdin

has submitted a paper tittled

"Analysis of Quality and Land Characteristics that Controlling of Local Maize Productivity in Gorontalo"

to the 2nd Iseprolocal 2020. The paper is under review and will be publihed in **Atlantis Press** (Web of Science indexed) proceeding.

Best regards, The 2nd int'L seminar SEPROLOCAL ocal Resources for Sustamable Agriculture

Agustin Zarkani, Ph.D Chair of Organizing Committee

Today Reminder: 2nd ISEPROLOCAL 2020

1 pesan

ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id> Bcc: nurdin@ung.ac.id

Dear, The 2ND ISEPROLOCAL participants

It is a friendly reminder of the 2nd iSEPROLOCAL 2020, 8th October 2020. The details of the 2nd ISEPROLOCAL 2020 are listed below:

I. The keynote speaker presentation session, from 09.00 a.m. to 12. a.m.

The link will be opened on Oct 8, 2020, at 08:45 a.m. (Jakarta Time). Please check the time zone carefully as it may be different from your local time. To join, simply click the link below.

LINK ZOOM: https://zoom.us/j/99299764419 or type Zoom ID: 992 9976 4419 and if it is possible to join Live Youtube: https://www.youtube.com/watch?v=SUy292sJ1mQ

It is recommended to join 15 minutes prior to the meeting. After the session ends, the participants leave the meeting. There are different links to the parallel sessions (see book of abstracts).

II. Break 12-13.15 p.m. (Jakarta time). The participants may prepare for the next session. There are 16 rooms with different zoom meeting IDs.

III. Parallel sessions.

The presenters and participants are given links to the meeting of parallel sessions. Please check the abstract book to find a meeting ID and passcode to enter the room. There is an award to the best presenter in each room. Presenters are assessed and judged for their performance and quality of work. We recommend that all participants use a virtual background (attached files). After the parallel session, all participants leave the meeting and join a closing ceremony when the best presenters are announced.

IV. Closing

The closing of the event using a zoom webinar LINK ZOOM: https://zoom.us/j/99299764419 or type Zoom ID: 992 9976 4419 will be held at 3.45 p.m. (Jakarta time). The committee will open 10 minutes before the closing ceremony. The best presenter of each room will be announced.

We hope you enjoy the scientific sharing session during The 2nd Iseprolocal 2020. Meet and greet scientists from many different countries and start to create a global good network.

Regards, The committee 8 Oktober 2020 pukul 05.34

4 lampiran

ABSTRACTS BOOK 2ND ISEPROLOCAL 2020 8th Oct 2020.pdf

Room 16 Session 1

ORAL PRESENTATION

Analysis of Quality and Land Characteristics that Controlling of Local Maize Productivity in Gorontalo

> Nurdin, S.R. M.Si of. Dr. Ir. Moch. Lutifi Rayes, M.Sc

Prof. Dr. II. Soemarno, M

-Dr. Ir. Sudarto, M.S

INTRODUCTION

- Increased productivity of maize is one of the main indicators in the development of the food crop sub-sector, but the yield is still low
- Its because maize is grown on land that is not suitable with land quality.

The 2nd International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (2nd ISEPROLOCAL 2020) BENGKULU-October, 08, 2020

and and

Maize

- To determine the land quality that controlling of maize local productivity in Gorontalo
- To determine the land characteristics that controlling of maize local productivity in Gorontalo

MATERIALS AND METHOD

Areas

- Number of soil mapping unit were 33 units
- Soil survey has done to soil morphology, soil sampling, and terrain observations.
- Collecting climates data
- Survey of maize farming
- Survey of maize productivity with ubin plot.

Room 16

Session 1

Determining of land quality that

controlling of local maize productiv<u>ity</u>

- Land characteristics and quality data were organized together with local maize productivity data
- Data with various sizes and units (ratio data) were converted into interval format i.e 1 (very low), 2 (low), 3 (medium), 4 (high), 5 (very high).
- Latent variables (soil quality): temperature (X1), water availability (X2), oxygen availability (X3), root media (X4), nutrient retention (X5), available nutrients (X6), sodicity (X7), erosion hazard (X8), flood hazard (X9), and land preparation (X10)
- Manifest variables (land characteristics): air temperature (X1.1), rainfall (X2.1), wet months (X2.2), dry months (X2.3), LGP (X2.4), drainage (X3. 1), texture (X4.1), coarse material (X4.2), effective depth (X4.3), pH H₂O (X5.1), pH KCI (X5.2), C-organic (X5.3), CEC (X5.4), base saturation (X5.5), total N (X6.1), P-available (X6.2), K-available (X6.3), ESP (X7.1), slope (X8.1), soil erosion (X8.2), inundation height (X9.1), inundation period (X9.2), surface rock (X10.1), and rock outcrop (X10.2).
- The use of SEM-PLS in this study consists of: (a) testing the validity and reliability of research variables, and (b) testing the structural model.

Room 16 Session 1

1 The validity of research variables

- The loading factor values of the indicators of the research variables were mostly more than the critical limit of 0.7 with a confidence level of 95% (Table 1).
- The loading factor value which is below the tolerance value of 0.5 (t-stat <t-table) were:
 > the soil texture indicator of rooting media (X4
 > the CEC indicator (X5.4) and the base saturation indicator (X5.5) of the nutrient retention (X5).
- This means that these indicators have not been able to properly form or explain their latent variables.

	Effect of in	Loading	Status		
	Air temperature $(X, .)$	->	Temperature (X.)	1 000	Valid
	Rainfall $(X_{2,i})$	->	remperature (Arj)	0.981	Valid
,	Wet months $(X_{2,1})$	->		0.989	Valid
	Dry months $(X_{2,2})$	->	Water availability (X_2)	0.827	Valid
	LGP $(X_{2,4})$	->		0.968	Valid
6	Drainage $(X_{2,1})$	->	Oxygen availability (X_2)	1.000	Valid
U	Texture $(X_{4,1})$	->	<i>JO J</i> (<i>3</i> /	0.173	Not valid
	Coarse material $(X_{4,2})$	->	Rooting media (X_4)	-0.921	Valid
	Effective depth $(X_{4,3})$	->	U (4)	0.912	Valid
	$pH H_2O (X_{51})$	->		0.768	Valid
	$pH KCI (X_{5,2})$	->	Nutrient retention (X ₅)	0.772	Valid
	C-Organic $(X_{5,3})$	->		0.710	Valid
-)	$CEC(X_{54})$	->		0.399	Not valid
/	Base saturation $(X_{5,5})$	->		0.482	Not valid
	N Total (X_{61})	->		0.799	Valid
	Available P $(X_{6,2})$	->	Nutrient availability (X_6)	0.521	Valid
	Available $K(X_{6,3})$	->		0.886	Valid
	$ESP(X_{7,1})$	->	Sodicity (X ₇)	1.000	Valid
	Slope $(X_{8,1})$	->	Encoder become (\mathbf{V})	0.974	Valid
	Soil erosion $(X_{8,2})$	->	Erosion nazard (X_8)	0.957	Valid
	Inundation height $(X_{9.1})$	->	Elocding beyond (\mathbf{V})	0.993	Valid
	Inundation period $(X_{9,2})$	->	Flooding nazard (X_9)	0.991	Valid
	Surface rock $(X_{10,1})$	->	\mathbf{L} and momentian (\mathbf{V}_{-})	0.998	Valid
	Rock outcrop (X _{10.2})	->	Land preparation (X_{10})	0.998	Valid
	Productivity $(Y_{1,1})$	->	Local maize productivity (Y_1)	1.000	Valid

RESULTS AND DISCUSSION

Room 16 Session 1

	The validity of research												
	variables	Indikator	Temperature (X ₁)	Water availability (X ₂)	Oxygen availability (X ₃)	Rooting media (X ₄)	Nutrient retention (X ₅)	Nutrient availability (X ₆)	Sodicity (X ₇)	Erosion hazard (X ₈)	Flooding hazard (X ₉)	Land preparation (X ₁₀)	Productivity (Y ₁)
٠	The cross loading for the indicators	Air temperature (X _{1.1})	1	0.952309	0.059098	-0.08736	-0.37805	-0.06653	0.38176	0.016269	-0.10297	0.19833	0.042282
		Rainfall (X _{2.1})	0.968555	0.980906	0.114576	0.052348	-0.24379	0.058536	0.356547	-0.0379	-0.04621	0.056015	0.156751
	of latent variables on average was	Wet months $(X_{2,2})$	0.926635	0.989185	0.173659	-0.005903	-0.25644	0.062873	0.374745	-0.06373	-0.04367	0.060342	0.177251
•	above the cross loading value	Dry months $(X_{2.3})$	0.759123	0.82697	0.141078	-0.238735	-0.42612	-0.10563	0.47553	-0.11715	0.027746	0.215367	0.076041
	above the cross loading value	LGP $(X_{2.4})$	0.900431	0.96821	0.13569	-0.003834	-0.28223	0.056251	0.459669	-0.12209	-0.04398	0.059938	0.193991
	(Table 2).	Drainage $(X_{3,1})$	0.059098	0.144225	0.1(057	0.129338	-0.24128	0.057861	0.084339	-0.50344	0.236555	-0.22277	0.400657
	Except for the texture indicator of	Texture $(X_{4,1})$	-0.02057	-0.01261	-0.10957	0.021006	0.242032	0.12283	0.21/308	0.1908/5	-0.000/4	-0.02201	0.09248
		Effective depth $(X_{4,2})$	-0.00333	-0.1005	-0.13244	-0.921090	-0.36230	-0.0112	0.16622	0.322934	-0.20391	0.840937	-0.33202
	the root media variable, the CEC	pH H ₂ O (X _{4.3})	-0.40346	-0.38437	-0 3719	0.29356	0.3319	0.333112	-0.17175	0 151553	-0.02966	-0.08478	0.186569
		pH KCl $(X_{5,1})$	-0.25953	-0.22811	-0.44804	0.342269	0.771872	0.272936	-0.02729	0.167533	0.098977	-0.18312	0.268161
	indicator and base saturation of the	C-Organic $(X_{5,3})$	-0.29516	-0.13852	0.096529	0.248076	0.710022	0.612498	0.073184	-0.4692	0.063874	-0.1793	0.384332
		$CEC(X_{54})$	0.066756	0.115697	0.003345	0.084182	0.399393	0.421251	0.373179	-0.05735	0.15285	-0.01387	0.281455
	nutrient retention variables, the	Base saturation (X5.5)	-0.30026	-0.25724	-0.10527	0.412102	0.481624	0.361795	-0.60079	-0.0895	-0.13592	-0.48759	0.136266
•	cross loading value <0.5.	N Total (X _{6.1})	0.002878	0.137879	0.07154	0.268606	0.545283	0.798694	0.030267	-0.37884	-0.10212	-0.2485	0.427705
		Available P (X _{6.2})	-0.09821	-0.09791	-0.44547	0.211821	0.409315	0.520984	-0.28705	-0.057	0.033581	-0.26033	-0.02547
	The indicators of each of these	Available K(X _{6.3})	-0.09732	-0.01031	0.06693	0.614343	0.51245	0.885686	-0.3292	-0.29441	0.237691	-0.6422	0.49531
		ESP (X _{7.1})	0.38176	0.405078	0.084339	-0.186069	-0.06947	-0.21259	1	-0.01035	0.201152	0.361936	-0.0249
	latent variables are mostly able to	Slope (X _{8.1})	-0.02207	-0.12714	-0.51717	-0.295103	-0.1643	-0.40295	-0.03466	0.973779	-0.34215	0.324431	-0.64795
		Soil erosion $(X_{8,2})$	0.064136	-0.00224	-0.44709	-0.166166	-0.11161	-0.32907	0.021581	0.956588	-0.12926	0.257787	-0.48649
	explain the latent variable itself,	Inundation height $(X_{9,1})$	-0.08956	-0.02635	0.225421	0.194354	0.082178	0.127762	0.193925	-0.26735	0.992798	-0.13415	0.175472
	therefore the research warishing	Inundation period $(X_{9,2})$	-0.11594	-0.06329	0.244833	0.199427	0.048584	0.078386	0.205739	-0.2425	0.991369	-0.11616	0.135302
	mererore me research variables	Surface rock $(X_{10.1})$	0.212//2	0.074279	-0.23401	-0.8542/3	-0.28568	-0.55023	0.3/6036	0.319248	-0.13208	0.997623	-0.28655
	were discriminant valid.	Productivity $(Y_{1,1})$	0.042282	0.031703	0.400657	0.304774	0.418519	0.534535	-0.0249	-0.59733	0.12033	-0.28507	-0.28228

2 The reliability of research variables

- The composite reliability value on each research variable was more than the limit value (> 0.6), except for the root media variable (Table 3).
- The composite reliability value and Cronbach's alpha value were 0.6 so that the latent variable has good composite reliability and high reliability.
- Thus, all indicators used in this study have met the criteria or were feasible to be used in the measurement of all latent variables because they have good validity and high reliability.

Laten variables	Composite reliability	Alpha Cronbach
Temperature (X_1)	1.000000	1.000000
Water availability (X_2)	0.970030	0.965126
Oxygen availability (X_3)	1.000000	1.000000
Rooting media (X_4)	0.020314	-1.055192
Nutrient retention (X_5)	0.770518	0.628062
Nutrient availability (X_6)	0.788289	0.681393
Sodicity (X_7)	1.000000	1.000000
Erosion hazard (X_8)	0.964615	0.927731
Flooding hazard (X_9)	0.992053	0.984010
Land preparation (X_{10})	0.997657	0.995304

The 2nd International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (2nd ISEPROLOCAL 2020) BENGKULU-October, 08, 2020

Room 16 Session 1

3 The structural

- It seens that the soil quality of oxygen availability, root media, nutrient retention, and available nutrients shows a positive correlation and has a significant effect on local maize production (Table 4).
- The land quality of erosion hazards and land preparation shows a negative correlation and has a significant effect on local maize productivity.
- This indicates that the increasing of oxygen availability, rooting media, nutrient availability, and nutrient retention and a decrease of erosion hazard and land preparation along with the increase in local maize productivity.

_	Endogenous variables					
Exogenous variables	Local maize productivity (Y)					
	Path coeffisient	t-statistics ($t_{critics} = 2.00$)				
Temperature (X_1)	-0.315	-0.012				
Water availability (X ₂)	0.583	0.912				
Oxygen availability (X ₃)	0.326*	2.540				
Rooting media (X ₄)	0.037*	2.470				
Nutrient retention (X_5)	0.452**	2.936				
Nutrient availability (X ₆)	0.104*	2.642				
Sodicity (X ₇)	-0.186	-1.217				
Erosion hazard (X_8)	-0.333**	-2.992				
Flooding hazard (X ₉)	0.003	0.400				
Land preparation (X ₁₀)	-0.204*	-2.476				

*Significant on level test of 5%; ** Significant on level test of 1%

The 2nd International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (2nd ISEPROLOCAL 2020) BENGKULU-October, 08, 2020 Room 16 Session 1

Land quality and characteristics that controlling of local maize productivity

Q

• Land Quality Control of Local Maize Productivity :

• Oxygen availability, root media, nutrient retention, nutrient availability, erosion hazard, and land preparation.

 $\mathbf{Y} = \mathbf{1,}805 + 0,\!276\mathbf{X_1} + 0,\!303\mathbf{X_2} + 0,\!353\mathbf{X_3} + 0,\!346\mathbf{X_4} - 0,\!337\mathbf{X_5} - 0,\!303\mathbf{X_6} \text{ ; } \mathbf{R} = 0,\!80$

• Land Characteristics that Controlling of Local Maize Productivity:

- drainage, coarse material, effective depth, pH KCI, C-Organic, N total, K availability, slopes, soil erosion, surface rock and rock outcrops.
- $$\begin{split} \mathbf{Y} &= \mathbf{2,}447 + 0,\!187 \mathbf{X_1} 0,\!212 \mathbf{X_2} + 0,\!153 \mathbf{X_3} + 0,\!349 \mathbf{X_4} + 0,\!166 \mathbf{X_5} + 0,\!169 \mathbf{X_6} + 0,\!313 \mathbf{X_7} 0,\!352 \mathbf{X_8} 0,\!230 \mathbf{X_9} 0,\!237 \mathbf{X_{10}} 0,\!187 \mathbf{X_{11}} & ; \mathbf{R} = 0,\!90 \end{split}$$

CONCLUSION

- 1. Land quality that most influences of local maize productivity were the oxygen availability, rooting media, nutrient retention, nutrients availability, erosion hazard, and land preparation.
- 2. The land characteristics that most influence of local maize productivity were drainage, coarse material, effective depth, pH KCl, C-organic, total N, K-availability, slope, soil erosion, surface rock and rock outcrop.

Room 16 Session 1

Thank You

INSTRUKSI REVISI

1 pesan

Nurdin <nurdin@ung.ac.id> Kepada: iseprolocal@unib.ac.id

Dear ISEPROCAL Universitas Bengkulu

I hereby send the revised results of my manuscript. I hope you get a good response.

thank you Nurdin

REV_228-414-1-SP-Nudin Baderan-Revisi.doc 442K

29 Januari 2021 pukul 01.09

Review manuscript

1 pesan

ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id> Kepada: Nurdin Baderan <nurdin@ung.ac.id>

Dear, Mr. Nurdin Baheran Your manuscript has been riviewed by riviewer. If you have fix it, please send back soon. Thank you.

Best Regards,

-Iseprolocal committee

REV_228-414-1-SP-Nudin Baderan.doc 439K

23 Januari 2021 pukul 21.54

PERINTAH	TEKS TERJEMAHAN	TEKS SUMBER	PERBAIKAN
TEKS SUMBER dibuat dalam dua kalimat/lebih untuk memudahkan penerjemahan (biar jelas subyek dan predikat kalimat).	The value of the loading factor which was below the tolerance value of 0.5 at the 95% confidence level where the t- statistic value of each indicator was smaller than the t-table (1,960) on the soil texture indicator of the latent variable root media which was amounting to 0.173only.	Nilai faktor loading yang berada di bawah nilai toleran 0,5 pada tingkat kepercayaan 95% dimana nilai t-statistik masing- masing indikator lebih kecil dari t-tabel (1,960) terdapat pada indikator tekstur tanah dari variabel laten media perakaran (X4) yang hanya sebesar 0,173 juga indikator KTK (X5.4) dan indikator kejenuhan basa (X5.5) dari variabel laten retensi hara (X5) yang masing-masing hanya sebesar 0,399 dan 0,482.	hasil uji validitas menunjukkan bahwa sebagian besar indikator dalam variabel penelitian memiliki nilai faktor loading lebih besar dari batas kritis 0,70 dengan tingkat kepercayaan 95% (Tabel 1). Sementara nilai faktor loading yang berada di bawah nilai toleran (0,50) dan nilai t-statistik lebih kecil dari t-tabel (1,96) terdapat pada variabel laten media perakaran (X4) dengan indikator tekstur tanah sebesar 0,173 dan variabel laten retensi hara (X5) pada indikator KTK (X5.4) sebesar 0,399 dan indikator kejenuhan basa (X5.5) sebesar 0,482.
Belum ditemukan TEKS SUMBER.	It also the CEC indicator and the base saturation indicator of the nutrient retention latent variable which were only 0.399 and 0.482 respectively.		
TEKS SUMBER ditulis dengan lebih JELAS dan SINGKAT.	The greatest cross loading value on the indicator was found in the latent variable too, except for the texture indicator of the root	Artinya, nilai cross loading terbesar pada indikatornya terdapat pada variabel latennya juga, kecuali indikator tekstur	

	media variable, the CEC indicator	(X4.1) dari variabel media	
	and base saturation of the	perakaran (X4), indikator KTK	
	nutrient retention variable	(X5.4) dan kejenuhan basa (X5.5)	
	whose cross loading value was	dari variabel retensi hara (X5)	
	still smaller (<0.5) than the cross	yang nilai cross loading masih	
	loading value of other latent	lebih kecil (<0,5) dari nilai cross	
	variables.	loading variabel laten lainnya.	
TEKS SUMBER ditulis dengan	The results of the evaluation of	Hasil evaluasi validitas	
lebih JELAS dan SINGKAT.	convergent validity and	konvergen dan validitas	
	discriminant validity of indicators	diskriminan dari indikator atau	
	or variables as well as composite	variabel serta reliabilitas	
	reliability and alpha cronbach for	komposit dan <i>alpha cronbach</i>	
	indicators or variables can be	untuk indikator atau variabel	
	concluded that indicators as	dapat disimpulkan bahwa	
	measures of latent variables are	indikator-indikator sebagai	
	valid and reliable measures	pengukur variabel laten, masing-	
	respectively.	masing merupakan pengukur	
		yang valid dan reliabel.	
	It seems that the land quality of	Tampaknya, kualitas lahan	The land quality of oxygen
	oxygen availability, rooting	ketersediaan oksigen, media	availability, rooting media,
	media, nutrient retention, and	perakaran, retensi hara, dan	nutrient retention, and nutrient
	nutrient availability shows a	hara tersedia menunjukkan	availability <mark>showed</mark> a positive
	positive correlation and has a	korelasi positif dan berpengaruh	correlation and had a significant
	significant effect on local maize	nyata terhadap produksi jagung	effect on local maize production
	production (Table 4)	lokal (Tabel 4).	(Table 4).
Ditulis dalam bentuk	The land quality of erosion	Kualitas lahan bahaya erosi dan	The land quality of erosion hazards
lampau/past tense.	hazards and land preparation	penyiapan lahan menunjukkan	and land preparation showed a
	shows a negative correlation and	korelasi negatif dan	negative correlation and had a
	has a significant effect on local	hernengaruh nyata terhadan	significant effect on local maize p
	has a significant effect on local		production. This indicated that the

Commented [AH1]: Munkin bisa diganti dengan "menunjukkan" sehingga terjemahannya lebih baik.

Commented [AH2]: Kata "masing-masing" apa bisa dihilangkan saja supaya kalimatnya lebih baku dan mudah diterjemahkan.

F F				
maize p production.	This produksi jagung lokal.	Hal ini increasing of oxygen avail	ability,	
indicates that the ind	creasing of menunjukkan bahwa	semakin rooting media, nutrient		
oxygen availability, r	rooting meningkatnya keterse	ediaan availability, and nutrient r	etention	
media, nutrient avai	ilability, and oksigen, media peraka	aran, and a decrease of erosion	hazard	
nutrient retention a	nd a retensi hara dan hara	tersedia the increase in local maiz		
decrease of erosion	hazard and serta menurunnya ba	haya erosi production The physical		Commented [AH4]: Versi kalimat bahasa Indonesia tidak
land preparation alo	ong with the dan penyiapan lahan a	seiring properties of rooting med	lia,	jelas subyek dan predikatnya.
increase in local mai	ize meningkatnya produk	si jagung especially drainage and a	eration	
production. The phy	vsical lokal. Sifat fisika medi	a conditions might directly	or	Commented [AH3]: Kalimat ini harus diperbaiki karena
properties of rooting	g media, perakaran terutama k	ondisi indirectly influential to ro	ot	tidak jelas subyek dan predikatnya.
especially drainage a	and aeration drainase dan aerasi, s	ecara formation (Taghvaei et al.	2012).	
conditions will direct	tly or langsung maupun tida	ak langsung	luction	
indirectly affectof ro	oot formation akan berpengaruh ter	hadap were nutrient retention a	nd	
(Taghvaei <i>et al.</i> 2012). Land pembentukan akar (Ta	aghvaei <i>et</i> nutrient availability (Suba	rdja and	
quality that greatly i	nfluenced <i>al.</i> 2012). Subardja da	n Sudarsono, 2005). Furthe	rmore,	
the maize production	on were Sudarsono (2005) me	laporkan Nurhayati <mark>et al</mark> . (2015) rej	ported	
nutrient retention ar	nd nutrient bahwa kualitas lahan	yang that an increase of erosio	n hazard	
availability (Subardja	a and sangat berpengaruh t	erhadap	e of land	
Sudarsono, 2005). Fu	urthermore, produktivitas tanama	n jagung	d	
Nurhayatiet al. (2015	5) reported adalah retensi hara da	an hara resulted in an increase in	land	
that an increase of e	erosion tersedia. Selanjutnya,	Nurhayati productivity.		
hazard will result in a	a decrease of <i>et al.</i> (2015) melaport	kan bahwa		
land productivity, co	peningkatan bahaya e	erosi akan		
decrease of erosion	hazard berakibat pada penur	unan		
results in an increase	e in land produktivitas lahan. d	emikian		
productivity.	sebaliknya penurunar) bahava		
p				

DItulis dalam bentuk past tense/lampau.	This indicates that the better drainage, effective depth, pH of KCI, C-Organic, N total, and K availability with an increase of 1% will be followed by an increasing of local maize production on 29.4% to 43.6%. Conversely, coarse material, slopes, soil erosion, surface rock and rock outcrops had a negative correlation and had a significant to very significant effected on	erosi mengakibatkan peningkatan produktivitas lahan. Hal ini menunjukkan bahwa semakin baik drainase, kedalaman efektif, pH KCI, C- Organik, N-Total, dan K tersedia dengan peningkatan sebesar 1% akan diikuti dengan peningkatan produktivitas jagung lokal meningkat sebesar 29,4% sampai 43,6%. Sebaliknya, bahan kasar, lereng, erosi tanah, batuan permukaan dan singkapan batuan memiliki	This indicated that the better drainage, effective depth, pH of KCI, C-Organic, N total, and K availability with an increase of 1% would be followed by an increase of local maize production on 29.4% to 43.6%. Conversely, coarse material, slopes, soil erosion, surface rock and rock outcrops had a negative correlation and had a significant to a very significant effect on local maize production. This revealed that a decrease of	Commented [AH5]: AKAN atau SI
	to very significant effected on local maize production. This indicates that decrease of 1% in coarse material, slopes, soil erosion, surface rock and rock outcrops will be followed by an increasing of local maize production on 40.3% to 71.7%.	singkapan batuan memiliki hubungan negatif dan berpengaruh nyata sampai sangat nyata terhadap produksi jagung lokal. Hal ini menunjukkan bahwa penurunan kandungan bahan kasar, lereng, erosi tanah, batuan permukaan dan singkapan batuan sebesar 1% akan diikuti oleh peningkatan produktivitas	This revealed that a decrease of 1% in coarse material, slopes, soil erosion, surface rock and rock outcrops would be followed by an increasing of local maize production on 40.3% to 71.7%.	Commented [AH6]: AKAN atau SI

jagung lokal sebesar 40,3%	
sampai 71,7%.	

The 2nd ISEPROLOCAL International Seminar on Promoting Local Resources for Sustainable Agriculture and Development Bengkulu, Indonesia

Analysisof Quality and Land Characteristics that Control Local Maize Production in Gorontalo

Nurdin^{1*}, M. L Rayes², Soemarno², Sudarto²

¹Agrotechnology Department, Agriculture Faculty, Gorontalo State University.Jl. Jenderal Sudirman No. 6 Kota Gorontalo-Indonesia. 96122

³Soil Science Department, Agriculture Faculty, Brawijaya University. Jl. Veteran Kota Malang, JawaTimur-Indonesia. 65145

*e-mail: nurdin@ung.ac.id

Abstracts. Increase national maize production has not been followed by an increase in maize productivity per unit area because maize was grown on land that was not suitable with these land quality. This study aims to determine the land quality that control of local maize production. This research was conducted at the Gorontalo Regency. A total of 33 mapping units had been established containing data of soil properties, climate and terrain divided into land quality, as well as data of local maize production. A partial least square of structural equation models (PLS-SEM) analysis was used to determine the land quality and characteristics that control of local maize production through testing the validity and reliability of variables, as well as testing structural models. The results showed that the manifest variables were air temperature, rainfall, wet months, dry months, LGP, drainage, coarse materials, effective depth, pH H₂O, pH KCl, C-organic, total N, available P, available K, ESP, slopes, soil erosion, inundation height, inundation time, surface rock, and rock outcrops were valid and able to explain well the latent variables. Furthermore, the latent variables temperature, water availability, oxygen availability, nutrient retention, nutrients availability, sodicity, erosion hazard, flood hazard, and land preparation used has good composite reliability and high reliability because of the composite reliability and alpha cronbach>0.6. Land quality that significantly affected the local maize production were the oxygen availability (X1), rooting media (X_2) , nutrient retention (X_3) , nutrients availability (X_4) , erosion hazard (X_5) , and land preparation (X₆) with the best equation: $Y = 1.805 + 0.276X_1 + 0.303X_2 + 0.353X_3 + 0.346X_4$ - $0.337X_5 - 0.303X_6$. The land characteristics that significantly affected local maize production were drainage (X1), coarse material (X2), effective depth (X3), pH KCl (X4), C-organic (X5), total N (X6), available K (X7), slope (X8), soil erosion (X9), surface rock (X10) and rock outcrop (X11) with the best equation: $Y = 2.447 + 0.187X_1 - 0.212X_2 + 0.153X_3 + 0.349X_4 + 0.166X_5 + 0.169X_6 + 0.160X_6 + 0.16$ $0.313X_7 - 0.352X_8 - 0.230X_9 - 0.237X_{10} - 0.187X_{11}$

Keywords: Quality, characteristic, land, productivity, maize, local.

INTRODUCTION

Increasing maize productivity is one of the main indicators for the development of food crops. Various activities have been carried out in order to achieve these goals, but the results has not yet reached the expected potential results. This was indicated by the achievement of increasing maize production in an agricultural area which has not been followed by an increase of maize productivity per unit area. Nationally, the achievement of maize productivity was 5.5 tonnes ha⁻¹ (BPS RI, 2019). In fact, maize in Indonesia can produce 10-11 tonnes ha⁻¹, but productivity in farmers' lands was still in the range of 3.2-8 tonnes ha⁻¹ (Yasin*et al.* 2014).

Sustainable agricultural areas in Gorontalo Regency also experience this phenomenon. Until 2019, maize productivity in this area averaged only 5.2 tonnes ha⁻¹ or still far below the average national maize productivity (BPS Kabupaten Gorontalo, 2019).

Meanwhile, the average of local maize productivity has only reached 3.0 tonnes ha⁻¹ (IAARD, 2009). One of the maize local varieties of Gorontalo is Motoro Kiki (Yasin*et al.* 2007). This local maize, aged of 70-80 day after planting, resistant to downy mildew and leaf rust, and well planted in the lowlands to the highlands (IAARD, 2009). In addition, local maize has better growth than hybrid and composite maize, but yield components show the opposite pattern (Kaihatu and Pesireron, 2016). The existence of maize local Gorontalo was starting to become extinct because farmers prefer to plant composite and hybrid maize with the free maize seed subsidize program from the Government through the agriculture agency.

One of the causes of low maize production was caused maize grown on land with low productivity potential (Swastika, 2002). Land productivity was determined by the land quality and characteristics. Land quality has a close relationship with maize production (Subardja and Sudarsono, 2005) and each land quality has a significant effect on land suitability for certain uses (FAO, 1976) especially for maize crops. Research on land quality that controls maize production has been conducted Subardja (2005) on sukmaraga maize composite varieties in the Bogor area with stepwise regression analysis. Meanwhile, the use of structural equation model (SEM) analysis in determining the land quality and characteristics that control plant production was only carried out by Syaf (2014) but on mature cocoa trees in KolakaTimur Regency, Southeast Sulawesi Province. There is no research report on the use of SEM analysis to assess the relationship between land quality and maize production.

Land quality that controlling of maize production was important to know because the response of maize to various land quality and characteristics will vary. The dynamics of various land qualities and characteristics require a comprehensive analysis technique capable of describing the complexity in one analysis system. The use of SEM analysis is one option that can be done. How much influence each indicator (manifest) of soil physical and chemical properties (latent) has on production can be determined by SEM analysis (Syaf, 2014). The use of SEM is very helpful in determining the effect of indicators and producing better models than other multivariate analyzes (Elisantiet al. 2013). Partial Least Square (PLS) is a variant of SEM which has a higher level of flexibility because PLS based on variants, so the number of samples used does not need to be large, ranging from 30-100, while CB-SEM has a minimum data sample size of 100 and requires that the data is multivariate normal distribution (Hair et al. 2013). Therefore, based on the consideration of the complexity of the land quality and characteristics, as well as the limitations of the land mapping unit of the study area, a research on land quality that controls the local maize productivity was carried out using SEM-PLS analysis. This study aims to determine the land quality and land characteristics that control local maize production in Gorontalo.

MATERIALS AND METHOD

This research was conducted at the Sustainable Agriculture Area of Gorontalo Regency and the Soil Laboratory, Faculty of Agriculture, Brawijaya Universityfrom December 2019 to March 2020. The tools used consisted of SmatPLS version 2.0 and the

SPSS software. The materials studied were data on soil characteristics, climate and terrain characteristics, as well as local maize production.

Soil characteristics, climate and terrain characteristics data from the study area were divided into land quality. Furthermore, local maize production data were obtained from the results of tile plots as well as the results of direct interviews with farmers in each LMU. Then, land characteristics data of various sizes and units (ratio data) were converted into interval data which was represented as follows: 1 (very low), 2 (low), 3 (medium), 4 (high), and 5 (very high) followed by an analysis using a SEM-PLS.

In this study, the latent variables were variables that can not be measured directly, in this case the land quality consisting of: temperature (X₁), water availability (X₂), oxygen availability (X₃), rooting media (X₄), nutrient retention (X₅), nutrientavailability (X₆), sodicity (X₇), erosion hazard (X₈), flood hazard (X₉), and land preparation (X₁₀). Meanwhile, the manifest variable were variables that can be directly measured, in this case the land characteristic consisting of: air temperature (X_{1.1}), rainfall (X_{2.1}), wet months (X_{2.2}), dry months (X_{2.3}), long growth periods-LGP (X_{2.4}), drainage (X_{3.1}), texture (X_{4.1}), coarse material (X_{4.2}), effective depth (X_{4.3}), pH H₂O (X_{5.1}), pH KCI (X_{5.2}), C-organic (X_{5.3}), cation exchange capacity-CEC (X_{5.4}), base saturation (X_{5.5}), total N (X_{6.1}), available of P (X_{6.2}), available of K (X_{6.3}), exchangeable sodium percentage-ESP (X_{7.1}), slopes (X_{8.1}), soil erosion (X_{8.2}), inundation height (X_{9.1}), inundation period (X_{9.2}), surface rock (X_{10.1}), and rock outcrop (X_{10.2}). The use of SEM-PLS in this study consists of:

Testing the Validity and Reliability of Research Variables. The basic evaluation carried out in the SEM-PLS analysis was to evaluate the measurement model (outer model) with the aim of knowing the validity and reliability of indicators in measuring research latent variables through convergent validity, discriminant validity, and composite reliability. Convergent validity testing on SEM-PLS was seen from the size of the outer loading of each indicator against its latent variable. A loading factor value above 0.70 was highly recommended, but a loading factor value of 0.50-0.60 could still be tolerated with a t-statistic value of more than 1.96 or a small p-value of 0.05. The loading factor of an indicator with the highest value was the strongest or most important measure in reflecting the latent variable in question. Discriminant validity was an evaluation of the outer model in SEM-PLS using cross loading values to test valid and reliable indicators in explaining or reflecting latent variables. If the correlation of the latent variable with the measurement core of each indicator greater than the other latent variables, then the latent variable is able to predict the indicator better than other latent variables and was said to be valid. Composite reliability and Cronbach's alpha values were used to test the reliability value between the indicators of the latent variables that formed them. The composite reliability value and Cronbach's alpha were said to be good, if the value was >0.60.

Structural Model Testing. Testing of the structural model (*inner model*) was carried out after the relationship model was built in accordance with the observed data and the suitability of the overall model (*goodness of fit model*). Testing of structural models and hypotheses was carried out by looking at the estimated value of the path coefficient and the critical point value (t-statistic) which was significant at $\alpha = 0.05$. Testing the relationship model and hypothesis between variables can be done by testing the direct correlation

coefficient between variables. The results of testing the relationship between the X variables and the Y variable in this study were shown by the correlation coefficient and t-statistic, and also seen in the path diagram.

RESULTS AND DISCUSSIONS

a. Validity of research variables

The loading factor value of the research variables on the indicators were mostly more than the critical limit of 0.7 with a confidence level of 95% (Table 1). The value of the loading factor which was below the tolerance value of 0.5 at the 95% confidence level where the t-statistic value of each indicator was smaller than the t-table (1,960) on the soil texture indicator of the latent variable root media which was amounting to 0.1730nly.

Table	1.Outer	loading	research	variables

Effect of	indicators of	on latent variables	Loading factors	Status
Air temperature $(X_{1.1})$	->	Temperature (X_1)	1.000	Valid
Rainfall (X _{2.1})	->		0.981	Valid
Wet months $(X_{2,2})$	->	\mathbf{W}_{-1}	0.989	Valid
Dry months $(X_{2.3})$	->	water availability (X_2)	0.827	Valid
LGP $(X_{2,4})$	->		0.968	Valid
Drainage (X _{3.1})	->	Oxygen availability (X ₃)	1.000	Valid
Texture (X _{4.1})	->		0.173	Not valid
Coarse material (X _{4.2})	->	Rooting media (X ₄)	-0.921	Valid
Effective depth (X _{4.3})	->		0.912	Valid
pH H ₂ O (X _{5.1})	->		0.768	Valid
pH KCI (X _{5.2})	->		0.772	Valid
C-Organic (X _{5.3})	->	Nutrient retention (X ₅)	0.710	Valid
$CEC(X_{5.4})$	->		0.399	Not valid
Base saturation $(X_{5.5})$	->		0.482	Not valid
N Total (X _{6.1})	->		0.799	Valid
Available P (X _{6.2})	->	Nutrient availability (X ₆)	0.521	Valid
Available K(X _{6.3})	->		0.886	Valid
ESP (X _{7.1})	->	Sodicity (X7)	1.000	Valid
Slope $(X_{8.1})$	->	Encoder home $d(\mathbf{V})$	0.974	Valid
Soil erosion (X _{8.2})	->	Erosion nazard (X_8)	0.957	Valid
Inundation height (X _{9.1})	->	\mathbf{F} is a dima barand (\mathbf{V})	0.993	Valid
Inundation period (X _{9.2})	->	Flooding hazard (A9)	0.991	Valid
Surface rock (X _{10.1})	->	\mathbf{I} and momentian $(\mathbf{V}_{\mathbf{v}})$	0.998	Valid
Rock outcrop (X _{10.2})	->	Land preparation (A10)	0.998	Valid
Productivity (Y _{1.1})	->	Local maize productivity (Y1)	1.000	Valid

It also the CEC indicator and the base saturation indicator of the nutrient retention latent variable which were only 0.399 and 0.482 respectively. This meant that these indicators had not been able to properly form or explain their latent variables. The standard of loading factor was greater than 0.50 (Igbaria*et al.* 1997; Mattjik and Sumertajaya, 2011; Ulum*et al.* 2014). However, in general, based on the indicated values, it can be concluded that the latent variables of land quality has been able to be well established or explained by each indicator and can be said to be convergent valid on these indicators. Commented [u1]: Akward; revise it

Commented [u2]: akward, please revise it; pay attentin to tenses and subject-verb agreement

Commented [u3]: Subject-Verb agreement

The cross loading value for the indicators of latent variables on average was above the cross loading value of the indicators for other latent variables (Table 2). The greatest cross loading value on the indicator was found in the latent variable too, except for the texture indicator of the root media variable, the CEC indicator and base saturation of the nutrient retention variable whose cross loading value was still smaller (<0.5) than the cross loading value of other latent variables. The standard of loading factor was ≥ 0.50 (Igbaria*et al.* 1997; Mattjik and Sumertajaya, 2011; Ulum *et al.* 2014). Thus, the indicator of each latent variable was able to explain their own latent variables so that the research variables were said to be a valid discriminant.

b. Reliability test of research variables

Composite reliability and Cronbach alpha were used to test the reliability value among the indicators of the latent variables that make up them. The composite reliability value and Cronbach alpha were said to be good if the value was above 0.60 (Sujarweni 2014). The composite reliability value on each research variable was more than the limit value (>0.6), except for the root media variable (Table 3). The composite reliability value and Cronbach's alpha value were0.6 so that the latent variable has good composite reliability and high reliability. A construct was said to be reliable if the Cronbach Alpha value was >0.6 (Abdilah and Hartono, 2015). Thus, all of the indicators used in this study had met the criteria or were feasible to be used in the measurement of all latent variables because they have good validity and high reliability. The results of the evaluation of convergent validity and discriminant validity of indicators or variables as well as composite reliability and alpha cronbach for indicators or variables can be concluded that indicators as measures of latent variables are valid and reliable measures respectively.

Table 3. Composite reliability and Cronbach's Alpha values of research variables

	-	
Latenvariables	Compositereliability	Alpha Cronbach
Temperature (X ₁)	1.000000	1.000000
Water availability (X ₂)	0.970030	0.965126
Oxygen availability (X ₃)	1.000000	1.000000
Rooting media (X ₄)	0.020314	-1.055192
Nutrient retention (X ₅)	0.770518	0.628062
Nutrient availability (X ₆)	0.788289	0.681393
Sodicity (X ₇)	1.000000	1.000000
Erosion hazard (X ₈)	0.964615	0.927731
Flooding hazard (X ₉)	0.992053	0.984010
Land preparation (X ₁₀)	0.997657	0.995304

c. Structural Model Testing

The structural model (*inner model*) was evaluated by looking at the coefficient value of the path coefficient parameter between latent variables. It seems that the land quality of oxygen availability, rooting media, nutrient retention, and nutrient availability shows a positive correlation and has a significant effect on local maize production (Table 4).

Commented [u4]: The average value of

Commented [u5]: Akward, too long sentence...

Commented [u6]: What did you mean? It did not make sense

Commented [u7]: akward...too long sentence, please rewrite

Commented [u8]: past tense

The 2 nd ISEPROLOCAL
International Seminar on Promoting Local Resources for Sustainable Agriculture and Development
Bengkulu, Indonesia

T 11 A C	1 1.	C 1	• 1 1
Table / Tross	loading	of research	n variables
1 4010 2.01033	roaung	OI rescarer	i vanaoies

Indikator	Temperature (X ₁)	Water availability (X ₂)	Oxygen availability (X ₃)	Rooting media (X ₄)	Nutrient retention (X ₅)	Nutrient availability (X ₆)	Sodicity (X7)	Erosion hazard (X ₈)	Flooding hazard (X ₉)	Land preparation (X ₁₀)	Production (Y ₁)
Air temperature $(X_{1.1})$	1	0.952309	0.059098	-0.08736	-0.37805	-0.06653	0.38176	0.016269	-0.10297	0.19833	0.042282
Rainfall (X _{2.1})	0.968555	0.980906	0.114576	0.052348	-0.24379	0.058536	0.356547	-0.0379	-0.04621	0.056015	0.156751
Wet months $(X_{2,2})$	0.926635	0.989185	0.173659	-0.005903	-0.25644	0.062873	0.374745	-0.06373	-0.04367	0.060342	0.177251
Dry months $(X_{2.3})$	0.759123	0.82697	0.141078	-0.238735	-0.42612	-0.10563	0.47553	-0.11715	0.027746	0.215367	0.076041
LGP (X _{2.4})	0.900431	0.96821	0.13569	-0.003834	-0.28223	0.056251	0.459669	-0.12209	-0.04398	0.059938	0.193991
Drainage (X _{3.1})	0.059098	0.144225	1	0.129338	-0.24128	0.057861	0.084339	-0.50344	0.236555	-0.22277	0.400657
Texture (X _{4.1})	-0.02057	-0.01261	-0.16957	0.172551	0.242032	0.12283	0.217308	0.196875	-0.00074	-0.02261	0.09248
Coarse material (X _{4.2})	-0.00333	-0.1005	-0.13244	-0.921096	-0.38256	-0.6112	0.18822	0.322934	-0.26391	0.846957	-0.35202
Effective depth $(X_{4.3})$	-0.17758	-0.09256	0.165016	0.912088	0.3519	0.355112	-0.23141	-0.19005	0.095721	-0.76736	0.180089
pH H ₂ O (X _{5.1})	-0.40346	-0.38437	-0.3719	0.29356	0.767791	0.27088	-0.17175	0.151553	-0.02966	-0.08478	0.186569
pH KCl (X _{5.2})	-0.25953	-0.22811	-0.44804	0.342269	0.771872	0.272936	-0.02729	0.167533	0.098977	-0.18312	0.268161
C-Organic (X _{5.3})	-0.29516	-0.13852	0.096529	0.248076	0.710022	0.612498	0.073184	-0.4692	0.063874	-0.1793	0.384332
CEC (X _{5.4})	0.066756	0.115697	0.003345	0.084182	0.399393	0.421251	0.373179	-0.05735	0.15285	-0.01387	0.281455
Base saturation $(X_{5.5})$	-0.30026	-0.25724	-0.10527	0.412102	0.481624	0.361795	-0.60079	-0.0895	-0.13592	-0.48759	0.136266
N Total $(X_{6.1})$	0.002878	0.137879	0.07154	0.268606	0.545283	0.798694	0.030267	-0.37884	-0.10212	-0.2485	0.427705
Available P $(X_{6.2})$	-0.09821	-0.09791	-0.44547	0.211821	0.409315	0.520984	-0.28705	-0.057	0.033581	-0.26033	-0.02547
Available K(X _{6.3})	-0.09732	-0.01031	0.06693	0.614343	0.51245	0.885686	-0.3292	-0.29441	0.237691	-0.6422	0.49531
ESP (X _{7.1})	0.38176	0.405078	0.084339	-0.186069	-0.06947	-0.21259	1	-0.01035	0.201152	0.361936	-0.0249
Slope $(X_{8.1})$	-0.02207	-0.12714	-0.51717	-0.295103	-0.1643	-0.40295	-0.03466	0.973779	-0.34215	0.324431	-0.64795
Soil erosion $(X_{8.2})$	0.064136	-0.00224	-0.44709	-0.166166	-0.11161	-0.32907	0.021581	0.956588	-0.12926	0.257787	-0.486 <mark>4</mark> 9
Inundation height (X _{9.1})	-0.08956	-0.02635	0.225421	0.194354	0.082178	0.127762	0.193925	-0.26735	0.992798	-0.13415	0.175472
Inundation period (X _{9.2})	-0.11594	-0.06329	0.244833	0.199427	0.048584	0.078386	0.205739	-0.2425	0.991369	-0.11616	0.135302
Surface rock (X _{10.1})	0.212772	0.074279	-0.23401	-0.854273	-0.28568	-0.55023	0.376036	0.319248	-0.13208	0.997623	-0.28655
Rock outcrop $(X_{10.2})$	0.183196	0.051703	-0.21067	-0.868319	-0.29655	-0.55537	0.34638	0.290608	-0.12053	0.997697	-0.28228
Production (Y _{1.1})	0.042282	0.177277	0.400657	0.304774	0.418519	0.534535	-0.0249	-0.59733	0.157534	-0.28507	1

The 2nd ISEPROLOCAL International Seminar on Promoting Local Resources for Sustainable Agriculture and Development Bengkulu, Indonesia

Table 4. Path coefficient and significance testing

	Endogenous variables					
Exogenousvariables	Local maize pro	duction (Y)				
	Path coeffisient	t-statistics($t_{critics} = 2.00$)				
Temperature (X_1)	-0.315	-0.012				
Water availability (X ₂)	0.583	0.912				
Oxygen availability (X ₃)	0.326*	2.540				
Rooting media (X ₄)	0.037*	2.470				
Nutrient retention (X ₅)	0.452**	2.936				
Nutrient availability (X ₆)	0.104*	2.642				
Sodicity (X ₇)	-0.186	-1.217				
Erosion hazard (X_8)	-0.333**	-2.992				
Flooding hazard (X9)	0.003	0.400				
Land preparation (X10)	-0.204*	-2.476				

*Significant on level test of 5%; ** Significant on level test of 1%

The land quality of erosion hazards and land preparation shows a negative correlation and has a significant effect on local maize p production. This indicates that the increasing of oxygen availability, rooting media, nutrient availability, and nutrient retention and a decrease of erosion hazard and land preparation along with the increase in local maize production. The physical properties of rooting media, especially drainage and aeration conditions will directly or indirectly affectof root formation (Taghvaei*et al.* 2012). Land quality that greatly influenced the maize production were nutrient retention and nutrient availability (Subardja and Sudarsono, 2005). Furthermore, Nurhayati*et al.* (2015) reported that an increase of erosion hazard results in an increase in land productivity.

c. Land quality and characteristics that controlling of local maize productivity

Based on the previous of structural testing model, the land quality that most influences of local maize production were oxygen availability, rooting media, nutrient retention, nutrient availability, erosion hazard, and land preparation. This was also based on the results of multiple regression tests with the best equation (equation 1) of land quality that affects local maize production as follows:

 $Y = 1,805 + 0,276X_1 + 0,303X_2 + 0,353X_3 + 0,346X_4 - 0,337X_5 - 0,303X_6 \dots (1)$ Where: X₁ = oxygen availability, X₂ = rooting media, X₃ = nutrient retention, X₄ = nutrient availability, X₅ = erosion hazard, X₆ = land preparation

The land characteristics that significantly affected the local maize production were drainage, coarse material, effective depth, pH KCI, C-Organic, N total, K availability, slopes, soil erosion, surface rock and rock outcrops. This was also based on the results of multiple regression tests with the best equation (equation 2) of land characteristics that affect local maize production as follows:

 $Y = 2,447 + 0,187X_1 - 0,212X_2 + 0,153X_3 + 0,349X_4 + 0,166X_5 + 0,169X_6 + 0,313X_7$

Commented [u9]: past tense

The correlation of each land characteristic and its contribution to land quality on local maize production was presented in Table 5 and Figure 1. Land characteristics such as drainage, effective depth, pH of KCI, C-Organic, N total and K availability had a positive correlation and significant to very significant effected on local maize production. This indicates that the better drainage, effective depth, pH of KCI, C-Organic, N total, and K availability with an increase of 1% will be followed by an increasing of local maize production on 29.4% to 43.6%. Conversely, coarse material, slopes, soil erosion, surface rock and rock outcrops had a negative correlation and had a significant to very significant effected on local maize production. This indicates that decrease of 1% in coarse material, slopes, soil erosion, surface rock and rock outcrops will be followed by an increasing of local maize production on 40.3% to 71.7%.

The correlation of each land characteristics was quite strong and strong to influencing of local maize production. Coarse material was rock fragments measuring in 2 mm of diameter or more which affected to soil moisture storage, infiltration, erosion, and land use (Indonesian Soil Research Institute, 2004). Slopes had a significant effect on local maize production, in which the steeper the slopes, the lower the production would be (Nurdin*et al.* 2020). Likeweise for the soil erosion the more erosion increases, the lower the production of maize would be (Suparwata*et al.* 2012). The surface rocks and rock outcrops were limiting factors in the land suitability of maize (Elfayetti and Hedi, 2015).

Table 5. Coefficient of correlation and contribution level on land quality of the land characteristics and local maize production

Land characteristics	Coefficient of correlation	Contribution on land quality (%)
Air temperature $(X_{1.1})$	-0,033	2,9
Rainfall (X _{2.1})	0,089	18,5
Wet months $(X_{2,2})$	0,098	19,8
Dry months $(X_{2.3})$	-0,013	3,8
LGP $(X_{2.4})$	0,123	20,3
Drainage (X _{3.1})	0,350*	40,4
Texture $(X_{4,1})$	0,098	5,0
Coarse material (X _{4.2})	-0,455**	-74,9
Effective depth (X _{4.3})	0,294*	54,5
pH H ₂ O (X _{5.1})	0,234	13,7
pH KCl (X _{5.2})	0,333*	18,7
C-Organic (X _{5.3})	0,405**	59,7
$CEC(X_{5.4})$	0,249	33,2
Base saturation $(X_{5.5})$	0,278	30,7
N Total $(X_{6.1})$	0,436**	63,0
Available P (X _{6.2})	0,076	25,3
Available K(X _{6.3})	0,569**	73,2
ESP (X _{7.1})	-0,107	-2,6
Slope $(X_{8.1})$	-0,717**	-75,9
Soil erosion $(X_{8.2})$	-0,516**	-62,9
Inundation height (X _{9.1})	0,195	34,5
Inundation period (X _{9.2})	0,168	30,5
Surface rock (X _{10.1})	-0,403*	-68,4
Rock outcrop $(X_{10,2})$	-0,408**	-68,0

*Significant on level test of 5%; ** Significant on level test of 1%.

Commented [u10]: Past tense

Commented [u11]: Revise it, please

CONCLUSION

The all manifest variables were valid and able to explain well the latent variables, . Furthermore, the latent variables were temperature, water availability, oxygen availability, nutrient retention, nutrients availability, sodicity, erosion hazard, flood hazard, and land preparation used has good composite reliability and high reliability because of the composite reliability and alpha cronbach>0.6. Land quality that most influences of local maize productivity were the oxygen availability (X₁), rooting media (X₂), nutrient retention (X₃), nutrients availability (X₄), erosion hazard (X₅), and land preparation (X₆) with the best equation: $Y = 1.805 + 0.276X_1 + 0.303X_2 + 0.353X_3 + 0.346X_4 - 0.337X_5 - 0.303X_6$. The land characteristics that most influence of local maize productivity were drainage (X₁), coarse material (X₂), effective depth (X₃), pH KCl (X₄), C-organic (X₅), total N (X₆), available K (X₇), slope (X₈), soil erosion (X₉), surface rock (X₁₀) and rock outcrop (X₁₁) with the best equation: $Y = 2.447 + 0.187X_1 - 0.212X_2 + 0.153X_3 + 0.349X_4 + 0.166X_5 + 0.169X_6 + 0.313X_7 - 0.352X_8 - 0.230X_9 - 0.237X_{10} - 0.187X_{11}$.

ACKNOWLEDGMENT

Thank you to Ecan Adam, SE, MM for helping with the SEM-PLS analysis. Thank you also went to Rival Rahman, SP, MSifor helping of the land resources mapping.

REFERENCES

- Abdilah, W., and J. Hartono. 2015. Partial least square (PLS): Alternative structural equation modeling (SEM) in business research. Andi Offset, Yogyakarta.
- Soil Research Institute. 2004. Technical guidelines for soil observation. Research and Development Center for Soil and Agro-climate, Bogor.
- BPS RI. 2019. Maize production by province (tonnes), 1993-2018. Central Bureau of Statistics of the Republic of Indonesia, Jakarta.
- BPSKabupaten Gorontalo. 2018. Gorontalo regency in figures on 2018. Gorontalo Regency Statistics Agency, Limboto.
- Elisanti, A. D., W. Purnomo., and S. Melaniani. 2013. Application of partial least square health status of children under 5 years In Indonesia. J. Biometrika dan Kependudukan 2(2): 99 107. DOI: 10.31227/osf.io/gtbq6
- Elfayetti and Herdi. 2015. Evaluation of land suitability for maize crops in Saentis Village, Percut Sei Tuan. J Social Sciences Education 7(1): 33-40.DOI: https://doi.org/10.24114/jupiis.v7i1.2295
- FAO. 1976. A Framework for land evaluation. Food and Agriculture Organization Soil Bull. No.32, Rome.
- Hair, J.F., Ringle, C.M., and M.Sarstedt. 2013. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning 46: 1-12.

Commented [u12]: Make it brief and concise

- Igbaria, M., N. Zinatelli, P. Cragg, and A. L. M. Cavaye. 1997. Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly 21(3): 279-305.DOI: 10.2307/249498
- Indonesian Soil Research Institute. 2004. Soil observation technical instructions. Research and Development Center for Soil and Agro-climate, Bogor.
- IAARD. 2009. Indonesian agricultural research and development agency statistics in 2009. Indonesian Agency of Agricultural Research and Development. Jakarta, Indonesia.
- Kaihatu, S. S., and M. Pesireron. 2016. Adaptation of several varieties of maize in dry land agro-ecosystems in Maluku. J Food Crops Research 35(2): 141-147.DOI: <u>http://dx.doi.org/10.21082/jpptp.v35n2.2016.p141-148</u>
- Mattjik, A. A., and I. M. Sumertajaya. 2011. Investigate multiple variables using SAS. IPB Press, Bogor.
- Nurhayati, L., S. Nugraha, and P. Wijayanti. 2012. The effect of erosion on the productivity of the Wali watershed in Karanganyar and Wonogiri regencies. Geography Education Study Program, FKIP UNS, Surakarta.
- Nurdin, M. L. Rayes, Soemarno, Sudarto, N. Musa and M. Dunggio. 2020. Effect of slopes and compound NPK fertilizer on growth and yield of maize local varieties, relative agronomic and economic fertilizer effectiveness to Inceptisol Bumela, Indonesia. RJOAS 6(102): 18-28.DOI: 10.18551/rjoas.2020-06.03
- Swastika, D.K.S. 2002. Corn self sufficiency in Indonesia: The past30 years and future prospect. J Indonesian AgriculturalResearch and Development 21(3): 75-83.
- Subardja, D. 2005. Land suitability criteria for land use types based on maize and peanuts in the Bogor area. Dissertation.IPB Postgraduate School, Bogor.
- Subardja, D., and Sudarsono. 2005. The influence of land quality on productivity of maize in soils derived from volcanic and sedimentary rocks in the Bogor area. J Soils and Climate 23: 38-47. DOI: <u>http://dx.doi.org/10.21082/jti.v0n23.2005.%25p</u>
- Suparwata, D. O., Nurmi, and M. I. Bahua. 2012. Use of vertical mulch on dry land to reduce erosion, runoff and its effects on maize growth and yields. J Agro techno trop 1(3): 138-145.
- Sujarweni, V. W. 2014. SPSS for research.PustakaBaru, Yogyakarta.
- Syaf, H. 2014. Evaluation of the relationship between land quality, growth and yield of aged cocoa in East Kolaka Regency, Southeast Sulawesi Province. J Bioeducation 3(1): 267 - 276.
- Taghvaei, M., N.Khaef, and H. Sadeghi. 2012. The effects of salt stress and prime on improvement and seedling growth of *Calotropisprocera* L. seeds. J Ecol Field Biol 35(2): 73-78.
- Ulum, M., I. M. Tirta, and D. Anggraeni. 2014. Analysis of structural equation modeling (SEM) for small samples using the partial least square (PLS) approach. Proceedings of the National Mathematics Seminar, University of Jember, 19 November 2014. pp 1-15.
- Yasin, M. H. G., Singgih, S., Hamdani, M., and Santoso, S. B. 2007. Biodiversity ofmaize germplasm.In Hermanto, Suyamto, Sumarno (2007). Maize: production anddevelopment techniques. Center for research and development of food crops,

Agriculturalresearch and development agency, Indonesian ministry of agriculture, Jakarta.

Yasin, H. G. M., W. Langgo, and Faesal. 2014. White seed maize as an alternative staple food. J Food Crops Science and Technology 9(2): 108 - 117.DOI: https://doi.org/10.1007/3-540-11494-7_22

Figure 1. The coefficient pathways diagram of land quality on the level of local maize production

Analysisof Quality and Land Characteristics that Control Local Maize Production in Gorontalo

Nurdin^{1*}, M. L Rayes², Soemarno², Sudarto²

 ¹Agrotechnology Department, Agriculture Faculty, Gorontalo State University.Jl. Jenderal Sudirman No. 6 Kota Gorontalo-Indonesia. 96122
³Soil Science Department, Agriculture Faculty, Brawijaya University. Jl. Veteran Kota Malang, JawaTimur-Indonesia. 65145

*e-mail: nurdin@ung.ac.id

Abstracts. Increase national maize production has not been followed by an increase in maize productivity per unit area because maize was grown on land that was not suitable with these land quality. This study aims to determine the land quality that control of local maize production. This research was conducted at the Gorontalo Regency. A total of 33 mapping units had been established containing data of soil properties, climate and terrain divided into land quality, as well as data of local maize production. A partial least square of structural equation models (PLS-SEM) analysis was used to determine the land quality and characteristics that control of local maize production through testing the validity and reliability of variables, as well as testing structural models. The results showed that the all manifest variables were valid and able to explain well the latent variables, except for texture, cation exchange capacity, and base saturation. Furthermore, the latent variables temperature, water availability, oxygen availability, nutrient retention, nutrients availability, sodicity, erosion hazard, flood hazard, and land preparation used has good composite reliability and high reliability because of the composite reliability and alpha cronbach >0.6, except for rooting media. Land quality that control of the local maize production were the oxygen availability (X₁), rooting media (X₂), nutrient retention (X₃), nutrients availability (X₄), erosion hazard (X₅), and land preparation (X₆) with the best equation: $Y = 1.805 + 0.276X_1 + 0.303X_2 + 0.0000$ $0.353X_3 + 0.346X_4 - 0.337X_5 - 0.303X_6$. The land characteristics that control of the local maize production were drainage (X1), coarse material (X2), effective depth (X3), pH KCl (X4), C-organic (X₅), total N (X₆), available K (X₇), slope (X₈), soil erosion (X₉), surface rock (X₁₀) and rock outcrop (X₁₁) with the best equation: $Y = 2.447 + 0.187X_1 - 0.212X_2 + 0.153X_3 + 0.349X_4 + 0.18X_1 - 0.21X_2 + 0.18X_1 - 0.21X_2 + 0.18X_1 - 0.21X_2 + 0.18X_1 - 0.21X_2 + 0.21X_2$ $0.166X_5 + 0.169X_6 + 0.313X_7 - 0.352X_8 - 0.230X_9 - 0.237X_{10} - 0.187X_{11}$.

Keywords: Quality, characteristic, land, production, maize, local.

INTRODUCTION

Increasing maize productivity is one of the main indicators for the development of food crops. Various activities have been carried out in order to achieve these goals, but the results has not yet reached the expected potential results. This was indicated by the achievement of increasing maize production in an agricultural area which has not been followed by an increase of maize productivity per unit area. Nationally, the achievement of maize productivity was 5.5 tonnes ha⁻¹ (BPS RI, 2019). In fact, maize in Indonesia can produce 10-11 tonnes ha⁻¹, but productivity in farmers' lands was still in the range of 3.2-8 tonnes ha⁻¹ (Yasin*et al.* 2014).

Sustainable agricultural areas in Gorontalo Regency also experience this phenomenon. Until 2019, maize productivity in this area averaged only 5.2 tonnes ha⁻¹ or still far below the average national maize productivity (BPS Kabupaten Gorontalo, 2019). Meanwhile, the average of local maize productivity has only reached 3.0 tonnes ha⁻¹ (IAARD, 2009). One of the maize local varieties of Gorontalo is Motoro Kiki (Yasin*et al.*

2007). This local maize, aged of 70-80 day after planting, resistant to downy mildew and leaf rust, and well planted in the lowlands to the highlands (IAARD, 2009). In addition, local maize has better growth than hybrid and composite maize, but yield components show the opposite pattern (Kaihatu and Pesireron, 2016). The existence of maize local Gorontalo was starting to become extinct because farmers prefer to plant composite and hybrid maize with the free maize seed subsidize program from the Government through the agriculture agency.

One of the causes of low maize production was caused maize grown on land with low productivity potential (Swastika, 2002). Land productivity was determined by the land quality and characteristics. Land quality has a close relationship with maize production (Subardja and Sudarsono, 2005) and each land quality has a significant effect on land suitability for certain uses (FAO, 1976) especially for maize crops. Research on land quality that controls maize production has been conducted Subardja (2005) on sukmaraga maize composite varieties in the Bogor area with stepwise regression analysis. Meanwhile, the use of structural equation model (SEM) analysis in determining the land quality and characteristics that control plant production was only carried out by Syaf (2014) but on mature cocoa trees in KolakaTimur Regency, Southeast Sulawesi Province. There is no research report on the use of SEM analysis to assess the relationship between land quality and maize production.

Land quality that controlling of maize production was important to know because the response of maize to various land quality and characteristics will vary. The dynamics of various land qualities and characteristics require a comprehensive analysis technique capable of describing the complexity in one analysis system. The use of SEM analysis is one option that can be done. How much influence each indicator (manifest) of soil physical and chemical properties (*latent*) has on production can be determined by SEM analysis (Syaf, 2014). The use of SEM is very helpful in determining the effect of indicators and producing better models than other multivariate analyzes (Elisantiet al. 2013). Partial Least Square (PLS) is a variant of SEM which has a higher level of flexibility because PLS based on variants, so the number of samples used does not need to be large, ranging from 30-100, while CB-SEM has a minimum data sample size of 100 and requires that the data is multivariate normal distribution (Hair et al. 2013). Therefore, based on the consideration of the complexity of the land quality and characteristics, as well as the limitations of the land mapping unit of the study area, a research on land quality that controls the local maize productivity was carried out using SEM-PLS analysis. This study aims to determine the land quality and land characteristics that control local maize production in Gorontalo.

MATERIALS AND METHOD

This research was conducted at the Sustainable Agriculture Area of Gorontalo Regency and the Soil Laboratory, Faculty of Agriculture, Brawijaya Universityfrom December 2019 to March 2020. The tools used consisted of SmatPLS version 2.0 and the SPSS software. The materials studied were data on soil characteristics, climate and terrain characteristics, as well as local maize production.

Soil characteristics, climate and terrain characteristics data from the study area were divided into land quality. Furthermore, local maize production data were obtained from the results of tile plots as well as the results of direct interviews with farmers in each LMU. Then, land characteristics data of various sizes and units (ratio data) were converted into interval data which was represented as follows: 1 (very low), 2 (low), 3 (medium), 4 (high), and 5 (very high) followed by an analysis using a SEM-PLS.

In this study, the latent variables were variables that can not be measured directly, in this case the land quality consisting of: temperature (X_1) , water availability (X_2) , oxygen availability (X_3) , rooting media (X_4) , nutrient retention (X_5) , nutrientavailability (X_6) , sodicity (X_7) , erosion hazard (X_8) , flood hazard (X_9) , and land preparation (X_{10}) . Meanwhile, the manifest variable were variables that can be directly measured, in this case the land characteristic consisting of: air temperature $(X_{1.1})$, rainfall $(X_{2.1})$, wet months $(X_{2.2})$, dry months $(X_{2.3})$, long growth periods-LGP $(X_{2.4})$, drainage $(X_{3.1})$, texture $(X_{4.1})$, coarse material $(X_{4.2})$, effective depth $(X_{4.3})$, pH H₂O $(X_{5.1})$, pH KCI $(X_{5.2})$, C-organic $(X_{5.3})$, cation exchange capacity-CEC $(X_{5.4})$, base saturation $(X_{5.5})$, total N $(X_{6.1})$, available of P $(X_{6.2})$, available of K $(X_{6.3})$, exchangeable sodium percentage-ESP $(X_{7.1})$, slopes $(X_{8.1})$, soil erosion $(X_{8.2})$, inundation height $(X_{9.1})$, inundation period $(X_{9.2})$, surface rock $(X_{10.1})$, and rock outcrop $(X_{10.2})$. The use of SEM-PLS in this study consists of:

Testing the Validity and Reliability of Research Variables. The basic evaluation carried out in the SEM-PLS analysis was to evaluate the measurement model (outer model) with the aim of knowing the validity and reliability of indicators in measuring research latent variables through convergent validity, discriminant validity, and composite reliability. Convergent validity testing on SEM-PLS was seen from the size of the outer loading of each indicator against its latent variable. A loading factor value above 0.70 was highly recommended, but a loading factor value of 0.50-0.60 could still be tolerated with a t-statistic value of more than 1.96 or a small p-value of 0.05. The loading factor of an indicator with the highest value was the strongest or most important measure in reflecting the latent variable in question. Discriminant validity was an evaluation of the outer model in SEM-PLS using cross loading values to test valid and reliable indicators in explaining or reflecting latent variables. If the correlation of the latent variable with the measurement core of each indicator greater than the other latent variables, then the latent variable is able to predict the indicator better than other latent variables and was said to be valid. Composite reliability and Cronbach's alpha values were used to test the reliability value between the indicators of the latent variables that formed them. The composite reliability value and Cronbach's alpha were said to be good, if the value was >0.60.

Structural Model Testing. Testing of the structural model (*inner model*) was carried out after the relationship model was built in accordance with the observed data and the suitability of the overall model (*goodness of fit model*). Testing of structural models and hypotheses was carried out by looking at the estimated value of the path coefficient and the critical point value (t-statistic) which was significant at $\alpha = 0.05$. Testing the relationship model and hypothesis between variables can be done by testing the direct correlation coefficient between variables. The results of testing the relationship between the X

variables and the Y variable in this study were shown by the correlation coefficient and tstatistic, and also seen in the path diagram.

RESULTS AND DISCUSSIONS

a. Validity of research variables

The validity test showed that most of the indicators in the research variables had loading factor values greater than the critical limit of 0.70 with a 95% confidence level (Table 1). While the loading factor value that was below the tolerant value (0.50) and the t-statistic value was smaller than the t-table (1.96) was found in the latent variable of rooting media (X4) with a soil texture indicator was 0.173 and nutrient retention of the latent variable (X5) on the CEC indicator (X5.4) was 0.399 and the base saturation indicator (X5.5) was 0.482. This meant that these indicators had not been able to properly form or explain their latent variables. The standard of loading factor was greater than 0.50 (Igbaria*et al.* 1997; Mattjik and Sumertajaya, 2011; Ulum*et al.* 2014). However, in general, based on the indicated values, it can be concluded that the latent variables of land quality has been able to be well established or explained by each indicator and can be said to be convergent valid on these indicators.

Effect of ind	Loading factors	Status		
Air temperature $(X_{1.1})$	->	Temperature (X_1)	1.000	Valid
Rainfall $(X_{2.1})$	->		0.983	Valid
Wet months $(X_{2.2})$	->	\mathbf{W}_{otom} and \mathbf{h}_{otom}	0.995	Valid
Dry months $(X_{2,3})$	->	water availability (X_2)	0.845	Valid
LGP $(X_{2.4})$	->		0.972	Valid
Drainage $(X_{3.1})$	->	Oxygen availability (X ₃)	1.000	Valid
Texture $(X_{4.1})$	->		0.182	Not valid
Coarse material $(X_{4.2})$	->	Rooting media (X ₄)	-0.895	Valid
Effective depth $(X_{4.3})$	->		0.922	Valid
pH H ₂ O (X _{5.1})	->		0.787	Valid
pH KCl (X5.2)	->		0.874	Valid
C-Organic $(X_{5.3})$	->	Nutrient retention (X_5)	0.923	Valid
$CEC(X_{5.4})$	->		0.481	Not valid
Base saturation $(X_{5.5})$	->		0.326	Not valid
N Total $(X_{6.1})$	->		0.829	Valid
Available P $(X_{6.2})$	->	Nutrient availability (X_6)	0.642	Valid
Available K(X _{6.3})	->		0.969	Valid
ESP (X _{7.1})	->	Sodicity (X ₇)	1.000	Valid
Slope $(X_{8.1})$	->	Encoder how (\mathbf{V})	0.992	Valid
Soil erosion $(X_{8.2})$	->	Elosion nazard (A8)	0.965	Valid
Inundation height (X _{9.1})	->	Elading barand (\mathbf{V})	0.990	Valid
Inundation period (X _{9.2})	->	Flooding hazard (A9)	0.993	Valid
Surface rock $(X_{10.1})$	->	\mathbf{L} and momentian $(\mathbf{V}_{\mathbf{v}})$	0.999	Valid
Rock outcrop $(X_{10.2})$	->	Land preparation (X ₁₀)	0.995	Valid
Productivity $(Y_{1,1})$	->	Local maize productivity (Y_1)	1.000	Valid

Table 1.Outer loading research variables

LGP: Long growth period; CEC: Cation exchange capacity; ESP: Excangeable potassium percentage

The average cross-loading value for indicators in latent variables was above the crossloading values of indicator in other latent variables (Table 2). This meant, the highest cross-loading value on an indicator was also the highest value on its latent variable, except for the rooting media variable (X4) with the texture indicator (X4.1), and the nutrient retention variable (X5) with the CEC indicator (X5.4) and base saturation indicator (X5.5) with a smaller cross-loading value <0.5. The standard of loading factor was \geq 0.50 (Igbaria*et al.* 1997; Mattjik and Sumertajaya, 2011; Ulum *et al.* 2014). Thus, the indicator of each latent variable was able to explain their own latent variables so that the research variables were said to be a valid discriminant.

b. Reliability test of research variables

Composite reliability and Cronbach alpha were used to test the reliability value among the indicators of the latent variables that make up them. The composite reliability value and Cronbach alpha were said to be good if the value was above 0.60 (Sujarweni 2014). The composite reliability value on each research variable was more than the limit value (> 0.6), except for the root media variable (Table 3). The composite reliability value and Cronbach's alpha value were 0.6 so that the latent variable has good composite reliability and high reliability. A variable was declared reliable if the Cronbach Alpha value was >0.6 (Abdilah and Hartono, 2015). Thus, all of the indicators used in this study had met the criteria or were feasible to be used in the measurement of all latent variables because they haad better validity and high reliability. The results of the evaluation of convergent validity and discriminant validity and reliability of the composite and Cronbach alpha for indicators or variables showed that indicators as a measure of latent variables were valid and reliable measures.

Latenvariables	Compositereliability	Alpha Cronbach
Temperature (X ₁)	1.000000	1.000000
Water availability (X ₂)	0.961142	0.973650
Oxygen availability (X ₃)	1.000000	1.000000
Rooting media (X ₄)	0.041428	-1.093362
Nutrient retention (X_5)	0.863572	0.736147
Nutrient availability (X ₆)	0.877398	0.784295
Sodicity (X7)	1.000000	1.000000
Erosion hazard (X ₈)	0.952163	0.942263
Flooding hazard (X ₉)	0.988236	0.972114
Land preparation (X ₁₀)	0.995317	0.994206

Table 3. Composite Reliability and Cronbach's Alpha values of research variables

c. Structural Model Testing

The structural model (*inner model*) was evaluated by looking at the coefficient value of the path coefficient parameter between latent variables. The land quality of oxygen availability, rooting media, nutrient retention, and nutrient availability showed a positive correlation and had a significant effect on local maize production (Table 4).

The 2nd ISEPROLOCAL International Seminar on Promoting Local Resources for Sustainable Agriculture and Development Bengkulu, Indonesia

Indikator	Temperature	Water	Oxygen	Rooting	Nutrient	Nutrient	Sodicity	Erosion	Flooding	Land	Production
mulkator	(X_1)	(X ₂)	(X ₃)	media (X ₄)	(X_5)	(X_6)	(X7)	(X_8)	(X ₉)	(X_{10})	(\mathbf{Y}_1)
Air temperature $(X_{1,1})$	1	0.974058	0.061454	-0.091173	-0.428317	-0.073652	0.406783	0.02159	-0.13792	0.219821	0.068223
Rainfall (X _{2.1})	0.976513	0.991684	0.209631	0.064295	-0.275923	0.063868	0.397465	-0.04381	-0.05146	0.065735	0.217651
Wet months $(X_{2,2})$	0.941357	0.979657	0.193703	-0.017931	-0.263141	0.079163	0.409261	-0.06920	-0.06095	0.071259	0.191355
Dry months $(X_{2.3})$	0.863195	0.873285	0.158622	-0.252786	-0.513267	-0.136801	0.497352	-0.11903	0.03372	0.247653	0.080792
LGP $(X_{2,4})$	0.910319	0.959821	0.149654	-0.017432	-0.327742	0.064218	0.468817	-0.14008	-0.05893	0.068362	0.218919
Drainage $(X_{3.1})$	0.068901	0.251132	1	0.209845	-0.286975	0.059325	0.094359	-0.53642	0.28566	-0.311688	0.401756
Texture $(X_{4.1})$	-0.015049	-0.007345	-0.196751	0.186113	0.294305	0.139764	0.287013	0.258671	-0.00085	-0.042531	0.184273
Coarse material (X _{4.2})	-0.004233	-0.111890	-0.145526	-0.953261	-0.419651	-0.721693	0.199112	0.394225	-0.29371	0.859705	-0.422011
Effective depth $(X_{4.3})$	-0.185577	-0.096322	0.170192	0.908772	0.381729	0.383752	-0.25416	-0.21069	0.098172	-0.808412	0.200913
pH H ₂ O (X _{5.1})	-0.463045	-0.438571	-0.419653	0.317653	0.788691	0.281776	-0.19573	0.192374	-0.03595	-0.097455	0.219885
pH KCl (X _{5.2})	-0.373956	-0.446223	-0.452037	0.342269	0.897732	0.326971	-0.03975	0.185291	0.096937	-0.213928	0.327627
C-Organic $(X_{5.3})$	-0.199271	-0.210951	0.100925	0.268721	0.775314	0.684290	0.082439	-0.52642	0.072896	-0.295211	0.408752
$CEC(X_{5.4})$	0.044986	0.225247	0.004199	0.091538	0.422697	0.495236	0.413522	-0.06933	0.175312	-0.029783	0.354434
Base saturation $(X_{5.5})$	-0.200728	-0.204165	-0.118215	0.458627	0.490752	0.387158	-0.69050	-0.09115	-0.16297	-0.491375	0.156315
N Total $(X_{6.1})$	0.003976	0.192784	0.083764	0.277583	0.573833	0.849673	0.042763	-0.42870	-0.11392	-0.265862	0.435072
Available P $(X_{6.2})$	-0.099112	-0.089772	-0.469732	0.226971	0.418925	0.598021	-0.31781	-0.06398	0.041585	-0.300791	-0.037419
Available K(X _{6.3})	-0.098631	-0.021351	0.075881	0.709523	0.601578	0.898672	-0.38288	-0.31495	0.327361	-0.675525	0.529322
ESP (X _{7.1})	0.390526	0.582752	0.093465	-0.236799	-0.074953	-0.283745	1	-0.02586	0.262957	0.417664	-0.039527
Slope $(X_{8.1})$	-0.031307	-0.200893	-0.697107	-0.310086	-0.173356	-0.425937	-0.04295	0.981242	-0.35516	0.351329	-0.675983
Soil erosion $(X_{8.2})$	0.068254	-0.001981	-0.527713	-0.207321	-0.131759	-0.367951	0.029383	0.978553	-0.13629	0.277838	-0.519375
Inundation height (X _{9.1})	-0.096746	-0.037425	0.311655	0.218953	0.093587	0.142765	0.225976	-0.35211	0.990897	-0.145263	0.192408
Inundation period (X _{9.2})	-0.206352	-0.079142	0.300928	0.288375	0.058273	0.083762	0.298112	-0.30075	0.991132	-0.12889	0.143589
Surface rock $(X_{10.1})$	0.246673	0.080191	-0.224112	-0.936221	-0.308922	-0.573560	0.410359	0.381927	-0.14180	0.995132	-0.366956
Rock outcrop $(X_{10.2})$	0.198478	0.058290	-0.270531	-0.893546	-0.317591	-0.567215	0.382927	0.312774	-0.13055	0.998015	-0.311954
Production $(Y_{1.1})$	0.045581	0.189973	0.510087	0.368871	0.503795	0.595307	-0.03915	-0.63852	0.26923	-0.307327	1

Table 2. Cross-loading of research variables

-

LGP: Long growth period; CEC: Cation exchange capacity; ESP: Excangeable potassium percentage.

The 2nd ISEPROLOCAL International Seminar on Promoting Local Resources for Sustainable Agriculture and Development Bengkulu, Indonesia

	Endogenous variables			
Exogenousvariables	Local maize production (Y)			
-	Path coeffisient	t-statistics($t_{critics} = 2.00$)		
Temperature (X_1)	-0.315	-0.012		
Water availability (X ₂)	0.583	0.912		
Oxygen availability (X ₃)	0.326*	2.540		
Rooting media (X ₄)	0.037*	2.470		
Nutrient retention (X_5)	0.452**	2.936		
Nutrient availability (X_6)	0.104*	2.642		
Sodicity (X ₇)	-0.186	-1.217		
Erosion hazard (X_8)	-0.333**	-2.992		
Flooding hazard (X ₉)	0.003	0.400		
Land preparation (X_{10})	-0.204*	-2.476		

Table 4. Path coefficient and significance testing

*Significant on level test of 5%; ** Significant on level test of 1%

The land quality of erosion hazards and land preparation showed a negative correlation and had a significant effect on local maize p production. This indicated that the increasing of oxygen availability, rooting media, nutrient availability, and nutrient retention and a decrease of erosion hazard and land preparation along with the increase in local maize production. The physical properties of rooting media, especially drainage and aeration conditions might directly or indirectly influential to root formation (Taghvaei *et al.* 2012). Land quality that greatly influenced the maize production were nutrient retention and nutrient availability (Subardja and Sudarsono, 2005). Furthermore, Nurhayati *et al.* (2015) reported that an increase of erosion hazard resulted in an increase in land productivity.

c. Land quality and characteristics that controlling of local maize productivity

Based on the previous of structural testing model, the land quality that most influences of local maize production were oxygen availability, rooting media, nutrient retention, nutrient availability, erosion hazard, and land preparation. This was also based on the results of multiple regression tests with the best equation (equation 1) of land quality that affects local maize production as follows:

 $Y = 1,805 + 0,276X_1 + 0,303X_2 + 0,353X_3 + 0,346X_4 - 0,337X_5 - 0,303X_6 \dots (1)$ Where: X₁ = oxygen availability, X₂ = rooting media, X₃ = nutrient retention, X₄ = nutrient availability, X₅ = erosion hazard, X₆ = land preparation

The land characteristics that significantly affected the local maize production were drainage, coarse material, effective depth, pH KCl, C-Organic, N total, K availability, slopes, soil erosion, surface rock and rock outcrops. This was also based on the results of multiple regression tests with the best equation (equation 2) of land characteristics that affect local maize production as follows:

 $Y = 2,447 + 0,187X_1 - 0,212X_2 + 0,153X_3 + 0,349X_4 + 0,166X_5 + 0,169X_6 + 0,313X_7 + 0,169X_8 + 0,100X_8 + 0,100X_8$

 $-0,352X_8 - 0,230X_9 - 0,237X_{10} - 0,187X_{11}$ (2) Where: X_1 = drainage, X_2 = coarse material, X_3 = effective depth, X_4 = pH KCl, X_5 = C-Organic, X_6 = N total, X_7 = K availability, X_8 = slope, X_9 = soil erosion, X_{10} = surface rock, X_{11} = rock outcrops. The correlation of each land characteristic and its contribution to land quality on local maize production was presented in Table 5 and Figure 1. Land characteristics such as drainage, effective depth, pH of KCI, C-Organic, N total and K availability had a positive correlation and significant to very significant effected on local maize production. This indicated that the better drainage, effective depth, pH of KCI, C-Organic, N total, and K availability with an increase of 1% would be followed by an increase of local maize production on 29.4% to 43.6%. Conversely, coarse material, slopes, soil erosion, surface rock and rock outcrops had a negative correlation and had a significant to a very significant effect on local maize production. This revealed that a decrease of 1% in coarse material, slopes, soil erosion, surface rock and rock outcrops would be followed by an increasing of local maize production on 40.3% to 71.7%.

The correlation of each land characteristic was strong to influencing local maize production. Coarse material was rock fragments measuring in 2 mm of diameter or more which affected to soil moisture storage, infiltration, erosion, and land use (Indonesian Soil Research Institute, 2004). Slopes had a significant effect on local maize production, in which the steeper the slopes, the lower the production would be (Nurdin*et al.* 2020). Likeweise for the soil erosion the more erosion increases, the lower the production of maize would be (Suparwata*et al.* 2012). The surface rocks and rock outcrops-were limiting factors in the land suitability of maize (Elfayetti and Hedi, 2015).

Land characteristics	Coefficient of correlation	Contribution on land quality (%)
Air temperature $(X_{1.1})$	-0,033	2,9
Rainfall (X _{2.1})	0,089	18,5
Wet months $(X_{2.2})$	0,098	19,8
Dry months $(X_{2.3})$	-0,013	3,8
LGP $(X_{2.4})$	0,123	20,3
Drainage (X _{3.1})	0,350*	40,4
Texture $(X_{4.1})$	0,098	5,0
Coarse material $(X_{4.2})$	-0,455**	-74,9
Effective depth $(X_{4.3})$	0,294*	54,5
pH H ₂ O (X _{5.1})	0,234	13,7
pH KCl (X _{5.2})	0,333*	18,7
C-Organic (X _{5.3})	0,405**	59,7
$CEC(X_{5.4})$	0,249	33,2
Base saturation $(X_{5.5})$	0,278	30,7
N Total $(X_{6.1})$	0,436**	63,0
Available P (X _{6.2})	0,076	25,3
Available $K(X_{6.3})$	0,569**	73,2
ESP (X _{7.1})	-0,107	-2,6
Slope $(X_{8.1})$	-0,717**	-75,9
Soil erosion (X _{8.2})	-0,516**	-62,9
Inundation height (X _{9.1})	0,195	34,5
Inundation period $(X_{9.2})$	0,168	30,5
Surface rock $(X_{10.1})$	-0,403*	-68,4
Rock outcrop $(X_{10.2})$	-0,408**	-68,0

Table 5. Coefficient of correlation and contribution level on land quality of the land characteristics and local maize production

*Significant on level test of 5%; ** Significant on level test of 1%.

CONCLUSION

Land quality that control of the local maize production were the oxygen availability, rooting media, nutrient retention, nutrient availability, erosion hazard and land preparation. Meanwhile, land characteristics that control of the local maize production were drainage, effective depth, pH KCl, C-Organic, N-Total, K availability, coarse material, slopes, soil erosion, surface rock and rock outcrops.

ACKNOWLEDGMENT

Thank you to Ecan Adam, SE, MM for helping with the SEM-PLS analysis. Thank you also went to Rival Rahman, SP, MSifor helping of the land resources mapping.

REFERENCES

- Abdilah, W., and J. Hartono. 2015. Partial least square (PLS): Alternative structural equation modeling (SEM) in business research. Andi Offset, Yogyakarta.
- Soil Research Institute. 2004. Technical guidelines for soil observation. Research and Development Center for Soil and Agro-climate, Bogor.
- BPS RI. 2019. Maize production by province (tonnes), 1993-2018. Central Bureau of Statistics of the Republic of Indonesia, Jakarta.
- BPSKabupaten Gorontalo. 2018. Gorontalo regency in figures on 2018. Gorontalo Regency Statistics Agency, Limboto.
- Elisanti, A. D., W. Purnomo., and S. Melaniani. 2013. Application of partial least square health status of children under 5 years In Indonesia. J. Biometrika dan Kependudukan 2(2): 99 107. DOI: 10.31227/osf.io/gtbq6
- Elfayetti and Herdi. 2015. Evaluation of land suitability for maize crops in Saentis Village, Percut Sei Tuan. J Social Sciences Education 7(1): 33-40.DOI: <u>https://doi.org/10.24114/jupiis.v7i1.2295</u>
- FAO. 1976. A Framework for land evaluation. Food and Agriculture Organization Soil Bull. No.32, Rome.
- Hair, J.F., Ringle, C.M., and M.Sarstedt. 2013. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning 46: 1-12.
- Igbaria, M., N. Zinatelli, P. Cragg, and A. L. M. Cavaye. 1997. Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly 21(3): 279-305.DOI: 10.2307/249498
- Indonesian Soil Research Institute. 2004. Soil observation technical instructions. Research and Development Center for Soil and Agro-climate, Bogor.
- IAARD. 2009. Indonesian agricultural research and development agency statistics in 2009. Indonesian Agency of Agricultural Research and Development. Jakarta, Indonesia.
- Kaihatu, S. S., and M. Pesireron. 2016. Adaptation of several varieties of maize in dry land agro-ecosystems in Maluku. J Food Crops Research 35(2): 141-147.DOI: <u>http://dx.doi.org/10.21082/jpptp.v35n2.2016.p141-148</u>

- Mattjik, A. A., and I. M. Sumertajaya. 2011. Investigate multiple variables using SAS. IPB Press, Bogor.
- Nurhayati, L., S. Nugraha, and P. Wijayanti. 2012. The effect of erosion on the productivity of the Wali watershed in Karanganyar and Wonogiri regencies. Geography Education Study Program, FKIP UNS, Surakarta.
- Nurdin, M. L. Rayes, Soemarno, Sudarto, N. Musa and M. Dunggio. 2020. Effect of slopes and compound NPK fertilizer on growth and yield of maize local varieties, relative agronomic and economic fertilizer effectiveness to Inceptisol Bumela, Indonesia. RJOAS 6(102): 18-28. DOI: 10.18551/rjoas.2020-06.03
- Swastika, D.K.S. 2002. Corn self sufficiency in Indonesia: The past30 years and future prospect. J Indonesian AgriculturalResearch and Development 21(3): 75-83.
- Subardja, D. 2005. Land suitability criteria for land use types based on maize and peanuts in the Bogor area. Dissertation.IPB Postgraduate School, Bogor.
- Subardja, D., and Sudarsono. 2005. The influence of land quality on productivity of maize in soils derived from volcanic and sedimentary rocks in the Bogor area. J Soils and Climate 23: 38-47. DOI: <u>http://dx.doi.org/10.21082/jti.v0n23.2005.%25p</u>
- Suparwata, D. O., Nurmi, and M. I. Bahua. 2012. Use of vertical mulch on dry land to reduce erosion, runoff and its effects on maize growth and yields. J Agro techno trop 1(3): 138-145.
- Sujarweni, V. W. 2014. SPSS for research.PustakaBaru, Yogyakarta.
- Syaf, H. 2014. Evaluation of the relationship between land quality, growth and yield of aged cocoa in East Kolaka Regency, Southeast Sulawesi Province. J Bioeducation 3(1): 267 - 276.
- Taghvaei, M., N.Khaef, and H. Sadeghi. 2012. The effects of salt stress and prime on improvement and seedling growth of *Calotropisprocera* L. seeds. J Ecol Field Biol 35(2): 73-78.
- Ulum, M., I. M. Tirta, and D. Anggraeni. 2014. Analysis of structural equation modeling (SEM) for small samples using the partial least square (PLS) approach. Proceedings of the National Mathematics Seminar, University of Jember, 19 November 2014. pp 1-15.
- Yasin, M. H. G., Singgih, S., Hamdani, M., and Santoso, S. B. 2007. Biodiversity ofmaize germplasm.In Hermanto, Suyamto, Sumarno (2007). Maize: production anddevelopment techniques. Center for research and development of food crops, Agriculturalresearch and development agency, Indonesian ministry of agriculture, Jakarta.
- Yasin, H. G. M., W. Langgo, and Faesal. 2014. White seed maize as an alternative staple food. J Food Crops Science and Technology 9(2): 108-117. DOI: <u>https://doi.org/10.1007/3-540-11494-7_22</u>

Figure 1. The coefficient pathways diagram of land quality on the level of local maize production

GALLEY PROOFS

Final proof reading and reference style check

2 pesan

ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id> Kepada: Nurdin Baderan <nurdin@ung.ac.id>

Dear authors,

The attached manuscript has been checked for the template and similarity index. We need your kind assistance to do a final proof reading and a reference style check. Please submit the final manuscript by 15th March 2021. The paper will be submitted to Atlantis Press on 17 March 2021.

Best regards,

Nurmeiliasari Secretary

2 lampiran

in the second	ISEPROLOCAL OR ISPLRSAD	2020 PROCEEDING	TEMPLATE (1).docx
E	1951K		

Nurdin <nurdin@ung.ac.id> Kepada: ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id>

Regards,

I hereby submit the article manuscript which has been adapted to the template ISEPROCAL proceedings.

Best regards,

Nurdin UNG-Gorontalo

2 lampiran

13 Maret 2021 pukul 22.06

14 Maret 2021 pukul 03.08

- ISEPROLOCAL OR ISPLRSAD 2020 PROCEEDING TEMPLATE -Nurdin Baderan.docx
- 228-414-1-SP-Revisi Terahir-Nudin Baderan ed.doc 445K

Analysisof Quality and Land Characteristics that Control Local Maize Production in Gorontalo

Nurdin^{1*}, M. L Rayes², Soemarno², Sudarto²

¹Agrotechnology Department, Agriculture Faculty, Gorontalo State University.Jl. Jenderal Sudirman No. 6 Kota Gorontalo-Indonesia. 96122

²Soil Science Department, Agriculture Faculty, Brawijaya University. Jl. Veteran Kota Malang, JawaTimur-Indonesia. 65145

*e-mail: <u>nurdin@ung.ac.id</u>

ABSTRACTS

Increase national maize production has not been followed by an increase in maize productivity per unit area because maize was grown on land that was not suitable with these land quality. This study aims to determine the land quality that control of local maize production. This research was conducted at the Gorontalo Regency. A total of 33 mapping units had been established containing data of soil properties, climate and terrain divided into land quality, as well as data of local maize production. A partial least square of structural equation models (PLS-SEM) analysis was used to determine the land quality and characteristics that control of local maize production through testing the validity and reliability of variables, as well as testing structural models. The results showed that the all manifest variables were valid and able to explain well the latent variables, except for texture, cation exchange capacity, and base saturation. Furthermore, the latent variables temperature, water availability, oxygen availability, nutrient retention, nutrients availability, sodicity, erosion hazard, flood hazard, and land preparation used has good composite reliability and high reliability because of the composite reliability and alpha cronbach >0.6, except for rooting media. Land quality that control of the local maize production were the oxygen availability (X_1) , rooting media (X_2) , nutrient retention (X_3) , nutrients availability (X_4) , erosion hazard (X_5) , and land preparation (X_6) with the best equation: $Y = 1.805 + 0.276X_1 + 0.303X_2 + 0.353X_3 + 0.346X_4 - 0.337X_5 - 0.303X_6$. The land characteristics that control of the local maize production were drainage (X_1) , coarse material (X₂), effective depth (X₃), pH KCl (X₄), C-organic (X₅), total N (X₆), available K (X₇), slope (X₈), soil erosion (X₉), surface rock (X₁₀) and rock outcrop (X₁₁) with the best equation: Y = $2.447 + 0.187X_1 - 0.212X_2 + 0.153X_3 + 0.349X_4 + 0.166X_5 + 0.169X_6 + 0.313X_7 - 0.352X_8 - 0.000X_1 + 0.000X_2 + 0.000X_1 + 0.000X_2 + 0$ $0.230X_9 - 0.237X_{10} - 0.187X_{11}$.

Keywords: Quality, characteristic, land, production, maize, local.

1. INTRODUCTION

Increasing maize productivity is one of the main indicators for the development of food crops. Various activities have been carried out in order to achieve these goals, but the results has not yet reached the expected potential results. This was indicated by the achievement of increasing maize production in an agricultural area which has not been followed by an increase of maize productivity per unit area. Nationally, the achievement of maize productivity was 5.5 tonnes ha⁻¹ (BPS RI, 2019). In fact, maize in Indonesia can produce 10-11 tonnes ha⁻¹, but productivity in farmers' lands was still in the range of 3.2-8 tonnes ha⁻¹ (Yasin*et al.* 2014).

Sustainable agricultural areas in Gorontalo

Regency also experience this phenomenon. Until 2019, maize productivity in this area averaged only 5.2 tonnes ha⁻¹ or still far below the average national maize productivity (BPS Kabupaten Gorontalo, 2019). Meanwhile, the average of local maize productivity has only reached 3.0 tonnes ha-1 (IAARD, 2009). One of the maize local varieties of Gorontalo is Motoro Kiki (Yasinet al. 2007). This local maize, aged of 70-80 day after planting, resistant to downy mildew and leaf rust, and well planted in the lowlands to the highlands (IAARD, 2009). In addition, local maize has better growth than hybrid and composite maize, but yield components show the opposite pattern (Kaihatu and Pesireron, 2016). The existence of maize local Gorontalo was starting to become extinct because farmers prefer to plant composite and hybrid maize with the free maize seed subsidize program from the Government through the agriculture agency.

One of the causes of low maize production was caused maize grown on land with low productivity potential (Swastika, 2002). Land productivity was determined by the land quality and characteristics. Land quality has a close relationship with maize production (Subardja and Sudarsono, 2005) and each land quality has a significant effect on land suitability for certain uses (FAO, 1976) especially for maize crops. Research on land quality that controls maize production has been conductedby Subardia (2005) on sukmaraga maize composite varieties in the Bogor area with stepwise regression analysis. Meanwhile, the use of structural equation model (SEM) analysis in determining the land quality and characteristics that control plant production was only carried out by Syaf (2014) but on mature cocoa trees in KolakaTimur Regency, Southeast Sulawesi Province. There is no research report on the use of SEM analysis to assess the between land quality relationship and maize production.

Land quality that controlling of maize production was important to know because the response of maize to various land quality and characteristics will vary. The dynamics of various land qualities and characteristics require a comprehensive analysis technique capable of describing the complexity in one analysis system. The use of SEM analysis is one option that can be done. How much influence each indicator (manifest) of soil physical and chemical properties (latent) has on production can be determined by SEM analysis (Syaf, 2014). The use of SEM is very helpful in determining the effect of indicators and producing better models than other multivariate analyzes (Elisantiet al. 2013). Partial Least Square (PLS) is a variant of SEM which has a higher level of flexibility because PLS based on variants, so the number of samples used does not need to be large, ranging from 30-100, while CB-SEM has a minimum data sample size of 100 and requires that the data is multivariate normal distribution (Hair et al. 2013). Therefore, based on the consideration of the complexity of the land quality and characteristics, as well as the limitations of the land mapping unit of the study area, a research on land quality that controls the local maize productivity was carried out using SEM-PLS analysis. This study aims to determine the land quality and land characteristics that control local maize production in Gorontalo.

2. MATERIALS AND METHOD

This research was conducted at the Sustainable Agriculture Area of Gorontalo Regency and the Soil Laboratory, Faculty of Agriculture, Brawijaya Universityfrom December 2019 to March 2020. The tools used consisted of SmatPLS version 2.0 and the SPSS software. The materials studied were data on soil characteristics, climate and terrain characteristics, as well as local maize production.

Soil characteristics, climate and terrain characteristics data from the study area were divided into land quality. Furthermore, local maize production data were obtained from the results of tile plots as well as the results of direct interviews with farmers in each LMU. Then, land characteristics data of various sizes and units (ratio data) were converted into interval data which was represented as follows: 1 (very low), 2 (low), 3 (medium), 4 (high), and 5 (very high) followed by an analysis using a SEM-PLS.

In this study, the latent variables were variables that can not be measured directly, in this case the land quality consisting of: temperature (X_1) , water availability (X2), oxygen availability (X3), rooting media (X_4) , nutrient retention (X_5) , nutrientavailability (X₆), sodicity (X₇), erosion hazard (X₈), flood hazard (X_9) , and land preparation (X_{10}) . Meanwhile, the manifest variable were variables that can be directly measured, in this case the land characteristic consisting of: air temperature $(X_{1.1})$, rainfall $(X_{2.1})$, wet months (X_{2.2}), dry months (X_{2.3}), long growth periods-LGP (X_{2.4}), drainage (X_{3.1}), texture (X_{4.1}), coarse material (X_{4.2}), effective depth (X_{4.3}), pH H₂O (X_{5.1}), pH KCI (X_{5.2}), C-organic (X_{5.3}), cation exchange capacity-CEC $(X_{5.4})$, base saturation $(X_{5.5})$, total N $(X_{6.1})$, available of P (X_{6.2}), available of K (X_{6.3}), exchangeable sodium percentage-ESP (X_{7.1}), slopes (X_{8.1}), soil erosion (X_{8.2}), inundation height $(X_{9.1})$, inundation period $(X_{9.2})$, surface rock $(X_{10.1})$, and rock outcrop $(X_{10.2})$. The use of SEM-PLS in this study consists of:

Testing the Validity and Reliability of Research Variables

The basic evaluation carried out in the SEM-PLS analysis was to evaluate the measurement model (*outer model*) with the aim of knowing the validity and reliability of indicators in measuring research latent variables through convergent validity, discriminant validity, and composite reliability. Convergent validity testing on SEM-PLS was seen from the size of the outer loading of each indicator against its latent variable. A loading factor value above 0.70 was highly recommended, but a loading factor value of 0.50-0.60 could still be tolerated with a t-statistic value of more than 1.96 or a small p-value of 0.05. The loading factor of an indicator with the highest value was the strongest or most important measure in reflecting the latent variable in question. Discriminant validity was an evaluation of the outer model in SEM-PLS using cross loading values to test valid and reliable indicators in explaining or reflecting latent variables. If the correlation of the latent variable with the measurement core of each indicator greater than the other latent variables, then the latent variable is able to predict the indicator better than other latent variables and was said to be valid. Composite reliability and Cronbach's alpha values were used to test the reliability value between the indicators of the latent variables that formed them. The composite reliability value and Cronbach's alpha were said to be good, if the value was >0.60.

Structural Model Testing

Testing of the structural model (*inner model*) was carried out after the relationship model was built in accordance with the observed data and the suitability of the overall model (*goodness of fit model*). Testing of structural models and hypotheses was carried out by looking at the estimated value of the path coefficient and the critical point value (t-statistic) which was significant at $\alpha = 0.05$. Testing the relationship model and hypothesis between variables can be done by testing the direct correlation coefficient between variables. The results of testing the relationship between the X variables and the Y variable in this

study were shown by the correlation coefficient and tstatistic, and also seen in the path diagram.

3. RESULTS AND DISCUSSIONS

a. Validity of research variables

The validity test showed that most of the indicators in the research variables had loading factor values greater than the critical limit of 0.70 with a 95% confidence level (Table 1). While the loading factor value that was below the tolerant value (0.50) and the tstatistic value was smaller than the t-table (1.96) was found in the latent variable of rooting media (X4) with a soil texture indicator was 0.173 and nutrient retention of the latent variable (X5) on the CEC indicator (X5.4) was 0.399 and the base saturation indicator (X5.5) was 0.482. This meant that these indicators had not been able to properly form or explain their latent variables. The standard of loading factor was greater than 0.50 (Igbariaet al. 1997; Mattjik and Sumertajaya, 2011; Ulumet al. 2014). However, in general, based on the indicated values, it can be concluded that the latent variables of land quality has been able to be well established or explained by each indicator and can be said to be convergent valid on these indicators.

Effect of	indicators of	n latent variables	Loading factors	Status
Air temperature $(X_{1,1})$	->	Temperature (X_1)	1.000	Valid
Rainfall $(X_{2.1})$	->	- · · · ·	0.983	Valid
Wet months $(X_{2,2})$	->	$\mathbf{W}_{\mathbf{A}}$	0.995	Valid
Dry months $(X_{2,3})$	->	water availability (X_2)	0.845	Valid
$LGP(X_{2.4})$	->		0.972	Valid
Drainage $(X_{3.1})$	->	Oxygen availability (X ₃)	1.000	Valid
Texture $(X_{4.1})$	->		0.182	Not valid
Coarse material $(X_{4,2})$	->	Rooting media (X ₄)	-0.895	Valid
Effective depth $(X_{4.3})$	->		0.922	Valid
pH H ₂ O (X _{5.1})	->		0.787	Valid
pH KCl (X _{5.2})	->		0.874	Valid
C-Organic (X _{5.3})	->	Nutrient retention (X_5)	0.923	Valid
$CEC(X_{5.4})$	->		0.481	Not valid
Base saturation $(X_{5.5})$	->		0.326	Not valid
N Total (X _{6.1})	->		0.829	Valid
Available P $(X_{6.2})$	->	Nutrient availability (X ₆)	0.642	Valid
Available $K(X_{6.3})$	->		0.969	Valid
$\text{ESP}\left(\mathrm{X}_{7.1}\right)$	->	Sodicity (X ₇)	1.000	Valid
Slope $(X_{8.1})$	->	English harrond (V.)	0.992	Valid
Soil erosion $(X_{8.2})$	->	Erosion nazaru (A8)	0.965	Valid
Inundation height (X _{9.1})	->	Elocding become (\mathbf{V}_{i})	0.990	Valid
Inundation period $(X_{9.2})$	->	Flooding nazaru (A9)	0.993	Valid
Surface rock $(X_{10.1})$	->	Land propagation (V)	0.999	Valid
Rock outcrop $(X_{10.2})$	->	Land preparation (Λ_{10})	0.995	Valid
Productivity $(Y_{1.1})$	->	Local maize productivity (Y ₁)	1.000	Valid

Table 1.Outer loading research variables

LGP: Long growth period; CEC: Cation exchange capacity; ESP: Excangeable potassium percentage

The average cross-loading value for indicators in latent variables was above the cross-loading values of indicator in other latent variables (Table 2). This meant, the highest cross-loading value on an indicator was also the highest value on its latent variable, except for the rooting media variable (X4) with the texture indicator (X4.1), and the nutrient retention variable (X5) with the CEC indicator (X5.4) and base saturation indicator (X5.5) with a smaller cross-loading value <0.5. The standard of loading factor was ≥ 0.50 (Igbaria*et al.* 1997; Mattjik and Sumertajaya, 2011; Ulum *et al.* 2014). Thus, the indicator of each latent variable was able to explain their own latent variables so that the research variables were said to be a valid discriminant.

b. Reliability test of research variables

Composite reliability and Cronbach alpha were used to test the reliability value among the indicators of the latent variables that make up them. The composite reliability value and Cronbach alpha were said to be good if the value was above 0.60 (Sujarweni 2014). The composite reliability value on each research variable was more than the limit value (> 0.6), except for the root media variable (Table 3). The composite reliability value and Cronbach's alpha value were 0.6 so that the latent variable has good composite reliability and high reliability. A variable was declared reliable if the Cronbach Alpha value was >0.6 (Abdilah and Hartono, 2015). Thus, all of the indicators used in this study had met the criteria or were feasible to be used in the measurement of all latent variables because they haad better validity and high reliability. The results of the evaluation of convergent validity and discriminant validity and reliability of the composite and Cronbach alpha for indicators or variables showed that indicators as a measure of latent variables were valid and reliable measures.

Table 3. Composite Reliability and Cronbach's Alpha values of research variables

Latenvariables	Compositereliability	Alpha Cronbach
Temperature (X ₁)	1.000000	1.000000
Water availability (X ₂)	0.961142	0.973650
Oxygen availability (X ₃)	1.000000	1.000000
Rooting media (X ₄)	0.041428	-1.093362
Nutrient retention (X ₅)	0.863572	0.736147
Nutrient availability (X ₆)	0.877398	0.784295
Sodicity (X ₇)	1.000000	1.000000
Erosion hazard (X ₈)	0.952163	0.942263
Flooding hazard (X ₉)	0.988236	0.972114
Land preparation (X_{10})	0.995317	0.994206

c. Structural Model Testing

The structural model (*inner model*) was evaluated by looking at the coefficient value of the path coefficient parameter between latent variables. The land quality of oxygen availability, rooting media, nutrient retention, and nutrient availability showed a positive correlation and had a significant effect on local maize production (Table 4).
The 2nd ISEPROLOCAL International Seminar on Promoting Local Resources for Sustainable Agriculture and Development Bengkulu, Indonesia

Table 2.Cross-loading	ng of research va	riables									
Indikator	Temperature (X ₁)	Water availability (X ₂)	Oxygen availability (X ₃)	Rooting media (X ₄)	Nutrient retention (X5)	Nutrient availability (X ₆)	Sodicity (X ₇)	Erosion hazard (X ₈)	Flooding hazard (X9)	Land preparation (X ₁₀)	Production (Y ₁)
Air temperature $(X_{1.1})$	1	0.974058	0.061454	-0.091173	-0.428317	-0.073652	0.406783	0.02159	-0.13792	0.219821	0.068223
Rainfall $(X_{2.1})$	0.976513	0.991684	0.209631	0.064295	-0.275923	0.063868	0.397465	-0.04381	-0.05146	0.065735	0.217651
Wet months $(X_{2.2})$	0.941357	0.979657	0.193703	-0.017931	-0.263141	0.079163	0.409261	-0.06920	-0.06095	0.071259	0.191355
Dry months $(X_{2.3})$	0.863195	0.873285	0.158622	-0.252786	-0.513267	-0.136801	0.497352	-0.11903	0.03372	0.247653	0.080792
LGP $(X_{2.4})$	0.910319	0.959821	0.149654	-0.017432	-0.327742	0.064218	0.468817	-0.14008	-0.05893	0.068362	0.218919
Drainage $(X_{3.1})$	0.068901	0.251132	1	0.209845	-0.286975	0.059325	0.094359	-0.53642	0.28566	-0.311688	0.401756
Texture $(X_{4,1})$	-0.015049	-0.007345	-0.196751	0.186113	0.294305	0.139764	0.287013	0.258671	-0.00085	-0.042531	0.184273
Coarse material $(X_{4,2})$	-0.004233	-0.111890	-0.145526	-0.953261	-0.419651	-0.721693	0.199112	0.394225	-0.29371	0.859705	-0.422011
Effective depth $(X_{4.3})$	-0.185577	-0.096322	0.170192	0.908772	0.381729	0.383752	-0.25416	-0.21069	0.098172	-0.808412	0.200913
pH H ₂ O (X _{5.1})	-0.463045	-0.438571	-0.419653	0.317653	0.788691	0.281776	-0.19573	0.192374	-0.03595	-0.097455	0.219885
pH KCl (X _{5.2})	-0.373956	-0.446223	-0.452037	0.342269	0.897732	0.326971	-0.03975	0.185291	0.096937	-0.213928	0.327627
C-Organic $(X_{5.3})$	-0.199271	-0.210951	0.100925	0.268721	0.775314	0.684290	0.082439	-0.52642	0.072896	-0.295211	0.408752
$CEC(X_{5.4})$	0.044986	0.225247	0.004199	0.091538	0.422697	0.495236	0.413522	-0.06933	0.175312	-0.029783	0.354434
Base saturation $(X_{5.5})$	-0.200728	-0.204165	-0.118215	0.458627	0.490752	0.387158	-0.69050	-0.09115	-0.16297	-0.491375	0.156315
N Total $(X_{6.1})$	0.003976	0.192784	0.083764	0.277583	0.573833	0.849673	0.042763	-0.42870	-0.11392	-0.265862	0.435072
Available P (X _{6.2})	-0.099112	-0.089772	-0.469732	0.226971	0.418925	0.598021	-0.31781	-0.06398	0.041585	-0.300791	-0.037419
Available K(X _{6.3})	-0.098631	-0.021351	0.075881	0.709523	0.601578	0.898672	-0.38288	-0.31495	0.327361	-0.675525	0.529322
$ESP(X_{7.1})$	0.390526	0.582752	0.093465	-0.236799	-0.074953	-0.283745	1	-0.02586	0.262957	0.417664	-0.039527
Slope $(X_{8.1})$	-0.031307	-0.200893	-0.697107	-0.310086	-0.173356	-0.425937	-0.04295	0.981242	-0.35516	0.351329	-0.675983
Soil erosion $(X_{8,2})$	0.068254	-0.001981	-0.527713	-0.207321	-0.131759	-0.367951	0.029383	0.978553	-0.13629	0.277838	-0.519375
Inundation height $(X_{9,1})$	-0.096746	-0.037425	0.311655	0.218953	0.093587	0.142765	0.225976	-0.35211	0.990897	-0.145263	0.192408
Inundation period (X _{9.2})	-0.206352	-0.079142	0.300928	0.288375	0.058273	0.083762	0.298112	-0.30075	0.991132	-0.12889	0.143589
Surface rock $(X_{10.1})$	0.246673	0.080191	-0.224112	-0.936221	-0.308922	-0.573560	0.410359	0.381927	-0.14180	0.995132	-0.366956
Rock outcrop $(X_{10.2})$	0.198478	0.058290	-0.270531	-0.893546	-0.317591	-0.567215	0.382927	0.312774	-0.13055	0.998015	-0.311954
Production $(Y_{1,1})$	0.045581	0.189973	0.510087	0.368871	0.503795	0.595307	-0.03915	-0.63852	0.26923	-0.307327	1

1 . 11

LGP: Long growth period; CEC: Cation exchange capacity; ESP: Excangeable potassium percentage.

The 2nd ISEPROLOCAL International Seminar on Promoting Local Resources for Sustainable Agriculture and Development Bengkulu, Indonesia

TT 11 4	D 1	· · · ·	1	• • •	~~	•
Table /	Path	coetticient	and	C10111	ticance	tecting
1 auto	1 aui	COCINCICIU	anu	SIZIII	licance	ic sume
						C7

	Endogenous variables Local maize production (Y)			
Exogenousvariables				
_	Path coeffisient	t-statistics($t_{critics} = 2.00$)		
Temperature (X_1)	-0.315	-0.012		
Water availability (X ₂)	0.583	0.912		
Oxygen availability (X ₃)	0.326*	2.540		
Rooting media (X ₄)	0.037*	2.470		
Nutrient retention (X_5)	0.452**	2.936		
Nutrient availability (X_6)	0.104*	2.642		
Sodicity (X ₇)	-0.186	-1.217		
Erosion hazard (X_8)	-0.333**	-2.992		
Flooding hazard (X ₉)	0.003	0.400		
Land preparation (X_{10})	-0.204*	-2.476		
*	· · · · · · · · · · · · · · · · · · ·			

*Significant on level test of 5%; ** Significant on level test of 1%

The land quality of erosion hazards and land preparation showed a negative correlation and had a significant effect on local maize p production. This indicated that the increasing of oxygen availability, rooting media, nutrient availability, and nutrient retention and a decrease of erosion hazard and land preparation along with the increase in local maize production. The physical properties of rooting media, especially drainage and aeration conditions might directly or indirectly influential to root formation (Taghvaei et al. 2012). Land quality that greatly influenced the maize production were nutrient retention and nutrient availability (Subardja and Sudarsono, 2005). Furthermore, Nurhayati et al. (2015) reported that an increase of erosion hazard would result in a decrease of land productivity, conversely a decrease of erosion hazard resulted in an increase in land productivity.

c. Land quality and characteristics that controlling of local maize productivity

Based on the previous of structural testing model, the land quality that most influences of local maize production were oxygen availability, rooting media, nutrient retention, nutrient availability, erosion hazard, and land preparation. This was also based on the results of multiple regression tests with the best equation (equation 1) of land quality that affects local maize production as follows:

$$\begin{split} Y &= 1,805 + 0,276X_1 + 0,303X_2 + 0,353X_3 + 0,346X_4 - \\ &0,337X_5 - 0,303X_6 \dots \dots \dots \dots (1) \end{split}$$

Where: X_1 = oxygen availability, X_2 = rooting media, X_3 = nutrient retention, X_4 = nutrient availability, X_5 = erosion hazard, X_6 = land preparation

The land characteristics that significantly affected the local maize production were drainage, coarse material, effective depth, pH KCl, C-Organic, N total, K availability, slopes, soil erosion, surface rock and rock outcrops. This was also based on the results of multiple regression tests with the best equation (equation 2) of land characteristics that affect local maize production as follows:

$$\begin{split} Y &= 2,447 + 0,187X_1 - 0,212X_2 + 0,153X_3 + 0,349X_4 + \\ &0,166X_5 + 0,169X_6 + 0,313X_7 - 0,352X_8 - 0,230X_9 \\ &- 0,237X_{10} - 0,187X_{11} \dots (2) \end{split}$$

Where: X_1 = drainage, X_2 = coarse material, X_3 = effective depth, X_4 = pH KCl, X_5 = C-Organic, X_6 = N total, X_7 = K availability, X_8 = slope, X_9 = soil erosion, X_{10} = surface rock, X_{11} = rock outcrops.

The correlation of each land characteristic and its contribution to land quality on local maize production was presented in Table 5 and Figure 1. Land characteristics such as drainage, effective depth, pH of KCI, C-Organic, N total and K availability had a positive correlation and significant to very significant effected on local maize production. This indicated that the better drainage, effective depth, pH of KCI, C-Organic, N total, and K availability with an increase of 1% would be followed by an increase of local maize production on 29.4% to 43.6%. Conversely, coarse material, slopes, soil erosion, surface rock and rock outcrops had a negative correlation and had a significant to a very significant effect on local maize production. This revealed that a decrease of 1% in coarse material, slopes, soil erosion, surface rock and rock outcrops would be followed by an increasing of local maize production on 40.3% to 71.7%.

The correlation of each land characteristic was strong to influencing local maize production. Coarse material was rock fragments measuring in 2 mm of diameter or more which affected to soil moisture storage, infiltration, erosion, and land use (Indonesian Soil Research Institute, 2004). Slopes had a significant effect on local maize production, in which the steeper the slopes, the lower the production would be (Nurdin*et al.* 2020). Likeweise for the soil erosion the more erosion increases, the lower the production of maize would be (Suparwata*et al.* 2012). The surface rocks and rock outcrops–were limiting factors in the land suitability of maize (Elfayetti and Hedi, 2015).

The 2nd ISEPROLOCAL International Seminar on Promoting Local Resources for Sustainable Agriculture and Development Bengkulu, Indonesia

maize production		
Land characteristics	Coefficient of correlation	Contribution on land quality (%)
Air temperature $(X_{1.1})$	-0,033	2,9
Rainfall (X _{2.1})	0,089	18,5
Wet months $(X_{2,2})$	0,098	19,8
Dry months $(X_{2.3})$	-0,013	3,8
LGP (X _{2.4})	0,123	20,3
Drainage (X _{3.1})	0,350*	40,4
Texture $(X_{4.1})$	0,098	5,0
Coarse material (X _{4.2})	-0,455**	-74,9
Effective depth (X _{4.3})	0,294*	54,5
pH H ₂ O (X _{5.1})	0,234	13,7
pH KCl (X _{5.2})	0,333*	18,7
C-Organic (X _{5.3})	0,405**	59,7
CEC (X _{5.4})	0,249	33,2
Base saturation $(X_{5.5})$	0,278	30,7
N Total $(X_{6.1})$	0,436**	63,0
Available P (X _{6.2})	0,076	25,3
Available K(X _{6.3})	0,569**	73,2
$ESP(X_{7.1})$	-0,107	-2,6
Slope $(X_{8.1})$	-0,717**	-75,9
Soil erosion $(X_{8.2})$	-0,516**	-62,9
Inundation height (X _{9.1})	0,195	34,5
Inundation period (X _{9.2})	0,168	30,5
Surface rock (X _{10.1})	-0,403*	-68,4
Rock outcrop (X _{10.2})	-0,408**	-68,0

 Table 5. Coefficient of correlation and contribution level on land quality of the land characteristics and local maize production

*Significant on level test of 5%; ** Significant on level test of 1%.

4. CONCLUSION

Land quality that control of the local maize production were the oxygen availability, rooting media, nutrient retention, nutrient availability, erosion hazard and land preparation. Meanwhile, land characteristics that control of the local maize production were drainage, effective depth, pH KCl, C-Organic, N-Total, K availability, coarse material, slopes, soil erosion, surface rock and rock outcrops.

ACKNOWLEDGMENT

Thank you to Ecan Adam, SE, MM for helping with the SEM-PLS analysis. Thank

REFERENCES

- Abdilah, W., and J. Hartono. 2015. Partial least square (PLS): Alternative structural equation modeling (SEM) in business research. Andi Offset, Yogyakarta.
- Soil Research Institute. 2004. Technical guidelines for soil observation. Research and Development Center for Soil and Agroclimate, Bogor.
- BPS RI. 2019. Maize production by province (tonnes), 1993-2018. Central Bureau of

you also went to Rival Rahman, SP, MSifor helping of the land resources mapping.

Statistics of the Republic of Indonesia, Jakarta.

- BPSKabupaten Gorontalo. 2018. Gorontalo regency in figures on 2018. Gorontalo Regency Statistics Agency, Limboto.
- Elisanti, A. D., W. Purnomo., and S. Melaniani. 2013. Application of partial least square health status of children under 5 years In Indonesia. J. Biometrika dan Kependudukan 2(2): 99 – 107. DOI: 10.31227/osf.io/gtbq6
- Elfayetti and Herdi. 2015. Evaluation of land suitability for maize crops in Saentis Village,

Percut Sei Tuan. J Social Sciences Education 7(1): 33-40.DOI: https://doi.org/10.24114/jupiis.v7i1.2295

- FAO. 1976. A Framework for land evaluation. Food and Agriculture Organization Soil Bull. No.32, Rome.
- Hair, J.F., Ringle, C.M., and M.Sarstedt. 2013. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning 46: 1-12.
- Igbaria, M., N. Zinatelli, P. Cragg, and A. L. M. Cavaye. 1997. Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly 21(3): 279-305.DOI: 10.2307/249498
- Indonesian Soil Research Institute. 2004. Soil observation technical instructions. Research and Development Center for Soil and Agroclimate, Bogor.
- IAARD. 2009. Indonesian agricultural research and development agency statistics in 2009. Indonesian Agency of Agricultural Research and Development. Jakarta, Indonesia.
- Kaihatu, S. S., and M. Pesireron. 2016. Adaptation of several varieties of maize in dry land agroecosystems in Maluku. J Food Crops Research 35(2): 141-147.DOI: <u>http://dx.doi.org/10.21082/jpptp.v35n2.2016.p141-148</u>
- Mattjik, A. A., and I. M. Sumertajaya. 2011. Investigate multiple variables using SAS. IPB Press, Bogor.
- Nurhayati, L., S. Nugraha, and P. Wijayanti. 2012. The effect of erosion on the productivity of the Wali watershed in Karanganyar and Wonogiri regencies. Geography Education Study Program, FKIP UNS, Surakarta.
- Nurdin, M. L. Rayes, Soemarno, Sudarto, N. Musa and M. Dunggio. 2020. Effect of slopes and compound NPK fertilizer on growth and yield of maize local varieties, relative agronomic and economic fertilizer effectiveness to Inceptisol Bumela, Indonesia. RJOAS 6(102): 18-28. DOI: 10.18551/rjoas.2020-06.03
- Swastika, D.K.S. 2002. Corn self sufficiency in Indonesia: The past30 years and future prospect. J Indonesian AgriculturalResearch and Development 21(3): 75-83.

- Subardja, D. 2005. Land suitability criteria for land use types based on maize and peanuts in the Bogor area. Dissertation.IPB Postgraduate School, Bogor.
- Subardja, D., and Sudarsono. 2005. The influence of land quality on productivity of maize in soils derived from volcanic and sedimentary rocks in the Bogor area. J Soils and Climate 23: 38-47. DOI: <u>http://dx.doi.org/10.21082/jti.v0n23.2005.%2</u> <u>5p</u>
- Suparwata, D. O., Nurmi, and M. I. Bahua. 2012. Use of vertical mulch on dry land to reduce erosion, runoff and its effects on maize growth and yields. J Agro techno trop 1(3): 138-145.
- Sujarweni, V. W. 2014. SPSS for research.PustakaBaru, Yogyakarta.
- Syaf, H. 2014. Evaluation of the relationship between land quality, growth and yield of aged cocoa in East Kolaka Regency, Southeast Sulawesi Province. J Bioeducation 3(1): 267 - 276.
- Taghvaei, M., N.Khaef, and H. Sadeghi. 2012. The effects of salt stress and prime on improvement and seedling growth of *Calotropisprocera* L. seeds. J Ecol Field Biol 35(2): 73-78.
- Ulum, M., I. M. Tirta, and D. Anggraeni. 2014. Analysis of structural equation modeling (SEM) for small samples using the partial least square (PLS) approach. Proceedings of the National Mathematics Seminar, University of Jember, 19 November 2014. pp 1-15.
- Yasin, M. H. G., Singgih, S., Hamdani, M., and Santoso, S. B. 2007. Biodiversity ofmaize germplasm.In Hermanto, Suyamto, Sumarno (2007). Maize: production anddevelopment techniques. Center for research and development of food crops, Agriculturalresearch and development agency, Indonesian ministry of agriculture, Jakarta.
- Yasin, H. G. M., W. Langgo, and Faesal. 2014.
 White seed maize as an alternative staple food. J Food Crops Science and Technology 9(2): 108-117. DOI: https://doi.org/10.1007/3-540-11494-7_22

Figure 1. The coefficient pathways diagram of land quality on the level of local maize production

20 April 2021 pukul 08.30

Final Proofreading-Iseprolocal

1 pesan

ISEPROLOCAL Universitas Bengkulu <iseprolocal@unib.ac.id> Kepada: Nurdin Baderan <nurdin@ung.ac.id>

Dear author,

The article attached is the final version of the article submitted to Iseprolocal. The committee suggests you do final proofreading particularly in-text citation and a list of references. The committee provides the guidance in the attachment link. Please send us the final version by April 21st, 2021. https://drive.google.com/file/d/1YtkUIzrvjzqsRspmMOs-PiYhsvPeil3e/view?usp=sharing

Best regards,

Secretary

228-414-1-SP-Revisi Terahir-Nudin Baderan- Editing.doc 439K

PUBLISH

International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (ISPLRSAD 2020)

Advances in Biological Sciences Research Volume 13

Bengkulu, Indonesia 8 October 2020

Part of **SPRINGER NATURE**

PROCEEDINGS JOURNALS

Search

Q

>

Series: Advances in Biological Sciences Research

Proceedings of the International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (ISPLRSAD 2020)

BOOKS

PROCEEDINGS OF THE INTERNATIONAL SEMINAR ON PROMOTING LOCAL RESOURCES FOR ▼ SUSTAINABLE AGRICULTURE AND DEVELOPMENT (ISPLRSAD 2020)

<

Analysis of Quality and Land Characteristics That Control Local Maize Production in Gorontalo

Authors

Nurdin, M. L Rayes, Soemarno, Sudarto

Corresponding Author Nurdin

Available Online 11 June 2021.

DOI

https://doi.org/10.2991/absr.k.210609.068 How to use a DOI?

Keywords

Quality, characteristic, land, production, maize, local

Abstract

Increase national maize production has not been followed by an increase in maize productivity per unit area because maize was grown on land that was not suitable with these land quality. This study aims to determine the land quality that control of local maize production. This research was conduc the Gorontalo Regency. A total of 33 mapping units had been established containing data of soil properties, climate and terrain divided into land quality, as well as data of local maize production. A partial least square of structural equation models (PLS-SEM) analysis was used to determine the land quality and characteristics that control of local maize production through testing the validity and reliability of variables, as well as testing structural models. The results showed that the all manifest variables were valid and able to explain well the latent variables, except for texture, cation exchange capacity, and base saturation. Furthermore, the latent variables temperature, water availability, oxygen availability, nutrient retention, nutrients availability, sodicity, erosion hazard, flood hazard, and land preparation used has good composite reliability and high reliability because of the composite reliability and alpha cronbach >0.6, except for rooting media. Land quality that control of the local maize production were the oxygen availability (X1), rooting media (X2), nutrient retention (X3), nutrients availability (X4), erosion hazard (X5), and land preparation (X6) with the best equation: Y = 1.805 + 0.276X1 + 0.303X2 + 0.353X3 + 0.346X4 - 0.337X5 -0.303X6. The land characteristics that control of the local maize production were drainage (X1), coarse material (X2), effective depth (X3), pH KCl (X4), Corganic (X5), total N (X6), available K (X7), slope (X8), soil erosion (X9), surface rock (X10) and rock outcrop (X11) with the best equation: Y = 2.447 + 0.187X1 - 0.187X10.212X2 + 0.153X3 + 0.349X4 + 0.166X5 + 0.169X6 + 0.313X7 - 0.352X8 - 0.230X9- 0.237X10 - 0.187X11.

Copyright

© 2021, the Authors. Published by Atlantis Press.

Open Access

This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

<

Volume Title

>

Proceedings of the International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (ISPLRSAD 2020)

Series

Advances in Biological Sciences Research

Publication Date

11 June 2021

ISBN

10.2991/absr.k.210609.068

ISSN

2468-5747

DOI

https://doi.org/10.2991/absr.k.210609.068 How to use a DOI?

Copyright

© 2021, the Authors. Published by Atlantis Press.

Open Access

This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

	ris
	enw
	bib
TY - AU - AU - AU - AU - PY - DA - TI - Maize BT -	CONF Nurdin M. L Rayes Soemarno Sudarto 2021 2021/06/11 Analysis of Quality and Land Characteristics That Control Local Production in Gorontalo Proceedings of the International Seminar on Promoting Local

Atlantis Press

Atlantis Press – now part of Springer Nature – is a professional publisher of scientific, technical & medical (STM) proceedings, journals and books. We offer world-class services, fast turnaround times and personalised communication. The proceedings and journals on our platform are Open Access and generate millions of downloads every month.

For more information, please contact us at: contact@atlantis-press.com

	PROCEEDINGS		ABOUT		
	JOURNALS		NEWS		
	BOOKS		CONTACT		
	POLICIES		SEARCH		
	MANAGE COOKIES/DO NOT SELL MY				
	INFO				
п					
Сс	pyright © 2006-2023 Atlantis Press – now part of	Spr	inger Nature		

Analysis of Quality and Land Characteristics That Control Local Maize Production in Gorontalo

Nurdin^{1*}, M. L Rayes², Soemarno², and Sudarto²

 ¹Agrotechnology Department, Agriculture Faculty, Gorontalo State University. Jl. Jenderal Sudirman No. 6 Kota Gorontalo-Indonesia. 96122
 ²Soil Science Department, Agriculture Faculty, Brawijaya University. Jl. Veteran Kota Malang, JawaTimur-Indonesia. 65145
 *e-mail: nurdin@ung.ac.id

ABSTRACT

Increase national maize production has not been followed by an increase in maize productivity per unit area because maize was grown on land that was not suitable with these land quality. This study aims to determine the land quality that control of local maize production. This research was conducted at the Gorontalo Regency. A total of 33 mapping units had been established containing data of soil properties, climate and terrain divided into land quality, as well as data of local maize production. A partial least square of structural equation models (PLS-SEM) analysis was used to determine the land quality and characteristics that control of local maize production through testing the validity and reliability of variables, as well as testing structural models. The results showed that the all manifest variables were valid and able to explain well the latent variables, except for texture, cation exchange capacity, and base saturation. Furthermore, the latent variables temperature, water availability, oxygen availability, nutrient retention, nutrients availability, sodicity, erosion hazard, flood hazard, and land preparation used has good composite reliability and high reliability because of the composite reliability and alpha cronbach >0.6, except for rooting media. Land quality that control of the local maize production were the oxygen availability (X_1) , rooting media (X_2) , nutrient retention (X_3) , nutrients availability (X_4) , erosion hazard (X_5) , and land preparation (X_6) with the best equation: $Y = 1.805 + 0.276X_1 + 0.303X_2 + 0.353X_3 + 0.346X_4 - 0.337X_5 - 0.303X_6$. The land characteristics that control of the local maize production were drainage (X_1) , coarse material (X_2) , effective depth (X₃), pH KCl (X₄), C-organic (X₅), total N (X₆), available K (X₇), slope (X₈), soil erosion (X₉), surface rock (X₁₀) and rock outcrop (X₁₁) with the best equation: $Y = 2.447 + 0.187X_1$ $-0.212X_2 + 0.153X_3 + 0.349X_4 + 0.166X_5 + 0.169X_6 + 0.313X_7 - 0.352X_8 - 0.230X_9 - 0.237X_{10} - 0.237X_{1$ 0.187X₁₁.

Keywords: Quality, characteristic, land, production, maize, local

1. INTRODUCTION

Increasing maize productivity is one of the main indicators for the development of food crops. Various activities have been carried out in order to achieve these goals, but the results has not yet reached the expected potential results. This was indicated by the achievement of increasing maize production in an agricultural area which has not been followed by an increase of maize productivity per unit area. Nationally, the achievement of maize productivity was 5.5 tonnes ha⁻¹ [1]. In fact, maize in Indonesia can produce 10-11 tonnes ha⁻¹, but productivity in farmers' lands was still in the range of 3.2-8 tonnes ha⁻¹ [2].

Sustainable agricultural areas in Gorontalo Regency also experience this phenomenon. Until 2019, maize productivity in this area averaged only 5.2 tonnes ha⁻¹ or still far below the average national maize productivity [3]. Meanwhile, the average of local maize productivity has only reached 3.0 tonnes ha⁻¹ [4]. One of the maize local varieties of Gorontalo is Motoro Kiki [5]. This local maize, aged of 70-80 day after planting, resistant to downy mildew and leaf rust, and well planted in the lowlands to the highlands [4]. In addition, local maize has better growth than hybrid and composite maize, but yield components show the opposite pattern [6]. The existence of maize local Gorontalo was starting to become extinct because farmers prefer to plant composite and hybrid maize with the free maize seed subsidize program from the Government through the agriculture agency.

One of the causes of low maize production was caused maize grown on land with low productivity potential [7]. Land productivity was determined by the land quality and characteristics. Land quality has a close relationship with maize production [8] and each land quality has a significant effect on land suitability for certain uses [9], especially for maize crops. Research on land quality that controls maize production has been conducted by [10] on sukmaraga maize composite varieties in the Bogor area with stepwise regression analysis. Meanwhile, the use of structural equation model (SEM) analysis in determining the land quality and characteristics that control plant production was only carried out by [11] but on mature cocoa trees in Kolaka Timur Regency, Southeast Sulawesi Province. There is no research report on the use of SEM analysis to assess the relationship between land quality and maize production.

Land quality that controlling of maize production was important to know because the response of maize to various land quality and characteristics will vary. The dynamics of various land qualities and characteristics require a comprehensive analysis technique capable of describing the complexity in one analysis system. The use of SEM analysis is one option that can be done. How much influence each indicator (manifest) of soil physical and chemical properties (latent) has on production can be determined by SEM analysis [11. The use of SEM is very helpful in determining the effect of indicators and producing better models than other multivariate analyzes [12]. Partial Least Square (PLS) is a variant of SEM which has a higher level of flexibility because PLS based on variants, so the number of samples used does not need to be large, ranging from 30-100, while CB-SEM has a minimum data sample size of 100 and requires that the data is multivariate normal distribution [13]. Therefore, based on the consideration of the complexity of the land quality and characteristics, as well as the limitations of the land mapping unit of the study area, a research on land quality that controls the local maize productivity was carried out using SEM-PLS analysis. This study aims to determine the land quality and land characteristics that control local maize production in Gorontalo.

2. MATERIALS AND METHOD

This research was conducted at the Sustainable Agriculture Area of Gorontalo Regency and the Soil Laboratory, Faculty of Agriculture, Brawijaya Universityfrom December 2019 to March 2020. The tools used consisted of SmatPLS version 2.0 and the SPSS software. The materials studied were data on soil characteristics, climate and terrain characteristics, as well as local maize production.

Soil characteristics, climate and terrain characteristics data from the study area were divided into land quality. Furthermore, local maize production data were obtained from the results of tile plots as well as the results of direct interviews with farmers in each LMU. Then, land characteristics data of various sizes and units (ratio data) were converted into interval data which was represented as follows: 1 (very low), 2 (low), 3 (medium), 4 (high), and 5 (very high) followed by an analysis using a SEM-PLS.

In this study, the latent variables were variables that can not be measured directly, in this case the land quality consisting of: temperature (X_1) , water

availability (X_2) , oxygen availability (X_3) , rooting media (X₄), nutrient retention (X₅), nutrient availability (X₆), sodicity (X₇), erosion hazard (X₈), flood hazard (X_9) , and land preparation (X_{10}) . Meanwhile, the manifest variable were variables that can be directly measured, in this case the land characteristic consisting of: air temperature $(X_{1.1})$, rainfall (X_{2.1}), wet months (X_{2.2}), dry months (X_{2.3}), long growth periods-LGP (X_{2.4}), drainage (X_{3.1}), texture (X_{4.1}), coarse material (X_{4.2}), effective depth (X_{4.3}), pH H₂O (X_{5.1}), pH KCI (X_{5.2}), C-organic (X_{5.3}), cation exchange capacity-CEC $(X_{5.4})$, base saturation $(X_{5,5})$, total N $(X_{6,1})$, available of P $(X_{6,2})$, available of K ($X_{6.3}$), exchangeable sodium percentage-ESP ($X_{7.1}$), slopes $(X_{8.1})$, soil erosion $(X_{8.2})$, inundation height (X_{9.1}), inundation period (X_{9.2}), surface rock (X_{10.1}), and rock outcrop $(X_{10.2})$. The use of SEM-PLS in this study consists of:

2.1. Testing the Validity and Reliability of Research Variables.

The basic evaluation carried out in the SEM-PLS analysis was to evaluate the measurement model (outer model) with the aim of knowing the validity and reliability of indicators in measuring research latent variables through convergent validity, discriminant validity, and composite reliability. Convergent validity testing on SEM-PLS was seen from the size of the outer loading of each indicator against its latent variable. A loading factor value above 0.70 was highly recommended, but a loading factor value of 0.50-0.60 could still be tolerated with a t-statistic value of more than 1.96 or a small p-value of 0.05. The loading factor of an indicator with the highest value was the strongest or most important measure in reflecting the latent variable in question. Discriminant validity was an evaluation of the outer model in SEM-PLS using cross loading values to test valid and reliable indicators in explaining or reflecting latent variables. If the correlation of the latent variable with the measurement core of each indicator greater than the other latent variables, then the latent variable is able to predict the indicator better than other latent variables and was said to be valid. Composite reliability and Cronbach's alpha values were used to test the reliability value between the indicators of the latent variables that formed them. The composite reliability value and Cronbach's alpha were said to be good, if the value was >0.60.

2.2. Structural Model Testing

Testing of the structural model (*inner model*) was carried out after the relationship model was built in accordance with the observed data and the suitability of the overall model (*goodness of fit model*). Testing of structural models and hypotheses was carried out by looking at the estimated value of the path coefficient and the critical point value (t-statistic) which was significant at $\alpha = 0.05$. Testing the relationship model and hypothesis between variables can be done by testing the direct correlation coefficient between variables. The results of testing the

relationship between the X variables and the Y variable in this study were shown by the correlation coefficient and t-statistic, and also seen in the path diagram.

3. RESULTS AND DISCUSSIONS

3.1. Validity of research variables

The validity test showed that most of the indicators in the research variables had loading factor values greater than the critical limit of 0.70 with a 95% confidence level (Table 1). While the loading factor value that was below the tolerant value (0.50) and the t-statistic value was smaller than the t-table (1.96) was found in the latent variable of rooting media (X4) with a soil texture indicator was 0.173 and nutrient retention of the latent variable (X5) on the CEC indicator (X5.4) was 0.399 and the base saturation indicator (X5.5) was 0.482. This meant that these indicators had not been able to properly form or explain their latent variables. The standard of loading factor was greater than 0.50

[14] [15] [16]. However, in general, based on the indicated values, it can be concluded that the latent variables of land quality has been able to be well established or explained by each indicator and can be said to be convergent valid on these indicators.

The average cross-loading value for indicators in latent variables was above the cross-loading values of indicator in other latent variables (Table 2). This meant, the highest cross-loading value on an indicator was also the highest value on its latent variable, except for the rooting media variable (X4) with the texture indicator (X4.1), and the nutrient retention variable (X5) with the CEC indicator (X5.4) and base saturation indicator (X5.5) with a smaller cross-loading value <0.5. The standard of loading factor was ≥ 0.50 [14] [15] [16]. Thus, the indicator of each latent variable was able to explain their own latent variables so that the research variables were said to be a valid discriminant.

Effect of in	Loading factors	Status		
Air temperature $(X_{1.1})$	->	Temperature (X_1)	1.000	Valid
Rainfall (X _{2.1})	->		0.983	Valid
Wet months $(X_{2,2})$	->	Water eveilability (V)	0.995	Valid
Dry months (X _{2.3})	->	water availability (\mathbf{X}_2)	0.845	Valid
LGP (X _{2.4})	->		0.972	Valid
Drainage $(X_{3.1})$	->	Oxygen availability (X ₃)	1.000	Valid
Texture $(X_{4.1})$	->		0.182	Not valid
Coarse material (X _{4.2})	->	Rooting media (X ₄)	-0.895	Valid
Effective depth $(X_{4.3})$	->		0.922	Valid
pH H ₂ O (X _{5.1})	->	Nutrient retention (X ₅)	0.787	Valid
pH KCl (X _{5.2})	->		0.874	Valid
C-Organic $(X_{5.3})$	->		0.923	Valid
CEC (X _{5.4})	->		0.481	Not valid
Base saturation $(X_{5.5})$	->		0.326	Not valid
N Total $(X_{6.1})$	->	Nutrient availability (X ₆)	0.829	Valid
Available P (X _{6.2})	->		0.642	Valid
Available $K(X_{6.3})$	->		0.969	Valid
ESP (X _{7.1})	->	Sodicity (X ₇)	1.000	Valid
Slope $(X_{8.1})$	->	Errorian barand (\mathbf{V})	0.992	Valid
Soil erosion $(X_{8.2})$	->	Elosion nazaru (\mathbf{A}_8)	0.965	Valid
Inundation height $(X_{9.1})$	->	Elocding bogond (\mathbf{V})	0.990	Valid
Inundation period $(X_{9.2})$	->	Flooding nazard (A ₉)	0.993	Valid
Surface rock (X _{10.1})	->	L and propagation $(\mathbf{V}_{\mathbf{v}})$	0.999	Valid
Rock outcrop $(X_{10.2})$	->	Land preparation (Λ_{10})	0.995	Valid
Productivity $(Y_{1,1})$	->	Local maize productivity (Y_1)	1.000	Valid

Table 1. Outer loading research variables

LGP: Long growth period; CEC: Cation exchange capacity; ESP: Excangeable potassium percentage

Advances in Biological Sciences Research, volume 13

Table 2. Cross-loading	of research varia	ables									
	Temnerature	Water	Oxygen	Rooting	Nutrient	Nutrient	Sodicity	Erosion	Flooding	Land	Production
Indikator	(X1)	availability (X ₂)	availability (X ₃)	media (X ₄)	retention (X ₅)	availability (X ₆)	(X_7)	hazard (X_8)	hazard (X9)	preparation (X_{10})	(Y1)
Air temperature (X _{1.1})	1	0.974058	0.061454	-0.091173	-0.428317	-0.073652	0.406783	0.02159	-0.13792	0.219821	0.068223
Rainfall (X _{2.1})	0.976513	0.991684	0.209631	0.064295	-0.275923	0.063868	0.397465	-0.04381	-0.05146	0.065735	0.217651
Wet months $(X_{2,2})$	0.941357	0.979657	0.193703	-0.017931	-0.263141	0.079163	0.409261	-0.06920	-0.06095	0.071259	0.191355
Dry months $(X_{2,3})$	0.863195	0.873285	0.158622	-0.252786	-0.513267	-0.136801	0.497352	-0.11903	0.03372	0.247653	0.080792
LGP $(X_{2,4})$	0.910319	0.959821	0.149654	-0.017432	-0.327742	0.064218	0.468817	-0.14008	-0.05893	0.068362	0.218919
Drainage $(X_{3.1})$	0.068901	0.251132	1	0.209845	-0.286975	0.059325	0.094359	-0.53642	0.28566	-0.311688	0.401756
Texture $(X_{4,1})$	-0.015049	-0.007345	-0.196751	0.186113	0.294305	0.139764	0.287013	0.258671	-0.00085	-0.042531	0.184273
Coarse material (X _{4.2})	-0.004233	-0.111890	-0.145526	-0.953261	-0.419651	-0.721693	0.199112	0.394225	-0.29371	0.859705	-0.422011
Effective depth $(X_{4,3})$	-0.185577	-0.096322	0.170192	0.908772	0.381729	0.383752	-0.25416	-0.21069	0.098172	-0.808412	0.200913
pH H ₂ O (X _{5.1})	-0.463045	-0.438571	-0.419653	0.317653	0.788691	0.281776	-0.19573	0.192374	-0.03595	-0.097455	0.219885
pH KCl (X _{5.2})	-0.373956	-0.446223	-0.452037	0.342269	0.897732	0.326971	-0.03975	0.185291	0.096937	-0.213928	0.327627
C-Organic (X _{5.3})	-0.199271	-0.210951	0.100925	0.268721	0.775314	0.684290	0.082439	-0.52642	0.072896	-0.295211	0.408752
CEC (X _{5.4})	0.044986	0.225247	0.004199	0.091538	0.422697	0.495236	0.413522	-0.06933	0.175312	-0.029783	0.354434
Base saturation $(X_{5.5})$	-0.200728	-0.204165	-0.118215	0.458627	0.490752	0.387158	-0.69050	-0.09115	-0.16297	-0.491375	0.156315
N Total $(X_{6,1})$	0.003976	0.192784	0.083764	0.277583	0.573833	0.849673	0.042763	-0.42870	-0.11392	-0.265862	0.435072
Available P $(X_{6,2})$	-0.099112	-0.089772	-0.469732	0.226971	0.418925	0.598021	-0.31781	-0.06398	0.041585	-0.300791	-0.037419
Available K(X _{6.3})	-0.098631	-0.021351	0.075881	0.709523	0.601578	0.898672	-0.38288	-0.31495	0.327361	-0.675525	0.529322
ESP $(\mathbf{X}_{7,1})$	0.390526	0.582752	0.093465	-0.236799	-0.074953	-0.283745	1	-0.02586	0.262957	0.417664	-0.039527
Slope (X _{8.1})	-0.031307	-0.200893	-0.697107	-0.310086	-0.173356	-0.425937	-0.04295	0.981242	-0.35516	0.351329	-0.675983
Soil erosion $(X_{8,2})$	0.068254	-0.001981	-0.527713	-0.207321	-0.131759	-0.367951	0.029383	0.978553	-0.13629	0.277838	-0.519375
Inundation height (X _{9.1})	-0.096746	-0.037425	0.311655	0.218953	0.093587	0.142765	0.225976	-0.35211	0.990897	-0.145263	0.192408
Inundation period $(X_{9,2})$	-0.206352	-0.079142	0.300928	0.288375	0.058273	0.083762	0.298112	-0.30075	0.991132	-0.12889	0.143589
Surface rock (X _{10.1})	0.246673	0.080191	-0.224112	-0.936221	-0.308922	-0.573560	0.410359	0.381927	-0.14180	0.995132	-0.366956
Rock outcrop (X _{10.2})	0.198478	0.058290	-0.270531	-0.893546	-0.317591	-0.567215	0.382927	0.312774	-0.13055	0.998015	-0.311954
Production $(Y_{1,1})$	0.045581	0.189973	0.510087	0.368871	0.503795	0.595307	-0.03915	-0.63852	0.26923	-0.307327	1
I CD. I and another and	Tod. CEC. Cat.	Secondone e	COLUMN DED. D. 200	accelle meteorie	tion in conception of						

LGP: Long growth period; CEC: Cation exchange capacity; ESP: Excangeable potassium percentage.

3.2. Reliability test of research variables

Composite reliability and Cronbach alpha were used to test the reliability value among the indicators of the latent variables that make up them. The composite reliability value and Cronbach alpha were said to be good if the value was above 0.60 [17]. The composite reliability value on each research variable was more than the limit value (> 0.6), except for the root media variable (Table 3). The composite reliability value and Cronbach's alpha value were 0.6 so that the latent variable has good composite reliability and high reliability. A variable was declared reliable if the Cronbach Alpha value was >0.6 [18]. Thus, all of the indicators used in this study had fit the criteria or were feasible to be used in the measurement of all latent variables because they haad better validity and high reliability. The results of the evaluation of convergent validity and discriminant validity and reliability of the composite and Cronbach alpha for indicators or variables showed that indicators as a measure of latent variables were valid and reliable measures.

Table 3. Composite Reliability and Cronbach's Alpha values of research variables

Laten variables	Composite reliability	Alpha Cronbach
Temperature (X ₁)	1.000000	1.000000
Water availability (X ₂)	0.961142	0.973650
Oxygen availability (X ₃)	1.000000	1.000000
Rooting media (X ₄)	0.041428	-1.093362
Nutrient retention (X ₅)	0.863572	0.736147
Nutrient availability (X ₆)	0.877398	0.784295
Sodicity (X ₇)	1.000000	1.000000
Erosion hazard (X ₈)	0.952163	0.942263
Flooding hazard (X ₉)	0.988236	0.972114
Land preparation (X ₁₀)	0.995317	0.994206

3.3. Structural Model Testing

The structural model (*inner model*) was evaluated by looking at the coefficient value of the path coefficient parameter between latent variables.

The land quality of oxygen availability, rooting media, nutrient retention, and nutrient availability showed a positive correlation and had a significant effect on local maize production (Table 4)

	Endogenous variables			
Exogenous variables	Local maize	production (Y)		
	Path coeffisient	t-statistics (t _{critics} = 2.00)		
Temperature (X ₁)	-0.315	-0.012		
Water availability (X ₂)	0.583	0.912		
Oxygen availability (X ₃)	0.326*	2.540		
Rooting media (X ₄)	0.037*	2.470		
Nutrient retention (X_5)	0.452**	2.936		
Nutrient availability (X ₆)	0.104*	2.642		
Sodicity (X ₇)	-0.186	-1.217		
Erosion hazard (X_8)	-0.333**	-2.992		
Flooding hazard (X ₉)	0.003	0.400		
Land preparation (X ₁₀)	-0.204*	-2.476		

Table 4. Path coefficient and significance testing

*Significant on level test of 5%; ** Significant on level test of 1%

The land quality of erosion hazards and land preparation showed a negative correlation and had a significant effect on local maize p production. This indicated that the increasing of oxygen availability, rooting media, nutrient availability, and nutrient retention and a decrease of erosion hazard and land preparation along with the increase in local maize production. The physical properties of rooting media, especially drainage and aeration conditions might directly or indirectly influential to root formation [19]. Land quality that greatly influenced the maize production were nutrient retention and nutrient availability [8]. Furthermore, [20] reported that an increase of erosion hazard would result in a decrease of land productivity, conversely a decrease of erosion hazard resulted in an increase in land productivity.

c. Land quality and characteristics that controlling of local maize productivity

Based on the previous of structural testing model, the land quality that most influences of local maize production were oxygen availability, rooting media, nutrient retention, nutrient availability, erosion hazard, and land preparation. This was also based on the results of multiple regression tests with the best equation (equation 1) of land quality that affects local maize production as follows:

$$\begin{split} Y &= 1,805 + 0,276X_1 + 0,303X_2 + 0,353X_3 + 0,346X_4 \\ &\quad -0,337X_5 - 0,303X_6 \ldots \ldots \ldots (1) \end{split}$$

Where: $X_1 = oxygen$ availability, $X_2 = rooting$ media, $X_3 = nutrient$ retention, $X_4 = nutrient$ availability, $X_5 =$ erosion hazard, $X_6 = land$ preparation

The land characteristics that significantly affected the local maize production were drainage, coarse material, effective depth, pH KCl, C-Organic, N total, K availability, slopes, soil erosion, surface rock and rock outcrops. This was also based on the results of multiple regression tests with the best equation (equation 2) of land characteristics that affect local maize production as follows:

$$\begin{split} Y &= 2,447 + 0,187X_1 - 0,212X_2 + 0,153X_3 + 0,349X_4 \\ &+ 0,166X_5 + 0,169X_6 + 0,313X_7 - 0,352X_8 - \\ &- 0,230X_9 - 0,237X_{10} - 0,187X_{11} \dots \dots \dots (2) \end{split}$$

Where: X_1 = drainage, X_2 = coarse material, X_3 = effective depth, X_4 = pH KCl, X_5 = C-Organic, X_6 = N total, X_7 = K availability, X_8 = slope, X_9 = soil erosion, X_{10} = surface rock, X_{11} = rock outcrops.

The correlation of each land characteristic and its contribution to land quality on local maize production was presented in Table 5 and Figure 1. Land characteristics such as drainage, effective depth, pH of KCI, C-Organic, N total and K availability had a positive correlation and significant to very significant effected on local maize production. This indicated that the better drainage, effective depth, pH of KCI, C-Organic, N total, and K availability with an increase of 1% would be followed by an increase of local maize production on 29.4% to 43.6%. Conversely, coarse material, slopes, soil erosion, surface rock and rock outcrops had a negative correlation and had a significant to a very significant effect on local maize production. This revealed that a decrease of 1% in coarse material, slopes, soil erosion, surface rock and rock outcrops would be followed by an increasing of local maize production on 40.3% to 71.7%.

Table 5. Coefficient of correlation and contribution level on land quality of the land characteristics and local maize production

Land characteristics	Coefficient of correlation	Contribution on land quality (%)
Air temperature $(X_{1,1})$	-0,033	2,90
Rainfall (X _{2.1})	0,089	18,50
Wet months (X _{2.2})	0,098	19,80
Dry months $(X_{2,3})$	-0,013	3,80
LGP (X _{2.4})	0,123	20,30
Drainage $(X_{3,1})$	0,350*	40,40
Texture (X _{4.1})	0,098	5,00
Coarse material $(X_{4,2})$	-0,455**	-74,90
Effective depth (X _{4.3})	0,294*	54,50
pH H ₂ O (X _{5.1})	0,234	13,70
pH KCl (X _{5.2})	0,333*	18,70
C-Organic (X _{5.3})	0,405**	59,70
CEC (X _{5.4})	0,249	33,20
Base saturation $(X_{5.5})$	0,278	30,70
N Total (X _{6.1})	0,436**	63,00
Available P (X _{6.2})	0,076	25,30
Available K(X _{6.3})	0,569**	73,20
ESP (X _{7.1})	-0,107	-2,60
Slope (X _{8.1})	-0,717**	-75,90
Soil erosion ($X_{8.2}$)	-0,516**	-62,90
Inundation height $(X_{9.1})$	0,195	34,50
Inundation period (X _{9.2})	0,168	30,50
Surface rock (X _{10.1})	-0,403*	-68,40
Rock outcrop (X _{10.2})	-0,408**	-68,00

*Significant on level test of 5%; ** Significant on level test of 1%.

Figure 1. The coefficient pathways diagram of land quality on the level of local maize production.

The correlation of each land characteristic was strong to influencing local maize production. Coarse material was rock fragments measuring in 2 mm of diameter or more which affected to soil moisture storage, infiltration, erosion, and land use [21]. Slopes had a significant effect on local maize production, in which the steeper the slopes, the lower the production would be [22]. Likeweise for the soil erosion the more erosion increases, the lower the production of maize would be [23]. The surface rocks and rock outcrops-were limiting factors in the land suitability of maize [24].

4. CONCLUSION

Land quality that control of the local maize production were the oxygen availability, rooting media, nutrient retention, nutrient availability, erosion hazard and land preparation. Meanwhile, land characteristics that control of the local maize production were drainage, effective depth, pH KCl, C-Organic, N-Total, K availability, coarse material, slopes, soil erosion, surface rock and rock outcrops.

ACKNOWLEDGMENT

Thank you to Ecan Adam, SE, MM for helping with the SEM-PLS analysis. Thank you also went to Rival Rahman, SP, MSi for helping of the land resources mapping.

REFERENCES

- BPS RI, "Maize production by province (tonnes), 1993-2018', Central Bureau of Statistics of the Republic of Indonesia", Jakarta, 2019.
- H. G. M. Yasin, W. Langgo, and Faesal, "White seed maize as an alternative staple food", J. Food Crops Science and Technology, vol. 9, no. 2, pp. 108-117, 2014, doi: https://doi.org/10.1007/3-540-11494-7 22
- [3] BPS Kabupaten Gorontalo, "Gorontalo regency in figures on 2018", *Gorontalo Regency Statistics Agency*, Limboto, 2018.
- [4] IAARD, "Indonesian agricultural research and development agency statistics in 2009", *Indonesian Agency of Agricultural Research* and Development, Jakarta, Indonesia, 2009.
- [5] M. H. G. Yasin, S. Singgih, M. Hamdani, and S. B. Santoso, "Biodiversity ofmaize germplasm. *In* Hermanto, Suyamto, Sumarno, 'Maize: production and development techniques". Center for research and development of food crops', *Agricultural research and development agency, Indonesian ministry of agriculture,* Jakarta, 2007.

- [6] S. S. Kaihatu, and M. Pesireron, 'Adaptation of several varieties of maize in dry land agroecosystems in Maluku'', J. Food Crops Research, vol. 35, no. 2, pp. 141-147, 2016. doi: <u>http://dx.doi.org/10.21082/jpptp.v35n2.</u> 2016.p141-148
- [7] D. K. S. Swastika, "Corn self sufficiency in Indonesia: The past 30 years and future prospect", J. Indonesian Agricultural Research and Development, vol. 21, no. 3, pp. 75-83, 2002.
- [8] D. Subardja, and Sudarsono, "The influence of land quality on productivity of maize in soils derived from volcanic and sedimentary rocks in the Bogor area", *J. Soils and Climate*, vol, 23, pp. 38-47, 2005. doi: <u>http://dx.doi.org/10.21082/jti.v0n23.2005.%2</u> <u>5p</u>
- [9] FAO, "A Framework for land evaluation", Food and Agriculture Organization Soil Bull. Rome, no. 32, 1976.
- [10] D. Subardja, 'Land suitability criteria for land use types based on maize and peanuts in the Bogor area'', IPB Postgraduate School, Bogor, 2005.
- [11] H. Syaf, "Evaluation of the relationship between land quality, growth and yield of aged cocoa in East Kolaka Regency, Southeast Sulawesi Province", *J. Bioeducation*, vol. 3, no. 1, pp. 267 – 276, 2014.
- [12] A. D. Elisanti, W. Purnomo, and S. Melaniani, "Application of partial least square health status of children under 5 years In Indonesia", *J. Biometrika dan Kependudukan*, vol. 2, no. 2, pp. 99 – 107, 2013. doi: 10.31227/osf.io/gtbq6
- [13] J. F. Hair, C. M. Ringle, and M. Sarstedt, "Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance", *Long Range Planning* vol. 46, pp. 1-12, 2013.
- [14] M. Igbaria, N. Zinatelli, P. Cragg, and A. L. M. Cavaye, "Personal computing acceptance factors in small firms: A structural equation model", *MIS Quarterly*, vol. 21, no. 3, pp. 279-305, 1997. DOI: 10.2307/249498
- [15] A. A. Mattjik, and I. M. Sumertajaya, "Investigate multiple variables using SAS", *IPB Press*, Bogor, 2011.
- [16] M. Ulum, I. M. Tirta, and D. Anggraeni, "Analysis of structural equation modeling (SEM) for small samples using the partial least square (PLS) approach", Proceedings of the National Mathematics Seminar, University of Jember, pp. 1-15, 2014.
- [17] V. W. Sujarweni, "SPSS for research", *Pustaka Baru*, Yogyakarta, 2014.
- [18] W. Abdilah, and J. Hartono, "Partial least square (PLS): Alternative structural equation modeling (SEM) in business research", *Andi Offset*, Yogyakarta, 2015.
- [19] M. Taghvaei, N. Khaef, and H. Sadeghi, "The effects of salt stress and prime on improvement

and seedling growth of *Calotropisprocera* L. seeds", *J. Ecol. Field Biol.*, vol. 35, no. 2, pp. 73-78, 2012.

- [20] L. Nurhayati, S. Nugraha, and P. Wijayanti, "The effect of erosion on the productivity of the Wali watershed in Karanganyar and Wonogiri regencies", Geography Education Study Program, FKIP UNS, Surakarta. 2012.
- [21] Indonesian Soil Research Institute, "Soil observation technical instructions", *Research and Development Center for Soil and Agroclimate*, Bogor. 2004.
- [22] Nurdin, M. L. Rayes, Soemarno, Sudarto, N. Musa and M. Dunggio, "Effect of slopes and compound NPK fertilizer on growth and yield

of maize local varieties, relative agronomic and economic fertilizer effectiveness to Inceptisol Bumela, Indonesia'', *RJOAS*, vol. 6, no, 102, pp. 18-28, 2020. doi: 10.18551/rjoas.2020-06.03

- [23] D. O. Suparwata, Nurmi, and M. I. Bahua, "Use of vertical mulch on dry land to reduce erosion, runoff and its effects on maize growth and yields", *J. Agro techno trop.*, vol. 1, no. 3, pp. 138-145, 2012.
- [24] Elfayetti and Herdi, "Evaluation of land suitability for maize crops in Saentis Village, Percut Sei Tuan", *J. Social Sciences Education*, vol. 7, no. 1, pp. 33-40, 2015. doi: <u>https://doi.org/10.24114/jupiis.v7i1.2295</u>