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Abstract: Aurivillius is bismuth layered structure ferroelectrics which can be applied as memory, sensor, and 
catalyst. This research aimed to study the stability of AxBi4-xTi4O15 Aurivillius (A = Ca, Sr, and Ba). Dopants (A) 
partially substitute Bi at the sites of Bi(1) and Bi(2) of perovskite layer. This research method is atomistic 
simulation using by GULP code. Simulations were carried out by means of AxBi4-xTi4O15 geometry optimization 
at a constant pressure, using the Buckingham potential. The results showed that the increase in the 
concentration of dopants substituting Bi accompanied with increase in lattice energies. The most stable 
Aurivillius was CaxBi4-xTi4O15 (x = 16.3%) carried out by Bi substitution at Bi(2) site, with lattice energy, -
1668.227 eV. Aurivillius stability decreases by increasing size of the dopant. The maximum concentration 
number of A dopant substituting Bi was discussed. 
  

Keywords: Aurivillius; Atomistic simulation; lattice energy; dopants of earth alkaline ionic; shell model 

 

INTRODUCTION 

The specific nature of Aurivillius is determined by its 
crystal structure [1]. The packaging of the ions in the 
structure determines type and possibility of Aurivillius 
application [2]. One of the interesting properties of 
Aurvillius is ferroelectric which can be applied as a 
storage material of Fe-RAM memory, capacitors, 
piezoelectric, conductor, catalyst, and as a magnetic 
material [3], [4]. To achieve the property, then 
Aurvillius doped with certain ions on bismuth oxide or 
perovskite layers.  

Aurivillius oxide is an oxide compound with a layered 
structure that is arranged regularly and alternates 
between layers of perovskite of [An-1BnO3n + 1]2- and 
[Bi2O2]2+. Cation A is dodecahedral coordinated ions, 
which have a charge of +1, +2 or +3, such as alkali, 
earth alkaline, rare earth elements or mixtures. Cation 
B is ions with octahedral coordination which are 
usually transition elements with smaller sizes than 
cation A. While n is an integer which shows the 
octahedral number in the perovskite layer [5], [6]. 
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Layered oxide has structural and composition flexibility 
that allows it to be controlled by doping with both A 
and B ions. The lone pair of electrons in Bi3+ in the 
[Bi2O2]2+ layer plays an important role in controlling 
valence fluctuations and non-stoichiometric 
stabilization, giving rise to various physical and 
chemistry properties. These different physical and 
chemical properties affect the quality of the Aurivillius 
material in use for subsequent applications [7], [8]. 
ABi4Ti4O15 oxide (A = Ba, Ca, Sr, Pb) is described as 
orthorhombic [8], [9], [10]. Kojima and Roman (1995) 
reported that the compound ABi4Ti4O15 (A = Ca, Sr, 
Pb) allows cation distortion to occur because there are 
several B ions occupying a random site, such as Bi of 
the perovskite layer [11]. However, ABi4Ti4O15 oxide (A 
= Ba, Ca, Sr) has not been explained by its stability 
based on the increase in the concentration of dopants 
which substitute Bi in the perovskite layer. The stability 
can be viewed from the lattice energy, cell parameters, 
polarizability, and perovskite tolerance factors, as 
explained in this study. It also relates to the bond 
valence sum of an ion in a particular structure [12], but 
was not done in this study. If doping is based on 
increasing concentrations and in large amounts, it will 
require a lot of time and cost so this research is carried 
out by atomistic simulation. 

The atomistic simulation method is strong enough to 
study thermodynamics and multiscale modeling. 
Atomic-level simulations involve potential pairs using 
rigid ion models or shell models that have successfully 
described the defect properties of many-ion systems. 
The ion rigid model requires half the parameters 
compared to the shell model. This ion rigid model is 
much faster and effective for multiscale simulation. On 
the other hand, the need for few parameters is 
challenged to get a valid model for atomic interactions, 
especially for complex systems. Therefore, atomistic 
simulations mostly use the shell model framework [13], 
[14]. This research is an atomistic study of the lattice 
structure of the four layer Aurivillius oxide of AxBi4-

xTi4O15 Aurivillius (A = Ca, Sr, and Ba), where x is 
dopant concentration. 

MATERIALS AND METHODS 

This atomistic simulation is done through a geometry 
optimization procedure using a Linux-based computer 
that is equipped with the General Utility lattice Program 
(GULP) code. Atomistic modeling illustrates the 
interactions between ions in a crystal structure based 
on a solid model proposed by Born [15]. Modeling 
interactions between ions can be understood through 
the function of potential energy of system, especially 
the system of two objects that describe these 
interactions. The potential energy of attraction and 
repulsion between each ion pair in a solid crystal at 

zero Kelvin is expressed as a static lattice energy 
which is formulated as: 
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The first term of equation (1) is the static lattice energy 
of the long-range Coulomb's pull for the arrangement 
of infinite ions. The second term expresses the 
diffusion properties of the electron cloud surrounding 
the nucleus consisting of short-range interactions 
associated with Pauli's repulsion between neighboring 
electron clouds and van der Waals attraction 
components of short-range. The third term describes 
the interaction of three objects, in the solids of ions, 
the interaction of two objects dominates. In the rigid 
ion model, the short-range interaction is stimulated 
mainly by the effects of the nearest neighbor ion. The 
short-range potential function can be described by the 
Buckingham potential: 
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where Aij, ij and Cij are constants and rij is the 
distance between ions. The first term in equation (2) 
represents a short-range repulsion, while the second 
term shows the pull of induced dipoles (van der 
Waals). 

In addition to the ion interaction model, the model can 
also include ion polarization descriptions [16]. The 
model represents the ion as a charged shell with a 
very small mass (representing the outer valence 
electron cloud) which is bound to a large mass nucleus 
by a harmonious spring. Additional energy due to shell 
interactions with the nucleus is expressed by equation 
(3): 
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where is the spring constant and is the distance 
between the core and the shell. Equation (3) describes 
the ion polarization, which is needed for the calculation 
of the defect energy and the dielectric constant. Ion 
polarization is formulated by equation (4): 
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where Yi is the shell charge and e is the electron 
charge. Coulomb interaction calculation in this study 
will use the Ewald method with GULP code. 
Meanwhile, the short-range potential used is the 
Buckingham potential [17], [18]. 

RESULTS AND DISCUSSION 
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Aurivillius structure is composed of perovskite layer 
and bismuth layer, [Bi2O2]2+ which alternates along the 
c axis. Bi ions in the ABi4Ti4O15 (A = Ca, Sr, Ba) 
structure occupy Bi(1) and Bi(2) sites in the perovskite 
layer and Bi(3) in the bismuth layer, as shown in 
Figure 1. In this study, substitution Bi by dopant (Ca, 
Sa, Ba) is done partially at Bi(1) or Bi(2) position based 
on the increase in dopant concentration. The dopants 
replace a certain amount of Bi of the perovskite layer, 
while (at the same time), the concentrations of Bi(3), 
O2-, and Ti4+ ions are allowed to remain. The standard 
Bi concentration (occupancy) of Aurivillius at the Bi(1) 
and Bi(2) siets is based on the Aurivillius ABi4Ti4O15 
oxide (Figure 1) reported by Kennedy et al. [8]. Bi 
occupancy at Bi(1) and Bi(2) sites is 0.81 and 0.83, 
respectively. That is, Sr (as a dopant) occupy the 
positions respectively by 0.19 or 19% and 0.17 or 
17%. If 20% Bi is substituted by Sr in the Bi(1) site 
then the fractional part becomes 0.8 Bi(1), 80% and 
0.2 Sr(1), 20%. Thus, each Bi substitution in a certain 
position, with dopants at different concentrations, then 
the concentration of Bi will change as much as the 
concentration of dopants entering the site. Instead the 
concentration of ions in other positions is fixed. 

 

Figure 1 Representation of Arivillius ABi4Ti4O15 (Ca, Sr, Ba) 
Oxide Structure (n = 4). Bi(1) and Bi(2) are in the perovskite 
layer, and Bi(2) is closer to the [Bi2O2]2+ layer.  

Aurivillius of ABi4Ti4O15 (Ca, Sr, Ba) are atomically 
simulated at a constant pressure using the GULP 
code. This simulation is based on lattice minimization 
which is done iteratively. During this process, the 
forces on each ion are calculated, and then the ion is 
shifted slightly in proportion to the forces acting on it. 
This process continues, until the forces acting on all 
ions are zero. The simulation in this study is 
determined by the Buckingham potential and the 
charge model (shell model) of the Aurivillius oxide. 
Potential Buckingham (short-range) and shell models 
(based on atomistic simulation results) suitable for 
Aurivillius ABi4Ti4O15 oxide (Ca, Sr, Ba) are shown in 
Table 1. 

Tabel 1. Buckingham potential (short-range) and shell model of ions 
from Aurivillius ABi4Ti4O15 oxide (Ca, Sr, Ba) 

a) Short-range A (eV) r (Å) C (eV Å-6) 

Bi3+...O2- 49.529,35 0,2223 0,0 
Ca2+...O2- 1186,6   0,2970 0,0 
Sr2+...O2- 1956,702   0,3252 0,0 
Ba2+...O2- 4818,416 0,3067 0,0 
O2-...O2- 576,940 0,33236 0,0 
    
b) Shell model    
Species k (eV Å-2) Shell(e)  
Bi3+ 359,55 -5,51  
Ti4+  253,60 1,678  
Ca2+ 34,05 1,281  
Sr2+ 21,53 1,831  
Ba2+ 34,0 1,831  
O2- 70,1512 -2,04  

 

The ease of polarized dopants can be determined by 
charge of shell and the spring constant (polarizability). 
The shell charges of Sr and Ba are the same, but the 
spring constant is different, whereas Ca and Ba have 
the same spring constant, but the charge is different. 
The difference in the charge of the shell or the spring 
constant shows that the ease of dopant ions is 
polarized (polarizability) also different. The results of 
simulation show that the Sr> Ba> Ca polarizabilities as 
shown in Figure 2. However, in theory the smaller the 
ionic radius, the weaker the ionized is polarized by 
anions (oxygen), so the ease of the Ca, Sr, and Ba 
ions polarized oxygen is Ba> Sr> Ca. Differences in 
theoretical polarization and simulation results differ 
between Ba and Sr, where the simulation results show 
that Sr is more easily polarized than Ba. This is caused 
by the weak bond between the nucleus of the atom 
and the electrons as shown by the small Sr spring 
constant, 21 (eV Å-2). 

Figure 2 Polarizabilities, ionic radii, and perovskite tolerance 

factors of Aurivillius ABi4Ti4O15 oxide (Ca, Sr, Ba). 

The polarizability shows that the structure of 
ABi4Ti4O15 experienced greater distortion compared to 
the Aurivillius ABi4Ti4O15 (A = Ca, Ba). The cell 
parameters of a and b of ABi4Ti4O15 (A = Ca, Sr, Ba) 
have increased along with the increase in the 
concentration of dopants that partially substitution Bi 
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both in Bi(1) and Bi (2) sites. Conversely, the value of 
c changes (increases or decreases); Bi substitution by 
dopant in position Bi(1), then the value of c decreases, 
conversely substitution of Bi in site of Bi(2), then the 
value of c increases (except substitution with dopant 
Ca). The increase in the value of c is probably caused 
by the effect of repulsion of the pair of free electrons Bi 
which is in t [Bi2O2]2+ layer. The site of Bi(2) is closer to 

the bismuth layer, so that the repulsion of the electron 
pair will be strong to the ions which are in site (2) of 
the perovskite layer. In addition, the more easily 
polarized Sr and Ba ions cause a small increase in the 
a and b values of the ABi4Ti4O15 structure (A = Sr, Ba). 
However, the decrease in c value in CaBi4Ti4O15 (Bi is 
substituted with Ca in Bi(2) site is probably caused by 

Ca ions which are not easily hard polarized oxygen. 

 

 

Figure 3 ABi4Ti4O15 unit cell parameters (A = Ca, Sr, Ba); the values of a and b increase with increasing dopant 

concentration, but the value of c decreases when substituting in position Bi (1) and increases when substitution in position Bi 
(2). 

 

The stability of the perovskite structure can be 
predicted also by the tolerance factor of perovskite (t) 
proposed by Goldschmidt. This measures the size 
mismatch between cations A and B in the perovskite. 
The tolerance factor is defined as t =

(〈rA〉 + rO) √2(rB+⁄ rO, where 〈rA〉 is the average radius 

of cation A with dodecahderal coordination,  rB- ionic 

radius of cation B with 6-coordinate, rO-  oxygen radius 
of octahedral coordination [19]. When it is equal to 
unity, it is related to an undistorted ideal perovskite, 
while t <1 has a distorted perovskite system that 
shows the tilt or rotation of the octahedral BO6. The 
perovskite layer of ABi4Ti4O15 with that is doped with 
distortion because t is not equal to 1. It is Ba who has 
the highest level of distortion, with a tolerance factor 
far above one compared to the t value for Ca and Sr. 
Sr which is almost the same as one has less slope 
compared to the other. 

This result is different from the report of Reaney et al. 
(1994) which shows that perovskite at room 

temperature with 0.985 <t<1.06 is expected to have 
undistorted. Perovskites with 0.964 <t<0.985 typically 
have anti-phase slant structures and perovskites with t 
<0.964 are expected to show phase-and anti-phase 
tilting [20], [21]. As t continues to decline, the stability 
of the perovskite system decreases and eventually 
does not form. This is understandable because the 
consideration is the radius of the Shannon ion Bi3+ (r = 
1.17 Å) in 8-fold coordination, with t going to be 0.8886 
[22]. Therefore. Perovskite structure  is not stable. 
However, if we consider that the Bi3+ ion is 
dodecahedral coordination with ionic radius of 1.40 Å, 
then the t value indicates the distortion of BO6 of 
ABi4Ti4O15 doped with Ca2+, Sr2+, and Ba2+ to partially 
substitute Bi in the perovskite layer. This was also 
observed in BiFeO3 with t value of 0.96 [23]–[25]. Thus 
the cation A size variance and tolerance factor (t) are 
also the factors responsible for the formation of 
perovskite octahedral distortion. 
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Figure 4. ABi4Ti4O15 (A = Ca, Sr, Ba) lattice energy with 

dopant concentration; Bi (1) and Bi (2) substitution by dopant 
is done partially based on the increase in dopant 
concentration. 

The greater the concentration of dopant, the doped 
Aurivillius lattice energy is greater, according to the 
increase in dopant ion radius (rCa <rSr <rBa, 1.34, 1.44, 
1.61) [24]. ABi4Ti4O15 Aurivillius is more stable when 
substitution of Bi by dopants in position 2 of Bi(2) with 
dopant concentrations below 33.3%. Conversely, 
dopant concentration values above that, the Bi 
substitution is more stable at site Bi(1). Bi substitution 
is easier in the perovskite layer compared to the 
bismuth oxide layer. In addition, the maximum number 
of dopants that substitute Bi is only around 33% in the 
bismuth layer [26]. In the perovskite layer is also a 
major factor determining the ability of oxygen ions to 
migrate if the Aurivillius structure is empty [27]. This 
means that the perovskite layer is more likely to be 
modified so that Aurvillius can be applied in the 
ferroelectric, catalyst or electrolyte industries. 

Sadapu et al (2015) reported Aurivillius lattice energy 
doped in the Bi2O2 layer was greater than the 
Aurivillius lattice energy doped in the perovskite layer. 
The energy lattices of BaxBi4-xTi4O15, CaxBi4-xTi4O15 
and SrxBi4-xTi4O15 are 1491,418, -1498,560, and 
1494,338 eV, respectively. The maximum 
concentration of dopants are Ba 33, Ca, 32, Sr 33% 
[26]. The four coordination that forms the rectangular 
pyramid (BiO4) in the bismuth oxide layer causes the 
small number of dopants to substitute Bi for the layer. 
Moreover, Bi has a lone pair of electrons which can 
repel dopant electrons that enter to replace it. Although 
the length of the Bi-O bond formed is longer because 
there are free electrons, the bond length is much 
smaller when dodecahedral coordinates of Bi on the 
perovskite layer. Therefore, coordination, dopant size, 
and the presence of free electrons determine the 
stability of the doped compound structure [28]. 

CONCLUSION 

The unit cell parameters ABi4Ti4O15 (A = Ca, Sr, Ba) fit 
well with the experimental unit cell parameters. 
Increasing dopant concentration which substitutes Bi, 
then the Aurivillius ABi4Ti4O15 lattice energy is getting 
bigger. ABi4Ti4O15 is more stable when dopant (A) 
substitutes Bi in Bi(2) position with dopant 
concentration below 33%. Conversely, dopant 
concentration above that, the substitution of Bi by 
dopant A at position Bi(1) is more stable. The 
maximum limit of Ca dopants substituting Bi(2) is 33%, 
while other dopants can completely substitute Bi(2). 
This research can be used as a guide for the synthesis 
of Aurivillius ABi4Ti4O15 compounds. 
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Abstract: Aurivillius is bismuth layered structure ferroelectrics which can be applied as memory, sensor, and 
catalyst. This research aimed to study the stability of AxBi4-xTi4O15 Aurivillius (A = Ca, Sr, and Ba). Dopants (A) 
partially substitute Bi at the sites of Bi(1) and Bi(2) of perovskite layer. This research method is atomistic 
simulation using by GULP code. Simulations were carried out by means of AxBi4-xTi4O15 geometry optimization 
at a constant pressure, using the Buckingham potential. The results showed that the increase in the 
concentration of dopants substituting Bi accompanied with increase in lattice energies. The most stable 
Aurivillius was CaxBi4-xTi4O15 (x = 16.3%) carried out by Bi substitution at Bi(2) site, with lattice energy, -
1668.227 eV. Aurivillius stability decreases by increasing size of the dopant. The maximum concentration 
number of A dopant substituting Bi was discussed. 
  

Keywords: Aurivillius; Aatomistic simulation; lattice energy; dopants of earth alkaline ionic; shell model 

 

INTRODUCTION 

The specific nature of Aurivillius is determined by its 
crystal structure [1]. The packaging of the ions in the 
structure determines type and possibility of Aurivillius 
application [2]. One of the interesting properties of 
Aurvillius is ferroelectric which can be applied as a 
storage material of Fe-RAM memory, capacitors, 
piezoelectric, conductor, catalyst, and as a magnetic 
material [3], [4]. To achieve the property, then 
Aurvillius doped with certain ions on bismuth oxide or 
perovskite layers.  

Aurivillius oxide is an oxide compound with a layered 
structure that is arranged regularly and alternates 
between layers of perovskite of [An-1BnO3n + 1]2- and 
[Bi2O2]2+. Cation A is dodecahedral coordinated ions, 
which have a charge of +1, +2 or +3, such as alkali, 
earth alkaline, rare earth elements or mixtures. Cation 
B is ions with octahedral coordination which are 
usually transition elements with smaller sizes than 
cation A. While n is an integer which shows the 
octahedral number in the perovskite layer [5], [6]. 
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Layered oxide has structural and composition flexibility 
that allows it to be controlled by doping with both A 
and B ions. The lone pair of electrons in Bi3+ in the 
[Bi2O2]2+ layer plays an important role in controlling 
valence fluctuations and non-stoichiometric 
stabilization, giving rise to various physical and 
chemistry properties. These different physical and 
chemical properties affect the quality of the Aurivillius 
material in use for subsequent applications [7], [8]. 
ABi4Ti4O15 oxide (A = Ba, Ca, Sr, Pb) is described as 
orthorhombic [8], [9], [10]. Kojima and Roman (1995) 
reported that the compound ABi4Ti4O15 (A = Ca, Sr, 
Pb) allows cation distortion to occur because there are 
several B ions occupying a random site, such as Bi of 
the perovskite layer [11]. However, ABi4Ti4O15 oxide (A 
= Ba, Ca, Sr) has not been explained by its stability 
based on the increase in the concentration of dopants 
which substitute Bi in the perovskite layer. The stability 
can be viewed from the lattice energy, cell parameters, 
polarizability, and perovskite tolerance factors, as 
explained in this study. It also relates to the bond 
valence sum of an ion in a particular structure [12], but 
was not done in this study. If doping is based on 
increasing concentrations and in large amounts, it will 
require a lot of time and cost so this research is carried 
out by atomistic simulation. 

The atomistic simulation method is strong enough to 
study thermodynamics and multiscale modeling. 
Atomic-level simulations involve potential pairs using 
rigid ion models or shell models that have successfully 
described the defect properties of many-ion systems. 
The ion rigid model requires half the parameters 
compared to the shell model. This ion rigid model is 
much faster and effective for multiscale simulation. On 
the other hand, the need for few parameters is 
challenged to get a valid model for atomic interactions, 
especially for complex systems. Therefore, atomistic 
simulations mostly use the shell model framework [13] 
[14]. This research is an atomistic study of the lattice 
structure of the four layer Aurivillius oxide of AxBi4-

xTi4O15 Aurivillius (A = Ca, Sr, and Ba), where x is 
dopant concentration. 

MATERIALS AND METHODS 

This atomistic simulation is done through a geometry 
optimization procedure using a Linux-based computer 
that is equipped with the General Utility lattice Program 
(GULP) code. Atomistic modeling illustrates the 
interactions between ions in a crystal structure based 
on a solid model proposed by Born [15]. Modeling 
interactions between ions can be understood through 
the function of potential energy of system, especially 
the system of two objects that describe these 
interactions. The potential energy of attraction and 
repulsion between each ion pair in a solid crystal at 

zero Kelvin is expressed as a static lattice energy 
which is formulated as: 
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The first term of equation (1) is the static lattice energy 
of the long-range Coulomb's pull for the arrangement 
of infinite ions. The second term expresses the 
diffusion properties of the electron cloud surrounding 
the nucleus consisting of short-range interactions 
associated with Pauli's repulsion between neighboring 
electron clouds and van der Waals attraction 
components of short-range. The third term describes 
the interaction of three objects, in the solids of ions, 
the interaction of two objects dominates. In the rigid 
ion model, the short-range interaction is stimulated 
mainly by the effects of the nearest neighbor ion. The 
short-range potential function can be described by the 
Buckingham potential: 
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where Aij, ij and Cij are constants and rij is the 
distance between ions. The first term in equation (2) 
represents a short-range repulsion, while the second 
term shows the pull of induced dipoles (van der 
Waals). 

In addition to the ion interaction model, the model can 
also include ion polarization descriptions [16]. The 
model represents the ion as a charged shell with a 
very small mass (representing the outer valence 
electron cloud) which is bound to a large mass nucleus 
by a harmonious spring. Additional energy due to shell 
interactions with the nucleus is expressed by equation 
(3): 
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where is the spring constant and is the distance 
between the core and the shell. Equation (3) describes 
the ion polarization, which is needed for the calculation 
of the defect energy and the dielectric constant. Ion 
polarization is formulated by equation (4): 
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where Yi is the shell charge and e is the electron 
charge. Coulomb interaction calculation in this study 
will use the Ewald method with GULP code. 
Meanwhile, the short-range potential used is the 
Buckingham potential [17], [18]. 

RESULTS AND DISCUSSION 
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Aurivillius structure is composed of perovskite layer 
and bismuth layer, [Bi2O2]2+ which alternates along the 
c axis. Bi ions in the ABi4Ti4O15 (A = Ca, Sr, Ba) 
structure occupy Bi(1) and Bi(2) sites in the perovskite 
layer and Bi(3) in the bismuth layer, as shown in 
Figure 1. In this study, substitution Bi by dopant (Ca, 
Sa, Ba) is done partially at Bi(1) or Bi(2) position based 
on the increase in dopant concentration. The dopants 
replace a certain amount of Bi of the perovskite layer, 
while (at the same time), the concentrations of Bi(3), 
O2-, and Ti4+ ions are allowed to remain. The standard 
Bi concentration (occupancy) of Aurivillius at the Bi(1) 
and Bi(2) siets is based on the Aurivillius ABi4Ti4O15 
oxide (Figure 1) reported by Kennedy et al. [8]. Bi 
occupancy at Bi(1) and Bi(2) sites is 0.81 and 0.83, 
respectively. That is, Sr (as a dopant) occupy the 
positions respectively by 0.19 or 19% and 0.17 or 
17%. If 20% Bi is substituted by Sr in the Bi(1) site 
then the fractional part becomes 0.8 Bi(1), 80% and 
0.2 Sr(1), 20%. Thus, each Bi substitution in a certain 
position, with dopants at different concentrations, then 
the concentration of Bi will change as much as the 
concentration of dopants entering the site. Instead the 
concentration of ions in other positions is fixed. 

 

Figure 1. Representation of Arivillius ABi4Ti4O15 (Ca, Sr, Ba) 
Oxide Structure (n = 4). Bi(1) and Bi(2) are in the perovskite 
layer, and Bi(2) is closer to the [Bi2O2]2+ layer.  

Aurivillius of ABi4Ti4O15 (Ca, Sr, Ba) are atomically 
simulated at a constant pressure using the GULP 
code. This simulation is based on lattice minimization 
which is done iteratively. During this process, the 
forces on each ion are calculated, and then the ion is 
shifted slightly in proportion to the forces acting on it. 
This process continues, until the forces acting on all 
ions are zero. The simulation in this study is 
determined by the Buckingham potential and the 
charge model (shell model) of the Aurivillius oxide. 
Potential Buckingham (short-range) and shell models 
(based on atomistic simulation results) suitable for 
Aurivillius ABi4Ti4O15 oxide (Ca, Sr, Ba) are shown in 
Table 1. 

Tabel 1. Buckingham potential (short-range) and shell model of ions 
from Aurivillius ABi4Ti4O15 oxide (Ca, Sr, Ba) 

a) Short-range A (eV) r (Å) C (eV Å-6) 

Bi3+...O2- 49.529,35 0,2223 0,0 
Ca2+...O2- 1186,6   0,2970 0,0 
Sr2+...O2- 1956,702   0,3252 0,0 
Ba2+...O2- 4818,416 0,3067 0,0 
O2-...O2- 576,940 0,33236 0,0 
    
b) Shell model    
Species k (eV Å-2) Shell(e)  
Bi3+ 359,55 -5,51  
Ti4+  253,60 1,678  
Ca2+ 34,05 1,281  
Sr2+ 21,53 1,831  
Ba2+ 34,0 1,831  
O2- 70,1512 -2,04  

 

The ease of polarized dopants can be determined by 
charge of shell and the spring constant (polarizability). 
The shell charges of Sr and Ba are the same, but the 
spring constant is different, whereas Ca and Ba have 
the same spring constant, but the charge is different. 
The difference in the charge of the shell or the spring 
constant shows that the ease of dopant ions is 
polarized (polarizability) also different. The results of 
simulation show that the Sr> Ba> Ca polarizabilities as 
shown in Figure 2. However, in theory the smaller the 
ionic radius, the weaker the ionized is polarized by 
anions (oxygen), so the ease of the Ca, Sr, and Ba 
ions polarized oxygen is Ba> Sr> Ca. Differences in 
theoretical polarization and simulation results differ 
between Ba and Sr, where the simulation results show 
that Sr is more easily polarized than Ba. This is caused 
by the weak bond between the nucleus of the atom 
and the electrons as shown by the small Sr spring 
constant, 21 (eV Å-2). 

Figure 2. Polarizabilities, ionic radii, and perovskite tolerance 

factors of Aurivillius ABi4Ti4O15 oxide (Ca, Sr, Ba). 

The polarizability shows that the structure of 
ABi4Ti4O15 experienced greater distortion compared to 
the Aurivillius ABi4Ti4O15 (A = Ca, Ba). The cell 
parameters of a and b of ABi4Ti4O15 (A = Ca, Sr, Ba) 
have increased along with the increase in the 
concentration of dopants that partially substitution Bi 



 
Acta. Chim. Asiana., 202X, X(X), xxx –yyy 

 
xxx 

 

DOI: xxxxxxxxxxxx                                                       Akram La Kilo  
      

both in Bi(1) and Bi (2) sites. Conversely, the value of 
c changes (increases or decreases); Bi substitution by 
dopant in position Bi(1), then the value of c decreases, 
conversely substitution of Bi in site of Bi(2), then the 
value of c increases (except substitution with dopant 
Ca). The increase in the value of c is probably caused 
by the effect of repulsion of the pair of free electrons Bi 
which is in t [Bi2O2]2+ layer. The site of Bi(2) is closer to 

the bismuth layer, so that the repulsion of the electron 
pair will be strong to the ions which are in site (2) of 
the perovskite layer. In addition, the more easily 
polarized Sr and Ba ions cause a small increase in the 
a and b values of the ABi4Ti4O15 structure (A = Sr, Ba). 
However, the decrease in c value in CaBi4Ti4O15 (Bi is 
substituted with Ca in Bi(2) site is probably caused by 

Ca ions which are not easily hard polarized oxygen. 

 

 

Figure 3. ABi4Ti4O15 unit cell parameters (A = Ca, Sr, Ba); the values of a and b increase with increasing dopant 

concentration, but the value of c decreases when substituting in position Bi (1) and increases when substitution in position Bi 
(2). 

 

The stability of the perovskite structure can be 
predicted also by the tolerance factor of perovskite (t) 
proposed by Goldschmidt. This measures the size 
mismatch between cations A and B in the perovskite. 
The tolerance factor is defined as t =

(〈rA〉 + rO) √2(rB+⁄ rO, where 〈rA〉 is the average radius 

of cation A with dodecahderal coordination,  rB- ionic 

radius of cation B with 6-coordinate, rO-  oxygen radius 
of octahedral coordination [19]. When it is equal to 
unity, it is related to an undistorted ideal perovskite, 
while t <1 has a distorted perovskite system that 
shows the tilt or rotation of the octahedral BO6. The 
perovskite layer of ABi4Ti4O15 with that is doped with 
distortion because t is not equal to 1. It is Ba who has 
the highest level of distortion, with a tolerance factor 
far above one compared to the t value for Ca and Sr. 
Sr which is almost the same as one has less slope 
compared to the other. 

This result is different from the report of Reaney et al. 
(1994) which shows that perovskite at room 

temperature with 0.985 <t<1.06 is expected to have 
undistorted. Perovskites with 0.964 <t<0.985 typically 
have anti-phase slant structures and perovskites with t 
<0.964 are expected to show phase-and anti-phase 
tilting [20], [21]. As t continues to decline, the stability 
of the perovskite system decreases and eventually 
does not form. This is understandable because the 
consideration is the radius of the Shannon ion Bi3+ (r = 
1.17 Å) in 8-fold coordination, with t going to be 0.8886 
[22]. Therefore. Perovskite structure  is not stable. 
However, if we consider that the Bi3+ ion is 
dodecahedral coordination with ionic radius of 1.40 Å, 
then the t value indicates the distortion of BO6 of 
ABi4Ti4O15 doped with Ca2+, Sr2+, and Ba2+ to partially 
substitute Bi in the perovskite layer. This was also 
observed in BiFeO3 with t value of 0.96 [23]–[25]. Thus 
the cation A size variance and tolerance factor (t) are 
also the factors responsible for the formation of 
perovskite octahedral distortion. 
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Figure 4. ABi4Ti4O15 (A = Ca, Sr, Ba) lattice energy with 

dopant concentration; Bi (1) and Bi (2) substitution by dopant 
is done partially based on the increase in dopant 
concentration. 

The greater the concentration of dopant, the doped 
Aurivillius lattice energy is greater, according to the 
increase in dopant ion radius (rCa <rSr <rBa, 1.34, 1.44, 
1.61) [24]. ABi4Ti4O15 Aurivillius is more stable when 
substitution of Bi by dopants in position 2 of Bi(2) with 
dopant concentrations below 33.3%. Conversely, 
dopant concentration values above that, the Bi 
substitution is more stable at site Bi(1). Bi substitution 
is easier in the perovskite layer compared to the 
bismuth oxide layer. In addition, the maximum number 
of dopants that substitute Bi is only around 33% in the 
bismuth layer [26]. In the perovskite layer is also a 
major factor determining the ability of oxygen ions to 
migrate if the Aurivillius structure is empty [27]. This 
means that the perovskite layer is more likely to be 
modified so that Aurvillius can be applied in the 
ferroelectric, catalyst or electrolyte industries. 

Sadapu et al. (2015) reported Aurivillius lattice energy 
doped in the Bi2O2 layer was greater than the 
Aurivillius lattice energy doped in the perovskite layer. 
The energy lattices of BaxBi4-xTi4O15, CaxBi4-xTi4O15 
and SrxBi4-xTi4O15 are 1491,418, -1498,560, and 
1494,338 eV, respectively. The maximum 
concentration of dopants are Ba 33, Ca, 32, Sr 33% 
[26]. The four coordination that forms the rectangular 
pyramid (BiO4) in the bismuth oxide layer causes the 
small number of dopants to substitute Bi for the layer. 
Moreover, Bi has a lone pair of electrons which can 
repel dopant electrons that enter to replace it. Although 
the length of the Bi-O bond formed is longer because 
there are free electrons, the bond length is much 
smaller when dodecahedral coordinates of Bi on the 
perovskite layer. Therefore, coordination, dopant size, 
and the presence of free electrons determine the 
stability of the doped compound structure [28]. 

CONCLUSION 

The unit cell parameters ABi4Ti4O15 (A = Ca, Sr, Ba) fit 
well with the experimental unit cell parameters. 
Increasing dopant concentration which substitutes Bi, 
then the Aurivillius ABi4Ti4O15 lattice energy is getting 
bigger. ABi4Ti4O15 is more stable when dopant (A) 
substitutes Bi in Bi(2) position with dopant 
concentration below 33%. Conversely, dopant 
concentration above that, the substitution of Bi by 
dopant A at position Bi(1) is more stable. The 
maximum limit of Ca dopants substituting Bi(2) is 33%, 
while other dopants can completely substitute Bi(2). 
This research can be used as a guide for the synthesis 
of Aurivillius ABi4Ti4O15 compounds. 
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Abstract: This research aimed to study the stability of AxBi4-xTi4O15 Aurivillius (A = Ca, Sr, and Ba). Dopants 
(A) partially substitute Bi at the sites of Bi(1) and Bi(2) of perovskite layer. This research method is atomistic 
simulation using by GULP code. Simulations were carried out by means of AxBi4-xTi4O15 geometry optimization 
at a constant pressure, using the Buckingham potential. The results showed that the increase in the 
concentration of dopants substituting Bi accompanied with increase in lattice energies. The most stable 
Aurivillius was CaxBi4-xTi4O15 (x = 16.3%) carried out by Bi substitution at Bi(2) site, with lattice energy, -
1668.227 eV. Aurivillius stability decreases by increasing size of the dopant. The maximum concentration 
number of A dopant substituting Bi was discussed. 
  

Keywords: Aurivillius; atomistic simulation; lattice energy; dopants of earth alkaline ionic; shell model 

 

INTRODUCTION 

The specific nature of Aurivillius is determined by its 
crystal structure [1]. The packaging of the ions in the 
structure determines type and possibility of Aurivillius 
application [2]. One of the interesting properties of 
Aurvillius is ferroelectric which can be applied as a 
storage material of Fe-RAM memory, capacitors, 
piezoelectric, conductor, catalyst, and as a magnetic 
material [3], [4]. To achieve the property, then 
Aurvillius doped with certain ions on bismuth oxide or 
perovskite layers.  

Aurivillius oxide is an oxide compound with a layered 
structure that is arranged regularly and alternates 
between layers of perovskite of [An-1BnO3n + 1]2- and 
[Bi2O2]2+. Cation A is dodecahedral coordinated ions, 
which have a charge of +1, +2 or +3, such as alkali, 
earth alkaline, rare earth elements or mixtures. Cation 
B is ions with octahedral coordination which are 
usually transition elements with smaller sizes than 
cation A. While n is an integer which shows the 
octahedral number in the perovskite layer [5], [6]. 
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Layered oxide has structural and composition flexibility 
that allows it to be controlled by doping with both A 
and B ions. The lone pair of electrons in Bi3+ in the 
[Bi2O2]2+ layer plays an important role in controlling 
valence fluctuations and non-stoichiometric 
stabilization, giving rise to various physical and 
chemistry properties. These different physical and 
chemical properties affect the quality of the Aurivillius 
material in use for subsequent applications [7], [8]. 
ABi4Ti4O15 oxide (A = Ba, Ca, Sr, Pb) is described as 
orthorhombic [8], [9], [10]. Kojima and Roman (1995) 
reported that the compound ABi4Ti4O15 (A = Ca, Sr, 
Pb) allows cation distortion to occur because there are 
several B ions occupying a random site, such as Bi of 
the perovskite layer [11]. However, ABi4Ti4O15 oxide (A 
= Ba, Ca, Sr) has not been explained by its stability 
based on the increase in the concentration of dopants 
which substitute Bi in the perovskite layer. The stability 
can be viewed from the lattice energy, cell parameters, 
polarizability, and perovskite tolerance factors, as 
explained in this study. It also relates to the bond 
valence sum of an ion in a particular structure [12], but 
was not done in this study. If doping is based on 
increasing concentrations and in large amounts, it will 
require a lot of time and cost so this research is carried 
out by atomistic simulation. 

The atomistic simulation method is strong enough to 
study thermodynamics and multiscale modeling. 
Atomic-level simulations involve potential pairs using 
rigid ion models or shell models that have successfully 
described the defect properties of many-ion systems. 
The ion rigid model requires half the parameters 
compared to the shell model. This ion rigid model is 
much faster and effective for multiscale simulation. On 
the other hand, the need for few parameters is 
challenged to get a valid model for atomic interactions, 
especially for complex systems. Therefore, atomistic 
simulations mostly use the shell model framework [13] 
[14]. This research is an atomistic study of the lattice 
structure of the four layer Aurivillius oxide of AxBi4-

xTi4O15 Aurivillius (A = Ca, Sr, and Ba), where x is 
dopant concentration. 

MATERIALS AND METHODS 

This atomistic simulation is done through a geometry 
optimization procedure using a Linux-based computer 
that is equipped with the General Utility lattice Program 
(GULP) code. Atomistic modeling illustrates the 
interactions between ions in a crystal structure based 
on a solid model proposed by Born [15]. Modeling 
interactions between ions can be understood through 
the function of potential energy of system, especially 
the system of two objects that describe these 
interactions. The potential energy of attraction and 
repulsion between each ion pair in a solid crystal at 

zero Kelvin is expressed as a static lattice energy 
which is formulated as: 
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The first term of equation (1) is the static lattice energy 
of the long-range Coulomb's pull for the arrangement 
of infinite ions. The second term expresses the 
diffusion properties of the electron cloud surrounding 
the nucleus consisting of short-range interactions 
associated with Pauli's repulsion between neighboring 
electron clouds and van der Waals attraction 
components of short-range. The third term describes 
the interaction of three objects, in the solids of ions, 
the interaction of two objects dominates. In the rigid 
ion model, the short-range interaction is stimulated 
mainly by the effects of the nearest neighbor ion. The 
short-range potential function can be described by the 
Buckingham potential: 
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where Aij, ij and Cij are constants and rij is the 
distance between ions. The first term in equation (2) 
represents a short-range repulsion, while the second 
term shows the pull of induced dipoles (van der 
Waals). 

In addition to the ion interaction model, the model can 
also include ion polarization descriptions [16]. The 
model represents the ion as a charged shell with a 
very small mass (representing the outer valence 
electron cloud) which is bound to a large mass nucleus 
by a harmonious spring. Additional energy due to shell 
interactions with the nucleus is expressed by equation 
(3): 
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where is the spring constant and is the distance 
between the core and the shell. Equation (3) describes 
the ion polarization, which is needed for the calculation 
of the defect energy and the dielectric constant. Ion 
polarization is formulated by equation (4): 
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where Yi is the shell charge and e is the electron 
charge. Coulomb interaction calculation in this study 
will use the Ewald method with GULP code. 
Meanwhile, the short-range potential used is the 
Buckingham potential [17], [18]. 

RESULTS AND DISCUSSION 
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Aurivillius structure is composed of perovskite layer 
and bismuth layer, [Bi2O2]2+ which alternates along the 
c axis. Bi ions in the ABi4Ti4O15 (A = Ca, Sr, Ba) 
structure occupy Bi(1) and Bi(2) sites in the perovskite 
layer and Bi(3) in the bismuth layer, as shown in 
Figure 1. In this study, substitution Bi by dopant (Ca, 
Sa, Ba) is done partially at Bi(1) or Bi(2) position based 
on the increase in dopant concentration. The dopants 
replace a certain amount of Bi of the perovskite layer, 
while (at the same time), the concentrations of Bi(3), 
O2-, and Ti4+ ions are allowed to remain. The standard 
Bi concentration (occupancy) of Aurivillius at the Bi(1) 
and Bi(2) siets is based on the Aurivillius ABi4Ti4O15 
oxide (Figure 1) reported by Kennedy et al. [8]. Bi 
occupancy at Bi(1) and Bi(2) sites is 0.81 and 0.83, 
respectively. That is, Sr (as a dopant) occupy the 
positions respectively by 0.19 or 19% and 0.17 or 
17%. If 20% Bi is substituted by Sr in the Bi(1) site 
then the fractional part becomes 0.8 Bi(1), 80% and 
0.2 Sr(1), 20%. Thus, each Bi substitution in a certain 
position, with dopants at different concentrations, then 
the concentration of Bi will change as much as the 
concentration of dopants entering the site. Instead the 
concentration of ions in other positions is fixed. 

 

Figure 1. Representation of Arivillius ABi4Ti4O15 (Ca, Sr, Ba) 
Oxide Structure (n = 4). Bi(1) and Bi(2) are in the perovskite 
layer, and Bi(2) is closer to the [Bi2O2]2+ layer.  

Aurivillius of ABi4Ti4O15 (Ca, Sr, Ba) are atomically 
simulated at a constant pressure using the GULP 
code. This simulation is based on lattice minimization 
which is done iteratively. During this process, the 
forces on each ion are calculated, and then the ion is 
shifted slightly in proportion to the forces acting on it. 
This process continues, until the forces acting on all 
ions are zero. The simulation in this study is 
determined by the Buckingham potential and the 
charge model (shell model) of the Aurivillius oxide. 
Potential Buckingham (short-range) and shell models 
(based on atomistic simulation results) suitable for 
Aurivillius ABi4Ti4O15 oxide (Ca, Sr, Ba) are shown in 
Table 1. 

Tabel 1. Buckingham potential (short-range) and shell model of ions 
from Aurivillius ABi4Ti4O15 oxide (Ca, Sr, Ba) 

a) Short-range A (eV) r (Å) C (eV Å-6) 

Bi3+...O2- 49.529,35 0,2223 0,0 
Ca2+...O2- 1186,6   0,2970 0,0 
Sr2+...O2- 1956,702   0,3252 0,0 
Ba2+...O2- 4818,416 0,3067 0,0 
O2-...O2- 576,940 0,33236 0,0 
    
b) Shell model    
Species k (eV Å-2) Shell(e)  
Bi3+ 359,55 -5,51  
Ti4+  253,60 1,678  
Ca2+ 34,05 1,281  
Sr2+ 21,53 1,831  
Ba2+ 34,0 1,831  
O2- 70,1512 -2,04  

 

The ease of polarized dopants can be determined by 
charge of shell and the spring constant (polarizability). 
The shell charges of Sr and Ba are the same, but the 
spring constant is different, whereas Ca and Ba have 
the same spring constant, but the charge is different. 
The difference in the charge of the shell or the spring 
constant shows that the ease of dopant ions is 
polarized (polarizability) also different. The results of 
simulation show that the Sr> Ba> Ca polarizabilities as 
shown in Figure 2. However, in theory the smaller the 
ionic radius, the weaker the ionized is polarized by 
anions (oxygen), so the ease of the Ca, Sr, and Ba 
ions polarized oxygen is Ba> Sr> Ca. Differences in 
theoretical polarization and simulation results differ 
between Ba and Sr, where the simulation results show 
that Sr is more easily polarized than Ba. This is caused 
by the weak bond between the nucleus of the atom 
and the electrons as shown by the small Sr spring 
constant, 21 (eV Å-2). 

Figure 2. Polarizabilities, ionic radii, and perovskite tolerance 

factors of Aurivillius ABi4Ti4O15 oxide (Ca, Sr, Ba). 

The polarizability shows that the structure of 
ABi4Ti4O15 experienced greater distortion compared to 
the Aurivillius ABi4Ti4O15 (A = Ca, Ba). The cell 
parameters of a and b of ABi4Ti4O15 (A = Ca, Sr, Ba) 
have increased along with the increase in the 
concentration of dopants that partially substitution Bi 
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both in Bi(1) and Bi (2) sites. Conversely, the value of 
c changes (increases or decreases); Bi substitution by 
dopant in position Bi(1), then the value of c decreases, 
conversely substitution of Bi in site of Bi(2), then the 
value of c increases (except substitution with dopant 
Ca). The increase in the value of c is probably caused 
by the effect of repulsion of the pair of free electrons Bi 
which is in t [Bi2O2]2+ layer. The site of Bi(2) is closer to 

the bismuth layer, so that the repulsion of the electron 
pair will be strong to the ions which are in site (2) of 
the perovskite layer. In addition, the more easily 
polarized Sr and Ba ions cause a small increase in the 
a and b values of the ABi4Ti4O15 structure (A = Sr, Ba). 
However, the decrease in c value in CaBi4Ti4O15 (Bi is 
substituted with Ca in Bi(2) site is probably caused by 

Ca ions which are not easily hard polarized oxygen. 

 

 

Figure 3. ABi4Ti4O15 unit cell parameters (A = Ca, Sr, Ba); the values of a and b increase with increasing dopant 

concentration, but the value of c decreases when substituting in position Bi (1) and increases when substitution in position Bi 
(2). 

 

The stability of the perovskite structure can be 
predicted also by the tolerance factor of perovskite (t) 
proposed by Goldschmidt. This measures the size 
mismatch between cations A and B in the perovskite. 
The tolerance factor is defined as t =

(〈rA〉 + rO) √2(rB+⁄ rO, where 〈rA〉 is the average radius 

of cation A with dodecahderal coordination,  rB- ionic 

radius of cation B with 6-coordinate, rO-  oxygen radius 
of octahedral coordination [19]. When it is equal to 
unity, it is related to an undistorted ideal perovskite, 
while t <1 has a distorted perovskite system that 
shows the tilt or rotation of the octahedral BO6. The 
perovskite layer of ABi4Ti4O15 with that is doped with 
distortion because t is not equal to 1. It is Ba who has 
the highest level of distortion, with a tolerance factor 
far above one compared to the t value for Ca and Sr. 
Sr which is almost the same as one has less slope 
compared to the other. 

This result is different from the report of Reaney et al. 
(1994) which shows that perovskite at room 

temperature with 0.985 <t<1.06 is expected to have 
undistorted. Perovskites with 0.964 <t<0.985 typically 
have anti-phase slant structures and perovskites with t 
<0.964 are expected to show phase-and anti-phase 
tilting [20], [21]. As t continues to decline, the stability 
of the perovskite system decreases and eventually 
does not form. This is understandable because the 
consideration is the radius of the Shannon ion Bi3+ (r = 
1.17 Å) in 8-fold coordination, with t going to be 0.8886 
[22]. Therefore. Perovskite structure  is not stable. 
However, if we consider that the Bi3+ ion is 
dodecahedral coordination with ionic radius of 1.40 Å, 
then the t value indicates the distortion of BO6 of 
ABi4Ti4O15 doped with Ca2+, Sr2+, and Ba2+ to partially 
substitute Bi in the perovskite layer. This was also 
observed in BiFeO3 with t value of 0.96 [23]–[25]. Thus 
the cation A size variance and tolerance factor (t) are 
also the factors responsible for the formation of 
perovskite octahedral distortion. 
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Figure 4. ABi4Ti4O15 (A = Ca, Sr, Ba) lattice energy with 

dopant concentration; Bi (1) and Bi (2) substitution by dopant 
is done partially based on the increase in dopant 
concentration. 

The greater the concentration of dopant, the doped 
Aurivillius lattice energy is greater, according to the 
increase in dopant ion radius (rCa <rSr <rBa, 1.34, 1.44, 
1.61) [24]. ABi4Ti4O15 Aurivillius is more stable when 
substitution of Bi by dopants in position 2 of Bi(2) with 
dopant concentrations below 33.3%. Conversely, 
dopant concentration values above that, the Bi 
substitution is more stable at site Bi(1). Bi substitution 
is easier in the perovskite layer compared to the 
bismuth oxide layer. In addition, the maximum number 
of dopants that substitute Bi is only around 33% in the 
bismuth layer [26]. In the perovskite layer is also a 
major factor determining the ability of oxygen ions to 
migrate if the Aurivillius structure is empty [27]. This 
means that the perovskite layer is more likely to be 
modified so that Aurvillius can be applied in the 
ferroelectric, catalyst or electrolyte industries. 

Sadapu et al. (2015) reported Aurivillius lattice energy 
doped in the Bi2O2 layer was greater than the 
Aurivillius lattice energy doped in the perovskite layer. 
The energy lattices of BaxBi4-xTi4O15, CaxBi4-xTi4O15 
and SrxBi4-xTi4O15 are 1491,418, -1498,560, and 
1494,338 eV, respectively. The maximum 
concentration of dopants are Ba 33, Ca, 32, Sr 33% 
[26]. The four coordination that forms the rectangular 
pyramid (BiO4) in the bismuth oxide layer causes the 
small number of dopants to substitute Bi for the layer. 
Moreover, Bi has a lone pair of electrons which can 
repel dopant electrons that enter to replace it. Although 
the length of the Bi-O bond formed is longer because 
there are free electrons, the bond length is much 
smaller when dodecahedral coordinates of Bi on the 
perovskite layer. Therefore, coordination, dopant size, 
and the presence of free electrons determine the 
stability of the doped compound structure [28]. 

CONCLUSION 

The unit cell parameters ABi4Ti4O15 (A = Ca, Sr, Ba) fit 
well with the experimental unit cell parameters. 
Increasing dopant concentration which substitutes Bi, 
then the Aurivillius ABi4Ti4O15 lattice energy is getting 
bigger. ABi4Ti4O15 is more stable when dopant (A) 
substitutes Bi in Bi(2) position with dopant 
concentration below 33%. Conversely, dopant 
concentration above that, the substitution of Bi by 
dopant A at position Bi(1) is more stable. The 
maximum limit of Ca dopants substituting Bi(2) is 33%, 
while other dopants can completely substitute Bi(2). 
This research can be used as a guide for the synthesis 
of Aurivillius ABi4Ti4O15 compounds. 
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Abstract: This research aimed to study the stability of AxBi4-xTi4O15 Aurivillius (A = Ca, 

Sr, and Ba). Dopants (A) partially substitute Bi at the sites of Bi(1) and Bi(2) of the 

perovskite layer. This research method is an atomistic simulation using the GULP code. 

Simulations were carried out utilizing AxBi4-xTi4O15 geometry optimization at constant 

pressure, using the Buckingham potential. The results showed that the increase in the 

concentration of dopants substituting Bi accompanied by an increase in lattice energies. 

The most stable Aurivillius was CaxBi4-xTi4O15 (x = 16.3%) carried out by Bi substitution 

at Bi(2) site, with lattice energy, -1668.227 eV. Aurivillius stability decreases by increasing 

the size of the dopant. The maximum concentration number of A dopant substituting Bi 

was discussed. 

Abbreviations: 

GULP: General Utility Lattice 

Program 
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INTRODUCTION 
The specific nature of Aurivillius is determined by 
its crystal structure [1]. The ions in the structure's 
packaging determine the type and possibility of the 
Aurivillius application [2]. One of the exciting 
properties of Aurvillius is ferroelectric, which can 
be applied as a storage material of Fe-RAM 
memory, capacitors, piezoelectric, conductor, 
catalyst, and as a magnetic material [3], [4]. To 
achieve the property, then Aurvillius doped with 
specific ions on bismuth oxide or perovskite layers. 
The introduction should briefly explain the general 
context and the importance of the reviewed 
research field. The current state of the research field 
should be comprehensively reviewed and cited in 
the key publications. 

Aurivillius oxide is an oxide compound with a 
layered structure arranged regularly and alternates 
between layers of perovskite of [An-1BnO3n + 1]2- and 
[Bi2O2]2+. Cation A is dodecahedral coordinated ions 
with a charge of +1, +2, or +3, such as alkali, earth 
alkaline, rare earth elements, or mixtures. Cation B 
is ions with octahedral coordination, usually 
transition elements with smaller sizes than cation 
A, whereas n is an integer which shows the 
octahedral number in the perovskite layer [5], [6]. 

Layered oxide has structural and composition 
flexibility that allows it to be controlled by doping 
with both A and B ions. The lone pair of electrons 
in Bi3+ in the [Bi2O2]2+ layer plays an essential role in 
controlling valence fluctuations and non-

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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stoichiometric stabilization, giving rise to various 
physical and chemical properties. These different 
physical and chemical properties affect the quality 
of the Aurivillius material in use for subsequent 
applications [7], [8].  

ABi4Ti4O15 oxide (A = Ba, Ca, Sr, Pb) is described as 
orthorhombic [8], [9], [10]. Kojima and Roman 
(1995) reported that the compound ABi4Ti4O15 (A = 
Ca, Sr, Pb) allows cation distortion to occur because 
several B ions are occupying a random site, such as 
Bi of the perovskite layer [11]. However, ABi4Ti4O15 
oxide (A = Ba, Ca, Sr) has not been explained by its 
stability based on the increase in dopants' 
concentration, which substitutes Bi in the 
perovskite layer. The stability can be viewed from 
the lattice energy, cell parameters, polarizability, 
and perovskite tolerance factors, as explained in 
this study. It also relates to the bond valence sum of 
an ion in a particular structure [12] but was not 
done in this study. If doping is based on increasing 
concentrations and large amounts, it will require a 
lot of time and cost, so this research is carried out 
by atomistic simulation. 

The atomistic simulation method is strong enough 
to study thermodynamics and multiscale modeling. 
Atomic-level simulations involve potential pairs 
using rigid ion models or shell models that have 
successfully described multiple-ion systems' defect 
properties. The ion rigid model requires half the 
parameters compared to the shell model. This ion 
rigid model is much faster and useful for multiscale 
simulation. On the other hand, few parameters are 
challenged to get a valid model for atomic 
interactions, especially for complex systems. 
Therefore, atomistic simulations mostly use the 
shell model framework [13] [14]. This research is an 
atomistic study of the lattice structure of the four-
layer Aurivillius oxide of AxBi4-xTi4O15 Aurivillius 
(A = Ca, Sr, and Ba), where x is dopant 
concentration. 

 

MATERIALS AND METHODS 
This atomistic simulation is done through a 
geometry optimization procedure using a Linux-
based computer equipped with the General Utility 
Lattice Program (GULP) code. Atomistic modeling 
illustrates the interactions between ions in a crystal 
structure based on a solid model proposed by Born 
[15]. Modeling interactions between ions can be 
understood through the function of the system's 
potential energy, especially the system of two 
objects that describe these interactions. The 
potential energy of attraction and repulsion 
between each ion pair in a solid crystal at zero 
Kelvin is expressed as a static lattice energy, which 
is formulated as: 

  
ij ij ijk

ijkij

ij

ji

L θ++
r

qq
=E 

 (1) 
The first term of equation (1) is the static lattice 
energy of the long-range Coulomb's pull to arrange 
infinite ions. The second term expresses the electron 
cloud's diffusion properties surrounding the 
nucleus consisting of short-range interactions 
associated with Pauli's repulsion between 
neighboring electron clouds and van der Waals 
attraction components of short-range. The third 
term describes the interaction of three objects, in the 
solids of ions, the interaction of two objects 
dominates. In the rigid ion model, the short-range 
interaction is stimulated mainly by the nearest 
neighbor ion's effects. The Buckingham potential 
can describe the short-range potential function: 
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where Aij, ij, and Cij are constants, and rij is the 
distance between ions. The first term in equation (2) 
represents a short-range repulsion, while the 
second term shows the pull of induced dipoles (van 
der Waals). 

In addition to the ion interaction model, the model 
can also include ion polarization descriptions [16]. 
The model represents the ion as a charged shell 
with a tiny mass (representing the outer valence 
electron cloud), which is bound to a large mass 
nucleus by a harmonious spring. Additional energy 
due to shell interactions with the nucleus is 
expressed by equation (3): 


i

i

s

is rk=U 2

   (3) 

 
where is the spring constant and is the distance 
between the core and the shell. Equation (3) 
describes the ion polarization, which is needed for 
the calculation of the defect energy and the 
dielectric constant. Ion polarization is formulated 
by equation (4): 

 s

i
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where Yi is the shell charge, and e is the electron 
charge. Coulomb interaction calculation in this 
study will use the Ewald method with the GULP 
code. Meanwhile, the short-range potential used is 
the Buckingham potential [17], [18]. 
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RESULTS AND DISCUSSION 
Aurivillius structure is composed of a perovskite 
layer and a bismuth layer, [Bi2O2]2+, which 
alternates along the c axis. Bi ions in the ABi4Ti4O15 

(A = Ca, Sr, Ba) structure occupy Bi(1) and Bi(2) 
sites in the perovskite layer and Bi(3) in the bismuth 
layer, as shown in Figure 1. In this study, 
substitution Bi by dopant (Ca, Sa, Ba) is done 
partially at Bi(1) or Bi(2) position based on the 
increase in dopant concentration. The dopants 
replace a certain amount of Bi of the perovskite 
layer, while (at the same time) the concentrations of 
Bi(3), O2-, and Ti4+ ions are allowed to remain. The 
standard Bi concentration (occupancy) of 
Aurivillius at the Bi(1) and Bi(2) sites is based on 
the Aurivillius ABi4Ti4O15 oxide (Figure 1) reported 
by Kennedy et al. [8]. Bi occupancy at Bi(1) and Bi(2) 
sites is 0.81 and 0.83, respectively. That is, Sr (as a 
dopant) occupy the positions respectively by 0.19 or 
19% and 0.17 or 17%. If 20% Bi is substituted by Sr 
in the Bi(1) site then the fractional part becomes 0.8 
Bi(1), 80% and 0.2 Sr(1), 20%. Thus, each Bi 
substitution in a certain position, with dopants at 
different concentrations, then the Bi concentration 
will change as much as the concentration of 
dopants entering the site. Instead, the concentration 
of ions in other positions is fixed. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Representation of Arivillius ABi4Ti4O15 (Ca, Sr, 

Ba) Oxide Structure (n = 4). Bi(1) and Bi(2) are in the 

perovskite layer, and Bi(2) is closer to the [Bi2O2]2+ layer.  

 
Aurivillius of ABi4Ti4O15 (Ca, Sr, Ba) is atomically 
simulated at constant pressure using the GULP 
code. This simulation is based on lattice 
minimization, which is done iteratively. During this 
process, the forces on each ion are calculated. Then,  
the ion is shifted slightly in proportion to the forces 
acting on it. This process continues until the forces 
acting on all ions are zero. This study's simulation 
is determined by the Buckingham potential and the 
charge model (shell model) of the Aurivillius oxide. 
Potential Buckingham (short-range) and shell 
models (based on atomistic simulation results) 
suitable for Aurivillius ABi4Ti4O15 oxide (Ca, Sr, Ba) 
are shown in Table 1. 

The ease of polarized dopants can be determined 
by the shell's charge and the spring constant 
(polarizability). The shell charges of Sr and Ba are 
the same, but the spring constant is different, 
whereas Ca and Ba have the same spring constant, 
but the charge is different. The difference in the 
shell's charge or the spring constant shows that the 
ease of dopant ions is polarized (polarizability) also 
different. 

Table 1. Buckingham potential (short-range) and shell 
model of ions from Aurivillius ABi4Ti4O15 oxide (Ca, Sr, 
Ba) 

a) Short-range A (eV) r (Å) C (eV Å-6) 

Bi3+...O2- 49.529,35 0,2223 0,0 

Ca2+...O2- 1186,6   0,2970 0,0 

Sr2+...O2- 1956,702   0,3252 0,0 

Ba2+...O2- 4818,416 0,3067 0,0 

O2-...O2- 576,940 0,33236 0,0 

    

b) Shell model    

Species k (eV Å-2) Shell(e)  

Bi3+ 359,55 -5,51  

Ti4+  253,60 1,678  

Ca2+ 34,05 1,281  

Sr2+ 21,53 1,831  

Ba2+ 34,0 1,831  

O2- 70,1512 -2,04  

 

The simulation results show that the Sr> Ba> Ca 
polarizabilities, as shown in Figure 2. However, in 
theory, the smaller the ionic radius, the weaker the 
ionized is polarized by anions (oxygen), so the ease 
of the Ca, Sr, and Ba ions polarized oxygen is Ba> 
Sr> Ca. Differences in theoretical polarization and 
simulation results differ between Ba and Sr, where 
the simulation results show that Sr is more easily 
polarized than Ba. The phenomenon is caused by 
the weak bond between the nucleus of the atom 
and the electrons, as shown by the small Sr spring 
constant, 21 (eV Å-2). 

Figure 2. Polarizabilities, ionic radii, and perovskite 
tolerance factors of Aurivillius ABi4Ti4O15 oxide (Ca, Sr, 
Ba). 

The polarizability shows that the structure of 
ABi4Ti4O15 experienced greater distortion compared 
to the Aurivillius ABi4Ti4O15 (A = Ca, Ba). The cell 
parameters of a and b of ABi4Ti4O15 (A = Ca, Sr, Ba) 
increased along with the increase in the 
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concentration of dopants that partially substitute Bi 
both in Bi(1) and Bi (2) sites. On the other hand, the 
cell parameter c can either increase or decreases: Bi 
substitution by dopant in position Bi(1) decreases 
the value of c decreases, whereas substitution of Bi 
in Bi(2) increases the value of c.  An exception to 
this rule is substitution with dopant Ca. The 
increase in the value of c is probably caused by the 
effect of repulsion of the pair of free electrons Bi, 
which is in t [Bi2O2]2+ layer. Bi(2) is closer to the 

bismuth layer so that the repulsion of the electron 
pair to the ions in the site (2) of the perovskite layer 
is enormous. The easier the Sr and Ba ions 
polarized, the smaller the increase of the a and b 
values of the ABi4Ti4O15 structure (A = Sr, Ba). 
However, the decrease in c value in CaBi4Ti4O15 (Bi 
is substituted with Ca in Bi(2) site) is likely due to 
the fact that Ca ions, which are not easily polarized 
by oxygen. 

 

 

Figure 3. ABi4Ti4O15 unit cell parameters (A = Ca, Sr, Ba); the values of a and b increase with increasing dopant 
concentration, but the value of c decreases when substituting in position Bi(1) and increases when substitution in 
position Bi(2). 

The perovskite structure's stability can also be 
predicted by the tolerance factor of perovskite (t) 
proposed by Goldschmidt. This approach measures 
the size mismatch between cations A and B in the 
perovskite. The tolerance factor is defined as 𝑡 =
(〈rA〉 + rO) √2(rB+⁄ rO, where 〈rA〉 is the average 
radius of cation A with dodecahedral coordination,  
rB- ionic radius of cation B with 6-coordinate, rO-  
oxygen radius of octahedral coordination [19]. The t 
value equals unity shows an ideal perovskite, while 
t<1 indicates a distorted perovskite system where 
tilt or rotation of the octahedral BO6  is plausible. 
Among the dopants, Ba gives the highest level of 
distortion, with a tolerance factor far above those 
resulting in Ca and Sr. Sr's addition, which is 
almost the same as one has less slope than the 
other. 

This result is different from the report of Reaney et 
al. (1994), who shows that perovskite at room 
temperature with 0.985<t<1.06 is expected to be 
undistorted. Perovskites with 0.964<t<0.985 
typically have anti-phase slant structures, and 
perovskites with t<0.964 are expected to show 
phase-and anti-phase tilting [20], [21]. As t 
continues to decline, the stability of the perovskite 
system decreases and eventually destroys the 

structure. This observation is conceivable since the 
radius of the Shannon ion Bi3+ (r = 1.17 Å) is in 8-
fold coordination, with t decreases to 0.8886 [22]. 
Therefore, the perovskite structure is not stable. 
However, if we consider that the Bi3+ ion is 
dodecahedral coordination with an ionic radius of 
1.40 Å, then the t value indicates the distortion of 
BO6 of ABi4Ti4O15 doped with Ca2+, Sr2+, and Ba2+ to 
partially substitute Bi in the perovskite layer. An 
example was also observed in BiFeO3 with a t value 
of 0.96 [23]–[25]. Thus the cation A size variance 
and tolerance factor (t) are also the factors 
responsible for the formation of perovskite 
octahedral distortion. 

CONCLUSION 
The unit cell parameters ABi4Ti4O15 (A = Ca, Sr, Ba) 
fit well with the experimental unit cell parameters. 
The higher the dopant concentration, which 
substitutes Bi, then the bigger the Aurivillius 
ABi4Ti4O15 lattice energy. ABi4Ti4O15 is more stable 
when dopant (A) substitutes Bi in Bi(2) position 
with dopant concentration below 33%. Conversely, 
at a higher dopant concentration, the substitution of 
Bi by dopant A at position Bi(1) is more stable. The 
maximum limit of Ca dopants substituting Bi(2) is 
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33%, while other dopants can completely substitute 
Bi(2). This research can be used as a guide for the 
synthesis of Aurivillius ABi4Ti4O15 compounds. 
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