

Home > User > Author > Submissions > #9870 > Summary

#9870 SUMMARY

SUMMARY REVIEW EDITING

SUBMISSION

Authors	Akram La Kilo, Kusrini Kusrini, Deasy Natalia Botutihe
Title	The Relationship between Stability and Ion Conduction of Trivalent Cation Doped Ceria
Original file	9870-18854-1-SM.DOCM 2021-02-04
Supp. files	None
Submitter	Dr. Akram La Kilo 🖾
Date submitted	February 4, 2021 - 11:42 AM
Section	Articles
Editor	Opir Rumape 🖾
Abstract Views	157

STATUS

Status Initiated Published Vol 3, No 1 (2021): February 2021 2021-05-17

SUBMIT A MANUSCRIPT

FOCUS & SCOPE

AUTHOR GUIDELINES

AUTHOR FEE

PEER REVIEWERS

EDITORIAL TEAM

CONTACT

VISITOR S WhatsApp Kami Last modified

SUBMISSION METADATA

AUTHORS

Name	Akram La Kilo 🕮
ORCID iD	http://orcid.org/0000-0002-4885-1838
URL	https://scholar.google.co.id/citations?user=YWz4wUMAAAAJ&hl=id
Affiliation	Universitas Negeri Gorontalo
Country	Indonesia
Bio Statement	_
Principal contact for edite	orial correspondence.
Name	Kusrini Kusrini 🖾
Affiliation	Universitas Negeri Gorontalo
Country	Indonesia
Bio Statement	_
Name	Deasy Natalia Botutihe 🖾
Affiliation	Universitas Negeri Gorontalo
Country	Indonesia
Bio Statement	_

TITLE AND ABSTRACT

Title Abstract The Relationship between Stability and Ion Conduction of Trivalent Cation Doped Ceria

This research aims to study the stability of CeO2 structure which doped with trivalent oxide which become Ce1-xMxO2- (M=Lu3+, Yb3+, Er3+, Y3+, Gd3+, Eu3+, Sm3+, dan La3+) compound through atomistic simulation, the value of x present the concentration number of the substitution dopant of Ce4+ partially and the concentration of the dopant is limited to 10%. This research is explorative theoretical using methods of computational chemistry by atomistic simulating using GULP. The objects in this study was 8 trivalent oxide with the short-range potential as the input data. Potential short-range used in this study is the Buckingham potential. The results of geometry optimization at a constant pressure showed the differences between cell parameters of doped CeO2 before and after the atomistic simulation corresponds with the experimental results is only 0.02%. The results showed that the stability of doped CeO2 structure is decreased with increasing concentrations of dopants. A decrease in the stability of CeO2 doped with Lu, Ce, Er, Gd, Eu, Nd and La is greater than the decrease in the stability of CeO2 doped with Sm, Y and Yb.

Member

e-ISSN p-ISSN

USER

You are logged in as... **lakilo**

- My Journals
- My Profile

» Log Out

INDEXING

Keywords

Language

SUPPORTING AGENCIES

en

Agencies

REFERENCES

References

Anwar, M., Muhammed, M. A., Muchtar, A., & Somalu, M. R. (2019). Influence of strontium co-doping on the structural, optical, and electrical properties of erbium-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Ceramics International. AUTHOR https://doi.org/10.1016/j.ceramint.2018.12.023 Artini, C., Carnasciali, M. M., Viviani, M., Presto, S., Plaisier, J. R., Costa, G. A., & Pani, M. (2018). Structural Submissions properties of Sm-doped ceria electrolytes at the fuel cell operating temperatures. Solid State Ionics. Active (1) https://doi.org/10.1016/j.ssi.2017.12.009 Archive (2) Born, M., & Mayer, J. E. (1932). Zur Gittertheorie der Ionenkristalle. Zeitschrift Für Physik. New Submission https://doi.org/10.1007/BF01340511 Catlow, C. R. A. (1984). Transport in doped fluorite oxides. Solid State Ionics. https://doi.org/10.1016/0167-2738(84)90131-0 Chaudhary, S., Kumar, S., & Mehta, S. K. (2019). Systematic enumeration and proficient chemical sensing applications of Eu 3+ @CeO 2 nanocrystals. Materials Science and Engineering C. https://doi.org/10.1016/j.msec.2018.11.022 Chen, D., Zhang, D., He, D., Lu, J., Zhong, L., Han, C., & Luo, Y. (2018). Relationship between oxygen species and activity/stability in heteroatom (Zr, Y)-doped cerium-based catalysts for catalytic decomposition of CH3SH. Chinese Journal of Catalysis, 39(12), 1929–1941. Choolaei, M., Cai, Q., Slade, R. C. T., & Amini Horri, B. (2018). Nanocrystalline gadolinium-doped ceria (GDC) for SOFCs by an environmentally-friendly single step method. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.04.159 Deguchi, H., Yoshida, H., Inagaki, T., & Horiuchi, M. (2005). EXAFS study of doped ceria using multiple data set fit. Solid State Ionics. https://doi.org/10.1016/j.ssi.2005.04.043 Dove, M. T. (2008). An introduction to atomistic simulation methods. Seminarios de La SEM, 4, 7–37. Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society - Faraday Transactions. https://doi.org/10.1039/a606455h Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation. https://doi.org/10.1080/0892702031000104887 Goharshadi, E. K., Samiee, S., & Nancarrow, P. (2011). Fabrication of cerium oxide nanoparticles: Characterization and optical properties. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2011.01.063 Guan, T., Yang, Z., Sun, Y., & Guo, W. (2019). Anisotropic mechanical behavior of gadolinia-doped ceria solid electrolytes under tensile loading. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.10.014 Gupta, M., Shirbhate, S., Ojha, P., & Acharya, S. (2018). Processing and conductivity behavior of La, Sm, Fe singly and doubly doped ceria: As electrolytes for IT-SOFCs. Solid State Ionics. https://doi.org/10.1016/j.ssi.2018.03.005 He, D., Hao, H., Chen, D., Liu, J., Yu, J., Lu, J., ... Luo, Y. (2017). Synthesis and application of rare-earth elements (Gd. Sm. and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic

00080087

Lihat Statistik Pengunjung

decomposition. Catalysis Today. https://doi.org/10.1016/j.cattod.2016.06.022

Hernández-Castillo, Y., García-Hernández, M., López-Marure, A., Luna-Domínguez, J. H., López-Camacho,

P. Y., & Morales-Ramírez, A. de J. (2019). Antioxidant activity of cerium oxide as a function of europium

doped content. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.10.145

Jamshidijam, M., Thangaraj, P., Akbari-Fakhrabadi, A., Niño Galeano, M. A., Usuba, J., & Viswanathan, M. R. (2017). Influence of rare earth (RE=Nd, Y, Pr and Er) doping on the microstructural and optical

properties of ceria nanostructures. Ceramics International.

https://doi.org/10.1016/j.ceramint.2017.01.046

Kilner, J. A. (1983). Fast anion transport in solids. Solid State Ionics. https://doi.org/10.1016/0167-2738(83)90017-6

Kim, D. -J. (1989). Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions. Journal of the American Ceramic Society. https://doi.org/10.1111/j.1151-2916.1989.tb07663.x

La Kilo, A., Costanzo, A., Mazza, D., Martoprawiro, M. A., Prijamboedi, B., & Ismunandar, I. (2020). Highest ionic conductivity of BIMEVOX (ME = 10% Cu, 10% Ga, 20% Ta): Computational modeling and simulation. Indonesian Journal of Chemistry, 20(3), 510. https://doi.org/10.22146/ijc.42635 La Kilo, A., Umamah, T. S., & Laliyo, L. A. R. (2019). Study on the Stability of Trivalent Cations Doped Zirconia through Atomistic Modeling. Jurnal Kimia Sains Dan Aplikasi, 22(4), 129–135. https://doi.org/10.14710/jksa.22.4.129-135

Li, Z. P., Mori, T., Zou, J., & Drennan, J. (2013). Defects clustering and ordering in di- and trivalently doped ceria. Materials Research Bulletin. https://doi.org/10.1016/j.materresbull.2012.11.073

Minervini, L., Grimes, R. W., & Sickafus, K. E. (2000). Disorder in pyrochlore oxides. Journal of the American Ceramic Society. https://doi.org/10.1111/j.1151-2916.2000.tb01484.x

Ortega, P. P., Rocha, L. S. R., Cortés, J. A., Ramirez, M. A., Buono, C., Ponce, M. A., & Simões, A. Z. (2019). Towards carbon monoxide sensors based on europium doped cerium dioxide. Applied Surface Science. https://doi.org/10.1016/j.apsusc.2018.09.142

Pal, A. K., Som, S., & Lu, C. H. (2018). Synthesis and spectroscopic analysis of Sm3+ doped CeO2 ceramic powders for the application of white LEDs. Ceramics International.

https://doi.org/10.1016/j.ceramint.2018.07.036

Polychronopoulou, K., Zedan, A. F., AlKetbi, M., Stephen, S., Ather, M., Katsiotis, M. S., ... AlHassan, S. (2018). Tailoring the efficiency of an active catalyst for CO abatement through oxidation reaction: The case study of samarium-doped ceria. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2017.12.001

Sudarsan, P., & Krishnamoorthy, S. B. (2018). Grain boundary scavenging through reactive sintering of strontium and iron in samarium doped ceria electrolyte for ITSOFC applications. Materials Research Bulletin. https://doi.org/10.1016/j.materresbull.2017.12.047

Sun, Q., Fu, Z., & Yang, Z. (2018). Effects of rare-earth doping on the ionic conduction of CeO2 in solid oxide fuel cells. Ceramics International. https://doi.org/10.1016/j.ceramint.2017.11.149

Wei, X., Pan, W., Cheng, L., & Li, B. (2009). Atomistic calculation of association energy in doped ceria. Solid State Ionics. https://doi.org/10.1016/j.ssi.2008.10.019

Xie, S., Wang, Z., Cheng, F., Zhang, P., Mai, W., & Tong, Y. (2017). Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy. https://doi.org/10.1016/j.nanoen.2017.02.029

EDITORIAL OFFICE

C Chemistry Department, Faculty of Mathematic and Natural Science, Universitas Negeri Gorontalo 👂 Jl. Jend. Sudirman No.6, Kota Gorontalo, 96128

jjchem@ung.ac.id Q

+6285298107191 (Call/SMS/WA) E.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

3.	Final Copyedit File: None			2021-04-26	We are
Сор	oyedit Comments 🤜No Comment	S			Crossref
LA	YOUT				
Gall	ley Format	FILE			Member
1.	PDF VIEW PROOF	9870-22909-1-PB.PI	DF 2021-07-13		77
Sup	plementary Files	FILE			
		None			INTERNATIONAL
Lay	out Comments 🤜 No Comments				STANDARD SERIAL NUMBER
PR	OOFREADING				
REVI	IEW METADATA				e-ISSN
		REQUEST	UNDERWAY	COMPLETE	p-ISSN
1.	Author	_	—) =	
2.	Proofreader	—	—	—	
3.	Layout Editor	_	_	_	
Pro	ofreading Corrections 🤜 No Com	ments PROOFING INSTRUCTIONS			
EDI	TORIAL OFFICE				Jamb. J. Chem Article Template
~	Chemistry Department, Faculty	of Mathematic and Natural Scien	nce, Universitas Negeri Goro	ontalo	USER
	TI. Jend. Sudirman No.6, Kota (Gorontalo, 96128			You are logged in as
6	jjchem@ung.ac.id				lakilo
	+6285298107191 (Call/SMS/M	(A)			» My Journals

» My Profile » Log Out

Visitors

ID 26,307

US 1,475

BF 57

SG 49

6

+6285298107191 (Call/SMS/WA)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

00080089

Lihat Statistik Pengunjung

AUTHOR

Submissions

» Active (1)

» Archive (2)

» New Submission

Hubungan Kestabilan dan Konduksi Ion pada Ceria Terdoping Dopan Trivalen

Akram La Kilo^{1,2*}, Kusrini Sutedjo², Deasy Natalia Botutihe¹

¹Program Studi Kimia, Universitas Negeri Gorontalo, ²Program Studi Pendidikan Kimia, Universitas Negeri Gorontalo

ABSTRAK

Penelitian ini bertujuan untuk mempelajari Kestabilan struktur CeO₂ yang didoping oksida trivalen menjadi senyawa Ce_{1-x}M_xO_{2-□} (M= Lu₃₊, Yb₃₊, Er₃₊, Y₃₊, Gd₃₊, Eu₃₊, Sm₃₊, dan La₃₊ melalui simulasi atomistik, nilaixadalahjumlah kosentrasi dopan yang mensubstitusi Ce4+ secara parsial dan konsentrasi dopan dibatasi sampai 10%. Penelitian ini bersifat teoritis eksploratif dengan menggunakan metode simulasi atomistik dengan teknik minimasi energi menggunakan perangkat lunak GULP. Obyek pada penelitian adalah 8 senyawa oksida trivalen dengan data input potensial jarak pendek. Potensial jarak pendek yang digunakan dalam penelitian ini adalah Potensial Buckingham. Hasil optimasi geometri pada tekanan tetap menunjukkan perbedaan parameter sel CeO2 induk yang terdoping sebelum dan sesudah simulasi atomistik berkesesuaian baik dengan hasil eksperimen yaitu hanya 0,02%. Hasil penelitian menunjukkan bahwa kestabilan struktur CeO2 yang didopingoksida trivalen mengalami penurunan dengan meningkatnya konsentrasi dopan. Penurunan kestabilan CeO₂ yang didoping dengan Lu, Ce, Er, Gd, Eu, Nd dan La lebih besar dibandingkan dengan penurunan kestabilan CeO₂ yang didoping dengan Sm, Y, dan Yb.

Kata kunci: simulasi atomistik; ceria,;dopan trivalen; energi kisi

ABSTRACT

This research aims to study the stability of CeO₂ structurewhich doped with trivalent oxide which become $Ce_{1-x}M_xO_{2-\Box}$ ($M=Lu^{3+}$, Yb^{3+} , Er^{3+} , Y^{3+} , Gd^{3+} , Eu^{3+} , Sm^{3+} , dan La^{3+}) compound through atomistic simulation, the value of x present the concentration number of the substitution dopant of Ce⁴⁺ partially and the concentration of the dopant is limited to 10%. This research is explorative theoretical using methods of computational chemistry by atomistic simulating using GULP. The objects in this study was 8 trivalent oxide with the short-range potential as the input data. Potential short-range used in this study is the Buckingham potential. The results of geometry optimization at a constant pressure showed the differences between cell parameters ofdoped CeO₂ before and after the atomistic simulation corresponds with the experimental results is only 0.02%. The results showed that the stability of doped CeO₂structure is decreased with increasing concentrations of dopants.A decrease inthe stability of CeO₂doped withLu, Ce, Er, Gd, Eu, NdandLais greaterthan thedecrease inthe stability of CeO₂ doped with Sm, Y andYb.

Keywords: atomistic simulation; ceria; trivalent dopant; lattice energy

Received: xx-xx-xxxx, Accepted: xx-xx-xxxx, Online: xx-xx-xxxx

PENDAHULUAN

Ceria (CeO₂) terdoping dopan trivalen (M³⁺) telah banyak dipelajari baik melalui hasil sintesis maupun simulasi komputasi, namun belum ada yang melaporkan tentang hubungan kestabilan melalui energi kisi dan konduksi ion pada struktur ceria terdoping M³⁺ yang mensubstitusi secara parsial Ce dari CeO₂. Padahal, ceria terdoping M³⁺ memiliki potensi aplikasi sebagai fotoenergi (Xie et al., 2017), sifat optis (Jamshidijam et al., 2017), katalis (Chen et al., 2018; He et al., 2017; Polychronopoulou et al., 2018) LED putih (Pal, Som, & Lu, 2018), sensor (Chaudhary, Kumar, & Mehta, 2019; Ortega et al., 2019), antioksidan (Hernández-Castillo et al., 2019), dan elektrolit (Anwar, Muhammed, Muchtar, & Somalu, 2019; Artini et al., 2018; Choolaei, Cai, Slade, & Amini Horri, 2018; Guan, Yang, Sun, & Guo, 2019; Gupta,

^{*}Corresponding author: akram@gmail.com

Shirbhate, Ojha, & Acharya, 2018; Sudarsan & Krishnamoorthy, 2018; Sun, Fu, & Yang, 2018). Li et al. (2013) telah melaporkan cacat klaster pada kristal CeO₂ terdoping M³⁺ dari La³⁺. Pr³⁺. Sm³⁺, Gd³⁺, Dy³⁺, Y³⁺, dan Yb³⁺ melalui energi asosiasi yang tidak menyertakan energi kisi. Energi kisi sangat penting untuk mengetahui kestabilan fasa suatu kristal padatan melalui simulasi (Dove, 2008; La Kilo et al., 2020; La Kilo, Umamah, & Laliyo, 2019).

Ceria murni memiliki struktur fluorit dengan grup ruang Fm-3m. Ceria yang terdoping dengan dopan trivalen dapat menciptakan kekosongan oksigen karena perbedaan muatan antara ion serium (Ce⁴⁺) yang bermuatan 4+ dengan dopan trivalen (M³⁺) yang bermuatan 3+. Kekosongan yang tercipta pada ceria terdoping tersebut menjadi penyebab adanya konduksi ion oksigen. Berbagai usaha dilakukan untuk memilih dopan yang mensubstitusi Ce pada ceria agar meningkatkan konduksi ion oksigen. Salah satu sifat dopan yang harus diperhatikan adalah mismatch jejari dopan dengan jejari ion host, seperti mismatch M³⁺ dan Ce⁴⁺ dalam CeO₂. Kim (1989) mengusulkan jari-jari ion kritis untuk membedakan mengapa konduksi ion ceria terdoping Gd dan Sm lebih tinggi dibandingkan dengan ceria terdoping Y³⁺ meskipun jejari ion Gd³⁺ (1,053 Å) dan Sm³⁺ (1,079 Å) lebih besar dari Y³⁺ (1,019 Å). Sementara, Kilner (1983) dan (Catlow (1984) mengusulkan bahwa ketidakcocokan (*mismatch*) jari-jari yang kecil antara host dan dopanlah yang bertanggung jawab terhadap besarnya suatu hantaran ion. Kedua usulan di atas hanya menjelaskan konduksi ion berdasarkan jari-jari tanpa membedakan variasi konsentrasi dopan M³⁺ yang mensubstitusi secara parsial Ce dalam CeO₂.

Tulisan ini, secara umum, bertujuan untuk mempelajari hubungan kestabilan dan konduksi ion pada ceria yang didoping dengan dopan trivalen melalui simulasi atomistik. Dopan trivalen M³⁺ (Lu³⁺, Yb³⁺, Er³⁺, Y³⁺, Gd³⁺, Eu³⁺, Sm³⁺, dan La³⁺) mensubstitusi secara parsial Ce dengan konsentrasi dopan (x) dari 0 sampai 10% sehingga diperoleh senyawa Ce_{1-x}M_xO_{2- \Box} (\Box = kekosongan oksigen). Tujuan umum tersebut dicapai melalui dua tujuan khusus, yaitu (1) mengoptimasi struktur ceria terdoping dan tak terdoping dan (2) menentukan energi kisi kedua kelompok ceria tersebut secara simulasi atomistik dengan teknik minimasi energi menggunakan code General Utility Lattice Program (GULP).

METODE PENELITIAN

Perangkat Penelitian

Perangkat penelitian yang digunakan terbagi dua, yaitu perangkat keras dan perangkat lunak. Perangkat keras, yaitu personal computer (PC) dengan prosesor Intel^(R) Celeron^(R) CPU 877 dengan kapasitas 1.40 GHz dan RAM 2,00 GB. Perangkat lunak, yaitu Operating System (OS) Microsoft^(R) Windows 7 Ultimate 32-bit, code GULP (General Utility Latice Program) versi 2007 dan VESTA (Visualization System for Electronic and Structural Analysis). GULP digunakan untuk simulasi atomistik berdasarkan teknik minimasi energi. Data geometri ceria yang diperoleh dari hasil simulasi GULP divisualisai strukturnya dengan menggunakan VESTA.

Pembuatan Data Input

Sumber data input yang digunakan adalah hasil eksperimen difraksi sinar-X ceria (CeO₂) yang dilakukan oleh (Goharshadi, Samiee, & Nancarrow, 2011). CeO₂ ini berstruktur fluorit dengan grup ruang Fm-3m, dimana kation serium (Ce⁴⁺) berkoordinasi 8 dengan ion oksigen sementara oksigen berkoordinasi empat dengan serium. Parameter sel dan koordinat atomatom dari kisi CeO₂ ditunjukkan pada Tabel 1.

Taber T. Parameter ser dan koodinat atom dan CeO2							
Parameter	a=b=c (Å)	<i>α=β=γ</i> (°)	volume (ų)				
	5,4113	90	158,45				
Koordinat	X	У	Ζ				
Koordinat Ce	x 0,0000	y 0,0000	z 0,0000				

label 1	. Param	neter	sel	dan	koodi	nat	atom	darı	CeO ₂
_					-				< ² a.

Data pada Tabel 1 dijadikan sebagai data input CeO₂ sedangkan data untuk CeO₂terdoping M³⁺ dibuat dengan cara memasukkan dopan M³⁺ pada posisi M. Masing-masing dopa M³⁺ mensubsitusi Ce³⁺ secara parsial dengan konsentrasi sebesar 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 10%. Substitusi tersebut diimbangi secara simultan dengan berkurangnya konsentrasi oksigen sampai senyawa ceria terdoping bermuatan netral. Hal ini berarti bahwa masuknya dopan M³⁺ yang berbeda bermuatan dengan Ce⁴⁺ akan menciptakan kekosongan pada posisi oksigen. Perhitungan kekosongan oksigen secara detil dijelaskan di bagian hasil dan pembahasan.

Optimasi Geometri dan Perhitungan Energi Kisi

Dalam pemodelan energi kisi, parameter kisi dan koordinat atom secara sistematis disesuaikan sampai energi mencapai nilai minimal, yaitu tidak ada tegangan atau gaya sisa. Biasanya proses ini melibatkan pendekatan regresi *non-linear* yang diperluas dengan memasukkan tekanan agar besaran entalpi kisi terminimalkan. Output utama dari minimalisasi energi kisi adalah struktur (geometri) kristal teroptimasi dan energi terkait. Dengan demikian model ini dapat digunakan untuk memprediksi stabilitas fasa pada tekanan yang diberikan. Minimasi energi pada penelitian ini dilakukan pada tekanan tetap. Ketika energi dari fasa yang berbeda dibandingkan (meskipun model mekanis empiris maupun kuantum tidak akan memberikan nilai energi absolut), maka perhitungan pada struktur terkait akan memberikan konsentrasi dopan dapat memberikan informasi tentang kestabilan fasa yang diprediksi. Hasil perhitungan yang baik jika perbedaanya parameter sel dan koordinat atom antara hasil pemodelan dan eksperimen adalah maksimal 2% (Dove, 2008).

Simulasi atomistik dilakukan berdasarkan model Born dari padatan ion dimana kisi dikonstruksi dari susunan periodik ion-ion sferik bermuatan (Born & Mayer, 1932). Interaksi antara ion-ion dipartisi menjadi dua komponen, yaitu interaksi elektrostatik *long-range* dan interaksi *short range*. Interaksi short-range adalah interaksi difusi dari awan elektron yang mengelilingi inti yang terdiri dari tolakan Pauli antara awan elektron tetangga dan tarik-menarik van der Waals. Karena ceria yang disimulasi dalam penelitin ini merupakan senyawa dengan ion-ion yang berinteraksi secara ionik, maka potensial *short-range* yang digunakan adalah potensial Buckingham dalam bentuk:

$$\Phi_{ij} = Ae^{-\frac{r_{ij}}{\rho}} - \frac{c}{r_{ij}^6} \tag{1}$$

dimana A, ρ , dan C adalah parameter yang berubah menurut data eksperimen. Suku pertama pada persamaan (1) adalah interaksi *short-range* tolak-menolak antara awan elektron sebaliknya suku kedua adalah interaksi *short range* tarik-menarik van der Waals.

Simulasi atomistik CeO₂ dan CeO₂-terdoping dopan trivalen pada penelitian ini menggunakan GULP sebagaimana yang telah berhasil dilakukan oleh Gale (1997), (Gale & Rohl, 2003), dan La Kilo (2013). Sebelum simulasi atomistik dilakukan pada CeO₂-terdoping, maka simulasi dilakukan terlebih dahulu terhadap CeO₂ untuk memastikan geometri CeO₂ teroptimasi. Parameter sel dan koordinat atom dari hasil optimasi CeO₂ tersebut harus memiliki perbedaan yang kecil dengan parameter sel hasil eksperimen sebagaimana yang dilaporkan oleh Dove (2008).

HASIL DAN PEMBAHASAN

Optimasi Struktur Ceria

Input dalam penelitian ini adalah CeO₂ yang dilaporkan oleh Goharshadi *et al.* (2011). Input tersebut merupakan parameter sel yang diperoleh dari data difraksi sinar-X CeO₂, dengan grup ruang Fm-3m. Ion Ce dan O dalam strukur CeO₂ memiliki multiplisitas masing-masing 8 dan 4, dan kedua ion tersebut mempunyai okupansi yang sama, yaitu 1. Artinya, dalam struktur CeO₂ tidak terdapat defek kekosongan (vakansi) oksigen. Defek kekosongan pada oksigen tersebut dapat diciptakan dengan cara melakukan doping CeO₂ dengan dopan oksida trivalen yang mensubsitusi secara parsial Ce⁴⁺. Akibat masuknya dopan trivalen (dopan bervalensi 3) secara parsial pada posisi ion tetravelan Ce⁴⁺, maka terjadi kekosongan oksigen. Pengurangan oksigen tersebut untuk mengimbangi muatan positif, sehingga CeO₂ terdoping yang terbentuk bermuatan netral, tidak ada elektron bebas. Akibatnya, senyawa CeO₂ terdoping yang terbentuk merupakan senyawa elektrolit dengan oksigen yang bemigrasi.

Dalam penelitian ini, konsentrasi dopan (kation trivalen) yang mensubsitusi secara parsial Ce adalah 1% sampai 10%. Substitusi tersebut diimbangi dengan berkurangnya oksigen (sebagaimana dijelaskan di atas). Perhitungan pengurangan tersebut memperhatikan muatan, konsentrasi, dan multiplisitas ion-ion dalam CeO₂ yang terdoping. Perhitungan ini untuk mendapatkan okupansi yang cocok pada setiap konsentrasi dopan yang mensubstitusi Ce, dan hasilnya ditunjukkan pada Tabel 2.

Konsen-		Mua-	Oku-	Multi-	Muatan	Vakan-
trasi (%)		tan	pansi	plisitas	total	si (%)
	Ce	4	0,99	4	15,84	
1	Μ	3	0,01	4	0,12	
	0	-2	0,9975	8	15,96	0,25
	Ce	4	0,98	4	15,68	
2	Μ	3	0,02	4	0,24	
	0	-2	0,995	8	15,92	0,50
	Ce	4	0,97	4	15,52	
3	Μ	3	0,03	4	0,36	
	0	-2	0,9925	8	15,88	0,75
	Ce	4	0,96	4	15,36	
4	Μ	3	0,04	4	0,48	
	0	-2	0,99	8	15,84	1,00
	Ce	4	0,95	4	15,2	
5	Μ	3	0,05	4	0,6	
	0	-2	0,9875	8	15,8	1,25
	Ce	4	0,94	4	15,04	
6	Μ	3	0,06	4	0,72	
	0	-2	0,985	8	15,76	1,50
	Ce	4	0,93	4	14,88	
7	Μ	3	0,07	4	0,84	
	0	-2	0,9825	8	15,72	1,75
	Ce	4	0,92	4	14,72	
8	Μ	3	0,08	4	0,96	
	0	-2	0,98	8	15,68	2,00
	Ce	4	0,91	4	14,56	
9	Μ	3	0,09	4	1,08	
	0	-2	0,9775	8	15,64	2,25
	Ce	4	0,90	4	14,4	
10	Μ	3	0,10	4	1,20	
	0	-2	0,975	8	15,6	2,50

 Tabel 2.
 Okupansi ion-ion dan vakansi oksigen dalam CeO2 terdoping pada berbagai konsentrasi dopan

Simulasi atomistik dengan menggunakan GULP dilakukan untuk menganalisis kestabilan CeO₂ yang didoping menggunakan dopan oksida trivalen dengan nilai parameter sel yang diperoleh dari data difraski sinar-X CeO₂ (Tabel 1) dengan konsentrasi dopan dibatasi 1% sampai 10%. Data input yang dibuat, akan lebih baik jika bagian-bagian strukturnya (parameter sel satuan) diketahui terlebih dahulu, seperti *space group* (grup ruang), *cell parameter* (parameter sel) yang diperoleh dari data difraksi sinar-X.

Simulasi data input dopan menggunakan GULP seperti yang ditunjukan pada Gambar 3.1. Pada baris pertama dalam data input merupakan kata kunci. Kata kunci ini terdiri dari katakata kontrol yang pada umumnya menentukan tugas-tugas yang akan dilakukan oleh program. Seperti *optimasi, conp, prop,* dan *pomp*, kombinasi kata kunci ini secara otomatis memberitahu program (GULP) untuk melakukan tugas-tugasnya yaitu untuk mencari struktur derajat energi terendah (*opti*), untuk melakukan tekanan konstan (*prop*), kemudian untuk menghitung sifat kisi (*comp*). Baris kedua adalah judul atau nama (*title*) dari senyawa yang akan disimulasi dengan menambahkan *end* pada akhir nama senyawa tersebut. Baris ketiga merupakan parameter sel (*cell*) yang terdiri dari nilai *a, b, c* dan sudut *α*, *β*, *γ*. Baris keempat adalah fraksional (*frac*) yaitu menunjukkan posisi (koordinat *x, y, z*)dari atom. Baris kelima adalah kelompok ruang (*space*) biasanya dalam bentuk angka atau kode, dalam penelitian ini *space* yang digunakan adalah bentuk kode. Baris keenam adalah potensial *buckingham* yang menunjukkan interaksi antara kulit dengan kulit, sedangkan untuk baris yang terakhir merupakan interaksi antara inti dengan kulit yang disebut *spring* (tetapan pegas).

Setiap data input yang telah dibuat selanjutnya disimulasi secara atomistik pada tekanan tetap dengan menggunakan GULP. Simulasi struktur ini menyangkut parameter sel yaitu panjang sisi-sisinya, sudut dan posisi dari atom-atom dalam inti. Interaksi antar atom-atom yang diperhitungkan adalah interaksi ionik, gaya dispersi dan interaksi Buckingham. Interaksi Buckingham dipilih karena interaksi yang terjadi di dalam struktur adalah interaksi ionik. Hasil simulasi atomistik senyawa induk CeO₂ perbedaan parameter sel yang dihasilkan sangat kecil, sebagaimana yang ditunjukkan pada Tabel 3.

		Nilai	
Parameter	Nilai Awal	Akhir	Perbedaan (%)
Volume (Å ³)	158,4478	158,3354	0,07
a (Å)	5,4113	5,4099	0,02
b (Å)	5,4113	5,4099	0,02
<i>c (</i> Å)	5,4113	5,4099	0,02
alfa	90,0000	90,0000	0,00
beta	90,0000	90,0000	0,00
gama	90,0000	90,0000	0,00
Ce x	0,0000	0,0000	0,00
Ce y	0,0000	0,0000	0,00
Ce z	0,00000	0,0000	0,00
0 <i>x</i>	0,2500	0,2500	0,00
Оy	0,2500	0,2500	0,00
0 <i>z</i>	0,2500	0,2500	0,00

Tabel 3 Perbedaan Parameter sel dan koordinat atom antara CeO2 hasil eksperimen dan simulasi

Perbandingan tersebut menunjukkan hasil simulasi berkesesuain baik dengan hasil eksperimen. Hal ini juga ditunjukkan dengan hasil simulasi yang dilaporkan oleh Islam dan Fisher (2005) bahwa perbedaan nlai *a, b,* dan *c* masing-masing-masing adalah 0,63%, 5,05%, dan 1,12%. Selain itu pada penelitian yang dilaporkan Pakaya (2015) memiliki perbedaan nilai *a, b* dan *c* masing-masing adalah 6,70%, 6,54% dan 2%. Perbedaan nilai di atas hampir sama zirkonia oksida yang dilaporkan oleh (La Kilo et al., 2020). Sementara, parameter sel hasil simulasi pada penelitian ini memiliki perbedaan yang lebih rendah, yaitu hanya 0,02%, sebagaimana ditunjukkan pada Gambar 1. Oleh karena itu, geometri dan paramater sel CeO₂ hasil simulasi atomistik penelitian ini memiliki kesesuaian yang baik dengan hasil eksperimen.

(A) (B) **Gambar 1** Struktur CeO₂; (A) sebelum simulasi jarak Ce-O = 2,34313 Å dan (B) setelah disimulasi menggunakan GULP dengan jarak Ce-O = 2,34257 Å

Potensial Buckingham CeO₂ yang didoping dengan kation trivalen

Potensial Buckingham terdiri atas interaksi tolak-menolak dan interaksi dispersi. Dalam CeO₂ terdoping kation trivalen, interaksi dispersi antar O²⁻ lebih tinggi dibandingkan dengan interaksi dispersi antar ion-ion logam. Interaksi dispersi antara ion logam dengan O²⁻ cenderung hampir sama, kecuali pada interaksi dispersi antara ion Yb³⁺ - O²⁻ dan Er³⁺- O²⁻. Interaksi dispersi Yb dan O lebih kecil dari semua interaksi dispersi M-O (M = Lu, Ce, Er, Y, Gd, Eu, Sm, dan La). Kemampuan dispersi oksigen yang lebih besar menunjukkan kemudahan migrasi ion oksigen dalam CeO₂ yang terdoping. Migrasi ion oksigen inilah yang mengakibatkan CeO₂ yang terdoping sebagai elektrolit dengan konduktivitas tinggi dibandingkan CeO₂ tanpa doping. Potensial Buckingham antara ion dalam senyawa CeO₂ yang terdoping ditunjukkan pada Tabel 4.

Tabel 4. Potensial Buckingham ion-ion dari dopan (oksida trivalen) dalam senyawa CeO2

Short-Range	A (eV)	ρ (Å)	C (eV·Å⁰)
O ²⁻ - O ²⁻	9547,96	0,2192	32,00
Lu ³⁺ -O ²⁻	1618,80	0,3385	19,27
Yb ³⁺ -O ²⁻	1649,80	0,3386	16,57
Er ³⁺ -O ²⁻	1739,91	0,3389	17,55
Y ³⁺ -O ²⁻	1766,40	0,3850	19,43
Gd ³⁺ -O ²⁻	1885,75	0,3399	20,34
Eu ³⁺ -O ²⁻	1925,71	0,3403	20,59
Sm ³⁺ -O ²⁻	1944,44	0,3414	21,49
La ³⁺ -O ²⁻	2088,79	0,3460	23,25
	0		
Model kulit	<i>k</i> (eV A ⁻²)	Muatar	n kulit (e)
Ce ⁴⁺	177,84	-0,2	
Lu ³⁺	97	3,01	
Gd ³⁺	299,96	-0,973	
Eu ³⁺	304,92	-0,991	
La ³⁺	173,90	-2,149	
O ²⁻	6,3	-2,04	

Oksida CeO₂ yang didoping dengan kation trivalen mengakibatkan oksida tersebut mengalami perubahan parameter sel, seperti panjang sisi-sisinya (*a*, *b*, dan *c*). Semakin besar jari-jari dopan (kation trivalen), maka parameter sel CeO₂ yang terdoping akan semakin besar pula. Kenaikan konsentrasi dopan trivalen yang mensubtitusi secara parsial Ce, maka akan menaikan parameter sel pula. Jari-jari ion Ce⁴⁺ adalah 0,970Å (Shannon, 1976) yang lebih kecil dibandingkan dengan jari-jari ion Er sebagaimana ditunjukkan pada Gambar 2.

Gambar 2. Selisih jejari dopan trivalen terhadap kation host Ce4+

Kecilnya jari-jari Er dari jari-jari Ce mengakibatkan parameter sel yang dihasilkan lebih kecil. Sementara, Ce dari CeO₂ yang didoping dengan dopan-dopan lainnya yang disebutkan di atas, senyawa yang dihasilkan akan memiliki paramer sel yang lebih besar. Perubahan parameter sel akibat dopan ditunjukkan pada Gambar 3.

Gambar 3 Parameter CeO2 yang didoping dengan kation trivalen

Hasil simulasi menunjukkan bahwa parameter sel CeO₂ yang didoping dengan Lu, Yb, Y, dan Er semakin menurun. Penurunan parameter sel CeO₂ akibat masuknya ion Er yang jarijarinya lebih kecil dari jari-jari ion Ce. Sebaliknya, jari-jari ion Y, Lu, dan Yb lebih besar daripada jari-jari ion Ce, tetapi parameter sel semakin menurun dengan semakin naiknya konsentrasi dopan. Hal tersebut diakibatkan perbedaan jari-jari Ce dengan Y, Lu dan Er kecil, yaitu masing-masing 4,9%, 1,5% dan 0,7%, sehingga gaya tolak yang kecil dan gaya dispersi sangat berperan untuk menekan parameter sel (*strain* atau *stress*). Khusus untuk CeO₂ yang didoping dengan Y, orbital dari Y kuat dipolarisasi oleh ion oksigen. Parameter sel naik untuk dopan Gd, Eu, Sm, Nd, dan La sebagaimana parameter sel piroklor yang didoping dengan dopan-dopan tersebut (Minervini, Grimes, & Sickafus, 2000). Namun, dopan-dopan yang lebih kecil dari Gd, yaitu Lu, Yb, Y, dan Er berbeda dengan yang dilaporkan oleh Minervini. Mengapa?

Energi Kisi Ceria

Hasil simulasi atomistik menunjukkan bahwa energi kisi senyawa induk, CeO₂ adalah - 105,65 eV. Energi kisi CeO₂ semakin besar dengan adanya dopan yang mensubstitusi secara parsial Ce. Kenaikan energi kisi tersebut disebabkan pula oleh jejari dopan dan kekosongan yang terjadi dalam struktur CeO₂ yang terdoping. Semakin besar jari-jari dopan yang mensubsitusi Ce, maka energi kisi CeO₂ yang terdoping semakin naik (positif), sebagaimana ditunjukkan pada Gambar 4.

Gambar 4 Energi kisi CeO₂ yang terdoping kation trivalen

Energi kisi mengalami perubahan yang besar seiring bertambahnya konsentrasi dopan (Gambar 4). Hal ini berarti bahwa, masuknya dopan mengakibatkan struktur CeO₂ menjadi kurang stabil karena adanya defek kekosongan yang terbentuk. Semakin tinggi konsentrasi kekosongan, maka kestabilan struktur CeO₂ terdoping semakin menurun. Kenaikan energi kisi ceria yang didoping dengan M³⁺ seiring dengan kenaikan ukuran dopan sebagiman hasil yang sama dilaporkan oleh Minervini *et al.* (2000) tentang energi defek pada senyawa piroklor $A_2B_2O_7$ (A= Ce, B = Lu, Yb, Er, Y, Gd, Eu, Sm, Nd, dan La)

Gambar 5. Jarak antara Ce/M – O (A) dan Ce/M – Ce/M (B) dalam struktur CeO₂ yang terdoping dengan oksida trivalen(Keterangan: Kekosongan oksigen tidak ditunjukkan dalam gambar)

Simbol A pada gambar merupakan jarak antara Ce/M dan O terdekat, sedangkan simbol B merupakan jarak antara Ce/M dan Ce/M terdekat. Hasil simulasi CeO₂ yang terdoping dengan dopan oksida trivalen menunjukkan bahwa jarak antara Ce/M dan O terdekat berada pada panjang berkisar 2,16 Å sampai 2,34 Å dan jarak antara CE/M dan Ce/M terdekat berada pada panjang 3,53 Å sampai 3,82 Å, sebagaimana yang ditunjukkan pada Gambar 6.

Gambar 6 Jarak antara Ce/M – O (A) dan Ce/M – Ce/M (B) dalam struktur CeO₂ yang terdoping dengan oksida trivalen

Jarak antar dopan (Lu, Ce, Er, Gd, Eu, Nd, La) dan antara dopan tersebut dengan O lebih besar dibandingkan dengan jarak antar dopan (Sm, Y, Yb) dan dopan tersebut dengan O karena gaya tolak antar dopan dan antar oksigen lebih besar. Hal inilah yang mengakibatkan menurunnya kesatabilan CeO₂ yang didoping dengan Lu, Ce, Er, Gd, Eu, Nd, La dibandingkan dengan CeO₂ yang didoping dengan Sm, Y dan Yb. Gaya dispersi dopan-dopan tersebut hampir sama, sehingga perannya kecil dalam merubah kestabilan dan parameter sel.

Hubungan Konduksi lon dengan Jejari dan Energi Kisi

Kekosongan oksigen yang dihasilkan dari doping dengan kation aliovalen seperti M³⁺ dalam ceria tidak berada dalam keadaan bebas. Kekosongan oksigen berasosiasi dengan dopan untuk membentuk pasangan defek atau klaster. Li *et al.* (2013) melaporkan bawah asosiasi vakansi-dopan menyebakan pembentukan klaster defek yan teratur sehingga akan menghasilkan domain berukuran nano. Energi asosiasi bergantung pada dua faktor, yaitu (1) interaksi elektrostatik karena perbedaan valensi dan (2) *strain* elastis karena ketidakcocokan ukuran antara dopan dan kation *host.* Kedua faktor itu berhubungan dengan energi kisi. Nilai energi kisi berbanding lurus dengan muatan ion dan berbanding terbalik dengan ukuran ion. Pada simulasi atomistik ini, kenaikan energi kisi berbanding lurus dengan oksigen sebagaimana ditunjukkan pada Gambar 4.

Konduksi ion dari ceria dipengaruhi oleh beberapa parameter, seperti jenis dopan, ukuran dopan, konsentrasi dopan, ukuran butiran segresi pengotor pada batas-batas butiran, dan tekanan parsial oksigen. Tiga parameter yang dituliskan pertama dapat dijelaskan melalui simulasi atomistik dengan teknik minimasi energi sedangkan parameter sisanya diperoleh melalui hasil sintesis (eksperimen). Dopan Lu^{3+} , Yb^{3+} , Er^{3+} , Gd^{3+} , Eu^{3+} , Sm^{3+} , dan La^{3+} merupakan dopan golongan tanah jarang atau lantanida dimana ada elektron-elektron terluar yang menempati orbital *f* sedangkan dopan Y^{3+} merupakan golongan transisi dengan elektron terluar diperisai dari inti atom, sehingga orbital *d* dan *f* mengalami ekspansi atau ukuranya menjadi besar (Canham & Overton, 2010). Ukuran dopan yang berbeda menimbulkan derajat kovalensi

yang berbeda dari senyawa ion ceria yang didoping dengan dopan-dopan trivalen tersebut. Semakin kecil ukuran dopan, maka derajat kovalensi ceria yang didoping semakin besar dan menjadi salah satu penyebab konduksi ion oksigen rendah sebagaimana yang dilaporkan oleh La Kilo (2012) terhadap konduksi ion γ-Bi₂VO_{5,5} akibat dopan. Berdasarkan aturan tersebut, urutan kenaikan derajat kovalensi ceria akibat dopan adalah Lu>Yb>Er>Y>Gd>Eu>Sm>Nd>La, yang sesuai dengan selisih jari-jari yang ditunjukkan pada Gambar 2. Derajat kovalensi yang besar dari Lu, Yb, Er, dan Y diduga menjadi penyebab turunnya parameter sel CeO₂ yang didoping dengan keempat dopan tersebut sebagaimana ditunjukkan pada Gambar 3.

Polarisasi dalam simulasi ini dimodelkan dengan model kulit. Model ini menggambarkan ion sebagai sebuah kulit bermuatan dengan massa yang sangat kecil (awan elektron valensi terluar) yang terikat pada inti bermassa besar oleh pegas harmonis. Polarisasi ion dirumuskan dengan:

$$\alpha_i = \sum \frac{(Ye)^2}{k_i^s} \qquad (2)$$

dimana Y, e, dan k masing-masing adalah muatan kulit, muatan elektron dan tetapan pegas. Berdasarkan persamaan (2), kekuatan polarisai dopan terhadap oksigen dalam ceria-terdoping dapat dihitung. Hasil simulasi model kulit sebagimana yang dituliskan pada Tabel 2 menunjukkan beberapa kekuatan polarisasi, yaitu Lu>La>Eu>Gd. Urutan ini tidak sama dengan urutan derajat kovalensi yag telah disebutkan di atas karena derajat kovalensi di atas tidak memperhitungkan pengaruh kekosongan oksigen. Hasil simulasi menunjukkan bahwa dopan Gd³⁺ memiliki kemampuan mempolarisasi O lebih rendah dibandingkan dengan dopan lainnya. Polarisasi yang menarik perhatian adalah polariasi La³⁺ dan Eu³⁺ lebih tinggi daripada Gd³⁺ padahal jejari Gd³⁺ lebih kecil. Hal ini yang dapat menyebabkan ceria yang didpoing dengan Gd³⁺ memiliki konduksi yang lebih tinggi dibandingkan dengan ceria yang didoping dengan Lu³⁺, La³⁺, dan Eu³⁺. Wei et al. (2009) melaporkan bahwa dopan yang kebih kecil dari Gd³⁺ memiliki struktur defek secara termodinamika paling stabil. Hal ini mengindikasikan bahwa kekosongan (vakansi) lebih menyukai untuk bergabung dengan kation dopan jika kation dopan lebih kecil dari Gd³⁺. Kecenderungan ini konsisten dengan hasil Extended X-ray Absorption Fine Structure (EXAFS) dari 5 mol% Y³⁺ yang mendoping ceria, dimana ditemukan Y³⁺ memiliki kecenderungan kuat berikatan dengan kekosongan oksigen (Deguchi, Yoshida, Inagaki, & Horiuchi, 2005). Hal inilah yang menjawab mengapa Gd memiliki konduksi ion yang tinggi dibandingan dengan Y³⁺ sebagaimana yang dikemukakan oleh Kim (1989), Kilner (1983), dan Catlow (1984).

SIMPULAN

CeO₂ berstruktur kubik yang didoping dengan kation trivalen untuk mensubstitusi secara parsial Ce mengakibatkan struktur CeO₂ terdoping mengalami kekosongan oksigen. Kekosongan oksigen ini mengakibatkan struktur CeO₂ terdoping kestabilannya menurun. Gaya tolak antar dopan Lu, Ce, Er, Gd, Eu, Nd dan La dengan oksigen lebih besar dibandingkan dengan gaya tolak antar dopan Sm, Y dan Yb dengan oksigen. Oleh karena itu, penurunan kestabilan CeO₂ yang didoping dengan Lu, Ce, Er, Gd, Eu, Nd dan La lebih besar dibandingkan dengan penurunan kestabilan CeO₂ yang didoping dengan CeO₂ yang didoping dengan Sm, Y, dan Yb.

DAFTAR RUJUKAN

- Anwar, M., Muhammed, M. A., Muchtar, A., & Somalu, M. R. (2019). Influence of strontium codoping on the structural, optical, and electrical properties of erbium-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2018.12.023
- Artini, C., Carnasciali, M. M., Viviani, M., Presto, S., Plaisier, J. R., Costa, G. A., & Pani, M. (2018). Structural properties of Sm-doped ceria electrolytes at the fuel cell operating temperatures. *Solid State Ionics*. https://doi.org/10.1016/j.ssi.2017.12.009

Born, M., & Mayer, J. E. (1932). Zur Gittertheorie der Ionenkristalle. *Zeitschrift Für Physik*. https://doi.org/10.1007/BF01340511

Catlow, C. R. A. (1984). Transport in doped fluorite oxides. *Solid State Ionics*. https://doi.org/10.1016/0167-2738(84)90131-0

Chaudhary, S., Kumar, S., & Mehta, S. K. (2019). Systematic enumeration and proficient chemical sensing applications of Eu 3+ @CeO 2 nanocrystals. *Materials Science and Engineering C.* https://doi.org/10.1016/j.msec.2018.11.022

Chen, D., Zhang, D., He, D., Lu, J., Zhong, L., Han, C., & Luo, Y. (2018). Relationship between oxygen species and activity/stability in heteroatom (Zr, Y)-doped cerium-based catalysts for catalytic decomposition of CH3SH. *Chinese Journal of Catalysis*, *39*(12), 1929–1941.

Choolaei, M., Cai, Q., Slade, R. C. T., & Amini Horri, B. (2018). Nanocrystalline gadoliniumdoped ceria (GDC) for SOFCs by an environmentally-friendly single step method. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2018.04.159

Deguchi, H., Yoshida, H., Inagaki, T., & Horiuchi, M. (2005). EXAFS study of doped ceria using multiple data set fit. *Solid State Ionics*. https://doi.org/10.1016/j.ssi.2005.04.043

- Dove, M. T. (2008). An introduction to atomistic simulation methods. *Seminarios de La SEM*, *4*, 7–37.
- Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society - Faraday Transactions. https://doi.org/10.1039/a606455h
- Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). *Molecular Simulation*. https://doi.org/10.1080/0892702031000104887

Goharshadi, E. K., Samiee, S., & Nancarrow, P. (2011). Fabrication of cerium oxide nanoparticles: Characterization and optical properties. *Journal of Colloid and Interface Science*. https://doi.org/10.1016/j.jcis.2011.01.063

- Guan, T., Yang, Z., Sun, Y., & Guo, W. (2019). Anisotropic mechanical behavior of gadoliniadoped ceria solid electrolytes under tensile loading. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2018.10.014
- Gupta, M., Shirbhate, S., Ojha, P., & Acharya, S. (2018). Processing and conductivity behavior of La, Sm, Fe singly and doubly doped ceria: As electrolytes for IT-SOFCs. *Solid State Ionics*. https://doi.org/10.1016/j.ssi.2018.03.005

He, D., Hao, H., Chen, D., Liu, J., Yu, J., Lu, J., ... Luo, Y. (2017). Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition. *Catalysis Today*. https://doi.org/10.1016/j.cattod.2016.06.022

Hernández-Castillo, Y., García-Hernández, M., López-Marure, A., Luna-Domínguez, J. H., López-Camacho, P. Y., & Morales-Ramírez, Á. de J. (2019). Antioxidant activity of cerium oxide as a function of europium doped content. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2018.10.145

- Jamshidijam, M., Thangaraj, P., Akbari-Fakhrabadi, A., Niño Galeano, M. A., Usuba, J., & Viswanathan, M. R. (2017). Influence of rare earth (RE=Nd, Y, Pr and Er) doping on the microstructural and optical properties of ceria nanostructures. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2017.01.046
- Kilner, J. A. (1983). Fast anion transport in solids. Solid State Ionics. https://doi.org/10.1016/0167-2738(83)90017-6
- Kim, D. -J. (1989). Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions. *Journal of the American Ceramic Society*. https://doi.org/10.1111/j.1151-2916.1989.tb07663.x
- La Kilo, A., Costanzo, A., Mazza, D., Martoprawiro, M. A., Prijamboedi, B., & Ismunandar, I. (2020). Highest ionic conductivity of BIMEVOX (ME = 10% Cu, 10% Ga, 20% Ta): Computational modeling and simulation. *Indonesian Journal of Chemistry*, *20*(3), 510. https://doi.org/10.22146/ijc.42635
- La Kilo, A., Umamah, T. S., & Laliyo, L. A. R. (2019). Study on the Stability of Trivalent Cations Doped Zirconia through Atomistic Modeling. *Jurnal Kimia Sains Dan Aplikasi*, 22(4), 129– 135. https://doi.org/10.14710/jksa.22.4.129-135

- Li, Z. P., Mori, T., Zou, J., & Drennan, J. (2013). Defects clustering and ordering in di- and trivalently doped ceria. *Materials Research Bulletin*. https://doi.org/10.1016/j.materresbull.2012.11.073
- Minervini, L., Grimes, R. W., & Sickafus, K. E. (2000). Disorder in pyrochlore oxides. *Journal of the American Ceramic Society*. https://doi.org/10.1111/j.1151-2916.2000.tb01484.x
- Ortega, P. P., Rocha, L. S. R., Cortés, J. A., Ramirez, M. A., Buono, C., Ponce, M. A., & Simões, A. Z. (2019). Towards carbon monoxide sensors based on europium doped cerium dioxide. *Applied Surface Science*. https://doi.org/10.1016/j.apsusc.2018.09.142
- Pal, A. K., Som, S., & Lu, C. H. (2018). Synthesis and spectroscopic analysis of Sm3+ doped CeO2 ceramic powders for the application of white LEDs. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2018.07.036
- Polychronopoulou, K., Zedan, A. F., AlKetbi, M., Stephen, S., Ather, M., Katsiotis, M. S., ... AlHassan, S. (2018). Tailoring the efficiency of an active catalyst for CO abatement through oxidation reaction: The case study of samarium-doped ceria. *Journal of Environmental Chemical Engineering*. https://doi.org/10.1016/j.jece.2017.12.001
- Sudarsan, P., & Krishnamoorthy, S. B. (2018). Grain boundary scavenging through reactive sintering of strontium and iron in samarium doped ceria electrolyte for ITSOFC applications. *Materials Research Bulletin*. https://doi.org/10.1016/j.materresbull.2017.12.047
- Sun, Q., Fu, Z., & Yang, Z. (2018). Effects of rare-earth doping on the ionic conduction of CeO2 in solid oxide fuel cells. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2017.11.149
- Wei, X., Pan, W., Cheng, L., & Li, B. (2009). Atomistic calculation of association energy in doped ceria. *Solid State Ionics*. https://doi.org/10.1016/j.ssi.2008.10.019
- Xie, S., Wang, Z., Cheng, F., Zhang, P., Mai, W., & Tong, Y. (2017). Ceria and ceria-based nanostructured materials for photoenergy applications. *Nano Energy*. https://doi.org/10.1016/j.nanoen.2017.02.029

EDITOR DECISION

Decision	Accept Submission 2021-04-20		
Notify Editor	🖾 🛛 Editor/Author Email Record 🤜 No Comments		
Editor Version	None		
Author Version	None		
Upload Author Version	Choose File No file chosen	Upload	

EDITORIAL OFFICE

Chemistry Department, Faculty of Mathematic and Natural Science, Universitas Negeri Gorontalo Jl. Jend. Sudirman No.6, Kota Gorontalo, 96128

🖄 jjchem@ung.ac.id

+6285298107191 (Call/SMS/WA)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Member

e-ISSN p-ISSN

USER

You are logged in as... **lakilo**

- » My Journals
- » My Profile
- » Log Out

00080131

Lihat Statistik Pengunjung

AUTHOR

Submissions

» Active (1)

» Archive (2)

» New Submission

Hubungan Kestabilan dan Konduksi lon pada Ceria Terdoping Dopan Trivalen

Akram La Kilo^{1,2*}, Kusrini Sutedjo², Deasy Natalia Botutihe¹

¹Program Studi Kimia, Universitas Negeri Gorontalo, Jl. Prof. Dr. Ing. BJ. Habibie,Gorontalo, Indonesia ²Program Stud Pendidikan Kimia, Universitas Negeri Gorontalo, Jl. Prof. Dr. Ing. BJ. Habibie,Gorontalo, Indonesia

ABSTRAK

Penelitian ini bertujuan untuk mempelajari Kestabilan struktur CeO₂ yang didoping oksida trivalen menjadi senyawa Ce_{1-x}M_xO_{2-□} ($M = Lu_{3+}$, Yb₃₊, Er₃₊, Y₃₊, Gd₃₊, Eu₃₊, Sm₃₊, dan La₃₊ melalui simulasi atomistik, nilaixadalahjumlah kosentrasi dopan yang mensubstitusi Ce4+ secara parsial dan konsentrasi dopan dibatasi sampai 10%. Penelitian ini bersifat teoritis eksploratif dengan menggunakan metode simulasi atomistik dengan teknik minimasi energi menggunakan perangkat lunak GULP. Obyek pada penelitian adalah 8 senyawa oksida trivalen dengan data input potensial jarak pendek. Potensial jarak pendek yang digunakan dalam penelitian ini adalah Potensial Buckingham. Hasil optimasi geometri pada tekanan tetap menunjukkan perbedaan parameter sel CeO2 induk yang terdoping sebelum dan sesudah simulasi atomistik berkesesuaian baik dengan hasil eksperimen yaitu hanya 0,02%. Hasil penelitian menunjukkan bahwa kestabilan struktur CeO2 yang didopingoksida trivalen mengalami penurunan dengan meningkatnya konsentrasi dopan. Penurunan kestabilan CeO₂ yang didoping dengan Lu, Ce, Er, Gd, Eu, Nd dan La lebih besar dibandingkan dengan penurunan kestabilan CeO₂ yang didoping dengan Sm, Y, dan Yb.

Kata kunci: Simulasi atomistik; Ceria,;Dopan trivalen; Energi kisi

ABSTRACT

This research aims to study the stability of CeO₂ structurewhich doped with trivalent oxide which become $Ce_{1-x}M_xO_{2-\Box}(M=Lu^{3+}, Yb^{3+}, Er^{3+}, Y^{3+}, Gd^{3+}, Eu^{3+}, Sm^{3+}, dan La^{3+})$ compound through atomistic simulation, the value of x present the concentration number of the substitution dopant of Ce⁴⁺ partially and the concentration of the dopant is limited to 10%. This research is explorative theoretical using methods of computational chemistry by atomistic simulating using GULP. The objects in this study was 8 trivalent oxide with the short-range potential as the input data. Potential short-range used in this study is the Buckingham potential. The results of geometry optimization at a constant pressure showed the differences between cell parameters ofdoped CeO₂ before and after the atomistic simulation corresponds with the experimental results is only 0.02%. The results showed that the stability of doped CeO₂ structure is decreased with increasing concentrations of dopants.A decrease inthe stability of CeO₂ doped withLu, Ce, Er, Gd, Eu, NdandLais greaterthan thedecrease inthe stability of CeO₂ doped with Sm, Y andYb.

Keywords: Atomistic simulation; Ceria; Trivalent dopant; Lattice energy

RECEIVED 02-03-2021

ACCEPTED 20-04-2021

ONLINE 22-05-2021

PENDAHULUAN

Ceria (CeO₂) terdoping dopan trivalen (M³⁺) telah banyak dipelajari baik melalui hasil sintesis maupun simulasi komputasi, namun belum ada yang melaporkan tentang hubungan kestabilan melalui energi kisi dan konduksi ion pada struktur ceria terdoping M³⁺ yang mensubstitusi secara parsial Ce dari CeO₂. Padahal, ceria terdoping M³⁺ memiliki potensi aplikasi sebagai fotoenergi (Xie et al., 2017), sifat optis (Jamshidijam et al., 2017), katalis (Chen et al., 2018; He et al., 2017; Polychronopoulou et al., 2018) LED putih (Pal, Som, & Lu, 2018), sensor (Chaudhary, Kumar, & Mehta, 2019; Ortega et al., 2019), antioksidan (Hernández-Castillo et al., 2019), dan elektrolit (Anwar, Muhammed, Muchtar, & Somalu, 2019; Artini et al., 2018; Choolaei, Cai, Slade, & Amini Horri, 2018; Guan, Yang, Sun, & Guo, 2019; Gupta, Shirbhate, Ojha, & Acharya, 2018; Sudarsan & Krishnamoorthy, 2018; Sun, Fu, & Yang, 2018). Li *et al.* (2013) telah melaporkan cacat klaster pada kristal CeO₂ terdoping M³⁺ dari La³⁺, Pr³⁺, Sm³⁺, Gd³⁺, Dy³⁺, Y³⁺, dan Yb³⁺ melalui energi asosiasi yang tidak menyertakan energi kisi.

Energi kisi sangat penting untuk mengetahui kestabilan fasa suatu kristal padatan melalui simulasi (Dove, 2008; La Kilo et al., 2020; La Kilo, Umamah, & Laliyo, 2019).

Ceria murni memiliki struktur fluorit dengan grup ruang Fm-3m. Ceria yang terdoping dengan dopan trivalen dapat menciptakan kekosongan oksigen karena perbedaan muatan antara ion serium (Ce⁴⁺) yang bermuatan 4+ dengan dopan trivalen (M³⁺) yang bermuatan 3+. Kekosongan yang tercipta pada ceria terdoping tersebut menjadi penyebab adanya konduksi ion oksigen. Berbagai usaha dilakukan untuk memilih dopan yang mensubstitusi Ce pada ceria agar meningkatkan konduksi ion oksigen. Salah satu sifat dopan yang harus diperhatikan adalah *mismatch* jejari dopan dengan jejari ion *host*, seperti *mismatch* M³⁺ dan Ce⁴⁺ dalam CeO₂. Kim (1989) mengusulkan jari-jari ion kritis untuk membedakan mengapa konduksi ion ceria terdoping Gd dan Sm lebih tinggi dibandingkan dengan ceria terdoping Y³⁺ meskipun jejari ion Gd³⁺ (1,053 Å) dan Sm³⁺ (1,079 Å) lebih besar dari Y³⁺ (1,019 Å). Sementara, Kilner (1983) dan (Catlow (1984) mengusulkan bahwa ketidakcocokan (*mismatch*) jari-jari yang kecil antara *host* dan dopanlah yang bertanggung jawab terhadap besarnya suatu hantaran ion. Kedua usulan di atas hanya menjelaskan konduksi ion berdasarkan jari-jari tanpa membedakan variasi konsentrasi dopan M³⁺ yang mensubstitusi secara parsial Ce dalam CeO₂.

Tulisan ini, secara umum, bertujuan untuk mempelajari hubungan kestabilan dan konduksi ion pada ceria yang didoping dengan dopan trivalen melalui simulasi atomistik. Dopan trivalen M^{3+} (Lu³⁺, Yb³⁺, Er³⁺, Y³⁺, Gd³⁺, Eu³⁺, Sm³⁺, dan La³⁺) mensubstitusi secara parsial Ce dengan konsentrasi dopan (*x*) dari 0 sampai 10% sehingga diperoleh senyawa Ce_{1-x}M_xO_{2-□} (□ = kekosongan oksigen). Tujuan umum tersebut dicapai melalui dua tujuan khusus, yaitu (1) mengoptimasi struktur ceria terdoping dan tak terdoping dan (2) menentukan energi kisi kedua kelompok ceria tersebut secara simulasi atomistik dengan teknik minimasi energi menggunakan *code General Utility Lattice Program* (GULP).

METODE PENELITIAN

Perangkat Penelitian

Perangkat penelitian yang digunakan terbagi dua, yaitu perangkat keras dan perangkat lunak. Perangkat keras, yaitu *personal computer* (PC) dengan prosesor Intel^(R) Celeron^(R) CPU 877 dengan kapasitas 1,40 GHz dan RAM 2,00 GB. Perangkat lunak, yaitu Operating System (OS) Microsoft^(R) Windows 7 Ultimate 32-bit, code GULP *(General Utility Latice Program)* versi 2007 dan VESTA (*Visualization System for Electronic and Structural Analysis*). GULP digunakan untuk simulasi atomistik berdasarkan teknik minimasi energi. Data geometri ceria yang diperoleh dari hasil simulasi GULP divisualisai strukturnya dengan menggunakan VESTA.

Pembuatan Data Input

Sumber data input yang digunakan adalah hasil eksperimen difraksi sinar-X ceria (CeO₂) yang dilakukan oleh (Goharshadi, Samiee, & Nancarrow, 2011). CeO₂ ini berstruktur fluorit dengan grup ruang Fm-3m, dimana kation serium (Ce⁴⁺) berkoordinasi 8 dengan ion oksigen sementara oksigen berkoordinasi empat dengan serium. Parameter sel dan koordinat atom-atom dari kisi CeO₂ ditunjukkan pada Tabel 1.

label 1. Parameter sel dan koodinat atom dari CeO ₂						
Parameter	a=b=c (Å)	<i>α=β=γ</i> (°)	volume (Å ³)			
	5,4113	90	158,45			
Koordinat	X	У	Ζ			
Ce	0,0000	0,0000	0,0000			
0	0,2500	0,2500	0,2500			

Data pada Tabel 1 dijadikan sebagai data input CeO₂ sedangkan data untuk CeO₂terdoping M³⁺ dibuat dengan cara memasukkan dopan M³⁺ pada posisi M. Masing-masing dopa M³⁺ mensubsitusi Ce³⁺ secara parsial dengan konsentrasi sebesar 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 10%. Substitusi tersebut diimbangi secara simultan dengan berkurangnya konsentrasi oksigen sampai senyawa ceria terdoping bermuatan netral. Hal ini berarti bahwa masuknya dopan M³⁺ yang berbeda bermuatan dengan Ce⁴⁺ akan menciptakan kekosongan pada posisi oksigen. Perhitungan kekosongan oksigen secara detil dijelaskan di bagian hasil dan pembahasan.

Optimasi Geometri dan Perhitungan Energi Kisi

Dalam pemodelan energi kisi, parameter kisi dan koordinat atom secara sistematis disesuaikan sampai energi mencapai nilai minimal, yaitu tidak ada tegangan atau gaya sisa. Biasanya proses ini melibatkan pendekatan regresi *non-linear* yang diperluas dengan memasukkan tekanan agar besaran entalpi kisi terminimalkan. Output utama dari minimalisasi energi kisi adalah struktur (geometri) kristal teroptimasi dan energi terkait. Dengan demikian model ini dapat digunakan untuk memprediksi stabilitas fasa pada tekanan yang diberikan. Minimasi energi pada penelitian ini dilakukan pada tekanan tetap. Ketika energi dari fasa yang berbeda dibandingkan (meskipun model mekanis empiris maupun kuantum tidak akan memberikan nilai energi absolut), maka perhitungan pada struktur terkait akan memberikan konsentrasi dopan dapat memberikan informasi tentang kestabilan fasa yang diprediksi. Hasil perhitungan yang baik jika perbedaanya parameter sel dan koordinat atom antara hasil pemodelan dan eksperimen adalah maksimal 2% (Dove, 2008).

Simulasi atomistik dilakukan berdasarkan model Born dari padatan ion dimana kisi dikonstruksi dari susunan periodik ion-ion sferik bermuatan (Born & Mayer, 1932). Interaksi antara ion-ion dipartisi menjadi dua komponen, yaitu interaksi elektrostatik *long-range* dan interaksi *short range*. Interaksi short-range adalah interaksi difusi dari awan elektron yang mengelilingi inti yang terdiri dari tolakan Pauli antara awan elektron tetangga dan tarik-menarik van der Waals. Karena ceria yang disimulasi dalam penelitin ini merupakan senyawa dengan ion-ion yang berinteraksi secara ionik, maka potensial *short-range* yang digunakan adalah potensial Buckingham dalam bentuk persamaan 1.

$$\Phi_{ij} = Ae^{-\frac{r_{ij}}{\rho}} - \frac{c}{r_{ij}^6}$$
(1)

dimana *A*, ρ , dan *C* adalah parameter yang berubah menurut data eksperimen. Suku pertama pada persamaan (1) adalah interaksi *short-range* tolak-menolak antara awan elektron sebaliknya suku kedua adalah interaksi *short range* tarik-menarik van der Waals.

Simulasi atomistik CeO₂ dan CeO₂-terdoping dopan trivalen pada penelitian ini menggunakan GULP sebagaimana yang telah berhasil dilakukan oleh Gale (1997), (Gale & Rohl, 2003), dan La Kilo (2013). Sebelum simulasi atomistik dilakukan pada CeO₂-terdoping, maka simulasi dilakukan terlebih dahulu terhadap CeO₂ untuk memastikan geometri CeO₂ teroptimasi. Parameter sel dan koordinat atom dari hasil optimasi CeO₂ tersebut harus memiliki perbedaan yang kecil dengan parameter sel hasil eksperimen sebagaimana yang dilaporkan oleh Dove (2008).

HASIL DAN PEMBAHASAN

Optimasi Struktur Ceria

Input dalam penelitian ini adalah CeO₂ yang dilaporkan oleh Goharshadi *et al.* (2011). Input tersebut merupakan parameter sel yang diperoleh dari data difraksi sinar-X CeO₂, dengan grup ruang Fm-3m. Ion Ce dan O dalam strukur CeO₂ memiliki multiplisitas masing-masing 8 dan 4, dan kedua ion tersebut mempunyai okupansi yang sama, yaitu 1. Artinya, dalam struktur CeO₂ tidak terdapat defek kekosongan (vakansi) oksigen. Defek kekosongan pada oksigen tersebut dapat diciptakan dengan cara melakukan doping CeO₂ dengan dopan oksida trivalen yang mensubsitusi secara parsial Ce⁴⁺. Akibat masuknya dopan trivalen (dopan bervalensi 3) secara parsial pada posisi ion tetravelan Ce⁴⁺, maka terjadi kekosongan oksigen. Pengurangan oksigen tersebut untuk mengimbangi muatan positif, sehingga CeO₂ terdoping yang terbentuk bermuatan netral, tidak ada elektron bebas. Akibatnya, senyawa CeO₂ terdoping yang terbentuk merupakan senyawa elektrolit dengan oksigen yang bemigrasi.

Dalam penelitian ini, konsentrasi dopan (kation trivalen) yang mensubsitusi secara parsial Ce adalah 1% sampai 10%. Substitusi tersebut diimbangi dengan berkurangnya oksigen (sebagaimana dijelaskan di atas). Perhitungan pengurangan tersebut memperhatikan muatan, konsentrasi, dan multiplisitas ion-ion dalam CeO₂ yang terdoping. Perhitungan ini untuk

mendapatkan okupansi yang cocok pada setiap konsentrasi dopan yang mensubstitusi Ce, dan hasilnya ditunjukkan pada Tabel 2.

Konsen-		Mua-	Oku-	Multi-	Muatan	Vakan-
trasi (%)		tan	pansi	plisitas	total	si (%)
	Ce	4	0,99	4	15,84	
1	Μ	3	0,01	4	0,12	
	0	-2	0,9975	8	15,96	0,25
	Ce	4	0,98	4	15,68	<u>.</u>
2	Μ	3	0,02	4	0,24	
	0	-2	0,995	8	15,92	0,50
	Ce	4	0,97	4	15,52	
3	Μ	3	0,03	4	0,36	
	0	-2	0,9925	8	15,88	0,75
	Ce	4	0,96	4	15,36	
4	Μ	3	0,04	4	0,48	
	0	-2	0,99	8	15,84	1,00
	Ce	4	0,95	4	15,2	
5	Μ	3	0,05	4	0,6	
	0	-2	0,9875	8	15,8	1,25
	Ce	4	0,94	4	15,04	
6	Μ	3	0,06	4	0,72	
	0	-2	0,985	8	15,76	1,50
	Ce	4	0,93	4	14,88	
7	Μ	3	0,07	4	0,84	
	0	-2	0,9825	8	15,72	1,75
	Ce	4	0,92	4	14,72	
8	Μ	3	0,08	4	0,96	
	0	-2	0,98	8	15,68	2,00
	Ce	4	0,91	4	14,56	
9	Μ	3	0,09	4	1,08	
	0	-2	0,9775	8	15,64	2,25
	Ce	4	0,90	4	14,4	
10	Μ	3	0,10	4	1,20	
	0	-2	0,975	8	15,6	2,50

Tabel 2. Okupansi ion-ion dan vakansi oksigen dalam CeO₂ terdoping pada berbagai konsentrasi dopan

Simulasi atomistik dengan menggunakan GULP dilakukan untuk menganalisis kestabilan CeO₂ yang didoping menggunakan dopan oksida trivalen dengan nilai parameter sel yang diperoleh dari data difraski sinar-X CeO₂ (Tabel 1) dengan konsentrasi dopan dibatasi 1% sampai 10%. Data input yang dibuat, akan lebih baik jika bagian-bagian strukturnya (parameter sel satuan) diketahui terlebih dahulu, seperti *space group* (grup ruang), *cell parameter* (parameter sel) yang diperoleh dari data difraksi sinar-X.

Simulasi data input dopan menggunakan GULP seperti yang ditunjukan pada Gambar 3.1. Pada baris pertama dalam data input merupakan kata kunci. Kata kunci ini terdiri dari katakata kontrol yang pada umumnya menentukan tugas-tugas yang akan dilakukan oleh program. Seperti *optimasi, conp, prop,* dan *pomp*, kombinasi kata kunci ini secara otomatis memberitahu program (GULP) untuk melakukan tugas-tugasnya yaitu untuk mencari struktur derajat energi terendah (*opti*), untuk melakukan tekanan konstan (*prop*), kemudian untuk menghitung sifat kisi (*comp*). Baris kedua adalah judul atau nama (*title*) dari senyawa yang akan disimulasi dengan menambahkan *end* pada akhir nama senyawa tersebut. Baris ketiga merupakan parameter sel (*cell*) yang terdiri dari nilai *a, b, c* dan sudut *α*, *β*, *γ*. Baris keempat adalah fraksional (*frac*) yaitu menunjukkan posisi (koordinat *x, y, z*)dari atom. Baris kelima adalah kelompok ruang (*space*) biasanya dalam bentuk angka atau kode, dalam penelitian ini *space* yang digunakan adalah bentuk kode. Baris keenam adalah potensial *buckingham* yang menunjukkan interaksi antara kulit dengan kulit, sedangkan untuk baris yang terakhir merupakan interaksi antara inti dengan kulit yang disebut *spring* (tetapan pegas). Setiap data input yang telah dibuat selanjutnya disimulasi secara atomistik pada tekanan tetap dengan menggunakan GULP. Simulasi struktur ini menyangkut parameter sel yaitu panjang sisi-sisinya, sudut dan posisi dari atom-atom dalam inti. Interaksi antar atom-atom yang diperhitungkan adalah interaksi ionik, gaya dispersi dan interaksi Buckingham. Interaksi Buckingham dipilih karena interaksi yang terjadi di dalam struktur adalah interaksi ionik. Hasil simulasi atomistik senyawa induk CeO₂ perbedaan parameter sel yang dihasilkan sangat kecil, sebagaimana yang ditunjukkan pada Tabel 3.

Nilai						
Parameter	Nilai Awal	Akhir	Perbedaan (%)			
Volume (Å ³)	158,4478	158,3354	0,07			
<i>a</i> (Å)	5,4113	5,4099	0,02			
<i>b (</i> Å)	5,4113	5,4099	0,02			
<i>c (</i> Å)	5,4113	5,4099	0,02			
alfa	90,0000	90,0000	0,00			
beta	90,0000	90,0000	0,00			
gama	90,0000	90,0000	0,00			
Ce x	0,0000	0,0000	0,00			
Ce y	0,0000	0,0000	0,00			
Ce z	0,00000	0,0000	0,00			
0 <i>x</i>	0,2500	0,2500	0,00			
О у	0,2500	0,2500	0,00			
0 <i>z</i>	0,2500	0,2500	0,00			

 Tabel 3 Perbedaan Parameter sel dan koordinat atom antara CeO2

 basil eksperimen dan simulasi

Perbandingan tersebut menunjukkan hasil simulasi berkesesuain baik dengan hasil eksperimen. Hal ini juga ditunjukkan dengan hasil simulasi yang dilaporkan oleh Islam dan Fisher (2005) bahwa perbedaan nlai *a*, *b*, dan *c* masing-masing-masing adalah 0,63%, 5,05%, dan 1,12%. Selain itu pada penelitian yang dilaporkan Pakaya (2015) memiliki perbedaan nilai *a*, *b* dan *c* masing-masing adalah 6,70%, 6,54% dan 2%. Perbedaan nilai di atas hampir sama zirkonia oksida yang dilaporkan oleh (La Kilo et al., 2020). Sementara, parameter sel hasil simulasi pada penelitian ini memiliki perbedaan yang lebih rendah, yaitu hanya 0,02%, sebagaimana ditunjukkan pada Gambar 1. Oleh karena itu, geometri dan paramater sel CeO₂ hasil simulasi atomistik penelitian ini memiliki kesesuaian yang baik dengan hasil eksperimen.

(A) (B) **Gambar 1** Struktur CeO₂; (A) sebelum simulasi jarak Ce-O = 2,34313 Å dan (B) setelah disimulasi menggunakan GULP dengan jarak Ce-O = 2,34257 Å

Potensial Buckingham CeO₂ yang didoping dengan kation trivalen

Potensial Buckingham terdiri atas interaksi tolak-menolak dan interaksi dispersi. Dalam CeO₂ terdoping kation trivalen, interaksi dispersi antar O²⁻ lebih tinggi dibandingkan dengan interaksi dispersi antar ion-ion logam. Interaksi dispersi antara ion logam dengan O²⁻ cenderung hampir sama, kecuali pada interaksi dispersi antara ion Yb³⁺ - O²⁻ dan Er³⁺- O²⁻. Interaksi dispersi Yb dan O lebih kecil dari semua interaksi dispersi M-O (M= Lu, Ce, Er, Y, Gd, Eu, Sm,

dan La). Kemampuan dispersi oksigen yang lebih besar menunjukkan kemudahan migrasi ion oksigen dalam CeO₂ yang terdoping. Migrasi ion oksigen inilah yang mengakibatkan CeO₂ yang terdoping sebagai elektrolit dengan konduktivitas tinggi dibandingkan CeO₂ tanpa doping. Potensial Buckingham antara ion dalam senyawa CeO₂ yang terdoping ditunjukkan pada Tabel 4.

Short-Range	A (eV)	ρ(Α)	C (ev·A°)
$0^{2} 0^{2}$	9547,96	0,2192	32,00
Lu ³⁺ -O ²⁻	1618,80	0,3385	19,27
Yb ³⁺ -O ²⁻	1649,80	0,3386	16,57
Er ³⁺ -O ²⁻	1739,91	0,3389	17,55
Y ³⁺ -O ²⁻	1766,40	0,3850	19,43
Gd ³⁺ -O ²⁻	1885,75	0,3399	20,34
Eu ³⁺ -O ²⁻	1925,71	0,3403	20,59
Sm ³⁺ -O ²⁻	1944,44	0,3414	21,49
La ³⁺ -O ²⁻	2088,79	0,3460	23,25
Model kulit	<i>k</i> (eV Å ⁻²)	Muatar	n kulit (e)
Ce ⁴⁺	177,84	-0,2	
Lu ³⁺	97	3,01	
Gd ³⁺	299,96	-0,973	
Eu ³⁺	304,92	-0,991	
La ³⁺	173,90	-2,149	
0 ²⁻	6,3	-2,04	

Tabel 4. Potensial Buckingham ion-ion dari dopan (oksida trivalen) dalam senyawa CeO₂

Oksida CeO_2 yang didoping dengan kation trivalen mengakibatkan oksida tersebut mengalami perubahan parameter sel, seperti panjang sisi-sisinya (*a*, *b*, dan *c*).

Gambar 2. Selisih jejari dopan trivalen terhadap kation host Ce4+

Semakin besar jari-jari dopan (kation trivalen), maka parameter sel CeO₂ yang terdoping akan semakin besar pula. Kenaikan konsentrasi dopan trivalen yang mensubtitusi secara parsial Ce, maka akan menaikan parameter sel pula. Jari-jari ion Ce⁴⁺ adalah 0,970Å (Shannon, 1976) yang lebih kecil dibandingkan dengan jari-jari ion Er sebagaimana ditunjukkan pada Gambar 2.

Kecilnya jari-jari Er dari jari-jari Ce mengakibatkan parameter sel yang dihasilkan lebih kecil. Sementara, Ce dari CeO₂ yang didoping dengan dopan-dopan lainnya yang disebutkan di atas, senyawa yang dihasilkan akan memiliki paramer sel yang lebih besar. Perubahan parameter sel akibat dopan ditunjukkan pada Gambar 3.

Gambar 3 Parameter CeO₂ yang didoping dengan kation trivalen

Hasil simulasi menunjukkan bahwa parameter sel CeO₂ yang didoping dengan Lu, Yb, Y, dan Er semakin menurun. Penurunan parameter sel CeO₂ akibat masuknya ion Er yang jarijarinya lebih kecil dari jari-jari ion Ce. Sebaliknya, jari-jari ion Y, Lu, dan Yb lebih besar daripada jari-jari ion Ce, tetapi parameter sel semakin menurun dengan semakin naiknya konsentrasi dopan. Hal tersebut diakibatkan perbedaan jari-jari Ce dengan Y, Lu dan Er kecil, yaitu masing-masing 4,9%, 1,5% dan 0,7%, sehingga gaya tolak yang kecil dan gaya dispersi sangat berperan untuk menekan parameter sel (*strain* atau *stress*). Khusus untuk CeO₂ yang didoping dengan Y, orbital dari Y kuat dipolarisasi oleh ion oksigen. Parameter sel naik untuk dopan Gd, Eu, Sm, Nd, dan La sebagaimana parameter sel piroklor yang didoping dengan dopan-dopan tersebut (Minervini, Grimes, & Sickafus, 2000). Namun, dopan-dopan yang lebih kecil dari Gd, yaitu Lu, Yb, Y, dan Er berbeda dengan yang dilaporkan oleh Minervini. Mengapa?

Energi Kisi Ceria

Hasil simulasi atomistik menunjukkan bahwa energi kisi senyawa induk, CeO_2 adalah - 105,65 eV. Energi kisi CeO_2 semakin besar dengan adanya dopan yang mensubstitusi secara parsial Ce. Kenaikan energi kisi tersebut disebabkan pula oleh jejari dopan dan kekosongan yang terjadi dalam struktur CeO_2 yang terdoping. Semakin besar jari-jari dopan yang mensubsitusi Ce, maka energi kisi CeO_2 yang terdoping semakin naik (positif), sebagaimana ditunjukkan pada Gambar 4.

Gambar 4 Energi kisi CeO₂ yang terdoping kation trivalen

Energi kisi mengalami perubahan yang besar seiring bertambahnya konsentrasi dopan (Gambar 4). Hal ini berarti bahwa, masuknya dopan mengakibatkan struktur CeO₂ menjadi kurang stabil karena adanya defek kekosongan yang terbentuk. Semakin tinggi konsentrasi kekosongan, maka kestabilan struktur CeO₂ terdoping semakin menurun. Kenaikan energi kisi ceria yang didoping dengan M³⁺ seiring dengan kenaikan ukuran dopan sebagiman hasil yang sama dilaporkan oleh Minervini *et al.* (2000) tentang energi defek pada senyawa piroklor $A_2B_2O_7$ (A= Ce, B = Lu, Yb, Er, Y, Gd, Eu, Sm, Nd, dan La)

Gambar 5. Jarak antara Ce/M – O (A) dan Ce/M – Ce/M (B) dalam struktur CeO₂ yang terdoping dengan oksida trivalen(Keterangan: Kekosongan oksigen tidak ditunjukkan dalam gambar)

Simbol A pada gambar merupakan jarak antara Ce/M dan O terdekat, sedangkan simbol B merupakan jarak antara Ce/M dan Ce/M terdekat. Hasil simulasi CeO₂ yang terdoping dengan dopan oksida trivalen menunjukkan bahwa jarak antara Ce/M dan O terdekat berada pada panjang berkisar 2,16 Å sampai 2,34 Å dan jarak antara CE/M dan Ce/M terdekat berada pada panjang 3,53 Å sampai 3,82 Å, sebagaimana yang ditunjukkan pada Gambar 6.

Gambar 6 Jarak antara Ce/M – O (A) dan Ce/M – Ce/M (B) dalam struktur CeO₂ yang terdoping dengan oksida trivalen

Jarak antar dopan (Lu, Ce, Er, Gd, Eu, Nd, La) dan antara dopan tersebut dengan O lebih besar dibandingkan dengan jarak antar dopan (Sm, Y, Yb) dan dopan tersebut dengan O karena gaya tolak antar dopan dan antar oksigen lebih besar. Hal inilah yang mengakibatkan menurunnya kesatabilan CeO₂ yang didoping dengan Lu, Ce, Er, Gd, Eu, Nd, La dibandingkan dengan CeO₂ yang didoping dengan Sm, Y dan Yb. Gaya dispersi dopan-dopan tersebut hampir sama, sehingga perannya kecil dalam merubah kestabilan dan parameter sel.

Hubungan Konduksi lon dengan Jejari dan Energi Kisi

Kekosongan oksigen yang dihasilkan dari doping dengan kation aliovalen seperti M³⁺ dalam ceria tidak berada dalam keadaan bebas. Kekosongan oksigen berasosiasi dengan dopan untuk membentuk pasangan defek atau klaster. Li *et al.* (2013) melaporkan bawah asosiasi vakansi-dopan menyebakan pembentukan klaster defek yan teratur sehingga akan menghasilkan domain berukuran nano. Energi asosiasi bergantung pada dua faktor, yaitu (1) interaksi elektrostatik karena perbedaan valensi dan (2) *strain* elastis karena ketidakcocokan ukuran antara dopan dan kation *host.* Kedua faktor itu berhubungan dengan energi kisi. Nilai energi kisi berbanding lurus dengan muatan ion dan berbanding terbalik dengan ukuran ion. Pada simulasi atomistik ini, kenaikan energi kisi berbanding lurus dengan besarnya ukuran dopan dan jumlah kekosongan oksigen sebagaimana ditunjukkan pada Gambar 4.

Konduksi ion dari ceria dipengaruhi oleh beberapa parameter, seperti jenis dopan, ukuran dopan, konsentrasi dopan, ukuran butiran segresi pengotor pada batas-batas butiran, dan tekanan parsial oksigen. Tiga parameter yang dituliskan pertama dapat dijelaskan melalui simulasi atomistik dengan teknik minimasi energi sedangkan parameter sisanya diperoleh melalui hasil sintesis (eksperimen). Dopan Lu³⁺, Yb³⁺, Er³⁺, Gd³⁺, Eu³⁺, Sm³⁺, dan La³⁺ merupakan dopan golongan tanah jarang atau lantanida dimana ada elektron-elektron terluar yang menempati orbital f sedangkan dopan Y³⁺ merupakan golongan transisi dengan elektron terluar menempati orbital d selain orbital s. Orbitak d dan f tidak menetrasi inti dan lebih kuat diperisai dari inti atom, sehingga orbital d dan f mengalami ekspansi atau ukuranya menjadi besar (Canham & Overton, 2010). Ukuran dopan yang berbeda menimbulkan derajat kovalensi yang berbeda dari senyawa ion ceria yang didoping dengan dopan-dopan trivalen tersebut. Semakin kecil ukuran dopan, maka derajat kovalensi ceria yang didoping semakin besar dan menjadi salah satu penyebab konduksi ion oksigen rendah sebagaimana yang dilaporkan oleh La Kilo (2012) terhadap konduksi ion y-Bi₂VO_{5.5} akibat dopan. Berdasarkan aturan tersebut, urutan kenaikan derajat kovalensi ceria akibat dopan adalah Lu>Yb>Er>Y>Gd>Eu>Sm>Nd>La, yang sesuai dengan selisih jari-jari yang ditunjukkan pada Gambar 2. Derajat kovalensi yang

besar dari Lu, Yb, Er, dan Y diduga menjadi penyebab turunnya parameter sel CeO₂ yang didoping dengan keempat dopan tersebut sebagaimana ditunjukkan pada Gambar 3.

Polarisasi dalam simulasi ini dimodelkan dengan model kulit. Model ini menggambarkan ion sebagai sebuah kulit bermuatan dengan massa yang sangat kecil (awan elektron valensi terluar) yang terikat pada inti bermassa besar oleh pegas harmonis. Polarisasi ion dirumuskan dengan persamaan 2.

$$\alpha_i = \sum \frac{(Ye)^2}{k_i^s} \tag{2}$$

dimana Y, e, dan k masing-masing adalah muatan kulit, muatan elektron dan tetapan pegas. Berdasarkan persamaan (2), kekuatan polarisai dopan terhadap oksigen dalam ceria-terdoping dapat dihitung. Hasil simulasi model kulit sebagimana yang dituliskan pada Tabel 2 menunjukkan beberapa kekuatan polarisasi, yaitu Lu>La>Eu>Gd. Urutan ini tidak sama dengan urutan derajat kovalensi yag telah disebutkan di atas karena derajat kovalensi di atas tidak memperhitungkan pengaruh kekosongan oksigen. Hasil simulasi menunjukkan bahwa dopan Gd³⁺ memiliki kemampuan mempolarisasi O lebih rendah dibandingkan dengan dopan lainnya. Polarisasi yang menarik perhatian adalah polariasi La³⁺ dan Eu³⁺ lebih tinggi daripada Gd³⁺ padahal jejari Gd³⁺ lebih kecil. Hal ini yang dapat menyebabkan ceria yang didpoing dengan Gd³⁺ memiliki konduksi yang lebih tinggi dibandingkan dengan ceria yang didoping dengan Lu³⁺, La³⁺, dan Eu³⁺. Wei *et al.* (2009) melaporkan bahwa dopan yang kebih kecil dari Gd³⁺ memiliki struktur defek secara termodinamika paling stabil. Hal ini mengindikasikan bahwa kekosongan (vakansi) lebih menyukai untuk bergabung dengan kation dopan jika kation dopan lebih kecil dari Gd³⁺. Kecenderungan ini konsisten dengan hasil Extended X-ray Absorption Fine Structure (EXAFS) dari 5 mol% Y³⁺ yang mendoping ceria, dimana ditemukan Y³⁺ memiliki kecenderungan kuat berikatan dengan kekosongan oksigen (Deguchi, Yoshida, Inagaki, & Horiuchi, 2005). Hal inilah yang menjawab mengapa Gd memiliki konduksi ion yang tinggi dibandingan dengan Y³⁺ sebagaimana yang dikemukakan oleh Kim (1989), Kilner (1983), dan Catlow (1984).

SIMPULAN

CeO₂ berstruktur kubik yang didoping dengan kation trivalen untuk mensubstitusi secara parsial Ce mengakibatkan struktur CeO₂ terdoping mengalami kekosongan oksigen. Kekosongan oksigen ini mengakibatkan struktur CeO₂ terdoping kestabilannya menurun. Gaya tolak antar dopan Lu, Ce, Er, Gd, Eu, Nd dan La dengan oksigen lebih besar dibandingkan dengan gaya tolak antar dopan Sm, Y dan Yb dengan oksigen. Oleh karena itu, penurunan kestabilan CeO₂ yang didoping dengan Lu, Ce, Er, Gd, Eu, Nd dan La lebih besar dibandingkan dengan penurunan kestabilan CeO₂ yang didoping dengan Sm, Y, dan Yb.

DAFTAR RUJUKAN

- Anwar, M., Muhammed, M. A., Muchtar, A., & Somalu, M. R. (2019). Influence of strontium codoping on the structural, optical, and electrical properties of erbium-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2018.12.023
- Artini, C., Carnasciali, M. M., Viviani, M., Presto, S., Plaisier, J. R., Costa, G. A., & Pani, M. (2018). Structural properties of Sm-doped ceria electrolytes at the fuel cell operating temperatures. *Solid State Ionics*. https://doi.org/10.1016/j.ssi.2017.12.009
- Born, M., & Mayer, J. E. (1932). Zur Gittertheorie der Ionenkristalle. Zeitschrift Für Physik. https://doi.org/10.1007/BF01340511
- Catlow, C. R. A. (1984). Transport in doped fluorite oxides. Solid State Ionics. https://doi.org/10.1016/0167-2738(84)90131-0
- Chaudhary, S., Kumar, S., & Mehta, S. K. (2019). Systematic enumeration and proficient chemical sensing applications of Eu 3+ @CeO 2 nanocrystals. *Materials Science and Engineering C.* https://doi.org/10.1016/j.msec.2018.11.022
- Chen, D., Zhang, D., He, D., Lu, J., Zhong, L., Han, C., & Luo, Y. (2018). Relationship between oxygen species and activity/stability in heteroatom (Zr, Y)-doped cerium-based catalysts

for catalytic decomposition of CH3SH. Chinese Journal of Catalysis, 39(12), 1929–1941.

Choolaei, M., Cai, Q., Slade, R. C. T., & Amini Horri, B. (2018). Nanocrystalline gadoliniumdoped ceria (GDC) for SOFCs by an environmentally-friendly single step method. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2018.04.159

Deguchi, H., Yoshida, H., Inagaki, T., & Horiuchi, M. (2005). EXAFS study of doped ceria using multiple data set fit. *Solid State Ionics*. https://doi.org/10.1016/j.ssi.2005.04.043

Dove, M. T. (2008). An introduction to atomistic simulation methods. *Seminarios de La SEM, 4*, 7–37.

Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. *Journal of the Chemical Society - Faraday Transactions*. https://doi.org/10.1039/a606455h

Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). *Molecular Simulation*. https://doi.org/10.1080/0892702031000104887

Goharshadi, E. K., Samiee, S., & Nancarrow, P. (2011). Fabrication of cerium oxide nanoparticles: Characterization and optical properties. *Journal of Colloid and Interface Science*. https://doi.org/10.1016/j.jcis.2011.01.063

Guan, T., Yang, Z., Sun, Y., & Guo, W. (2019). Anisotropic mechanical behavior of gadoliniadoped ceria solid electrolytes under tensile loading. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2018.10.014

Gupta, M., Shirbhate, S., Ojha, P., & Acharya, S. (2018). Processing and conductivity behavior of La, Sm, Fe singly and doubly doped ceria: As electrolytes for IT-SOFCs. *Solid State lonics*. https://doi.org/10.1016/j.ssi.2018.03.005

He, D., Hao, H., Chen, D., Liu, J., Yu, J., Lu, J., ... Luo, Y. (2017). Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition. *Catalysis Today*. https://doi.org/10.1016/j.cattod.2016.06.022

Hernández-Castillo, Y., García-Hernández, M., López-Marure, A., Luna-Domínguez, J. H., López-Camacho, P. Y., & Morales-Ramírez, Á. de J. (2019). Antioxidant activity of cerium oxide as a function of europium doped content. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2018.10.145

Jamshidijam, M., Thangaraj, P., Akbari-Fakhrabadi, A., Niño Galeano, M. A., Usuba, J., & Viswanathan, M. R. (2017). Influence of rare earth (RE=Nd, Y, Pr and Er) doping on the microstructural and optical properties of ceria nanostructures. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2017.01.046

Kilner, J. A. (1983). Fast anion transport in solids. Solid State Ionics. https://doi.org/10.1016/0167-2738(83)90017-6

Kim, D. -J. (1989). Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions. *Journal of the American Ceramic Society*. https://doi.org/10.1111/j.1151-2916.1989.tb07663.x

La Kilo, A., Costanzo, A., Mazza, D., Martoprawiro, M. A., Prijamboedi, B., & Ismunandar, I. (2020). Highest ionic conductivity of BIMEVOX (ME = 10% Cu, 10% Ga, 20% Ta): Computational modeling and simulation. *Indonesian Journal of Chemistry*, *20*(3), 510. https://doi.org/10.22146/ijc.42635

La Kilo, A., Umamah, T. S., & Laliyo, L. A. R. (2019). Study on the Stability of Trivalent Cations Doped Zirconia through Atomistic Modeling. *Jurnal Kimia Sains Dan Aplikasi*, 22(4), 129– 135. https://doi.org/10.14710/jksa.22.4.129-135

Li, Z. P., Mori, T., Zou, J., & Drennan, J. (2013). Defects clustering and ordering in di- and trivalently doped ceria. *Materials Research Bulletin*. https://doi.org/10.1016/j.materresbull.2012.11.073

Minervini, L., Grimes, R. W., & Sickafus, K. E. (2000). Disorder in pyrochlore oxides. *Journal of the American Ceramic Society*. https://doi.org/10.1111/j.1151-2916.2000.tb01484.x

Ortega, P. P., Rocha, L. S. R., Cortés, J. A., Ramirez, M. A., Buono, C., Ponce, M. A., & Simões, A. Z. (2019). Towards carbon monoxide sensors based on europium doped cerium dioxide. *Applied Surface Science*. https://doi.org/10.1016/j.apsusc.2018.09.142

Pal, A. K., Som, S., & Lu, C. H. (2018). Synthesis and spectroscopic analysis of Sm3+ doped CeO2 ceramic powders for the application of white LEDs. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2018.07.036

- Polychronopoulou, K., Zedan, A. F., AlKetbi, M., Stephen, S., Ather, M., Katsiotis, M. S., ... AlHassan, S. (2018). Tailoring the efficiency of an active catalyst for CO abatement through oxidation reaction: The case study of samarium-doped ceria. *Journal of Environmental Chemical Engineering*. https://doi.org/10.1016/j.jece.2017.12.001
- Sudarsan, P., & Krishnamoorthy, S. B. (2018). Grain boundary scavenging through reactive sintering of strontium and iron in samarium doped ceria electrolyte for ITSOFC applications. *Materials Research Bulletin.* https://doi.org/10.1016/j.materresbull.2017.12.047
- Sun, Q., Fu, Z., & Yang, Z. (2018). Effects of rare-earth doping on the ionic conduction of CeO2 in solid oxide fuel cells. *Ceramics International*. https://doi.org/10.1016/j.ceramint.2017.11.149
- Wei, X., Pan, W., Cheng, L., & Li, B. (2009). Atomistic calculation of association energy in doped ceria. *Solid State Ionics*. https://doi.org/10.1016/j.ssi.2008.10.019
- Xie, S., Wang, Z., Cheng, F., Zhang, P., Mai, W., & Tong, Y. (2017). Ceria and ceria-based nanostructured materials for photoenergy applications. *Nano Energy*. https://doi.org/10.1016/j.nanoen.2017.02.029