Editorial Board

Editor -in–Chief

William Ebomoyi
Ph.D., Professor, Department of Health Studies, College of Health Sciences, Chicago State University, **USA**.
E-mail: textroadjournals@gmail.com

Associate Editors

Prof. Dr. Sanaa T. El-Sayed
Ex Head of Biochemistry Department, Professor of Biochemistry, Genetic Engineering & Biotechnology Division, National Research Centre, **Egypt**

Saeid Chekani Azar
PhD of Veterinary Physiology; Faculty of Veterinary, Department of Physiology, Ataturk University, Erzurum 25010, **Turkey**.

Dr. Chandrasekar Raman
Research Associate, Department of Biochemistry & Molecular Biophysics, Biotechnology Core Facility, 238, Burt Hall, Kansas State University, Manhattan 66506, **USA**.

Dr. YUBAO CUI
Associate Professor, Department of Laboratory Medicine, Yancheng Health Vocational & Technical College, Jiangsu Province, **China**.

Dr. Fahrettin Tilki
Assoc. Professor, Artvin Coruh University, Faculty of Forestry, Department of Forest Science, Artvin, **Turkey**.

Dr. Ibtisam abd el ghany hammad
Associate Professor of Genetics, Faculty of Science, Helwan University, **Egypt**.

Dr. Charalambos Tsekeris
Department of Psychology, Panteion University of Social and Political Sciences, Athens, **Greece**.

Dr. Elsayed E. Hafez
Associate Professor, Molecular Biology, Plant Molecular Pathology & Arid Lands Institute, **Egypt**.

Dr. Naushad Mamode Khan
University of Mauritius, Reduit, **Mauritius**.

Mirza Hasanuzzaman
Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka-1207, **Bangladesh**.

Dr. Hala Ahmed Hafez Kandil
Associate Professor National Research Centre, Plant Nutrition Department. Dokki, Giza, Cairo, **Egypt**.

Mahdi Esmaeilzadeh
PhD Candidate of Immunology, Department of Immunology, Division of Human Genetics, Avicenna Research Institute, Mashhad University of Medical Sciences. Bu-Ali Sq. Mashhad, Iran.

Dr. Yule Yue Wang
Biotechnology and Medicinal Biochemistry, Division of Life Science, The Hong Kong University of Science & Technology, **China**.
Dr. Aziza Sharaby
Professor of Entomology .Plant Protection Department, National Research Center. Cairo, **Egypt**.

Jasem Manouchehri
Ph.D. Candidate in Sport Management, University of Tehran (UT) & Instructor in Sport Management, Islamic Azad University, Central Tehran Branch (IAUCTB), **Iran**

Editors

Dr. Josphert N. Kimatu
Department of Biological Sciences. South Eastern University College, **Kenya**.

Jehngir Khan
Lecturer in Zoology Department, Abdul Wali Khan University Mardan (AWKUM), Buner Campus, Buner, Khyber Pakhtunkhwa, **Pakistan**.

Syed Muhammad Nurulain
Medical Research Specialist, FMHS, UAE University, **Emirates**

Dr. Ayman Batisha
Environment and Climate Research Institute, National Water Research Center, Cairo, **Egypt**.

Dr. Hakeem Ullah
Assistant Professor, Department of Mathematics Abdul Wali Khan University Mardan **Pakistan**.

DR. DATTA ASARAM DHALE
Assistant Professor, Post Graduate Department of Botany, Ghogrey Science College, Dhule, Maharashtra State, **India**.

Prof. Dr. Valdenir José Belinelo
Department of Health Sciences and Postgraduate Program in Tropical Agriculture, Federal University of Espírito Santo (UFES), São Mateus, ES, **Brazil**.

Siva Sankar. R
Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, **India**.

Dr. Tarig Osman Khider
Associate Professor, University of Bahri-Sudan, College of Applied and Industrial Sciences, Department of Pulp and Paper Technology, **Sudan**

Dr. Ali Elnaeim Musa
University of Bahri, Sudan College of Applied and Industrial Sciences, **Sudan**

Dr. Basharia Abd Rub Alrasoul Abd Allah Yousef
Deputy Dean at Faculty of Engineering, University of Bahri, Khartoum, **Sudan**

Dr. Khaled Nabih Zaki Rashed
Pharmacognosy Department, National Research Centre, Dokki, Giza, **Egypt**

Govinda Bhandari
Semra Benzer
Assistant Professor in Gazi University, Gazi Education Faculty, Department of Science, Ankara, Turkey.

Ahmed Hashim Mohaisen Al-Yasari
Department of Physics, College of Education For Pure Science, University of Babylon, Hilla, Iraq.

Dr. Hafiz Abdul Wahab
Assistant Professor of Mathematics, Department of Mathematics, Hazara University Mansa,ra Pakistan.

Dr. Sohrab Mirsaedi
Centre of Electrical Energy Systems (CEES), Faculty of Electrical Engineering (FKE), Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia

Prof. Md. Amin Uddin Mridha
Ph.D. DIC (London), Plant Production Department, King Saud University, P.O.Box 2460, Riyadh 11451, Kingdom of Saudi Arabia.
Abstracting/Indexing

Journal of Applied Environmental and Biological sciences

Is indexed in:

Thomson Reuters (ISI)

http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jresults.cgi?PC=MASTER&Full=journal%20of%20applied%20environmental%20and%20biological%20sciences

Copernicus

http://www.journals.indexcopernicus.com/passport.php?action=masterlist&id=8131

ICV 2012: 9.00

Global Impact Factor:

2012: 0.525
2013: 0.617
2014: 0.702

SIF (Science Impact Factor)

Impact Factor=1.72

http://scienceimpactfactor.com/?p=640

Electronic Journals Library:

http://rzblx1.uni-regensburg.de/ezeit/searchres.phtml?bibid=AAAAA&colors=7&lang=en&jq_type1=KT&jq_term1=JA

Contemporary Science Association (NEW YORK):
Kristianti I. Purwani, Nar H. Alami, Sit Nurtatika, Suzi N. Marcella, Achmad Adityanto
In Vitro Potential Test of Kutapang (Terminalia catappa) Leave Extract against Aeromonas salmonicida

Leila Sadegh, Afsa Ashjeha Ardalan

Muhammad Ali Jibran Qamar, Asim Shahzad, Sameen Masood
The Relationship between Debt Financing and Reported Earnings Quality: An Empirical Analysis of Non-financial Firms of Pakistan

La Podjje Talangke, Bambang Widjanarko Otok, Gangga Anuraga
Modeling Target Millennium Development Goals (MDG's) in Makasar Using Bayesian Structural Equation Modeling

Shahid Akbar, Ashfaq Ahmad, Maqsood Hayat, Faheem Ali
Face Recognition Using Hybrid Feature Space in Conjunction with Support Vector Machine

Dya Sustari, Bambang Widjanarko Otok
Meta-Analysis on the Factors Affecting the Occurrence of Pulmonary Tuberculosis

Taghfeid Mohammed El-Lamey
Morphological and Anatomical Responses of Leucaena leucocephala [Lam.] de Wit. and Prosopis chilensis (Molina) Stuntz to RasSudr Conditions

Marzieh Ramazani, Ramezan Jahanian
Feasibility of Organizational Health Indicators Establishment in Secondary Schools in Tehran from Teachers’ Point of View

Ijaz Khaliq and Zahir Shah
US Strategy in Afghanistan: From Attack to Talks
Herina Jusuf, Bambang Widjanarko Otok
Parameter Estimation Model Multivariate Adaptive Regression Spline for Data Series in The number of HIV / AIDS in EAST JAVA

Maryam Sharifi Jomhari, Behman Akbari
Prediction of Academic Performance based on Child-Raising Styles and Social Growth in Teenagers aged 12-18 who are addicted to Internet in Rashti City

Hassan Mohagheghi, Erfat Farro, Farisa Nahalgar, Sayyed Mohammad Hosseini, Kiamars Faramakhsh
The Mediating Role of Job Resources and Psychological Capital in the Job Demands - Job Burnout Relationship

Rama Hida, Reeni Hida
The Welfare of Fishermen in Gorontalo using Structural Equation Modelling

Fatemeh Mohammadifar, Fariba Karani
Analysis Model of the Effectiveness of the Attitude of Managers, Non-Technical and Organizational Readiness Factors in the Development of E-Commerce in....

Sanjar Salajeghe, Neda Soltani Gohari, Behrooz Farhadi, Fazlme Kordi
The Causes of Unemployment in Iran DNA Strategies to Overcome the Crisis

Davoud Pirouzi, Sanae Keshkari
Impact of Market Orientation on the Business Performance According to Organization Structure in Large-Scale Chemical Companies

Moosa Javadian, Soheil Halderpour, Gholamhossein Maktabi
A Comparison between Intellectual Personality of Kids and Students in Divorced and Normal Families

Maryam Bahadori, Ghodratolah Talebia and Zekwan Imani
A study on the Relationship between Financial Flexibility and Cash Policies of Listed Companies in Tehran Stock Exchange

Mohammad Nikkhah and Rahman Akbari
Predicting the Mathematical Performance of the Students Based on the Dimensions of Metacognition Condition

Jabar Vahedi, Hassan Ali Vahedi and Abbas Ali Zamani
Morphology and Biology of Apelles Spectrum Esper, 1787 (Lep: Noctuidae) on Sinking Bean Trefoil, Anagyris Foetida L. [Leguminosae] in Kermanshah.....

Zahir Shah and Iaj Khalid
The Welfare of Fishermen in Gorontalo using Structural Equation Modeling

Rama Hiola*, Reni Hiola

Faculty Science Health and Sportsmanship, University Country of Gorontalo, Gorontalo, Indonesia
Received: March 13, 2015
Accepted: May 24, 2015

ABSTRACT

Results of the study with Structural Equation Modeling (SEM) to approach showed that the welfare of fishermen model is a model that fit with the chi-square of 0.045 and p-value 0.074, and RMSEA 0.045. Coastal development, environment of coastal communities, behavioral economic adaptation of fishermen affect the welfare of fishermen. Behavioral economic adaptation of fishermen provide indirect effect most welfare of fishermen, and coastal development provides the greatest effect on the welfare of fishermen.

KEYWORDS: SEM, welfare, coastal development, behavioral economic adaptation, fishermen

1. INTRODUCTION

Indonesian government aims to realize a society that is fair and prosperous through development activities, which have been set out in a strategy called the "Triple Track strategy" to improve people's welfare [1]. Relation to the management of coastal areas in order to improve people's welfare, often in the part of the fishermen community who are less advantaged, so that they become neglected as a result of development which focuses on the economic benefits rather than taking into account the risk of loss that can arise in the future due to development results implemented. In fact, a group of fishing communities is part of the coastal communities whose existence can’t be ignored either as a resident or existence in the development process.

In conjunction with the development of coastal areas in Gorontalo can be argued there has been a paradoxical development, fishing communities ultimately not be the subject of development in coastal areas Gorontalo, in the area of their own population. They even experienced a sizeable adjustment to environmental conditions as a result of development in coastal areas Gorontalo. This resulted largely from the fishing community has been marginalized even better they have changed the place of residence or have lost their livelihood and / or other professions have switched from their previous profession that has been theirs for generations [2][3]. In such circumstances has shown that the development of coastal areas in Gorontalo has ignored the approach of coastal development and is not yet fully able to improve social welfare of coastal areas evenly. [4] stated that with the pressure of population with socio-economic dynamics, as well as the magnitude of the demands of local governments to obtain the funding sources for increased acceleration of development, has an impact of less favorable for environmental sustainability [5][18] and natural resources a capital construction of the present and the future [6].

Noting that coastal development paradox has been described above, it is necessary to study the implications of coastal development on the environment and the welfare of fishermen in Gorontalo. Besides analyzing the ways and means of fishing communities in addressing environmental change with Structural Equation Modeling (SEM) to approach.

2. METHODOLOGY

The data will be analyzed in this study are primary data taken directly by giving the questionnaire questions via questionnaire to the fishing communities in Gorontalo. The sampling method to be used is probability sampling with simple random sampling [13][14] and analysis techniques used are Structural Equation Modeling (SEM).[8][9][10]

SEM is a set of statistical methods that allow testing of a relatively complex set of relationships simultaneously. The complex relationships can be built from a single or multiple dependent variables by one or more independent variables. Each dependent and independent variables can take the form factors (constructs are constructed from several indicators). These variables form a single variable that is observed or measured directly in a study. The input data used in the modeling SEM is the covariance matrix of the data sample (empirical data), which is then used to generate an estimate of the covariance matrix of the population.

[15] Modeling a complete SEM basically consists of a measurement model and structural models. Measurement models aimed at confirming the dimensions of which are developed on a factor, while the structural model of the structure of relationships that make up or explain the causality between factors[11][12]. SEM models is based on the conceptual framework of coastal development (X) consists of development.

*Corresponding author: Rama Hiola, Faculty Science Health and Sportsmanship, University Country of Gorontalo, Gorontalo, Indonesia. Email: rama_hiola@gmail.com
capability (X1.1), revenue enhancement program (X1.2), infrastructure (X1.3); [18] environment of coastal communities (Y1) consists of environmental quality (Y1.1), environmental services (Y1.2); behavioral economic adaptation of fishermen (Y2) consists of functional adaptation (Y2.1), adaptation process (Y2.2); and the welfare of fishermen (Z) consists of income (Z1), savings (Z2), electricity bills (Z3), ownership of boats and fishing equipment (Z4), housing (Z5), education (Z6), health (Z7) are taken from the literature. The conceptual framework is presented as follows:

Figure 1. Conceptual Framework Fishermen Welfare

3. RESULTS AND DISCUSSION

Validity test is done by using confirmatory factor analysis [16][17] on each of the latent variables namely coastal development (X1), environment of coastal communities (Y1), behavioral economic adaptation of fishermen (Y2), and the welfare of fishermen (Z), while the reliability test use composite (construct) reliability with a minimum cut-off value is 0.7. More results are presented in the following table.

<table>
<thead>
<tr>
<th>Latent variable</th>
<th>Indicator</th>
<th>Loading (λ)</th>
<th>p-value</th>
<th>variance error</th>
<th>p-value</th>
<th>C-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal development(X1)</td>
<td>development capability (X1.1)</td>
<td>.864</td>
<td>.000</td>
<td>.382</td>
<td>.000</td>
<td>0.732</td>
</tr>
<tr>
<td></td>
<td>revenue enhancement program (X1.2)</td>
<td>.923</td>
<td>.000</td>
<td>.240</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>infrastructure (X1.3)</td>
<td>.888</td>
<td>.000</td>
<td>.328</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Environment of coastal communities (Y1)</td>
<td>environmental quality (Y1.1)</td>
<td>.879</td>
<td>.000</td>
<td>.289</td>
<td>.010</td>
<td>0.795</td>
</tr>
<tr>
<td></td>
<td>environmental services (Y1.2)</td>
<td>.839</td>
<td>.000</td>
<td>.373</td>
<td>.025</td>
<td></td>
</tr>
<tr>
<td>The behavior of economic adaptation of fishing communities (Y2)</td>
<td>functional adaptation (Y2.1)</td>
<td>.882</td>
<td>.000</td>
<td>.307</td>
<td>.040</td>
<td>0.780</td>
</tr>
<tr>
<td></td>
<td>adaptation process (Y2.2)</td>
<td>.905</td>
<td>.000</td>
<td>.315</td>
<td>.043</td>
<td></td>
</tr>
<tr>
<td>The welfare of fishermen (Z)</td>
<td>income (Z1)</td>
<td>.807</td>
<td>.000</td>
<td>.500</td>
<td>.000</td>
<td>0.875</td>
</tr>
<tr>
<td></td>
<td>savings (Z2)</td>
<td>.634</td>
<td>.000</td>
<td>1.074</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>electricity bills (Z3)</td>
<td>.758</td>
<td>.000</td>
<td>.649</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ownership of boats and fishing equipment (Z4)</td>
<td>.825</td>
<td>.000</td>
<td>.446</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>housing (Z5)</td>
<td>.797</td>
<td>.000</td>
<td>.533</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>education (Z6)</td>
<td>.571</td>
<td>.000</td>
<td>.809</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>health (Z7)</td>
<td>.616</td>
<td>.000</td>
<td>.669</td>
<td>.000</td>
<td></td>
</tr>
</tbody>
</table>

Table 1, shows all the indicators of each latent variable has a value of loading factor above 0.5 with a p-value less than α = 0.05, then the indicator is valid and significant. Table 1 also means that the development of the coastal region (X1) is formed of three indicators of capability development program (X1.1), revenue enhancement program (X1.2), and infrastructure (X1.3). Environment of coastal communities (Y1) is formed of two indicators of environmental quality (Y1.1) and environmental services (Y1.2). Behavioral economic adaptation of fishermen (Y2) is formed of two indicators of functional adaptation (Y2.1), and adaptation process (Y2.2). The welfare of fishermen (Z) is formed of seven indicators of income (Z1), savings (Z2), electricity bills (Z3), ownership of boats and fishing equipment (Z4), housing (Z5), education (Z6) and health (Z7). In addition, from Table 1, also indicated that all the indicators and the latent variable error variance p value less than 0.05 and CR values above the cut-off value of 0.7 so it can be said to be reliable.

Having tested the validity and reliability of the respective latent variables, some of the prerequisites that must be met in structural modeling is a multivariate normal assumption, assuming the absence of multicollinearity or singularity and outliers. Normality of the data is one of the requirements in the modeling
Structural Equation Modeling (SEM). Multivariate CR value of 1.061 and this value lies between -1.96 to 1.96, so that it can be said that the data distribution normal multivariate. Singularity can be seen through the determinant of covariance matrix. Results of the study provide value Determinant of sample covariance matrix by 0.042. This value is almost limited of zeros so that it can be said that there is no singularity problem on the analyzed data. Thus indirectly all latent variables no multicollinearity. Outlier is an observation that appears with extreme values are univariate and multivariate Mahalanobis value greater than Chi-square table or value p1 <0.01 saying that outlier observations. In this study, no data outliers, it can be said not occur outlier.

Having tested the validity and reliability on all latent variables are valid and reliable results, data is normal multivariate, does not occur multicollinearity and outliers below 5 percent, the latent variables can be continued in the form of path diagram analysis presented as follows:

![Path diagram analysis](image)

Figure 2. The relationship between the exogenous with the endogenous latent variables

The test results over the complete model with AMOS complete program can be seen in the following table:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value Cut – Off</th>
<th>Results Calculation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi – Square</td>
<td></td>
<td>88.946</td>
<td>χ^2 with df = 71is 96.189 Good</td>
</tr>
<tr>
<td>Significance Probability</td>
<td>≥ 0.05</td>
<td>0.074</td>
<td>Good</td>
</tr>
<tr>
<td>RMSEA</td>
<td>≤ 0.08</td>
<td>0.045</td>
<td>Good</td>
</tr>
<tr>
<td>GFI</td>
<td>≥ 0.90</td>
<td>0.906</td>
<td>Good</td>
</tr>
<tr>
<td>AGFI</td>
<td>≥ 0.90</td>
<td>0.862</td>
<td>Good Enough</td>
</tr>
<tr>
<td>CMIN/DF</td>
<td>≤ 2.00</td>
<td>1.253</td>
<td>Good</td>
</tr>
<tr>
<td>TLI</td>
<td>≥ 0.95</td>
<td>0.974</td>
<td>Good</td>
</tr>
<tr>
<td>CFI</td>
<td>≥ 0.95</td>
<td>0.980</td>
<td>Good</td>
</tr>
</tbody>
</table>

Based on the table above, shows that 7 (seven) criteria used to judge the worth / absence of a model turned out to proclaim Good. It can be said that the model is acceptable, which means there is a match between the model with data.

Of a suitable model, it can be interpreted each path coefficient. The coefficients of these pathways is hypothesized in this study, which can be presented in the following structural equation:

$$Y_1 = 0.238 \ X$$
$$Y_2 = 0.214 \ X + 0.224 \ Y_1$$
$$Z = 0.264 \ X + 0.261 \ Y_1 + 0.237 \ Y_2$$

with,

- X = Coastal development
- Y_1 = Environment of coastal communities
- Y_2 = Behavioral economic adaptation of fishermen
- Z = The welfare of fishermen

Testing the path coefficients in Figure 2 and equation above in detail presented in the following table:
Based on Table 3, the interpretation of each path coefficients are as follows:

- Coastal development (X) positive and significant impact on behavioral economic adaptation of fishermen (Y2). This can be seen from the path coefficient is positive for 0.214 with a value of CR for 2.216 and obtained a significance probability (p) of 0.034 which is smaller than the significance level (α) specified at 0.05. Thus the construction of the coastal area (X) directly affect behavioral economic adaptation of fishermen (Y2) of 0.214, which means that every increase in coastal area development (X) will raise behavioral economic adaptation of fishermen (Y2) of 0.214.

- Coastal development (X) positive and significant impact on the welfare of fishermen (Z). This can be seen from the path coefficient is positive for 0.264 with a value of CR for 2.617 and obtained a significance probability (p) of 0.009 which is smaller than the significance level (α) specified at 0.05. Thus the construction of the coastal area (X) directly affect the welfare of fishermen (Z) of 0.264, which means that every increase in coastal area development (X) will raise the welfare of fishermen (Z) of 0.264.

- Environment of coastal communities (Y1) positive and significant impact on behavioral economic adaptation of fishermen (Y2). This can be seen from the path coefficient is positive for 0.224 with a value of CR for 2.103 and obtained a significance probability (p) of 0.035 which is smaller than the significance level (α) specified at 0.05. Thus environment of coastal communities (Y1) directly affect the welfare of fishermen (Z) of 0.224, which means that every increase in environment of coastal communities (Y1) will raise the welfare of fishermen (Z) of 0.224.

- Environment of coastal communities (Y1) positive and significant impact on the welfare of fishermen (Z). This can be seen from the path coefficient is positive for 0.261 with a value of CR for 2.419 and obtained a significance probability (p) of 0.016 which is smaller than the significance level (α) specified at 0.05. Thus environment of coastal communities (Y1) directly affect the welfare of fishermen (Z) of 0.261, which means that every increase in environment of coastal communities (Y1) will raise the welfare of fishermen (Z) of 0.261.

- Behavioral economic adaptation of fishermen (Y2) positive and significant impact on the welfare of fishermen (Z). This can be seen from the path coefficient is positive for 0.237 with a value of CR for 2.240 and obtained a significance probability (p) of 0.025 which is smaller than the significance level (α) specified at 0.05. Thus behavioral economic adaptation of fishermen (Y2) directly affect the welfare of fishermen (Z) of 0.237, which means that every increase in behavioral economic adaptation of fishermen (Y2) will raise the welfare of fishermen (Z) of 0.237.

Direct influence, indirect influence and total influence in modeling SEM seems to be the important. For that will be discussed in detail each of these influences. Direct relationship occurs between exogenous latent variables (Development of coastal area (X)) with endogenous latent variables mediating / intervening (environment of coastal communities (Y1), behavioral economic adaptation of fishermen (Y2)) and endogenous latent variables (the welfare of fishermen (Z)). The following table presents the direct result of the direct relationship that occurs between latent variables exogenous and endogenous:

Table 4. Direct Effect Variables Research

<table>
<thead>
<tr>
<th>Direct Effect</th>
<th>Intervening Variables</th>
<th>Endogenous Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous Variable</td>
<td>Coastal development (X)</td>
<td>0.238</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.214</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.264</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.261</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.237</td>
</tr>
</tbody>
</table>

Hiola and Hiola, 2015
From Table 4 it can be explained much influence directly (direct effects) of a latent variable exogenous to the endogenous latent variables. Coastal development (X) gives the most direct effect on the welfare of fishermen (Z), and further provides the largest direct effect on the welfare of fishermen (Z) is environment of coastal communities (Y1).

Indirect effect occurring between exogenous and endogenous latent variables are presented in the following table.

Table 5. Indirect Effect Variables Research

<table>
<thead>
<tr>
<th>Pengaruh Tidak Langsung</th>
<th>Intervening Variables</th>
<th>Endogenous Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Environment of coastal communities (Y1)</td>
<td>Behavioral economic adaptation of fishermen (Y2)</td>
</tr>
<tr>
<td>Exogenous Variable</td>
<td>Coastal development (X)</td>
<td>0.054</td>
</tr>
<tr>
<td>Intervening Variables</td>
<td>Environment of coastal communities (Y1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Behavioral economic adaptation of fishermen (Y2)</td>
<td></td>
</tr>
</tbody>
</table>

From Table 5, can be explained much influence indirectly (indirect effects) of a latent variable exogenous to the endogenous latent variables. Environment of coastal communities (Y1) and behavioral economic adaptation of fishermen (Y2) provides the largest indirect effect on development of coastal region (X) on the welfare of fishermen (Z).

The net effect occurring between exogenous and endogenous latent variables are presented in the following table.

Table 6. Total Effect Variables Research

<table>
<thead>
<tr>
<th>Pengaruh Langsung</th>
<th>Intervening Variables</th>
<th>Endogenous Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Environment of coastal communities (Y1)</td>
<td>Behavioral economic adaptation of fishermen (Y2)</td>
</tr>
<tr>
<td>Exogenous Variable</td>
<td>Coastal development (X)</td>
<td>0.238</td>
</tr>
<tr>
<td>Intervening Variables</td>
<td>Environment of coastal communities (Y1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Behavioral economic adaptation of fishermen (Y2)</td>
<td></td>
</tr>
</tbody>
</table>

From Table 6, can be explained much influence total (total effects) of a latent variable exogenous to the endogenous latent variables. Coastal development (X) gives the largest total effect on the welfare of fishermen (Z), and further provides the largest total effect on the welfare of fishermen (Z) is the environment of coastal communities (Y1). Coastal development (X) gives the largest total effect on the welfare of fishermen (Z).

4. CONCLUSION

The results showed that all the indicators of each latent variable has a value of loading factor above 0.5 with a p-value less than α = 0.05, then the indicator is valid and significant, and then the model of the welfare of the community of fishermen is fit model. Coastal development (X), the environment of coastal communities (Y1), behavioral economic adaptation of fishermen (Y2) affect the welfare of fishermen (Z), while the behavioral economic adaptation of fishermen (Y2) provide indirect effect most welfare of fishermen (Z).

REFERENCES

