


Preface

My Goals For This Book

Science and engineering students depend heavily on concepts of math-
ematical modeling. In an age where almost everything is done on a
computer, it is my conviction that students of engineering and science are
better served if they understand and “own” the underlying mathematics
that the computers are doing on their behalf. Mathematics is a necessary
language for doing engineering and science. This will remain true no mat-
ter how good computation becomes. I repeatedly tell students that it is
risky to accept computer calculations without having done some parallel
closed-form modeling to benchmark the computer results. Without such
benchmarking and validation, how do we know that the computer isn’t talking
nonsense? Finally, I find it satisfying and fun to do mathematical manipula-
tions that explain how or why something happens, and to use mathematics
to obtain corresponding numerical data or predictions.

Thus, as it was for the first edition, my primary goal for this second edition
remains to engage the reader in developing a foundation for mathematical
modeling. Further, knowing that mathematical models are built in a range
of disciplines—including physics, biology, ecology, economics, sociology,
military strategy, as well as all of the many branches of engineering—and
knowing that mathematical modeling is comprised of a very diverse set of
skills and tools, I focused on techniques of particular interest to engineers,
scientists, and others who model continuous systems.
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Features of This Edition

Aided by a variety of reviewers’ comments and suggestions, this second
edition features:

• A more formal statement of a principled approach to mathematical
modeling (in Chapter 1). Ten principles are articulated and invoked
as applications are developed, and each of them is identified by a key
word (see below).
• Some 360 problems, many of which are designed to reinforce skills

in mathematical manipulation. Many could be done with a computer
algebra system (CAS), and there are others for which numerical pro-
grams could be used. However, given my goals for this book, I would
ask students do the problems in “the old-fashioned way.”
• A reordering and expansion of the applications chapters that reflects

some sense of increasing complexity.
• Expanded figure captions that are intended to be more informative.

How This Book Is Organized

The book is organized into two parts: foundations and applications. The
first part lays out the fundamental mathematical ideas of interest to the
model builder: dimensional analysis, scaling, and elementary approxima-
tions of curves and functions. The applications part of the book develops a
series of models and discusses their origins, their validity, and their mean-
ing. These models include a host of exponential models, traffic flow models,
free and forced vibration of linear (and occasionally nonlinear) oscillat-
ors, and optimization as done both with calculus and with elementary
operations research techniques.

In the applications discussions, reference to the modeling principles is
made by highlighting appropriate key words in the margin immediately
adjacent to the appropriate text, as in:

“Lanchester wanted to describe the attrition of opposing forces at war. ThisWhy?

Find? required modeling the changes of two army populations whose respective
rates of attrition depend on the size of the opposing army.”

The foundations and applications parts of the book are connected only
loosely. The following matrix indicates roughly how the chapters in each
part relate to each other. In fact, the reader—and the teacher—can easily
start with Chapter 5 and work through the applications models, referring
back to corresponding discussions of the foundations as needed.
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The problems distributed throughout and at the end of each chapter
(save Chapter 1) are an integral part of the book. Like bike riding and dan-
cing and designing, mathematical modeling cannot be learned simply by
reading. Skills are developed and honed by doing problems, both ele-
mentary and difficult. Thus, there are problems that provide drills in
basic skills, and there are problems that either develop new models or
expand on models developed earlier in the text. For example, in prob-
lems at the end of Chapter 3 we show how dimensional groups are used
to interpret experimental results. The problems in Chapter 5 demonstrate
how dimensional analysis interacts with other approaches to deriving the
governing equations for the oscillating pendulum, and the problems in
Chapter 7 include data on resonance and impedance for a variety of forced
oscillators.

Models
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Free
Vibration

Applying
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What Is
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2 Dimensional Analysis • • • •
3 Scaling • • •
4 Approximation • • • • •

As noted earlier, many of the problems could be done with a computer,
whether a symbolic manipulator, a spreadsheet, or an algorithmic number
cruncher. However, in order to learn to do mathematical modeling, the
problems should be done in “closed form,” with pencil and paper, with
access only to a simple electronic calculator. This will both reinforce skills
and provide a basis for benchmarking future computer calculations.

Three appendices from the first edition have been moved closer to their
use in the book. A brief review of elementary transcendental functions is
now appended to Chapter 4; the mathematics of the first-order equation,
dN/dt − λN = 0, is outlined in Section 5.2.2; and the mathematics of the
second-order oscillator equation, md2x/dt 2 + kx = F(t ), is detailed in
Sections 7.2.2. and 8.6.

Lastly, the book can be used in several ways. The first edition was
developed for new courses in mathematical modeling that were offered
to first-year engineering students at Carnegie Mellon University and at the
University of Massachusetts at Amherst. The book could also serve as a
first course in applied mathematics for mathematics majors, or as a “tech-
nical elective” for various science and engineering majors, or conceivably
as a supplementary text in basic calculus courses. In hopes of extending
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its audience, I have tried to enhance both the book’s accessibility and its
flexibility.

I Presume That You, the Reader, Have. . .

. . . taken courses in elementary algebra, trigonometry, and first-year cal-
culus. I further presume that you recognize what a differential equation
is and what it means for y(x) or y(x , t ) to be a solution of a differential
equation. While you won’t be asked to “solve” a differential equation, you
will be asked to confirm and manipulate some of the solutions that are
given. Finally, I do assume some basic understanding of first-year physics,
mainly mechanics.
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1
What Is Mathematical

Modeling?

We begin this book with a dictionary definition of the word model :

model (n): a miniature representation of something; a pattern of some-
thing to be made; an example for imitation or emulation; a description or
analogy used to help visualize something (e.g., an atom) that cannot be dir-
ectly observed; a system of postulates, data and inferences presented as a
mathematical description of an entity or state of affairs

This definition suggests that modeling is an activity, a cognitive activity in
which we think about and make models to describe how devices or objects
of interest behave.

There are many ways in which devices and behaviors can be described.
We can use words, drawings or sketches, physical models, computer pro-
grams, or mathematical formulas. In other words, the modeling activity
can be done in several languages, often simultaneously. Since we are par-
ticularly interested in using the language of mathematics to make models,
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we will refine the definition just given:

mathematical model (n): a representation in mathematical terms of the
behavior of real devices and objects

We want to know how to make or generate mathematical representations
or models, how to validate them, how to use them, and how and when their
use is limited. But before delving into these important issues, it is worth
talking about why we do mathematical modeling.

1.1 Why Do We Do Mathematical Modeling?

Since the modeling of devices and phenomena is essential to both engi-
neering and science, engineers and scientists have very practical reasons
for doing mathematical modeling. In addition, engineers, scientists, and
mathematicians want to experience the sheer joy of formulating and solving
mathematical problems.

1.1.1 Mathematical Modeling and the

Scientific Method

In an elementary picture of the scientific method (see Figure 1.1), we identify
a “real world” and a “conceptual world.” The external world is the one
we call real; here we observe various phenomena and behaviors, whether
natural in origin or produced by artifacts. The conceptual world is the
world of the mind—where we live when we try to understand what is
going on in that real, external world. The conceptual world can be viewed
as having three stages: observation, modeling, and prediction.

In the observation part of the scientific method we measure what is
happening in the real world. Here we gather empirical evidence and “facts
on the ground.” Observations may be direct, as when we use our senses, or
indirect, in which case some measurements are taken to indicate through
some other reading that an event has taken place. For example, we often
know a chemical reaction has taken place only by measuring the product
of that reaction.

In this elementary view of how science is done, the modeling part is
concerned with analyzing the above observations for one of (at least) three
reasons. These rationales are about developing: models that describe the
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The real world The conceptual world

Phenomena

Predictions

Observations

Models (analyses)

Figure 1.1 An elementary
depiction of the scientific method
that shows how our conceptual
models of the world are related to
observations made within that real
world (Dym and Ivey, 1980).

behavior or results observed; models that explain why that behavior and
results occurred as they did; or models that allow us to predict future
behaviors or results that are as yet unseen or unmeasured.

In the prediction part of the scientific method we exercise our models
to tell us what will happen in a yet-to-be-conducted experiment or in
an anticipated set of events in the real world. These predictions are then
followed by observations that serve either to validate the model or to suggest
reasons that the model is inadequate.

The last point clearly points to the looping, iterative structure apparent
in Figure 1.1. It also suggests that modeling is central to all of the conceptual
phases in the elementary model of the scientific method. We build models
and use them to predict events that can confirm or deny the models. In
addition, we can also improve our gathering of empirical data when we use
a model to obtain guidance about where to look.

1.1.2 Mathematical Modeling and the

Practice of Engineering

Engineers are interested in designing devices and processes and systems.
That is, beyond observing how the world works, engineers are interested
in creating artifacts that have not yet come to life. As noted by Herbert
A. Simon (in The Sciences of the Artificial), “Design is the distinguishing
activity of engineering.” Thus, engineers must be able to describe and
analyze objects and devices into order to predict their behavior to see if
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that behavior is what the engineers want. In short, engineers need to model
devices and processes if they are going to design those devices and processes.

While the scientific method and engineering design have much in com-
mon, there are differences in motivation and approach that are worth
mentioning. In the practices of science and of engineering design, mod-
els are often applied to predict what will happen in a future situation. In
engineering design, however, the predictions are used in ways that have
far different consequences than simply anticipating the outcome of an
experiment. Every new building or airplane, for example, represents a
model-based prediction that the building will stand or the airplane will fly
without dire, unanticipated consequences. Thus, beyond simply validat-
ing a model, prediction in engineering design assumes that resources of
time, imagination, and money can be invested with confidence because the
predicted outcome will be a good one.

1.2 Principles of Mathematical Modeling

Mathematical modeling is a principled activity that has both principles
behind it and methods that can be successfully applied. The principles are
over-arching or meta-principles phrased as questions about the intentions
and purposes of mathematical modeling. These meta-principles are almost
philosophical in nature. We will now outline the principles, and in the next
section we will briefly review some of the methods.

A visual portrayal of the basic philosophical approach is shown in
Figure 1.2. These methodological modeling principles are also captured
in the following list of questions and answers:

• Why? What are we looking for? Identify the need for the model.
• Find? What do we want to know? List the data we are seeking.
• Given? What do we know? Identify the available relevant data.
• Assume? What can we assume? Identify the circumstances that apply.
• How? How should we look at this model? Identify the governing

physical principles.
• Predict? What will our model predict? Identify the equations that will

be used, the calculations that will be made, and the answers that will
result.
• Valid? Are the predictions valid? Identify tests that can be made

to validate the model, i.e., is it consistent with its principles and
assumptions?
• Verified? Are the predictions good? Identify tests that can be made

to verify the model, i.e., is it useful in terms of the initial reason it
was done?
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Why? What are we looking for?
Find? What do we want to know?

How? How should we look at this model?
Given? What do we know? 
Assume? What can we assume?

Predict? What will
              our model predict?

Valid? Are the predictions valid?

Improve? How can we improve the model?

Use? How will we exercise the model?

OBJECT/SYSTEM

MODEL 
VARIABLES, PARAMETERS

Verified? Are the predictions good?

MODEL PREDICTIONS

VALID, ACCEPTED PREDICTIONS

TEST

Figure 1.2 A first-order view of mathematical modeling that
shows how the questions asked in a principled approach to building
a model relate to the development of that model (inspired by
Carson and Cobelli, 2001).

• Improve? Can we improve the model? Identify parameter values that
are not adequately known, variables that should have been included,
and/or assumptions/restrictions that could be lifted. Implement the
iterative loop that we can call “model-validate-verify-improve-predict.”
• Use? How will we exercise the model? What will we do with the model?

This list of questions and instructions is not an algorithm for building
a good mathematical model. However, the underlying ideas are key to
mathematical modeling, as they are key to problem formulation generally.
Thus, we should expect the individual questions to recur often during the
modeling process, and we should regard this list as a fairly general approach
to ways of thinking about mathematical modeling.

Having a clear picture of why the model is wanted or needed is of prime
importance to the model-building enterprise. Suppose we want to estimate
how much power could be generated by a dam on a large river, say a dam
located at The Three Gorges on the Yangtze River in Hubei Province in the
People’s Republic of China. For a first estimate of the available power, we
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wouldn’t need to model the dam’s thickness or the strength of its founda-
tion. Its height, on the other hand, would be an essential parameter of a
power model, as would some model and estimates of river flow quantities.
If, on the other hand, we want to design the actual dam, we would need
a model that incorporates all of the dam’s physical characteristics (e.g.,
dimensions, materials, foundations) and relates them to the dam site and
the river flow conditions. Thus, defining the task is the first essential step
in model formulation.

We then should list what we know—for example, river flow quantities
and desired power levels—as a basis for listing the variables or parameters
that are as yet unknown. We should also list any relevant assumptions.
For example, levels of desired power may be linked to demographic or
economic data, so any assumptions made about population and economic
growth should be spelled out. Assumptions about the consistency of river
flows and the statistics of flooding should also be spelled out.

Which physical principles apply to this model? The mass of the river’s
water must be conserved, as must its momentum, as the river flows, and
energy is both dissipated and redirected as water is allowed to flow through
turbines in the dam (and hopefully not spill over the top!). And mass must
be conserved, within some undefined system boundary, because dams do
accumulate water mass from flowing rivers. There are well-known equa-
tions that correspond to these physical principles. They could be used
to develop an estimate of dam height as a function of power desired.
We can validate the model by ensuring that our equations and calcu-
lated results have the proper dimensions, and we can exercise the model
against data from existing hydroelectric dams to get empirical data and
validation.

If we find that our model is inadequate or that it fails in some way, we
then enter an iterative loop in which we cycle back to an earlier stage of the
model building and re-examine our assumptions, our known parameter
values, the principles chosen, the equations used, the means of calculation,
and so on. This iterative process is essential because it is the only way that
models can be improved, corrected, and validated.

1.3 Some Methods of Mathematical

Modeling

Now we will review some of the mathematical techniques we can use to help
answer the philosophical questions posed in Section 1.2. These mathemati-
cal principles include: dimensional homogeneity, abstraction and scaling,
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conservation and balance principles, and consequences of linearity. We will
expand these themes more extensively in the first part of this book.

1.3.1 Dimensional Homogeneity and Consistency

There is a basic, yet very powerful idea that is central to mathematical
modeling, namely, that every equation we use must be dimensionally homo-
geneous or dimensionally consistent. It is quite logical that every term in an
energy equation has total dimensions of energy, and that every term in
a balance of mass should have the dimensions of mass. This statement
provides the basis for a technique called dimensional analysis that we will
discuss in greater detail in Chapter 2.

In that discussion we will also review the important distinction between
physical dimensions that relate a (derived) quantity to fundamental physi-
cal quantities and units that are numerical expressions of a quantity’s
dimensions expressed in terms of a given physical standard.

1.3.2 Abstraction and Scaling

An important decision in modeling is choosing an appropriate level of
detail for the problem at hand, and thus knowing what level of detail is
prescribed for the attendant model. This process is called abstraction and it
typically requires a thoughtful approach to identifying those phenomena
on which we want to focus, that is, to answering the fundamental question
about why a model is being sought or developed.

For example, a linear elastic spring can be used to model more than just
the relation between force and relative extension of a simple coiled spring,
as in an old-fashioned butcher’s scale or an automobile spring. It can also be
used to model the static and dynamic behavior of a tall building, perhaps to
model wind loading, perhaps as part of analyzing how the building would
respond to an earthquake. In these examples, we can use a very abstract
model by subsuming various details within the parameters of that model.
We will explore these issues further in Chapter 3.

In addition, as we talk about finding the right level of abstraction or the
right level of detail, we are simultaneously talking about finding the right
scale for the model we are developing. For example, the spring can be used
at a much smaller, micro scale to model atomic bonds, in contrast with
the macro level for buildings. The notion of scaling includes several ideas,
including the effects of geometry on scale, the relationship of function to
scale, and the role of size in determining limits—all of which are needed
to choose the right scale for a model in relation to the “reality” we want to
capture.
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1.3.3 Conservation and Balance Principles

When we develop mathematical models, we often start with statements
that indicate that some property of an object or system is being conserved.
For example, we could analyze the motion of a body moving on an ideal,
frictionless path by noting that its energy is conserved. Sometimes, as when
we model the population of an animal colony or the volume of a river flow,
we must balance quantities, of individual animals or water volumes, that
cross a defined boundary. We will apply balance or conservation principles
to assess the effect of maintaining or conserving levels of important physi-
cal properties. Conservation and balance equations are related—in fact,
conservation laws are special cases of balance laws.

The mathematics of balance and conservation laws are straightforward
at this level of abstraction. Denoting the physical property being monitored
as Q(t ) and the independent variable time as t , we can write a balance law
for the temporal or time rate of change of that property within the system
boundary depicted in Figure 1.3 as:

dQ(t )

dt
= qin(t )+ g (t )− qout (t )− c(t ), (1.1)

where qin(t ) and qout (t ) represent the flow rates of Q(t ) into (the influx)
and out of (the efflux) the system boundary, g (t ) is the rate at which
Q is generated within the boundary, and c(t ) is the rate at which Q is
consumed within that boundary. Note that eq. (1.1) is also called a rate
equation because each term has both the meaning and dimensions of the
rate of change with time of the quantity Q(t ).

Efflux, qout

System Boundary

Q (t)
Influx, qin

Consumption, c (t )

Generation, g (t)

Figure 1.3 A system boundary surrounding the object or
system being modeled. The influx qin(t ), efflux qout (t ),
generation g(t ), and consumption c(t ), affect the rate at
which the property of interest, Q(t ), accumulates within
the boundary (after Cha, Rosenberg, and Dym, 2000).
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In those cases where there is no generation and no consumption within
the system boundary (i.e., when g = c = 0), the balance law in eq. (1.1)
becomes a conservation law:

dQ(t )

dt
= qin(t )− qout (t ). (1.2)

Here, then, the rate at which Q(t ) accumulates within the boundary is
equal to the difference between the influx, qin(t ), and the efflux, qout (t ).

1.3.4 Constructing Linear Models

Linearity is one of the most important concepts in mathematical model-
ing. Models of devices or systems are said to be linear when their basic
equations—whether algebraic, differential, or integral—are such that the
magnitude of their behavior or response produced is directly proportional
to the excitation or input that drives them. Even when devices like the
pendulum discussed in Chapter 7 are more fully described by nonlinear
models, their behavior can often be approximated by linearized or per-
turbed models, in which cases the mathematics of linear systems can be
successfully applied.

We apply linearity when we model the behavior of a device or system
that is forced or pushed by a complex set of inputs or excitations. We obtain
the response of that device or system to the sum of the individual inputs
by adding or superposing the separate responses of the system to each indi-
vidual input. This important result is called the principle of superposition.
Engineers use this principle to predict the response of a system to a com-
plicated input by decomposing or breaking down that input into a set of
simpler inputs that produce known system responses or behaviors.

1.4 Summary

In this chapter we have provided an overview of the foundational material
we will cover in this book. In so doing, we have defined mathematical
modeling, provided motivation for its use in engineering and science, and
set out a principled approach to doing mathematical modeling. We have
also outlined some of the important tools that will be covered in greater
detail later: dimensional analysis, abstraction and scaling, balance laws,
and linearity.

It is most important to remember that mathematical models are repre-
sentations or descriptions of reality—by their very nature they depict reality.
Thus, we close with a quote from a noted linguist (and former senator from
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California) to remind ourselves that we are dealing with models that, we
hope, represent something that seems real and relevant to us. However,
they are abstractions and models, they are themselves real only as models,
and they should never be confused with the reality we are trying to model.
Thus, if the behavior predicted by our models does not reflect what we see
or measure in the real world, it is the models that need to be fixed—and
not the world:

“The symbol is NOT the thing symbolized; the word is NOT the thing; the map is
NOT the territory it stands for.”

—S. I. Hayakawa, Language in Thought and Action
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2
Dimensional Analysis

We begin this chapter, the first of three dealing with the tools or techniques
for mathematical modeling, with H. L. Langhaar’s definition of dimensional
analysis:

Dimensional analysis (n): a method by which we deduce information
about a phenomenon from the single premise that the phenomenon can be
described by a dimensionally correct equation among certain variables.

This quote expresses the simple, yet powerful idea that we introduced
in Section 1.3.1: all of the terms in our equations must be dimension-
ally consistent, that is, each separate term in those equations must have
the same net physical dimensions. For example, when summing forces
to ensure equilibrium, every term in the equation must have the physi-
cal dimension of force. (Equations that are dimensionally consistent are
sometimes called rational.) This idea is particularly useful for validat-
ing newly developed mathematical models or for confirming formulas
and equations before doing calculations with them. However, it is also
a weak statement because the available tools of dimensional analysis are
rather limited, and applying them does not always produce desirable
results.

13
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2.1 Dimensions and Units

The physical quantities we use to model objects or systems represent con-
cepts, such as time, length, and mass, to which we also attach numerical
values or measurements. Thus, we could describe the width of a soccer field
by saying that it is 60 meters wide. The concept or abstraction invoked is
length or distance, and the numerical measure is 60 meters. The numerical
measure implies a comparison with a standard that enables both commu-
nication about and comparison of objects or phenomena without their
being in the same place. In other words, common measures provide a
frame of reference for making comparisons. Thus, soccer fields are wider
than American football fields since the latter are only 49 meters wide.

The physical quantities used to describe or model a problem come in
two varieties. They are either fundamental or primary quantities, or they
are derived quantities. Taking a quantity as fundamental means only that
we can assign it a standard of measurement independent of that chosen for
the other fundamental quantities. In mechanical problems, for example,
mass, length, and time are generally taken as the fundamental mechanical
variables, while force is derived from Newton’s law of motion. It is equally
correct to take force, length, and time as fundamental, and to derive mass
from Newton’s law. For any given problem, of course, we need enough
fundamental quantities to express each derived quantity in terms of these
primary quantities.

While we relate primary quantities to standards, we also note that they
are chosen arbitrarily, while derived quantities are chosen to satisfy physical
laws or relevant definitions. For example, length and time are fundamental
quantities in mechanics problems, and speed is a derived quantity expressed
as length per unit time. If we chose time and speed as primary quantities,
the derived quantity of length would be (speed × time), and the derived
quantity of area would be (speed× time)2.

The word dimension is used to relate a derived quantity to the fun-
damental quantities selected for a particular model. If mass, length, and
time are chosen as primary quantities, then the dimensions of area are
(length)2, of mass density are mass/(length)3, and of force are (mass ×
length)/(time)2. We also introduce the notation of brackets [] to read as
“the dimensions of.” If M, L, and T stand for mass, length, and time,
respectively, then:

[A = area] = (L)2, (2.1a)

[ρ = density] = M/(L)3, (2.1b)

[F = force] = (M× L)/(T)2. (2.1c)
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The units of a quantity are the numerical aspects of a quantity’s dimensions
expressed in terms of a given physical standard. By definition, then, a unit
is an arbitrary multiple or fraction of that standard. The most widely
accepted international standard for measuring length is the meter (m), but
it can also be measured in units of centimeters (1 cm = 0.01 m) or of
feet (0.3048 m). The magnitude or size of the attached number obviously
depends on the unit chosen, and this dependence often suggests a choice
of units to facilitate calculation or communication. The soccer field width
can be said to be 60 m, 6000 cm, or (approximately) 197 feet.

Dimensions and units are related by the fact that identifying a quantity’s
dimensions allows us to compute its numerical measures in different sets of
units, as we just did for the soccer field width. Since the physical dimensions
of a quantity are the same, there must exist numerical relationships between
the different systems of units used to measure the amounts of that quantity.
For example,

1 foot (ft) ∼= 30.48 centimeters (cm),

1 centimeter (cm) ∼= 0.000006214 miles (mi),

1 hour (hr) = 60 minutes (min) = 3600 seconds (sec or s).

This equality of units for a given dimension allows us to change or convert
units with a straightforward calculation. For a speed of 65 miles per hour
(mph), for example, we can calculate the following equivalent:

65
mi

hr
= 65

mi

hr
× 5280

ft

mi
× 0.3048

m

ft
× 0.001

km

m
∼= 104.6

km

hr
.

Each of the multipliers in this conversion equation has an effective value
of unity because of the equivalencies of the various units, that is, 1 mi=
5280 ft, and so on. This, in turn, follows from the fact that the numerator
and denominator of each of the above multipliers have the same physical
dimensions. We will discuss systems of units and provide some conversion
data in Section 2.4.

2.2 Dimensional Homogeneity

We had previously defined a rational equation as an equation in which
each independent term has the same net dimensions. Then, taken in its
entirety, the equation is dimensionally homogeneous. Simply put, we cannot
add length to area in the same equation, or mass to time, or charge to
stiffness—although we can add (and with great care) quantities having the
same dimensions but expressed in different units, e.g., length in meters



16 Chapter 2 Dimensional Analysis

and length in feet. The fact that equations must be rational in terms of
their dimensions is central to modeling because it is one of the best—and
easiest—checks to make to determine whether a model makes sense, has
been correctly derived, or even correctly copied!

We should remember that a dimensionally homogeneous equation is
independent of the units of measurement being used. However, we can
create unit-dependent versions of such equations because they may be
more convenient for doing repeated calculations or as a memory aid. In
an example familiar from mechanics, the period (or cycle time), T0, of a
pendulum undergoing small-angle oscillations can be written in terms of
the pendulum’s length, l , and the acceleration of gravity, g :

T0 = 2π
√

l/g . (2.2)

This dimensionally homogeneous equation is independent of the system of
units chosen to measure length and time. On the other hand, we may find
it convenient to work in the metric system, in which case g = 9.8 m/s2,
from which it follows that

T0(s) = 2π
√

l/9.8 ∼= 2
√

l . (2.3)

Equation (2.3) is valid only when the pendulum’s length is measured in
meters. In the so-called British system,1 where g = 32.17 ft/sec2,

T0(sec) = 2π
√

l/32.17 ∼= 1.1
√

l . (2.4)

Equations (2.3) and (2.4) are not dimensionally homogeneous. So, whileWhy

not? these formulas may be appealing or elegant, we have to remember their
limited ranges of validity, as we should whenever we use or create similar
formulas for whatever modeling we are doing.

2.3 Why Do We Do Dimensional Analysis?

We presented a definition of dimensional analysis at the beginning of this
chapter, where we also noted that the “method” so defined has both power-
ful implications—rational equations and dimensional consistency—and
severe limitations—the limited nature of the available tools. Given this
limitation, why has this method or technique developed, and why has it
persisted?

1 One of my Harvey Mudd colleagues puckishly suggests that we should call this the
American system of units as we are, apparently, the only country still so attached to feet and
pounds.
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Figure 2.1 A picture of a “precision mix batch
mixer” that would be used to mix large quantities
of foods such as peanut butter and other mixes of
substances that have relatively high values of
density ρ and viscosity µ (courtesy of H. C. Davis
Sons Manufacturing Company, Inc.).

Dimensional analysis developed as an attempt to perform extended,
costly experiments in a more organized, more efficient fashion. The under-
lying idea was to see whether the number of variables could be grouped
together so that fewer trial runs or fewer measurements would be needed.
Dimensional analysis produces a more compact set of outputs or data, with
perhaps fewer charts and graphs, which in turn might better clarify what
is being observed.

Imagine for a moment that we want to design a machine to make large
quantities of peanut butter (and this author prefers creamy to crunchy!).
We can imagine a mixer that takes all of the ingredients (i.e., roasted
peanuts, sugar, and “less than 2%” of molasses and partially hydrogen-
ated vegetable oil) and mixes them into a smooth, creamy spread. Moving
a knife through a jar of peanut butter requires a noticeably larger force than
stirring a glass of water. Similarly, the forces in a vat-like mixer would be
considerable, as would the power needed to run that mixer in an automated
food assembly line, as illustrated in Figure 2.1. Thus, the electro-mechanical
design of an industrial-strength peanut butter mixer depends on estimates
of the forces required to mix the peanut butter. How can we get some idea
of what those forces are?

It turns out, as you might expect, that the forces depend in large part on
properties of the peanut butter, but on which properties, and how? We can
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answer those questions by performing a series of experiments in which we
push a blade through a tub of peanut butter and measure the amount of
force required to move the blade at different speeds. We will call the force
needed to move the blade through the peanut butter the drag force, FD ,
because it is equal to the force exerted by the moving (relatively speaking)
peanut butter to retard the movement of the knife. We postulate that the
force depends on the speed V with which the blade moves, on a character-
istic dimension of the blade, say the width d , and on two characteristics of
the peanut butter. One of these characteristics is the mass density, ρ, and
the second is a parameter called the viscosity, µ, which is a measure of its
“stickiness.” If we think about our experiences with various fluids, includ-
ing water, honey, motor oil, and peanut butter, these two characteristics
seem intuitively reasonable because we do associate a difficulty in stirring
(and cleaning up) with fluids that feel heavier and stickier.

Thus, the five quantities that we will take as derived quantities for this
initial investigation into the mixing properties of peanut butter are the
drag force, FD , the speed with which the blade moves, V , the knife blade
width, d , the peanut butter’s mass density, ρ, and its viscosity, µ. The fun-
damental physical quantities we would apply here are mass, length, and
time, which we denote as M, L, and T, respectively. The derived variables
are expressed in terms of the fundamental quantities in Table 2.1.

Table 2.1 The five derived
quantities chosen to model the
peanut butter stirring
experiments.

Derived quantities Dimensions

Speed (V ) L/T
Blade width (d) L
Density (ρ) M/(L)3

Viscosity (µ) M/(L× T)
Drag force (FD) (M× L)/(T)2

How did we get the fundamental dimensions of the viscosity? By a
straightforward application of the principle of dimensional homogeneity
to the assumptions used in modeling the mechanics of fluids: The drag
force (or force required to pull the blade through the butter) is directly
proportional both to the speed with which it moves and the area of the
blade, and inversely proportional to a length that characterizes the spatial
rate of change of the speed. Thus,

FD ∝ VA

L
, (2.5a)
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or

FD = µVA

L
. (2.5b)

If we apply the principle of dimensional homogeneity to eq. (2.5b), it
follows that

[µ] =
[

FD

A
× L

V

]
. (2.6)

It is easy to show that eq. (2.6) leads to the corresponding entry in Table 2.1.
Now we consider the fact that we want to know how FD and V are

related, and yet they are also functions of the other variables, d , ρ, and µ,
that is,

FD = FD(V ; d , ρ,µ). (2.7)

Equation (2.7) suggests that we would have to do a lot of experiments and
plot a lot of curves to find out how drag force and speed relate to each
other while we are also varying the blade width and the butter density
and viscosity. If we wanted to look at only three different values of each
of d , ρ, and µ, we would have nine (9) different graphs, each containing
three (3) curves. This is a significant accumulation of data (and work!) for
a relatively simple problem, and it provides a very graphic illustration of
the need for dimensional analysis. We will soon show that this problem can
be “reduced” to considering two dimensionless groups that are related by
a single curve! Dimensional analysis is thus very useful for both designing
and conducting experiments.

Problem 2.1. Justify the assertion made just above that “nine (9)
different graphs, each containing three (3) curves” are
needed to relate force and speed.

Problem 2.2. Find and compare the mass density and viscosity of
peanut butter, honey, and water.

2.4 How Do We Do Dimensional Analysis?

Dimensional analysis is the process by which we ensure dimensional con-
sistency. It ensures that we are using the proper dimensions to describe the
problem being modeled, whether expressed in terms of the correct number
of properly dimensioned variables and parameters or whether written in
terms of appropriate dimensional groups. Remember, too, that we need
consistent dimensions for logical consistency, and we need consistent units
for arithmetic consistency.
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How do we ensure dimensional consistency? First, we check the dimen-
sions of all derived quantities to see that they are properly represented
in terms of the chosen primary quantities and their dimensions. Then
we identify the proper dimensionless groups of variables, that is, ratios
and products of problem variables and parameters that are themselves
dimensionless. We will explain two different techniques for identifying such
dimensionless groups, the basic method and the Buckingham Pi theorem.

2.4.1 The Basic Method of Dimensional Analysis

The basic method of dimensional analysis is a rather informal, unstructured
approach for determining dimensional groups. It depends on being able to
construct a functional equation that contains all of the relevant variables,
for which we know the dimensions. The proper dimensionless groups are
then identified by the thoughtful elimination of dimensions.

For example, consider one of the classic problems of elementary mecha-
nics, the free fall of a body in a vacuum. We recall that the speed, V , of such a
falling body is related to the gravitational acceleration, g , and the height, h,
from which the body was released. Thus, the functional expression of this
knowledge is:

V = V (g , h). (2.8)

Note that the precise form of this functional equation is, at this point,
entirely unknown—and we don’t need to know that form for what we’re
doing now. The physical dimensions of the three variables are:

[V ] = L/T,

[g ] = L/T2, (2.9)

[h] = L.

The time dimension, T, appears only in the speed and gravitational accele-
ration, so that dividing the speed by the square root of g eliminates time
and yields a quantity whose remaining dimension can be expressed entirely
in terms of length, that is: [

V√
g

]
= √L. (2.10)

If we repeat this thought process with regard to eliminating the length
dimension, we would divide eq. (2.10) by

√
h, which means that[

V√
gh

]
= 1. (2.11)
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Since we have but a single dimensionless group here, it follows that:

V = constant×
(√

gh
)

(2.12)

Thus, the speed of a falling body is proportional to
√

gh, a result we
should recall from physics—yet we have found it with dimensional analysis
alone, without invoking Newton’s law or any other principle of mechanics.
This elementary application of dimensional consistency tells us some-
thing about the power of dimensional analysis. On the other hand, we
do need some physics, either theory or experiment, to define the constant
in eq. (2.12).

Someone seeing the result (2.12) might well wonder why the speed of a
falling object is independent of mass (unless that person knew of Galileo
Galilei’s famous experiment). In fact, we can use the basic method to build
on eq. (2.12) and show why this is so. Simply put, we start with a functional
equation that included mass, that is,

V = V (g , h, m). (2.13)

A straightforward inspection of the dimensions of the four variables in
eq. (2.13), such as the list in eq. (2.9), would suggest that mass is not a
variable in this problem because it only occurs once as a dimension, so it
cannot be used to make eq. (2.13) dimensionless.

As a further illustration of the basic method, consider the mutual
revolution of two bodies in space that is caused by their mutual gravita-
tional attraction. We would like to find a dimensionless function that
relates the period of oscillation, TR , to the two masses and the distance
r between them:

TR = TR(m1, m2, r). (2.14)

If we list the dimensions for the four variables in eq. (2.14) we find:

[m1], [m2] = M,

[TR] = T, (2.15)

[r] = L.

We now have the converse of the problem we had with the falling body.
Here none of the dimensions are repeated, save for the two masses. So,
while we can expect that the masses will appear in a dimensionless ratio,
how do we keep the period and distance in the problem? The answer is that
we need to add a variable containing the dimensions heretofore missing to
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the functional equation (2.14). Newton’s gravitational constant, G, is such
a variable, so we restate our functional equation (2.14) as

TR = TR(m1, m2, r , G), (2.16)

where the dimensions of G are

[G] = L3/MT2. (2.17)

The complete list of variables for this problem, consisting of eqs. (2.15)
and (2.17), includes enough variables to account for all of the dimensions.

Regarding eq. (2.16) as the correct functional equation for the two
revolving bodies, we apply the basic method first to eliminate the dimen-
sion of time, which appears directly in the period TR and as a reciprocal
squared in the gravitational constant G. It follows dimensionally that

[
TR

√
G

]
=

√
L3

M
, (2.18a)

where the right-hand side of eq. (2.18a) is independent of time. Thus, the
corresponding revised functional equation for the period would be:

TR

√
G = TR1(m1, m2, r). (2.18b)

We can eliminate the length dimension simply by noting that[
TR
√

G√
r3

]
=

√
1

M
, (2.19a)

which leads to a further revised functional equation,

TR
√

G√
r3
= TR2(m1, m2). (2.19b)

We see from eq. (2.19a) that we can eliminate the mass dimension from
eq. (2.19b) by multiplying eq. (2.19b) by the square root of one of the two
masses. We choose the square root of the second mass (do Problem 2.6 to
find out what happens if the first mass is chosen),

√
m2, and we find from

eq. (2.19a) that [
T
√

Gm2√
r3

]
= 1. (2.20a)

This means that eq. (2.19b) becomes

TR
√

Gm2√
r3

= √m2TR2(m1, m2) ≡ TR3

(
m1

m2

)
, (2.20b)
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where a dimensionless mass ratio has been introduced in eq. (2.20b) to
recognize that this is the only way that the function TR3 can be both dimen-
sionless and a function of the two masses. Thus, we can conclude from
eq. (2.20b) that

TR =
√

r3

Gm2
TR3

(
m1

m2

)
. (2.21)

This example shows that difficulties arise if we start a problem with an
incomplete set of variables. Recall that we did not include the gravitational
constant G until it became clear that we were headed down a wrong path.
We then included G to rectify an incomplete analysis. With the benefit
of hindsight, we might have argued that the attractive gravitational force
must somehow be accounted for, and including G could have been a way
to do that. This argument, however, demands insight and judgment whose
origins may have little to do with the particular problem at hand.

While our applications of the basic method of dimensional analysis show
that it does not have a formal algorithmic structure, it can be described as
a series of steps to take:

a. List all of the variables and parameters of the problem and their
dimensions.

b. Anticipate how each variable qualitatively affects quantities of interest,
that is, does an increase in a variable cause an increase or a decrease?

c. Identify one variable as depending on the remaining variables and
parameters.

d. Express that dependence in a functional equation (i.e., analogs of
eqs. (2.8) and (2.14)).

e. Choose and then eliminate one of the primary dimensions to obtain a
revised functional equation.

f. Repeat steps (e) until a revised, dimensionless functional equation is
found.

g. Review the final dimensionless functional equation to see whether the
apparent behavior accords with the behavior anticipated in step “b”.

Problem 2.3. What is the constant in eq. (2.12)? How do you know
that?

Problem 2.4. Apply the basic method to eq. (2.2) for the period of
the pendulum.

Problem 2.5. Carry out the basic method for eq. (2.13) and show
that the mass of a falling body does not affect its speed
of descent.
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Problem 2.6. Carry out the last step of the basic method for eqs.
(2.20) using the first mass and show it produces a form
that is equivalent to eq. (2.21).

2.4.2 The Buckingham Pi Theorem for

Dimensional Analysis

Buckingham’s Pi theorem, fundamental to dimensional analysis, can be
stated as follows:

A dimensionally homogeneous equation involving n variables in m primary
or fundamental dimensions can be reduced to a single relationship among
n−m independent dimensionless products.

A dimensionally homogeneous (or rational) equation is one in which every
independent, additive term in the equation has the same dimensions. This
means that we can solve for any one term as a function of all the others. If
we introduce Buckingham’s� notation to represent a dimensionless term,
his famous Pi theorem can be written as:

�1 = �(�2,�3 . . . �n−m). (2.22a)

or, equivalently,

�(�1,�2,�3 . . . �n−m) = 0. (2.22b)

Equations (2.22) state that a problem with n derived variables and m
primary dimensions or variables requires n − m dimensionless groups
to correlate all of its variables.

We apply the Pi theorem by first identifying the n derived variables in a
problem: A1, A2, . . .An . We choose m of these derived variables such that
they contain all of the m primary dimensions, say, A1, A2, A3 for m = 3.
Dimensionless groups are then formed by permuting each of the remaining
n − m variables (A4, A5, . . .An for m = 3) in turn with those m’s already
chosen:

�1 = Aa1
1 Ab1

2 Ac1
3 A4,

�2 = Aa2
1 Ab2

2 Ac2
3 A5,

... (2.23)

�n−m = A
an−m
1 A

bn−m
2 A

cn−m
3 An .
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The ai , bi , and ci are chosen to make each of the permuted groups �i

dimensionless.
For example, for the peanut butter mixer, there should be two dimen-

sionless groups correlating the five variables of the problem (listed in
Table 2.1). To apply the Pi theorem to this mixer we choose the blade
speed V , its width d , and the butter density ρ as the fundamental variables
(m = 3), which we then permute with the two remaining variables—the
viscosity µ and the drag force FD—to get two dimensionless groups:

�1 = V a1db1ρc1µ,

�2 = V a2db2ρc2FD . (2.24)

Expressed in terms of primary dimensions, these groups are:

�1 =
(

L
T

)a1

Lb1

(
M
L3

)c1
(

M
LT

)
,

�2 =
(

L
T

)a2

Lb2

(
M
L3

)c2
(

ML
T2

)
. (2.25)

Now, in order for �1 and �2 to be dimensionless, the net exponents for
each of the three primary dimensions must vanish. Thus, for�1,

L : a1 + b1 − 3c1 − 1 = 0,
T : −a1 − 1 = 0,
M : c1 + 1 = 0,

(2.26a)

and for�2,
L : a2 + b2 − 3c2 + 1 = 0,
T : −a2 − 2 = 0,
M : c2 + 1 = 0.

(2.26b)

Solving eqs. (2.26) for the two pairs of subscripts yields:

a1 = b1 = c1 = −1,

a2 = b2 = −2, c2 = −1. (2.27)

Then the two dimensionless groups for the peanut butter mixer are:

�1 =
(
µ

ρVd

)
,

�2 =
(

FD

ρV 2d2

)
. (2.28)

Thus, there are two dimensionless groups that should guide experiments
with prototype peanut butter mixers. One clearly involves the viscosity of
the peanut butter, while the other relates the drag force on the blade to
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T
�

mg

Figure 2.2 The classical
pendulum oscillating through
angles θ due to gravitational
acceleration g .

the blade’s dimensions and speed, as well as to the density of the peanut
butter.

In Chapter 7 we will explore one of the “golden oldies” of physics, mod-
eling the small angle, free vibration of an ideal pendulum (viz. Figure 2.2).
There are six variables to consider in this problem, and they are listed
along with their fundamental dimensions in Table 2.2. In this case we
have m = 6 and n = 3, so that we can expect three dimensionless groups.
We will choose l , g , and m as the variables around which we will per-
mute the remaining three variables (T0, θ , T ) to obtain the three groups.
Thus,

�1 = la1g b1mc1T0,

�2 = la2g b2mc2θ , (2.29)

�3 = la3g b3mc3T .

Table 2.2 The six derived quantities
chosen to model the oscillating
pendulum.

Derived quantities Dimensions

Length (l) L
Gravitational acceleration (g ) L/T2

Mass (m) M
Period (T0) T
Angle (θ) 1
String tension (T ) (M× L)/T2
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The Pi theorem applied here then yields three dimensionless groups (see
Problem 2.9):

�1 = T0√
l/g

,

�2 = θ , (2.30)

�3 = T

mg
.

These groups show how the period depends on the pendulum length l
and the gravitational constant g (recall eq. (2.2)), and the string tension T
on the mass m and g . The second group also shows that the (dimensionless)
angle of rotation stands alone, that is, it is apparently not related to any
of the other variables. This follows from the assumption of small angles,
which makes the problem linear, and makes the magnitude of the angle of
free vibration a quantity that cannot be determined.

One of the “rules” of applying the Pi theorem is that the m chosen vari-
ables include all n of the fundamental dimensions, but no other restrictions
are given. So, it is natural to ask how this analysis would change if we start
with three different variables. For example, suppose we choose T0, g , and
m as the variables around which to permute the remaining three variables
(l , θ , T ) to obtain the three groups. In this case we would write:

�′1 = T a1
0 g b1mc1 l ,

�′2 = T a2
0 g b2mc2θ , (2.31)

�′3 = T a3
0 g b3mc3T .

Applying the Pi theorem to eq. (2.31) yields the following three “new”
dimensionless groups (see Problem 2.10):

�′1 =
l/g

T 2
0

= 1

�2
1

,

�′2 = θ = �2, (2.32)

�′3 =
T

mg
= �3.

We see that eq. (2.32) produce the same information as eq. (2.30), albeit
in a slightly different form. In particular, it is clear that �1 and �′1 con-
tain the same dimensionless group, which suggests that the number of
dimensionless groups is unique, but that the precise forms that these groups
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may take are not. This last calculation demonstrates that the dimensionless
groups determined in any one calculation are unique in one sense, but they
may take on different, yet related forms when done in a slightly different
calculation.

Note that our applications of the basic method and the Buckingham Pi
theorem of dimensional analysis can be cast in similar, step-like structures.
However, experience and insight are key to applying both methods, even
for elementary problems. Perhaps this is a context where, as was said by
noted British economist John Maynard Keynes in his famous book, The
General Theory of Employment, Interest, and Money, “Nothing is required
and nothing will avail, except a little, a very little, clear thinking.”

Problem 2.7. Write out the Buckingham Pi theorem as a series of
steps, analogous to the steps described in the basic
method on p. 23.

Problem 2.8. Confirm eq. (2.28) by applying the basic method to
the mixer problem.

Problem 2.9. Confirm eq. (2.30) by applying the rest of the
Buckingham Pi theorem to the pendulum problem.

Problem 2.10. Confirm eq. (2.32) by applying the rest of the
Buckingham Pi theorem to the revised formulation
of the pendulum problem.

Problem 2.11. Apply the Buckingham Pi theorem to the revolution
of two bodies in space, beginning with the functional
equation (2.16).

Problem 2.12. What happens when the Pi theorem is applied to
the two-body problem, but beginning now with the
functional equation (2.14)?

2.5 Systems of Units

We have already noted that units are numerical measures derived from
standards. Thus, units are fractions or multiples of those standards. The
British system has long been the most commonly used system of units in
the United States. In the British system, length is typically referenced in
feet, force in pounds, time in seconds, and mass in slugs. The unit of pound
force is defined as that force that imparts an acceleration of 32.1740 ft/sec2

to a mass of 1/2.2046 of that piece of platinum known as the standard
kilogram. While keeping in mind the distinction between dimensions and
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Table 2.3 The British and SI systems of units, including abbreviations
and (approximate) conversion factors.

Reference Units British System SI System

length foot (ft) meter (m)
time second (sec) second (s)
mass slug (slug), pound mass (lbm) kilogram (kg)
force pound force (lb) newton (N)

Multiply number of by to get

feet (ft) 0.3048 meters (m)
inches (in) 2.540 centimeters (cm)
miles (mi) 1.609 kilometers (km)
miles per hour (mph) 0.447 meters per second (m/s)
pounds force (lb) 4.448 newtons (N)
slugs (slug) 14.59 kilograms (kg)
pounds mass (lbm) 0.454 kilograms (kg)

units, it is worth noting that the fundamental reference quantities in the
British system of units (foot, pound, second) are based on the primary
dimensions of length (L), force (F), and time (T).

In a belated acknowledgment that the rest of the world (including
Britain!) uses metric units, a newer system of units is increasingly being
adopted in the United States. The Système International, commonly iden-
tified by its initials, SI, is based on the mks system used in physics and it
references length in meters, mass in kilograms, and time in seconds. The
primary dimensions of the SI system are length (L), mass (M), and time
(T). Force is a derived variable in the SI system and it is measured in
newtons. In Table 2.3 we summarize some of the salient features of the SI
and British systems, including the abbreviations used for each unit and
the (approximate) conversion factors needed to navigate between the two
systems.

Finally, we show in Table 2.4 some of the standard prefixes used to denote
the various multiplying factors that are commonly used to denote fractions
or multiples of ten (10). To cite a familiar example, in the metric system
distances are measured in millimeters (mm), centimeters (cm), meters (m),
and kilometers (km).

It is worth noting that some caution is necessary in using the pre-
fixes listed in Table 2.4 because this usage is not universally uniform. For
example, the measures used for computer memory are kilobytes (KB),
megabytes (MB) and increasingly often these days, gigabytes (GB) and
terabytes (TB). The B’s stand for bytes. However, the prefixes kilo, mega,
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Table 2.4 Some standard
numerical factors that are
commonly used in the SI system.

Numerical factors (SI) Prefix (symbol)

10−9 nano (n)
10−6 micro (µ)
10−3 milli (m)
10−2 centi (c)
103 kilo (k)
106 mega (M)
109 giga (G)
1012 tera (T)

giga, and tera, respectively stand for 210, 220, 230, and 240, which is rather
different than what we are using!

To finish off our discussion of numbers we add one final set of
approximate equalities, for their interest and possible usefulness:

210 ∼= e7 ∼= 103. (2.33)

2.6 Summary

In this chapter we have described an important aspect of problem formu-
lation and modeling, namely, dimensional analysis. Reasoning about the
dimensions of a problem requires that we (1) identify all of the physical
variables and parameters needed to fully describe a problem, (2) select a
set of primary dimensions and variables, and (3) develop the appropriate
set of dimensionless groups for that problem. The last step is achieved by
applying either the basic method or the more structured Buckingham Pi
theorem. The dimensionless groups thus found, along with their numeri-
cal values as determined from experiments or further analysis, help us to
assess the importance of various effects, to buttress our physical insight
and understanding, and to organize our numerical computation, our data
gathering, and our design of experiments.

We close by noting that while our use of the formal methods of dimen-
sional analysis will be limited, we will use the concepts of dimensional
consistency and dimensional groups extensively. We will see these concepts
when we discuss scaling, when we formulate models, and when we solve
particular problems. In so doing, we will also keep in mind the distinction
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between dimensions and units, and we will also ensure the consistency of
units.
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2.8 Problems

2.13. Consider a string of length l that connects a rock of mass m to a
fixed point while the rock whirls in a circle at speed v . Use the basic
method of dimensional analysis to show that the tension T in the
string is determined by the dimensionless group

TL

mv2
= constant.

2.14. Apply the Buckingham Pi theorem to confirm the analysis of
Problem 2.13.

2.15. The speed of sound in a gas, c , depends on the gas pressure p and
on the gas mass density ρ. Use dimensional analysis to determine
how c , p, and ρ are related.

2.16. A dimensionless grouping called the Weber number, We , is used in
fluid mechanics to relate a flowing fluid’s surface tension, σ , which
has dimensions of force/length, to the fluid’s speed, v , density, ρ,
and a characteristic length, l . Use dimensional analysis to find that
number.
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2.17. A pendulum swings in a viscous fluid. How many groups are needed
to relate the usual pendulum variables to the fluid viscosity, µ, the
fluid mass density, ρ, and the diameter d of the pendulum? Find
those groups.

2.18. The volume flow rate Q of fluid through a pipe is thought to depend
on the pressure drop per unit length,�p/l , the pipe diameter, d , and
the fluid viscosity, µ. Use the basic method of dimensional analysis
to determine the relation:

Q = (constant)

(
d4

µ

) (
�p

l

)
.

2.19. Apply the Buckingham Pi theorem to confirm the analysis of
Problem 2.18.

2.20. When flow in a pipe with a rough inner wall (perhaps due to a build-
up of mineral deposits) is considered, several variables must be
considered, including the fluid speed v , its density ρ and viscosityµ,
and the pipe length l and diameter d . The average variation e of
the pipe radius can be taken as a measure of the roughness of the
pipe’s inner surface. Determine the dimensionless groups needed to
determine how the pressure drop�p depends on these variables.

2.21. Use dimensional analysis to determine how the speed of sound in
steel depends on the modulus of elasticity, E , and the mass density,ρ.
(The modulus of elasticity of steel is, approximately and in British
units, 30× 106 psi.)

2.22. The flexibility (the deflection per unit load) or compliance C of a
beam having a square cross-section d × d depends on the beam’s
length l , its height and width, and its material’s modulus of elasti-
city E . Use the basic method of dimensional analysis to show
that:

CEd = FCEd

(
l

d

)
.

2.23. Experiments were conducted to determine the specific form of the
function FCEd(l/d) found in Problem 2.22. In these experiments it
was found that a plot of log10(CEd) against log10(l/d) has a slope
of 3 and an intercept on the log10(CEd) scale of −0.60. Show that
the deflection under a load P can be given in terms of the second
moment of area I of the cross section (I = d4/12) as:

deflection = load× compliance = P × C = Pl3

48EI
.



3
Scale

In this chapter we will continue dealing with dimensions, but focusing
now on issues of scale, that is, issues of relative size. Size, whether absolute
or relative, is very important because it affects both the form and the
function of those objects or systems being modeled. Scaling inßuencesÑ
indeed, often controlsÑthe way objects interact with their environments,
whether we are talking about objects in nature, the design of experiments,
or the representation of data by smooth, nice-looking curves. We even
Þnd references to scaling in literature, such as in the depiction by satirist
Jonathan Swift of the treatment accorded the traveler Gulliver when he
arrived in the land of Lilliput:

His Majesty’s Ministers, finding that Gulliver’s stature exceeded theirs in the pro-
portion of twelve to one, concluded from the similarity of their bodies that his must
contain at least 1728 of theirs, and must needs be rationed accordingly.

This chapter is devoted to explaining where the factor of 1728 came from,
as well as discussing abstraction and scale, size and shape, size and function,
scaling and conditions that are imposed at an objectÕs boundaries, and some
of the consequences of choosing scales in both theory and experimental
measurements.

3.1 Abstraction and Scale

We start with some thoughts about the process of deciding on the appro-
priate level of detail for whatever problem is at hand, which also means

33
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deciding on the appropriate level of detail for the corresponding model.
We call this process abstraction. It typically requires an organized, thought-
ful approach to identifying those phenomena to which we really want to
pay attention. In addition, thinking about scaling often requires that we
think in terms of the magnitude or size of quantities measured with respect
to a standard that has the same physical dimensions.

For example, a linear elastic spring can be used to model more than just
the relation between force and relative extension of a simple coiled spring,
as in an old-fashioned butcherÕs scale or an automobile spring. We could,
for example, use F = kx to describe the static load-deßection behavior of
a diving board, but the spring constant k should reßect the stiffness of
the diving board taken as a whole, which in turn reßects more detailed
properties of the board, including the material of which it is made and its
own dimensions. The validity of using a linear spring to model the board
can be ascertained by measuring and plotting the deßection of the boardÕs
tip as it changes with standing divers of different weight.

We had noted in Section 1.3.1 that the classic spring equation is also used
to model the static and dynamic behavior of tall buildings as they respond
to wind loading and to earthquakes. These examples suggest that we can
use a simple, highly abstracted model of a building by aggregating various
details within the parameters of that model. That is, the stiffness k for a
building would incorporate or lump together a great deal of information
about how the building is framed, its geometry, its materials, and so on. For
both a diving board and a tall building, we would need detailed expressions
of how their respective stiffnesses depended on their respective properties.
We could not do a detailed design of either the board or of the building
without such expressions. Similarly, using springs to model atomic bonds
means that their spring constants must be related to atomic interaction
forces, atomic distances, sub-atomic particle dimensions, and so on.

Another facet of the abstraction process is that in each case we are saying
that, for some well-deÞned purposes, a Òreal,Ó three-dimensional object
behaves like a simple spring. We are thus introducing the concept of a
lumped element model wherein the actual physical properties of some real
object or device are aggregated or lumped into a less detailed, more abstract
expression. An airplane, for example, can be modeled in very different ways,
depending on our modeling goals. To lay out a ßight plan or trajectory, the
airplane can simply be considered as a point mass moving with respect to a
spherical coordinate system. The mass of the point can simply be taken as
the total mass of the plane, and the effect of the surrounding atmosphere
can also be modeled by expressing the retarding drag force as acting on the
mass point itself with a magnitude related to the relative speed at which the
mass is moving. If we want to model and analyze the more immediate, more
local effects of the movement of air over the planeÕs wings, we would build
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a model that accounts for the wingÕs surface area and is complex enough to
incorporate the aerodynamics that occur in different ßight regimes. If we
want to model and design the ßaps used to control the planeÕs ascent and
descent, we would develop a model that includes a system for controlling
the ßaps and also accounts for the dynamics of the wingÕs strength and
vibration response.

Clearly, as we talk about Þnding the right level of abstraction or the
right level of detail, we are simultaneously talking about Þnding the right
scale for the model we are developing. Scaling or imposing a scale includes
assessing the effects of geometry on scale, the relationship of function to
scale, and the role of size in determining limits. We must think about all
of these ideas when we are determining how to scale a model in relation to
the ÒrealityÓ we want to capture.

Lastly, we often look at the scale of things with respect to a magnitude
set within a standard. Thus, when talking about freezing phenomena,
we expect to reference temperatures near the freezing point of mate-
rials included in our model. Similarly, we know that the models of
Newtonian mechanics work extraordinarily well for virtually all of our
earth- and space-bound applications. Why is that so? Simply because the
speeds involved in all of these calculations are far, far smaller than c ,
the speed of light in a vacuum. Thus, even a rocket Þred at escape
speeds of 45,000 km/hr seems to stand still when its speed is compared
to c ≈ 300,000 km/s = 1.080× 109 km/hr! These scaling ideas also repre-
sent something of an extension of the ideas behind dimensionless variables
that we discussed in Chapter 2. For example, in EinsteinÕs general theory
of relativity, the mass of a particle moving at speed, v , is given as a
(dimensionless) fraction of the rest mass, m0, by

m

m0
= 1√

1− (v/c)2
. (3.1)

The scaling issue involved here, as we will discuss in Section 3.4, is ensuring
that the square of the dimensionless speed ratio is always much less than 1,
so that m ∼= m0.

3.2 Size and Shape: Geometric Scaling

In Figure 3.1 we show two cubes, one of which has sides of unit length in
any system of units we care to choose, that it, the cubeÕs volume could be
1 in3 or 1 m3 or 1 km3. The other cube has sides of length L in the same
system of units, so its volume is either L3 in3 or L3 m3 or L3 km3. Thus, for
comparisonÕs sake, we can ignore the units in which the two cubesÕ sides
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Figure 3.1 Two geometrically similar cubes,
one with sides of unit length (that is, having
lengths equal to 1 measured in any system of
units), and the second with sides of length L
as measured in the same units as the
“unit cube.”

are actually measured. The total area and volume of the Þrst cube are,
respectively, 6 and 1, while the corresponding values for the second cube
are 6L2 and L3. We see immediately an instance of geometric scaling, that is,
the area of the second cube changes as does L2 and its volume scales as L3.
Thus, doubling the side of a cube increases its surface area by a factor of
four and its volume by a factor of eight.

3.2.1 Geometric Scaling and Flight Muscle

Fractions in Birds

Geometric scaling has been used quite successfully in many spheres of bio-
logy, for example, for comparing the effects of size and age in animals of the
same species, and for comparing qualities and attributes in different species
of animals. As an instance of the latter, consider Figure 3.2 wherein are plot-
ted the total weight of the ßight muscles, Wfm , of quite a few birds against
their respective body weights, Wb . How many birds are Òquite a fewÓ? The
Þgure caption states that the underlying study actually included 29 birds,
but the Þgure shows data only within the range 10 ≤ bird number ≤ 23.
For the 14 birds shown in Figure 3.2 there seems to be a fairly nice straight
line Þt for the data presented. While Þtted by eye, that straight line can be
determined to be:

Wfm
∼= 0.18Wb . (3.2)

Equation (3.2) suggests that ßight muscle makes up about 18% of a birdÕs
body weight and that ßight muscle weight scales linearly withÑor is
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Figure 3.2 A simple linear fit on a plot of the total weight
of the flight muscles against body weight for 14 of the
29 birds studied, including starlings, barn owls, kestrels,
common terns, mallards, and herons (after Figure 1–2 of
Alexander, 1971).

proportional toÑbody weight, a result that seems reasonable enough from
our everyday observations of the birds around us.

3.2.2 Linearity and Geometric Scaling

These straightforward geometric scaling arguments can also be used to
demonstrate some ideas about linearity in the context of geometrically sim-
ilar objects, that is, objects whose basic geometry is essentially the same.
In Figure 3.3 we show two pairs of drinking glasses: One pair are right
circular cylinders of radius r , the second pair are right circular inverted
cones having a common semi-vertex angle α. If the Þrst pair are Þlled to
heights h1 and h2 respectively, the total ßuid volume in the two glasses is

Vcy = πr2h1 + πr2h2 = πr2(h1 + h2). (3.3)

Equation (3.3) demonstrates that the volume is linearly proportional to the
height of the ßuid in the two cylindrical glasses. Further, since the total
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h1
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h�1 h�2

α

Figure 3.3 Two pairs of drinking glasses: One
pair are cylinders of radius r , the second pair
are inverted cones (sometimes referred to as
martini glasses) having a common semi-vertex
angle α.

volume can be obtained by adding or superposing the two heights, the
volume Vcy is a linear function of the height h. (Recall the discussion in
Section 1.3.4.) Note, however, that the volume is not a linear function of
the radius, r .

For the two conical glasses, we see that their radii vary with height.
In fact, the volume, Vco , of a cone with semi-vertex angle, α, Þlled to
height, h, is

Vco = π

3

h3

tan2 α
. (3.4)

Hence, the total volume of ßuid in the two conical glasses of Figure 3.3 is

Vco = π

3

h′31
tan2 α

+ π
3

h′32
tan2 α

	= π

3

(h′1 + h′2)3

tan2 α
. (3.5)

The relationship between volume and height is nonlinear for the conical
glasses, so we cannot calculate the total volume just by superposing the two
ßuid heights, h′1 and h′2.

3.2.3 “Log-log” Plots of Geometric Scaling Data

We now choose to ask a question: What happened to the other 15 birds
in the small scaling study of Section 3.2.1? (Among those discriminated
against in Figure 3.2 are hummingbirds, wrens, robins, skylarks, vultures,
and albatrosses.) These birds were not included because the bird weights
studied spanned a fairly large range, which made it hard to include the
heavier birds (e.g., vultures and albatrosses) in the plot of Figure 3.2 without
completely squashing the data for the very small birds (e.g., hummingbirds
and goldcrests). This suggests a problem in organizing and presenting data,
in itself an interesting aspect of scaling.
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Figure 3.4 A “log-log” plot of the total weight of the flight muscles
against body weight for 29 birds, including hummingbirds, wrens,
terns, mallards, eagles, and albatrosses. Compare this with the linear
plot of the data of Figure 3.2 (after Figure 1–4 of Alexander, 1971).

There is a straightforward way to include the heretofore left-out data:
Construct log-log plots in which the logarithms of the data (normally to
base 10) are graphed, as shown in Figure 3.4. In fact, the complete data set
was plotted, essentially doubling the number of included data points, and
a statistical regression analysis was applied to determine that the straight
line shown in Figure 3.4 is given by:

Wfm = 0.18W 0.96
b . (3.6)

We could observe that eq. (3.6) is not exactly linear because, after all,
0.96 	= 1. However, it is clear that eqs. (3.2) and (3.6) are sufÞciently close
that it is still quite reasonable to conclude that ßight muscle weight scales
linearly with body weight.

However, this second look at the ßying muscle weight of birds raises two
interesting scaling issues of scaling: First, how do we handle nonlinearities?
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Second, how do we handle large ranges of data? In fact, we have just seen
that these two questions are not unrelated because we found the almost
linear, small nonlinearity in eq. (3.6), as a result of looking at an extended
range of data.

We also have already provided an answer to the second question, namely,
introducing log-log plots to extend our graphical range. Of course, with
modern computational capabilities, we could skip the Òold fashionedÓ
method of laboriously plotting data and simply enter tables of data points
and let the computer spit out an equation or a curve. But something is
gained by thinking through these issues without a computer.

Consider the data that emerged from a study of medieval churches and
cathedrals in England. Large churches and cathedrals of that area (see
Figures 3.5) were generally laid out in a cruciform pattern (viz., Figure 3.6)
so that the nave was the principal longitudinal area, extending from a
front entrance to a chancel or altar area at the back, and the transept was
set out as a section perpendicular to the nave, quite close to the chancel.
Was the cruciform shape ecclesiastically motivated, that is, was it inspired
by religious feeling? In fact, research suggests that scaling dictated the

(a) (b)

Figure 3.5 Interior views of two church naves : (a) The oldest
Romanesque cathedral in England, St. Albans, has a nave with a
relatively low height-to-length ratio; (b) The late Gothic style, also
called the perpendicular style, is exemplified by the Canterbury
Cathedral, whose nave has a relatively high height-to-length ratio (used
by permission of the late Professor S. J. Gould of Harvard University).
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Figure 3.6 The plan of the Norwich Cathedral showing its cruciform
shape, including the longitudinal nave, extending from the front door
(left) to the rear apse (right), and the perpendicular transept (after
Gould, 1975).

cruciform shape, and that the scaling was inspired by the need for both
good lighting and sound structures.

We start by taking the length of a church as the Þrst-order indicator of its
size. Thus, the longer its length, the larger the church. Then we examine the
data displayed in Figure 3.7, which is a log-log plot of nave height against
church length for a variety of medieval cathedrals and churches in England
and on the European continent. We see from that data that as church length
(and size) increase, the heights of their naves increases in absolute terms
but falls off in relative terms. That is, as churches get longer (and larger),
their naves get relatively smaller. Further, although we do not give the data
to buttress this assertion, the bigger churches tend to have narrower naves.
Why don’t the nave height and width increase with church size? The answer
has to do with the scaling of surface areas and enclosed volumes, that is,
with geometric scaling.

The relevant scaling refers to the change in the area enclosed in a church
as it is made longer (and larger). A longer church has a longer perimeter. In
buildings of constant shape, the surface area of the enclosing wall increases
linearly with the perimeter length, while the enclosed volume increases as
(perimeter length)2. Thus, problems emerge as it becomes more difÞcult
for light and fresh air to penetrate into the churchÕs interior as its peri-
meter increases. (Remember that these marvelous structures were built
long before the invention of the light bulb and air conditioning!) However,
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Figure 3.7 A plot of log (church nave height) against log
(church length), with circled dots indicating Romanesque
churches and letters standing for English churches as follows:
B, Earls Barton; C, Chichester; D, Durham; E, Ely; G, Gloucester;
H, Hereford; N, Norwich; P, Peterborough; S, St. Albans; and
W, Winchester (used by permission of the late Professor
S. J. Gould of Harvard University).

the severity of the lighting and ventilation problems can be reduced by
introducing the transept because it enables a relatively constant nave width,
thus taking away the Òconstant shapeÓ constraint. If the width is kept con-
stant, then the enclosed area increases linearly with perimeter length, as
does the churchÕs length (and size). And, of course, such a church will then
appear to be relatively narrow!

Increasing a naveÕs width along with its length is another way to increase
the enclosed area, but this approach also exacerbates interior lighting and
ventilation problems. And it creates still another problem, namely that of
building a roof with a larger surface area to cover the enlarged, enclosed
area. Since roofs of cathedrals and churches were built to sit atop stone
vaults and arches, roof spans became critical because it was very hard to
build wide stone arches and vaults. The difÞculty of building wide arches
also interacts with the height of the nave for it is the nave walls that support
the outward thrust developed in the roof vaults, even when the nave walls
are supported by ßying buttresses (see Figure 3.8). Thus, higher nave walls
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Figure 3.8 A cross-section of London’s
Westminster Abbey looking down the axis of
the nave, showing the roof vault and the
flying buttresses and their piers that support
both roof vaults and nave walls. On the left
(south) side there are two sets of flying
buttresses, and the main buttressing piers
are located beyond the cloister that abuts the
church along that side (after Heyman, 1995).

had to be thicker to support both their own weight and the weight of
the roofs supported by the vaults, which were in turn supported at the
more-ßexible tops of the walls. Therefore, in sum, the width and height
of cathedral naves had to be scaled back as overall church length (or size)
was increased lest problems of lighting, ventilation, and structural safety
become insoluble.
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Problem 3.1. On what basis did the Lilliputians conclude that
Gulliver needed 1728 times as much food as they did?

Problem 3.2. How would the LilliputiansÕ conclusion change if they
had thought about the exchange of energy between a
person (of any size) and the surrounding environment?

Problem 3.3. How do the surface area and volume of a sphere scale?
Why? (Hint : Analyze spheres of radii 1 and R.)

Problem 3.4. Explain what would happen to an angle between two
lines inscribed on a balloon as it was inßated to a radius
R from a radius of 1.

Problem 3.5. ConÞrm that eq. (3.2) does adequately portray the
straight line drawn in Figure 3.2.

Problem 3.6. Show how the equation y = mxb becomes a linear
equation in a log-log plot.

Problem 3.7. Write eq. (3.6) in a form suitable for a log-log plot.

3.3 Size and Function–I: Birds and Flight

We now examine another set of empirical data, taken from a study of the
aerodynamics of birds in ßight and displayed in Figure 3.9. It appears from
this plot that a straight line can be penciled in to Þt the data, and it also
seems that there is no data for bird weights greater than 35Ð40 pounds. We
are thus prompted to ask two questions: Can the general form of this data
be explained by dimensional analysis, along the lines of our discussions of
Chapter 2? And, is there an upper limit to the weight of a ßying1 bird? The
answers to both questions are afÞrmative.

The answer to the Þrst question can be found by looking at the Þt of the
straight line in the log-log plot of Figure 3.9. A close examination of the
Þtted line shows that its slope is 1:3, which suggests that

Weight ∝ (Wing loading)3. (3.7)

But does eq. (3.7) make dimensional sense?
For birds that soar (e.g., gulls and buzzards), we argue that the lift forces

needed to sustain them in the air should be proportional to the wing areas,
or in dimensional terms, proportional to (length)2. The wing loading is

1 Remember that several creatures categorized as birds have never taken wing, including
penguins and ostriches, so we really do need the adjective Òßying.Ó
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Figure 3.9 A set of empirical data, taken from a study of the
aerodynamics of birds in flight (von Karman, 1954). It appears from this
plot that a straight line can be penciled in to fit the data, and it also
seems that there is no data for bird weights greater than 35–40 lb.

the load a bird has to carry, which is just its weight, which is proportional
to its volume. Thus, in dimensional terms, the wing loading is propor-
tional to (length)3. Then the wing loading per unit of wing area would
be proportional to (length)3/(length)2, or to (length). Since the weight is
proportional to (length)3 and the wing loading to (length), eq. (3.7) is
dimensionally consistent.

The second question, about the existence of an upper bound to ßy-
ing weight, is harder to answer. We will answer it, but in the somewhat
restricted domain of hovering flight because the aerodynamic arguments
are simpler. We will formulate the problem by examining the dimensions
of both the power needed to sustain hovering and the power available to
sustain hovering.

3.3.1 The Power Needed to Hovering

A bird ßaps its wings when it is hovering. In so doing, the bird generates
the needed hovering power by moving a mass of airÑand so transferring
momentumÑdownward. NewtonÕs second law says that the time rate of
change of the momentum of that jet of air must be equal to the total lift
force on the wings, which is, in turn, equal to the birdÕs weight. The mass of
air moving through the jet can be estimated in terms of the air density, ρ,
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the wing area, A, and the jet speed, v , as

mass/time = ρAv . (3.8)

The time rate of change of momentum is then just the product v ×
(mass/time), which is, again, equal to the bird weight, W :

W = v ×mass/time = ρAv2. (3.9)

In view of the dimensional dependencies of the birdÕs weight and wing area,
it follows from eq. (3.9) that the velocity of the air mass for hovering must
be such that

v ∝ L1/2. (3.10)

The power needed to sustain the hovering jet is equal to the time rate of
change of the kinetic energy of the mass of air in the jet. Thus,

power needed ∝ 1
2ρAv × v2. (3.11)

In view of eqs. (3.10) and (3.11) taken together, the scaling of the power
needed for a bird to hover scales with length according to:

power needed ∝ L7/2. (3.12)

Equation (3.11) is valid for forward ßight as well as hovering. It can be
conÞrmed by more complete, more complex aerodynamic arguments.

3.3.2 The Power Available for Hovering

There are three ways we can estimate the power available to a bird to
enable it to hover. We can estimate its heat loss during hovering, the rate
at which its heart supplies oxygen, and the maximum stresses in its bones
and muscles.

The heat loss estimate is simple, if not altogether compelling. Muscles
turn chemical energy into mechanical energy at a 25% efÞciency rate. The
excess energy is dissipated as heat loss through the birdÕs surface area. The
heat transfer thus decreases at a rate proportional to (length)2. Hence, in
order to prevent the bird from overheating, the available power must also
be proportional to L2.

The oxygen supply estimate reduces to the consideration of the time rate
of change of the volume of blood delivered by the heart. This volumetric
rate is proportional to the cross-sectional area of the birdÕs blood vessels.
Thus, we again Þnd that the available power is proportional to L2 because
it is proportional to the oxygen ßow, which is in turn proportional to the
rate of blood delivery.
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The maximum stress estimate begins with the assessment of the work
done by a contracting muscle. By the principle of conservation of energy
that work must equal the resulting change in the kinetic energy of the limb
moved by the muscleÕs contraction. Thus,

muscle force× contraction ∝ limb mass× v2, (3.13)

where v is now the speed of the moving limb. Since the force in the muscle is
limited by the maximum tensile strengths of the birdÕs muscles and tendons,
it must be proportional to L2 as representative of the cross-sectional area
of those muscles and tendons.

Now the muscle contraction is proportional to L, and the limb mass
to L3, so that eq. (3.13) tells us that the speed of the hovering bird is
independent of L or size. If this is true, the time it takes for a muscle to
contract would be found from the ratio L/v , or simply the length L. Then
the power exerted by the muscle is

power ∝ muscle force× contraction

time
∝ L2 × L

L
, (3.14)

so once again we Þnd that the available power is proportional to L2.

3.3.3 So There Is a Hovering Limit

We have seen in Section 3.3.1 that the power needed for ßight is propor-
tional to L7/2, while in Section 3.3.2 we showed that the power available to
the bird to sustain ßight is proportional to L2. Since the power needed to
hover increases so much faster with the bird size, it is clear that a limit
to hovering size must indeed exist.

Problem 3.8. ConÞrm the dimensional relationship of eq. (3.10).
Problem 3.9. Use dimensional analysis to conÞrm that power is

equal to the time rate of change of kinetic energy.
Problem 3.10. ConÞrm the dimensional relationship of eq. (3.12).
Problem 3.11. ConÞrm that eq. (3.13) does show that v is independ-

ent of L.

3.4 Size and Function–II: Hearing and Speech

Human hearing and speech are areas of human physiology where scaling
has interesting and important effects. Size, shape, and function are clearly
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Cochlea

Eardrum

Temporal bone

Eustachian tubeExternal auditory canal

Figure 3.10 A cross-section of the human ear,
including the eardrum, which is the mechanism with
which we hear (from Encyclopedia Britannica
Online, www.brittanica.com, 1997).

intertwined in the ear and eardrum (Figure 3.10), and in the vocal cords and
larynx, that is, the Òvoice boxÓ that contains the vocal cords (Figure 3.11).
We are inclined to wonder about scale effects in hearing because we know
that humans hear sounds in the range of 20 to 20,000 Hz (or hertz or
cycles per second), dogs hear sounds that have frequency components up
to 50,000 Hz, and bats hear sounds as highs as 100,000 Hz. The unit hertz
is named after the acoustician Gustav Ludwig Hertz (1887Ð1975). Since
larger animals seem to have more limited frequency ranges, it is worth
exploring whether size could play a role in these differences.

3.4.1 Hearing Depends on Size

The eardrum is just one part of a complex hearing apparatus (see
Figure 3.10) that starts at the outer ear and goes through the cochlea to
the auditory nerve that transmits signals to the brain for interpretation.
When a sound is generated by a source, the result is that air (or another
mediumÕs) particles immediately adjacent to the source are set into motion,
creating the acoustic signals that are transmitted through the intervening
air (or medium, or media) to the receiverÕs ear. The eardrum itself con-
verts the mechanical vibration of the ÒincomingÓ air particles that form
the acoustic signal into a mechanical vibration of three bonesÑcalled the
hammer, anvil, and stirrupÑthat in turn carry the vibratory signal into the
inner ear. Eventually, the inner ear converts these mechanical signals into
electrical signals that are transmitted through the nervous system to the
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Epiglottis

Vocal Process

Vocal Cords

Trachea

Figure 3.11 A cross-section of
the human larynx or “voice
box” showing the vocal cords
that are the mechanism with
which we speak
(www.sfu.ca/∼saunders/L33098/
L5/L5Fset.html, 2002, by
courtesy of R. Saunders, Simon
Fraser University, Burnaby,
British Columbia, Canada).

brain by way of the organs of Corti. As the Þrst pickup of the incoming
mechanical signal, it is important that the eardrum remain quite stiff in
order to pick up and accurately reproduce the higher frequencies of that
signal.

In mechanical terms, the eardrum is a stretched membrane, much like
a trampoline. Like every other mechanical device, the eardrum has natural
frequencies at which it can vibrate freely (and indeÞnitely, if only there
were no damping!). As we will see in Chapter 8, an elastic system responds
just like a linear spring when it is forced or excited at frequencies below
the lowest natural frequency, sometimes called the fundamental frequency.
Thus, if we want the eardrum to be stiff, we want its fundamental frequency
to be very high. It turns out that the fundamental frequency of a stretched
circular membrane of radius, r , and thickness, h, is given by

fmembrane = 2.40

2πr

√
F

ρh
, (3.15)

where F is the tensile (stretching) force per unit length of the membrane
circumference and ρ is the mass density of the material of which the mem-
brane is made. It is easily veriÞed that the dimensions of the membraneÕs
fundamental frequency are 1/(time) or 1/T, which is quite appropriate for
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frequency. However, it is also interesting to note in eq. (3.15) that the fun-
damental frequency varies inversely with the radius, r , of the membrane
(or eardrum). So, for similar values of the tensile force, F , and the mass
density, ρ, we would expect the range of hearing to extend into higher
frequencies for smaller animals, and this is just what we have seen in the
hearing ranges of humans, dogs, and bats.

3.4.2 Speech Depends on Size

A similar situation exists with regard to human vocal cords and voice boxes.
We know from everyday experience that men generally have deeper, lower-
pitched voices than do women, and we are also accustomed to the facts that
birds chirp and bears growl. So we are inclined to imagine that the sound
of speech would scale with size.

The mechanism that creates speech is the forced vibration of the vocal
cords as air is expelled from the lungs and pushed past (and through) the
cords in the larynx or voice box (viz., Figure 3.11). In order to develop
and produce volume at low frequencies, the vocal cords must be able to
vibrate at low frequencies, and the voice box must be able to amplify the
low-frequency signals produced by the vocal cords.

The vibration characteristics of vocal cords can be modeled just as we
would model the vibration of violin or piano strings, whose fundamental
frequency is given by

fstring = 1

2l

√
F

ρA
, (3.16)

where l is the stringÕs length, A its cross-sectional area, F is the tensile force
applied to the string, and ρ its mass density. Note the very strong resemb-
lance between eqs. (3.15) and (3.16). Further, we see that this frequency
(3.16) scales inversely with both the string length and its mass density.
Thus, a larger animal with longer and more dense vocal cords will make
sounds that have components at lower frequencies.

We can also look at the fundamental frequency of an acoustic cavity as
a model for the larynx. Such a cavity, which we examine in more detail
in Chapter 8, is also called an acoustic resonator and it has a fundamental
frequency given by [see eq. (8.47)]

fcavity = c0

2π

√
A

lV0
, (3.17)

where A and l are, respectively, the area and the length of the ÒneckÓ leading
into an acoustical cavity of volume V0 that is Þlled with a gas in which
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sound waves travel at a speed c0 (see Figure 8.7). Clearly, the fundamental
frequency of the cavity scales inversely with the cavityÕs volume. So once
again we Þnd that larger humans and animals have deeper voices than do
their smaller counterparts.

Problem 3.12. What is the hearing range of an elephant? A whale?
How do these ranges compare with those of humans?

Problem 3.13. ConÞrm that the dimensions of eq. (3.15) are 1/T.
Problem 3.14. ConÞrm that the dimensions of eq. (3.16) are 1/T.
Problem 3.15. ConÞrm that the dimensions of eq. (3.17) are 1/T.

3.5 Size and Limits: Scale in Equations

In Section 3.3, while discussing size and function, we found that there is
an upper limit to the weights of hovering birds. This limit is due to the
fact that birds could not supply enough power to sustain hovering ßight as
they grew bigger and heavier. Thus, the birdsÕ ability to hover was limited
by the power available to them. Limits occur quite often in mathematical
modeling, and they may control the size and shape of an object, the number
and kind of variables in an equation, the range of validity of an equation,
or even the application of particular physical modelsÑor Òlaws,Ó as they
are often called.

Modern electronic components and computers provide ample evid-
ence of how limits in different domains have changed the appearance,
performance, and utility of a wide variety of devices. The bulky radios
that were made during the 1940s, or the earliest television sets, were very
large because their electronics were all done in old-fashioned circuits using
vacuum tubes. These tubes were large and threw off an enormous amount
of heat energy. The wiring in these circuits looked very much like that in
standard electrical wiring of a house or ofÞce building. Now, of course, we
carry television sets, personal digital assistants (PDAs), and wireless tele-
phones on our wrists. These new technologies have emerged because we
have learned to dramatically change the limits on fabricated electrical cir-
cuits and devices, and on the design and manufacturing of small mechan-
ical objects. And this is true beyond electronics. The scale at which surgery
is done on people has changed because of our ability to ÒseeÓ inside the
human body with greater resolutionÑwith increasingly sophisticated scans
and imagers, as well as with Þber-optic television camerasÑand to design
visual, electronic, and mechanical devices that can operate inside a human
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eye, and in arteries and veins. In the emerging Þeld of nanotechnology we are
learning to engineer things at the molecular level. Thus, our mathematical
models will change, as will the resulting devices and Òmachines.Ó

3.5.1 When a Model Is No Longer Applicable

As we hinted in Section 3.1, one interesting example of the interaction of
scale and limits is Newtonian mechanics. We are accustomed to taking the
masses or weights of objects as constants in our everyday lives and in our
normal engineering applications of mechanics. We do not expect a box of
candy to weigh any more whether we are standing still, riding in a car at
120 km/hr (75mph), or ßying across the country at 965 km/hr (600 mph).
Yet, as we noted in Section 3.1, according to the general theory of relativity,
the mass of a particle moving at speed, v , is given as a (dimensionless)
fraction of the rest mass, m0, by

m

m0
= 1√

1− (v/c)2
, (3.18)

where c is the speed of light (3× 108 m/s = 186,000 mi/sec). For the box
of candy ßying across the country at 965 km/hr = 268 m/s, the factor in
the denominator of the relativistic mass formula (3.18) becomes√

1−
(v

c

)2 =
√

1− 7.98× 10−13 ∼= 1− 3.99× 10−13 ∼= 1. (3.19)

Clearly, for our practical day-to-day existence, we can neglect such relati-
vistic effects. However, it remains the case that Newtonian mechanics is a
good model only on a scale where all speeds are very much smaller than the
speed of light. If the ratio v/c becomes sufÞciently large, the mass can no
longer be taken as the constant rest mass, m0, and Newtonian mechanics
must be replaced by relativistic mechanics.

3.5.2 Scaling in Equations

In certain situations, scaling may shift limits or perhaps points on an
objectÕs boundary where boundary conditions are applied. For example,
suppose we want to approximate the hyperbolic sine function,

sinh x = 1

2
(ex − e−x). (3.20)

We know that for large values of x , the term ex will be much larger than the
term e−x . The approximation problem is one of deÞning an appropriate
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criterion for discarding the smaller term, e−x . For dimensionless values
of x greater than 3, the second term on the right-hand side of eq. (3.20),
e−x , does become very small (less than 4.98 × 10−2) compared to ex for
x = 3, which is 20.09. Hence, we could generally take sinh x ∼= (½)ex . All
we have to do is decide on a value of x for which we are willing to accept
the approximation e2x − 1 ∼= e2x .

We can also approach this problem by introducing a scale factor, λ, after
which we can look for values of x for which we can make the approximation

sinh(x/λ) ∼= 1

2
ex/λ. (3.21)

Putting a scale factor, λ, in the approximation of eq. (3.21) obviously means
that it will affect the value of x for which that approximation is acceptable.
Now the comparison is one in which we want

e2x/λ − 1 ∼= e2x/λ. (3.22)

For λ = 1, the approximation is good for x ≥ 3, while for λ = 5 the
approximation works for x ≥ 15. Thus, by introducing the scale factor λ
we can make the approximation valid for different values of x because we
are now saying that e−x/λ is sufÞciently small for x/λ ≥ 3. Changing λ
has in effect changed a boundary condition because it has changed the
expression of the boundary beyond which the approximation is acceptable
to x ≥ 3λ.

Recall that functions such as the exponentials of eqs. (3.21) and (3.22),
as well as sinuosoids and logarithms, are transcendental functions. Tran-
scendental functions can always be represented as power series, as we will
detail in Section 4.1.2. For example, the power series for the exponential
function is:

ex/λ = 1+ x

λ
+ 1

2!
(x

λ

)2 + 1

3!
(x

λ

)3 + · · · + 1

n!
(x

λ

)n + · · · (3.23)

It is clear that the argument of the exponential must be dimensionless
because without this property eq. (3.23) would not be a rational equation.
Further, we could not calculate numerical values for the exponential func-
tion, or any other transcendental function, if its argument was not dimen-
sionless. The presence of a scale factor in eq. (3.22) makes the exponentialÕs
argument dimensionless, and so numerical calculations can be performed.

In addition, the scale factor, λ, often represents a characteristic aspect
of the problem being modeled, so that a ratio such as x/λ becomes a use-
ful measure of whether something is truly large or small. For example,
the hyperbolic sinusoid in eq. (3.20) might describe the deßection or
downward displacement of a catenary cable as a function of its length.
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The variable x could be a coordinate measured along the projected cable
length and λ could represent its total projected length, which could be
regarded as the cableÕs characteristic length.

3.5.3 Characteristic Times

We often see rate effects in Þrst-order differential equations (a brief review
of which can be found in Section 5.2.2). For example, it will be shown that
a charged capacitor draining through a resistor produces a voltage drop
V (t ) at a rate proportional to the actual value of the voltage at any given
instant. The mathematical model would be:

dV (t )

dt
= −λV (t ). (3.24)

We can rewrite this equation in the equivalent form

dV (t )

V (t )
= −λdt . (3.25)

Now, in order for this rate equation to be a rational equation, the net
dimensions of each side of the equation must be the same. For eq. (3.25)
that means each side must be dimensionless. The left-hand side is clearly
dimensionless because it is the ratio of a voltage change to the voltage itself.
The right-hand will be dimensionless only if the scale factor, λ, has physical
dimensions such that [λ] = 1/T. We will soon see this below and then will
reconÞrm it when we solve the differential equation (3.24) in Chapter 5.

We can use the dimensionless product λt to derive a measure of the time
that it takes to discharge the capacitor being modeled. For example, we
could deÞne a decay time, often called a characteristic time, as the time it
takes for the voltage to decrease to a speciÞed fraction of its initial value.
Suppose we choose that speciÞed value to be 1/10. The characteristic or
decay time of the charged capacitor would then be

V (tdecay) ≡ V0

10
. (3.26)

How would we calculate tdecay ? As we will show in Chapter 6, it is easily
conÞrmed that the solution to the differential equations (3.24) and (3.25) is

V (t ) = V0e−λt , (3.27)

which in view of eq. (3.26) means that

λ ∼= 2.303

tdecay
. (3.28)
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Equation (3.28) simply says that the scale factor λ for the discharging
capacitor is inversely proportional to the characteristic (decay) time, and
that the voltage in the capacitor can then be written as

V (t ) ∼= V0e−2.303(t/tdecay ). (3.29)

Problem 3.16. Under what conditions is eq. (3.24) dimensionally
consistent?

Problem 3.17. ConÞrm that the voltage of eq. (3.27) does satisfy
eq. (3.24).

Problem 3.18. ConÞrm that eq. (3.28) is correct.

3.6 Consequences of Choosing a Scale

Since all actions have consequences, it should come as no surprise that
the acquisition of experimental data, its interpretation, and its perceived
meaning(s) generally can be very much affected by the choice of scales for
presenting and organizing data.

3.6.1 Scaling and Data Acquisition

Scales affect the ways in which data is taken during experiments. Care-
fully chosen scales can reduce errors, save time and money, and they can
highlight important details.

Consider, for example, the simple apparatus shown in Figure 3.12, which
can be used to determine the rotational inertia, Irot , (the second moment
of inertia of the mass around an axis through its centroid or center) of
the wheel shown as it turns or spins around an axis through its center.
This experiment uses a falling weight connected to the wheel by a string to
produce a torque that, in turn, causes the wheel to rotate. That torque, τ ,
is related to the rotational inertia Irot by

Irot = τ

α
, (3.30)

where α is the angular acceleration of the wheel, measured in units of
radians per second squared (rad/sec2). As we describe the inßuence of scale
on experimental observation, we will focus on the angular acceleration as
the important parameter through which we can determine Irot . We conduct
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the experiment itself by letting the falling weight cause the wheel to spin,
during which we measure or read the speed, v , of any point on the wheel
both as the experiment begins at some time t = t0, and at a later time
(t = tf ) that denotes the end of the experiment. The angular acceleration
is then calculated in terms of the wheelÕs radius, R, and the measured speeds
and measurement times as:

αexp = (vf − v0)

R(tf − t0)
, (3.31)

where the speeds v0 and vf are measured at the times t0 and tf , respectively.
Clearly, the time scale for this experiment is the time interval tf − t0. It

will control the amount of error between the experimentally determined
value of Irot and its actual (or theoretically calculated) value.

We know that the wheel is set into motion by releasing or dropping the
falling weight, because that action pulls the string taut and causes the wheel
to start spinning. As the weight falls, the wheel rotates at an increasingly
faster rate. Since the wheel is at rest when we initiate each experimental
run, we can safely take t0 = v0 = 0. Then the values of αexp determined
experimentally are found from eq. (3.31) as

αexp = vf

Rtf
. (3.32)

Now, while we have argued above that the apparatus shown in Figure 3.12
produces a constant acceleration, that is not exactly true. Since we are
starting from the state t0 = v0 = 0, static friction must be overcome as the
wheel starts from rest at the beginning of each run of the experiment. After
a short while, the wheel motion does, in fact, settle into spinning with a
fairly constant acceleration. But what exactly is a Òshort whileÓ? How do we
know the correct value of tf at which we can terminate each experimental
run? Is 2 seconds enough time? Or do we need 4 seconds, or a still longer
time?

In Table 3.1 we show some data obtained in one run of this experiment.
Note that the number of revolutions or spins of the wheel goes up rapidly as
time elapses, as does the speed of rotation. Further, and most importantly,
if we calculate the angular acceleration as it varies with time (or with the
estimated number of revolutions, a number that we can also count), we see
that αexp appears to approach a constant value (which means the torque
also approaches a constant value). Why is this so? It is so because when we
allow the experiment to run for a longer time (or through more turns of
the wheel), we are changing the time scale over which the drag due to static
friction has an inßuence. In a very short experiment, the time taken to
overcome static friction takes up a much larger percentage of the time scale
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Figure 3.12 A simple piece of apparatus that
can be used to measure the rotational inertia of
a wheel of radius, R , as it spins around an axis
through its center.

of the experiment, and so it has a disproportionate inßuence. In a longer
experiment, conditions approach a steady state in which the predominant
effect is the torque applied by the falling weight, so the static friction
occupies an increasingly smallÑand negligibleÑpart of the experimentÕs
run time.

Table 3.1 The data taken in the experimental
determination of the rotational inertia of the wheel (as
shown in the apparatus of Figure 3.12), along with an
estimate of the actual number of revolutions that had
occurred when νf was measured.

tf (s)

Estimated
number of
revolutions

Measured
vf (m/s)

Calculated
αexp = vf /Rtf

(rad/s2)

2 1/5 0.55 0.55
6 2.4 2.47 0.82

10 7 4.48 0.90
20 30 9.50 0.95

100 790 49.68 0.99
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As another illustration of how scaling affects data acquisition, consider
the diagnosis of a malfunctioning electronic device such as an audio ampli-
Þer. Such ampliÞers are designed to reproduce their electrical input signals
without any distortion. The outputs are distorted when the input sig-
nal has frequency components beyond the ampliÞerÕs range, or when the
ampliÞerÕs power resources are exceeded. Distortion also occurs when an
ampliÞer component fails, in which case we must diagnose the failure to
identify the particular failed component(s).

A common approach to doing such diagnoses is to display (on an oscillo-
scope) the deviceÕs output to a known input signal. If the device is working
properly, we expect to see a clear, smooth replication of the input. One
standard test input is the square wave shown in Figure 3.13 (a). A nice

Square wave input

Square wave ouput on
time scale of 0.5 sec/division

Square wave ouput on
time scale of 0.5 msec/division

Square wave ouput on
time scale of 0.5 µsec/division

(a)

(b)

(c)

(d)

Figure 3.13 A square wave (a) is
the input signal to a (hypothetical)
malfunctioning electronic device.
Traces of the output signals are
shown at three different time
scales (i.e., long, short, shorter):
(b) 0.5 second/division;
(c) 0.5 millisecond/division; and
(d) of 0.5 microsecond/division.
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replication of that square wave is shown in Figure 3.13(b), and it seems
just Þne until we notice that the horizontal time scale is set at a fairly high
value, that is, 0.5 second/division. To ensure that we are not overlooking
something that might not show up on this scale, we spread out the same
signal on shorter time scales of 0.5 millisecond/division (Figure 3.13(c))
and 0.5 microsecond/division (Figure 3.13(d)), neither of which is the nice
sinusoid we originally thought. This suggests that the device is malfunc-
tioning. Had we not set the oscilloscope to shorter, more appropriate time
scales, we might have come to an erroneous conclusion.

3.6.2 Scaling and the Design of Experiments

Scale also affects the ways in which experiments are designed, especially
when the context is that of ensuring that models replicate the prototypes
or ÒrealÓ artifacts that they are intended to stand for or model. This aspect
of scaling is, as we will now show, intricately intertwined with the notions
of dimensional analysis discussed in Chapter 2.

Scale models or reproductions of physical phenomena or devices are
usedÑas they have been for quite some timeÑto do experiments and
study behavior for which a comprehensive analytical model is not available.
Often such studies are done because a laboratory experiment is more easily
developed than is a full-scale experiment. For example, it is easier to study
the vibration characteristics of a model of a proposed bridge design than
it is to build the designed bridge and hope for the best, just as it is easier
to test models of rockets in simulated spaceßight or models of buildings
in simulated earthquakes or Þres. But such experimental models wonÕt be
of much use unless some preliminary analysis is done and clear physical
hypotheses are developed in advance. We will illustrate how is that done
with one simple example.

Consider a simple beam, such as the one shown in Figure 3.14.

P

L

wmp

Figure 3.14 Prototype and model of a simple
elastic beam of length, L, elastic modulus, E ,
and second moment of cross-section, I , as it
deflects an amount, wmp , at its center due to the
load of magnitude, P , applied there.



60 Chapter 3 Scale

We assume that it is known that the deßection, w(L/2), of the mid-
point of the beam when concentrated load P is applied at the same point
is a function of the load and three other parameters, that is,

w(L/2) ≡ wmp = f (P , EI , L), (3.33)

where L is the beamÕs length, E is the elastic modulus of the beam material,
and I is the second moment of its cross-sectional area. The product EI
is commonly called the beamÕs bending stiffness. This example has two
dimensionless groups (see Problem 3.19):


1 = wmp

L
, 
2 = PL2

EI
. (3.34)

Thus, it follows that
wmp

L
= f

(
PL2

EI

)
. (3.35)

Suppose we want to determine the functional form of eq. (3.35) for a
beam, which we will call the prototype beam, but that the beam is too big
and heavy, and the load P too large, for us to do an experiment on the beam
itself. We propose instead to test a model beam. But then we immediately
face a question: How should the properties of the model beam relate to
those of the prototype? The answer lies in the results obtained by applying
the principles of dimensional analysis: The model properties and prototype
properties must be such that the two dimensional groups have the same
numerical values for both model and prototype. Stated in mathematical
terms, with subscripts ÒmÓ for model and ÒpÓ for prototype,

(
1)m = (
1)p , (
2)m = (
2)p . (3.36)

Thus, to a certain extent we can scale the geometry, the material, or the
load for our own convenience, but we cannot scale all of the independ-
ent variables independently. In order to preserve the property of complete
similarity between model and prototype, we must preserve the equality
between model and prototype of each dimensionless group needed to
deÞne a particular problem.

Applying the general similarity rule of eq. (3.36) to the speciÞc case of
the beam whose dimensionless groups are given in eq. (3.34), we Þnd that
we can preserve complete similarity by requiring that

(wmp

L

)
m
=

(wmp

L

)
p

,

(
PL2

EI

)
m
=

(
PL2

EI

)
p

. (3.37)

Having established in eq. (3.37) the overall conditions needed for complete
similarity, we can now go into further detail to see both what we must do
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and what we may do in terms of scaling factors deÞned for each of the
problemÕs variables, that is, for the factors

nw =
(
wmp

)
p(

wmp
)

m

, nP = Pp

Pm
, nE = Ep

Em
, nI = Ip

Im
, nL = Lp

Lm
. (3.38)

Thus, we see that the scaling factors in eq. (3.38)Ñwhich should not be
confused with the graphical scale factors, λ, introduced in Section 3.5.2Ñ
are simply ratios of the values of each of the variables in the prototypes to
the values of the same variable in the model. Equation (3.38) shows that
we have Þve such scaling factors for this problem, while eq. (3.37) shows
that there are two overall similarity conditions that must be satisÞed. We
can, in fact, write the similarity conditions (3.37) in terms of the scaling
factors (3.38) by straightforward substitution:

nw

nL
= 1,

nP n2
L

nE nI
= 1. (3.39)

So, if we choose a length scale (nL) for this problem, we have also chosen
a deßection scale (nw ) by the Þrst of eq. (3.39). However, this means that
we may still freely choose two of the three remaining scaling factors (nP ,
nE , and nI ). If we chose the scaling factors of the elastic modulus (nE )
and of the moment of inertia (nI ) because we had appropriate materials or
small beams lying around our laboratory, then the single remaining scaling
factor nP would be determined by the second of eq. (3.39):

nP = nE nI

n2
L

. (3.40)

Suppose we wanted to model the deßection of a steel beam by doing experi-
ments on a small model made of balsa wood. Assume a typical laboratory
scenario in which the length scale is twenty-to-one, that is, nL = 20, the
scaling factor of the moments of inertia is about nI = 1000, and that the
scaling factor of the moduli of elasticity is approximately nE = 50. For
a similar experiment, we would then expect that the resulting deßection
would be one-twentieth of the actual deßection when we apply a load to
the model that is equal to the anticipated actual load divided by 125.

Note that this introduction to the consequences of scaling in modeling
is just that, a very short and very limited introduction. Clearly, not all
experiments are so easily analyzed or scaled, and so there are many more
issues to be explored in a comprehensive look at scaling in the design of
experiments.
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3.6.3 Scaling and Perceptions of Presented Data

The scales used to present modeling ÒresultsÓ also signiÞcantly inßuence
how such data is perceived, no matter whether those models are analytical
or experimental in nature. Indeed, individuals and institutions have been
known to choose scales and portrayals to disguise or even deny the realities
they purport to present. Thus, whether by accident or by intent, scales can
be chosen to persuade. While this is more of a problem in politics and the
media than it is in the normal practice of engineering and science, it seems
useful to touch on it brießy here since the underlying issue is a consequence
of scale.

We start by reconsidering some calculations we have already performed
(in Section 3.5.2) to show how we can use a scale factor to effectively move
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Figure 3.15 Plots of sinh (x /λ) (solid line) and its one-term exponential
approximation (1/2) exp (x /λ) (dashed line): (a) for λ = 1, 5, with length
scale 0 ≤ x ≤ 3.0; (b) for λ = 1, 5, with length scale 0 ≤ x ≤ 60; and
(c) for λ = 1, with length scale 0 ≤ x ≤ 0.25.



3.6 Consequences of Choosing a Scale 63

a boundary. In Figure 3.15(a) we display plots of sinh(x/λ) (solid line)
and its one-term exponential approximation (dashed line). We now see
what we have previously described, namely, for λ = 1 the approximation
is good for x ≥ 3, while for λ = 5 the approximation works for x ≥ 15.
The scale factor λ makes the approximation valid for different values of x
because of the argument that e−x/λ can be neglected when compared to 1
for x/λ ≥ 3.

The same two functions have been redrawn in Figure 3.15(b) where
the horizontal scale has been very much contracted, as a result of which
we donÕt see any difference between the hyberbolic sinusoid and its ele-
mentary approximation. That is, it looks like sinh (x/λ) and 1/2ex/λ

are the same for all values of x , when we know that is not the case. In
other words, we have lost (or hidden) some information about the beha-
vior at small values of x . To emphasize this, we show in Figure 3.15(c)
a plot for the case λ = 1 with a much-elongated horizontal scale where,
as a result, the difference between the two functions is very much
exaggerated.

Lastly on graphical display, scaling, and perception, we show in Figures
3.16 and 3.17 two illustrations of the consequences of scale in contexts
somewhat beyond the normal professional concerns of engineers and sci-
entists. We show both examples because they use the same technique
of carefully choosing a scale in a Þgure in order to present data out
of context. In Figure 3.16(a) we show a rather dated picture of trafÞc
deaths in the state of Connecticut during the time interval 1956Ð1957,
and we see that a sharp drop in trafÞc deaths occurred then. But, was
that drop real? And, in comparison to what? It turns out that if more
data are added, as in Figure 3.16(b), we see that the drop followed a
rather precipitous increase in the number of trafÞc fatalities. Further, if
we added data from adjacent states and normalized the number of deaths
against a common base, as shown in Figure 3.16(c), we then Þnd that
the numbers of ConnecticutÕs trafÞc fatalities was similar to those of its
neighbors, although the impact of the stricter enforcement is still visible
after 1955.

Similarly, one of the most often shown graphics in the Þnancial pages
of newspapers, or in their televised equivalents, are graphics such as that
shown in Figure 3.17 (see p. 65). Here, the immediate sense conveyed is that
the bottom has dropped out of the market because the scale used on the
ordinate (or y- or vertical axis) has been so foreshortened that it includes
only one weekÕs trading activities, Thus, a decline of a few percent in a
stock market barometer such as the Dow Jones Industrial Average (DJIA)
is made to look like a much steeper declineÑespecially if the curve itself is
drawn in red ink!
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Connecticut Traffic Deaths,
1951–1959
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Figure 3.16 Plots of traffic fatalities in the state of Connecticut,
showing the dangers of truncating scales and deleting comparative
data: (a) Connecticut data for 1955–56; (b) Connecticut data for
1951–59; and (c) normalized data for Connecticut and three
neighboring states for 1951–59 (from Tufte, 1983).

Problem 3.19. Show that the deßection wmp of a beam with bend-
ing stiffness EI, length L, and under a concentrated
load P is governed by the two dimensionless groups
in eq. (3.34).

Problem 3.20. Why is the torque, τ , in the apparatus of Figure 3.12
a constant?

Problem 3.21. Expressed in terms of the wheelÕs geometric and
gravitational properties, what is the magnitude of the
torque in Problem 3.20?

Problem 3.22. ConÞrm that eq. (3.30) is dimensionally correct.
Problem 3.23. ConÞrm that eq. (3.31) is dimensionally correct.
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Problem 3.24. Calculate and conÞrm the estimated number of
revolutions in the last column of Table 3.1.

Problem 3.25. ConÞrm that eq. (3.39) is the correct representation
of eq. (3.37) in terms of the Þve scaling factors of a
simple beam.
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Figure 3.17 A plot of the performance of the New York Stock
Exchange during 13–15 May 2002, as exemplified by that
universally-cited barometer, the Dow Jones Industrial Average (DJIA)
(www.bigcharts.com, 2002).

3.7 Summary

Continuing the discussion of issues involving dimensions that began in
Chapter 2, here we have focused on very important effects of scale. We
have shown how scaling effects inßuenced the growth of cathedrals and
large churches, and we have demonstrated how size affects function in the
ability of birds to hover and in peopleÕs ability to hear and to speak. In
fact, we have shown that the nature of hearing and speech in animals is
determined in large part by the relative size of the relevant parts of their
anatomy.



66 Chapter 3 Scale

We have also discussed the fact that scaling has a signiÞcant effect on
experiments, both in terms of how data is acquired and how it is inter-
preted. The choice of scale(s) for experiments is a crucial part of the design
of experiments. More generally, we have seen that the way that data is scaled
for presentation can signiÞcantly inßuence how people perceive the mean-
ing of that data. This is also a very important part of modeling because it
speaks directly to the perceived credibility of the results of any modeling
endeavor.
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3.9 Problems

3.26. Formulate a hypothesis to explain why a wood pigeon and a buzzard
seem to have such different ratios of Wfm/Wb in Figure 3.2.

3.27. Show that the equation that describes the log-log plot of Figure 3.7
can be found to be h ∼= 1.23 l0.68, where h and l are, respectively, the
nave height and church length rendered dimensionless by dividing
each by 1 ft.

3.28. Using reasoning similar to that which brought us to eq. (3.13), show
that the maximum speed at which animals can run is independent
of size.

3.29. The velocity of blood in the aorta is related to the difference in
pressure between the heart and the arteries. Find the relation-
ship between the velocity of the blood and the pressure difference.
(Hint : Use the work-energy theorem as we did for bird hovering in
Section 3.3.2.)

3.30. The stilt, a little long-legged bird, was described in Gulliver’s Travels
as weighing 4.5 ounces and having legs that are 8 in long. A ßamingo
has a similar shape and weighs 4 lb. Apply scaling arguments to show
that ßamingoÕs legs should be about 20 in long (as they actually are!).

3.31. Given that a robin weighs about 2 ounces, could we scale the length
of its legs from the stilt data given in Problem 3.30? Explain your
answer.

3.32. A certain cucumber was found to have cells that divided when they
had grown to 1.5 times the volume of ÒrestingÓ cells. Cells normally
divide so that the ratio between their surface and their mass remains
constant. Is the cucumber described a ÒnormalÓ cucumber?

3.33. Find the range of values of the variable x for which the approxi-
mation

cosh(x/λ) ∼= 1

2
ex/λ

is acceptable, for scaling factors λ = 1 and λ = 6. Plot both
functions for each of the two scaling factors.
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3.34. An experiment to determine the natural or fundamental period
of oscillation of a simple spring-mass system (see Figure P3.34) is
set up as follows. A spring of stiffness k is Þxed at one end and
connected to a mass m at its other, with the mass being able to
move along an ideal, frictionless air track. The mass is displaced a
distance x0 from its initial resting position, after which it oscillates
along the air track around that initial position. The time needed for a
complete oscillationÑthat is, the periodÑis measured several times
for several periods in succession, with the results being compared to
the theoretical formula for the period, T :

T = 2π

√
m

k
.

m

x0

Air track

k

Figure P3.34 An experimental device for
determining the period, T, of a spring-mass system,
wherein the mass, m, moves on an ideal, frictionless
air track.

Assuming that k and m are known, and that the timer used to
measure the period is accurate to within ±1%. What are the
possible pitfalls that could prevent the successful experimental
determination of T ?

3.35. When the structural elements called beams vibrate freely, their
natural frequencies,ω, depend on a beamÕs mass density, ρ, its mod-
ulus of elasticity, E , and its length, l , depth, h, and cross-sectional
area, A. If a model and prototype are to be built of the same material
and tested, and their lengths are scaled in the ratio 1:5, how will
their natural frequencies relate? (Hint : Use dimensional analysis to
determine the various dimensionless parameters that relate ω to the
various beam properties.)

3.36. A steel beam of length of 20 cm is to be used to model a prototype
timber beam whose span is 3.6 m.

(a) Verify that the dimensionless group containing the load, the
modulus, and the length is P/EL2.
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(b) If the timber beam is to carry a load of 9000 N at a point 1.5 m
from the left end, what load must be applied to the model to
determine whether the prototype can carry its intended load?
(Assume that the load-carrying capacity is the only behavior of
interest here.)

3.37. The data given in the table immediately below were recorded as the
growth of a colony of bacteria was observed. (a) Plot this data as a
function of time. (b) Write an equation that expresses the bacterial
population as a function of time.

Time (min) Population (p)× 106

0 10
5 15

10 22
20 50
30 110
40 245
50 546
60 1,215
70 2,704
80 6,018
90 13,394

100 29,810



4
Approximating and Validating

Models

We devote this last chapter on fundamentals to discussions of elementary
mathematical approximation techniques and of model testing and valida-
tion. Approximations are used to simplify both models (as we will see
in Chapter 7 where the nonlinear model of the pendulum is simplified to
obtain a linear estimate of the pendulum’s behavior) and the numerical cal-
culations made with the models. Such approximations and their numerical
implementations introduce error, but the magnitudes of these errors can
be estimated and limited. We will also discuss means of model validation:
checking dimensions and units, testing qualitative behavior and limits, and
applying basic statistics.

4.1 Taylor’s Formula

Engineering and scientific calculations abound with mathematical approx-
imations, in some measure because linear problems are easier to solve, but
in larger measure because many of our linear models are validated and justi-
fied by experiment and by experience. Distinctions such as those between a
linearized model and its full nonlinear counterpart also involve mathema-
tical approximations such as those described in this section. How do we
approximate a function to properly estimate the behavior it describes?

71
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Many analytical approximations are derived from Taylor’s formulas.
Advanced numerical techniques such as the finite element method also use
Taylor’s formulas to approximate functions as polynomials with unknown
coefficients that are determined numerically. Thus, we now review some
basic results about Taylor’s formula and series, including Taylor formulas
of trigonometric functions and binomial expansions.

4.1.1 Taylor’s Formula and Series

Any function that is continuous and has derivatives can, in general, be
expanded into and approximated by a Taylor’s formula. For values of the
independent variable, x , in a region near x = a, a function f (x) can be
approximated by the polynomial

f (x) ∼= f (a)+ f ′(a)(x−a)+ f ′′(a)
2! (x−a)2+· · ·+ f (n)(a)

n! (x−a)n .

(4.1)
where f ′(a) represents the first derivative of f (x), f ′′(a) the second deriva-
tive, and f (n)(a) the nth derivative of f (x) evaluated at the point x = a. The
series given in eq. (4.1) is called the Taylor formula of f(x) in the neighborhood
of the point x = a. The point x = a must be such that all derivatives of f (x)
exist there and are finite. In addition, and most important for this discus-
sion, if the difference (x−a) is very small, then we need only a few terms of
the series (4.1) to render a good approximation of f (x) in the neighborhood
of x = a. The corresponding Taylor’s series that renders the approximate
equality in eq. (4.1) an exact equality is the limit of eq. (4.1) as n→∞:

f (x) = lim
n→∞

[
f (a)+ f ′(a)(x − a)+ f ′′(a)

2! (x − a)2 + · · ·

+ f (n)(a)

n! (x − a)n
]

. (4.2)

If we want to approximate the function f (x) at another point, say x = b,
we evaluate eq. (4.1) at that point to find Taylor’s formula for f (b):

f (b) ∼= f (a)+f ′(a)(b−a)+ f ′′(a)
2! (b−a)2+ · · · + f (n)(a)

n! (b−a)n . (4.3)

If we use only the first term of eq. (4.3), we are approximating f (b) as being
equal to f (a), as shown in Figure 4.1(a). If we use the first two terms of
eq. (4.3), our approximation is improved by incorporating the effect of the
slope change f ′(a), as shown in Figure 4.1(b). This value is closer to the
true value than our simple one-term approximation. Our approximation
is still further improved when three terms of the expansion (4.3) are used
to approximate f (b), as shown in Figure 4.1(c).
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Figure 4.1 Improving the approximations obtained with a Taylor
expansion by retaining more terms: (a) a one-term series
approximation; (b) a two-term estimate; and (c) a three-term
approximation. Note that the higher-order approximations depend on
derivatives of f (x ) at the reference point of the Taylor series, x = a.
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The accuracy of an approximation for any function f (x) improves with
the number of terms used in the expansion. Similarly, the approximation
in eq. (4.1) can be turned into an exact formula like eq. (4.2) by adding a
remainder term Rn+1 to eq. (4.1):

f (x) = f (a)+f ′(a)(x−a)+ f ′′(a)
2! (x−a)2+· · ·+ f (n)(a)

n! (x−a)n+Rn+1,

(4.4)
where the remainder term (which can be cast in several forms) is here
shown as:

Rn+1(x) = f (n+1)(ξ)

(n + 1)! (x − a)n+1 . (4.5)

The derivative in eq. (4.5) is calculated at a “suitably chosen” point ξ some-
where in the interval between a and x . Even though the precise location of
ξ is not known, the remainder formula can be used to estimate the error
made if a Taylor formula to order n is applied (see Problem 4.31). How
many terms do we have to keep in a Taylor formula to ensure that the error
is negligible, or at least acceptable? As we will see below, it depends on what
we’re trying to do, on the specifics of the model we’re trying to build.

4.1.2 Taylor Series of Trigonometric and

Hyperbolic Functions

The Taylor series expansions of the trigonometric functions for a = 0 are:

sin x = x − x3

3! +
x5

5! −
x7

7! + · · · , (4.6a)

cos x = 1− x2

2! +
x4

4! −
x6

6! + · · · . (4.6b)

where x is expressed in (dimensionless) radians to ensure dimensional
homogeneity. The corresponding Taylor expansions for the hyperbolic
functions are:

sinh x = x + x3

3! +
x5

5! +
x7

7! + · · · , (4.7a)

cosh x = 1+ x2

2! +
x4

4! +
x6

6! + · · · . (4.7b)

We will now use a Taylor formula for the hyperbolic cosine (eq. (4.7b))
to estimate the sag of a tightly stretched string or cable that is weighted
down only by its own weight. Such a cable is called a catenary after the
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x

y

h

l /2
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t /2

Figure 4.2 A long measurement tape stretched between
two fixed points, A and B , for which the sag, h, is
exaggerated. The mathematical model of the stretched tape
is a hyperbolic cosine that can be approximated to varying
degrees, depending on the relative magnitude of the ratio,
h/l . This dependence signifies the fact that actual tape
readings, t , must be corrected to properly measure the
distance, l , on the ground.

Latin word for chain. Estimating the sag of a catenary may not sound
all that interesting, but it does have a practical side that had been, until
recently, a real engineering application. Until theodolites were introduced
to measure large distances in construction projects, surveyors and engineers
relied on tape measures. A surveyor’s tape acts as a catenary because its
only vertical load while measuring is its self-weight. We show such a tape
in Figure 4.2, stretched between two supports at the same elevation that
are separated by the length, l , with the cable’s sag, h, exaggerated. Since
cosh (0) = 1, the equation of the catenary is

y(x) = c
(

cosh
x

c
− 1

)
, (4.8)

where c is the catenary parameter and the coordinates of the vertex or low
point of the cable are (x = 0, y = c). The catenary parameter is a function
of T0, the (constant) horizontal component of the tension in the stretched
cable, and of γ , the string’s weight per unit length (see Problem 4.4). We
see from Figure 4.2 that the sag is given by

h = y(l/2) = c

(
cosh

l

2c
− 1

)
. (4.9)
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Now we substitute the Taylor series (4.7b) of the hyperbolic cosine to
find the sag:

h = c cosh
l

2c
− c = c

(
1+ 1

2!
l2

4c2
+ 1

4!
l4

16c4
+ 1

6!
l6

64c6
+ · · · − 1

)

= c

(
1

2!
l2

4c2
+ 1

4!
l4

16c4
+ 1

6!
l6

64c6
+ · · ·

)
. (4.10)

Note that this Taylor series for the sag has the correct physical dimensions
since both c and h are measures of length and the ratio l/c is dimensionless,
as it should be as the argument of the hyperbolic function. Further, for a
tightly stretched string, the sag, h, is very small compared to the length, l ,
that is, h/l 
 1. This suggests that the ratio l/2c is also quite small
compared to 1 because a one-term approximation of eq. (4.9) is found by
retaining only the first term in the last of eq. (4.10):

h ∼= c

(
1

2!
l2

4c2

)
= l2

8c
. (4.11)

Equation (4.11) confirms the suggestion that large values of the dimen-
sionless catenary parameter, 2c/l , correspond to small values of the
dimensionless sag, h/l , because this result can be arranged as:

2c

l
= l

4h
� 1. (4.12)

Further, had we approximated the hyperbolic cosine for small values of
l/2c independently of eqs. (4.9) and (4.10), we would have calculated that

c cosh
l

2c
∼= c

(
1+ 1

2!
l2

4c2
+ 1

4!
l4

16c4
+ 1

6!
l6

64c6

)
∼= c , (4.13)

and we would then have found, quite mistakenly, that the sag was identically
zero because we had used an inadequate approximation!

How do these results affect the measurements of long distances with a
tape? The answer is found by calculating the length of tape, t , needed to
measure the horizontal distance, l , as shown in Figure 4.2. An element of
arc length along the tape, ds, is given by

ds =
√
(dx)2 + (dy)2 = dx

√
1+ (y ′(x))2. (4.14)

If we substitute the catenary shape (4.8) into eq. (4.14) and apply a standard
identity, we find that

ds = cosh
x

c
dx . (4.15)
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Equation (4.15) can be straightforwardly integrated, that is,∫ t/2

0
ds =

∫ l/2

0
cosh

x

c
dx ,

to yield (see Section 4.8):

t = 2c sinh
l

2c
. (4.16)

We can expand eq. (4.16) in a Taylor formula, again based on the assump-
tion that l/2c is quite small, but for reasons that will soon become evident,
we will retain the first two terms in the series, that is:

t ∼= 2c

(
l

2c
+ 1

3!
l3

8c3

)
. (4.17)

With the aid of either eq. (4.11) or eq. (4.12), eq. (4.17) can be written as
a quadratic equation in the distance l :

l2 − lt + 8

3
h2 = 0. (4.18)

The quadratic equation (4.18) can be solved for its roots:

2l = t


1±

√
1− 32

3

(
h

t

)2

 . (4.19)

Only the positive root is physically viable here. In the next section, we will
see that the radicand in eq. (4.19) is an ideal candidate to be written as a
binomial expansion, which is a special form of Taylor’s formula. For small
values of h/l and to two term accuracy,

2l ∼= t

(
1+

(
1− 32

6

(
h

t

)2
))
= t

(
2− 32

6

(
h

t

)2
)

. (4.20)

Thus, the actual length, l , that is measured by a tape reading of t is given by

l ∼= t

(
1− 8

3

(
h

t

)2
)

. (4.21)

Obviously, the larger the sag, h, the larger the correction that must be
applied to the tape reading, t , to ensure an accurate measurement of the
distance, l .

Lastly on the expansion (4.10), we point out that it is an approximation
in the spirit of the small angle approximation that appears frequently in
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engineering and scientific models. For example, from eq. (4.6b) we know
that the second-order Taylor formula for the elementary cosine can be
written as

cos x ∼= 1− x2

2! , (4.22)

where x is measured in radians. To approximate the cosine function for
very small angles in the neighborhood of x = 0, we can safely ignore
the second-order term in eq. (4.22) and take cos x ∼= 1. However, as we
will see in the formal development of the pendulum model in Chapter 7,
we often have reason to approximate a slightly different function, (1 −
cos x). If we neglected or ignored the second-order term here, the resulting
approximation would be (1− cos x) ∼= 0, which is a bad approximation
that results from throwing out the dependence on x . Thus, as in so many
other aspects of modeling, it is important to know where we’re going when
truncating Taylor formulas or series.

There is another approach to approximating trigonometric functions
that is worth mentioning. Suppose we wanted to replace sin x by x in a
model or a calculation. We could look at the numerical values of both
functions to see where the substitution would be acceptable. For example,
if we are willing to accept an error of 5%, we could replace sin x by x for
x ≤ π/6. For an error of only 2%, the substitution would be acceptable for
x ≤ π/12. (And while it is important that all angles in these arguments be
either rendered as dimensionless ratios of variables or expressed as angles
measured in radians, it is worth noting that the two examples just given
correspond to small angles of, respectively, 30◦ and 15◦.) Thus, by exploring
the numerical ranges of interest and the associated errors, we can often
justify replacing a trigonometric function by an algebraic approximation.

4.1.3 Binomial Expansions

Another Taylor series that is used often in engineering and science is the
binomial expansion:

(a + x)n = an + nan−1x + n(n − 1)

2! an−2x2

+ n(n − 1)(n − 2)

3! an−3x3 + · · · . (4.23)

Equation (4.23) is valid for all values of n, and it converges for x2 < a2.
Further, when n is a positive integer, the series (4.23) has only a finite
number of terms.

Equation (4.23) is very useful in applications when x is rendered
dimensionless with respect to a. (Recall that the principle of dimensional
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homogeneity requires that x and a have the same physical dimensions.) If
we divide eq. (4.23) by an , we find that(

1+ x

a

)n = 1+n
(x

a

)
+ n(n − 1)

2!
(x

a

)2+ n(n − 1)(n − 2)

3!
(x

a

)3+· · · .

(4.24)
This is an ideal form for extracting expansions valid for values of
(x/a)
 1.

We will illustrate the use of binomial expansions by looking at a familiar
mechanics problem, the estimation of the weight of a mass, m, that is
held at some height, h, above the surface of the earth. The weight, W , is
the gravitational force, Fg , as expressed by Newton’s law of gravitational
attraction, which can be expressed in scalar form as:

Fg = −Gmem

R2
= −W , (4.25)

where G is the universal gravitational constant, me the mass of the earth,
and R is the distance between the centers of m and me . The minus sign
in front of W follows because of the sign convention implied in eq. (4.25)
wherein the gravitational force, Fg , would be positive directed away from
the earth, while we would customarily draw W as a positive quantity (an
arrow) directed toward the earth. Now, if we measure the distance to the
mass, m, from the earth’s surface as z , it follows that

R = Re + z , (4.26)

where Re is the average radius of the earth. If we substitute eq. (4.26) into
eq. (4.25), we find that the weight can now be written as:

W = Gmem

(Re + z)2
= Gmem

R2
e

(
1+ z

Re

)−2

. (4.27)

The collection of terms involving the earth’s properties and the uni-
versal gravitational constant are normally expressed in the gravitational
constant, g :

g ≡ Gme

R2
e

, (4.28)

so that the weight at height z above the earth’s surface is expressed in
the form

W = mg

(
1+ z

Re

)−2

. (4.29)

Equation (4.29) looks strange at first glance. We are accustomed to
W = mg , so the presence of the dependence on z is unfamiliar. On the
other hand, the function of z looks very much like the binomial expansion
(4.24). We can assume that z 
 Re , but what does that mean? If we ignore
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the dependence on z altogether, then we obtain a very familiar result, that
is, W ∼= mg . If we expand eq. (4.29) in the manner of eq. (4.24) and keep
only the first two terms in that expansion, we find that

W ∼= mg

(
1− 2z

Re

)
. (4.30)

This clearly indicates a dependence of weight on height that we do not
ordinarily experience. On the other hand, it at least raises the questions,
“When does the dependence on height become a significant factor on
weight?” and “When does a mass become truly weightless?”. The first ques-
tion can be answered by some straightforward calculations (see Problems
4.9 and 4.10), while the second deserves a bit of discussion. For a body to be
weightless, the truncated binomial expansion (4.30) suggests that it would
have to be weighed at an altitude z = Re/2. This altitude is sufficiently
large that it violates the assumption made in this binomial expansion, that
is, z 
 Re . If we look at the exact result (4.29), we see that the body only
becomes truly weightless when z →∞, which is a very different result!

In fact, when the altitude or distance becomes so large that z � Re , we
would rewrite eq. (4.29) in the form

W = mg

(
Re

z

)2 (
1+ Re

z

)−2

. (4.31)

Equation (4.31) can be expanded and truncated as:

W ∼= mg

(
Re

z

)2 (
1− 2Re

z

)
∼= mg

(
Re

z

)2

. (4.32)

The expansion (4.32) clearly indicates that, within a strictly Newtonian
world, a body becomes truly weightless only at heights or distances from
the earth’s surface that are infinitely larger than the radius of the earth.
No doubt there are distances for which the weight is significantly less and
for which there are practical applications. But, for our purposes, the main
point is that the same function can be expanded into different binomial
expansions, depending on what information we are seeking. Also, in either
instance, we are defining large and small as always, with respect to another
dimension or distance. That is, we never say, “z is small” or “z is large.”
Instead we say that z 
 Re or that z � Re , or, in words, “z is small
compared to Re” or “z is large compared to Re .”

Problem 4.1. Show that eq. (4.7) can be obtained by substituting ix
for x in eq. (4.6).

Problem 4.2. Determine the first four terms of the Taylor expan-
sions of tan x and cot x about x = 0.
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Problem 4.3. Determine the first four terms of the Taylor expan-
sions of tanh x and coth x about x = 0.

Problem 4.4. Use dimensional analysis to determine how the caten-
ary parameter, c , is related to the constant horizontal
component of the cable tension, T0, and its weight
per unit length (or unit weight), γ .

Problem 4.5. How much tape sag is permissible to measure a 50 m
distance accurately to within 5% ? Within 2% ?

Problem 4.6. What does a body that weighs 10 N at the earth’s sur-
face weigh at a height of 10 m? At the peak of Mt.
Everest? (Hint : You might have to look up some facts
about our planet!)

Problem 4.7. According to eq. (4.30), at what altitude would the
weight of 10 N at the earth’s surface drop to 9 N?
To 5 N?

Problem 4.8. Compare the results obtained in Problem 4.7 with
more exact results obtained by using eq. (4.29).

Problem 4.9. What does a body that weighs 10 N at the earth’s sur-
face weigh on the surface of the moon? On the surface
of the planet Pluto? On the surface of the planet Mars?
(Hint : You might have to look up some facts about
our planet’s environment!)

Problem 4.10. If the gravitational potential corresponding to
Newton’s law of gravitation (eq. (4.25)) is given by

Vg = −Gmem

R
,

find the exact expression that defines this potential as
a function of altitude, z , from the earth’s surface.

Problem 4.11. Write a binomial expansion of the results of
Problem 4.10 to determine the potential energy above
the earth’s surface to the first order in z .

Problem 4.12. Fill in the missing elements of the following table to
two-term order.

Function Approximation

sin x
cos x
1− sin x
1− cos x
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Problem 4.13. Fill in the missing elements of the following table to
two-term order.

Function Approximation

sinh x
cosh x
1− sinh x
1− cosh x

4.2 Algebraic Approximations

As we have seen in Section 4.1, we often drop terms that are of higher order
in Taylor series expansions because they will not affect the final answer
very much, that is, neglecting those terms does not introduce unaccept-
able error. We will now look very briefly at some elementary equations of
thermal expansion so we can illustrate how we might more generally drop
analytical terms to simplify calculations.

When we heat a solid body, the average distance between that solid’s
atoms increases. Consequently, the linear dimensions of that body—that
is, its length, width, or its height—also increase. Thus, assuming that any
of the solid’s three dimensions is originally of length, L0, upon heating that
produces a temperature difference, �T , that dimension increases to the
length L0 +�L, where the change in length,�L, is given by:

�L = αL0�T . (4.33)

Equation (4.33) tells us that the change in length of a linear dimension is
directly proportional to the temperature increase, and that the constant of
proportionality is the coefficient of thermal expansion, α. We can rewrite
eq. (4.33) as an expression for the heated length of the dimension, L:

L = L0(1+ α�T ). (4.34)

Suppose the solid we are considering is a sheet of material originally of
length L0 and width W0. After heating, these two dimensions would each
expand according to eq. (4.34) and the plate’s original area A0= L0W0

would expand to the area A:

A = L0(1+ α�T )W0(1+ α�T ) = A0(1+ α�T )2

= A0
[
1+ 2α�T + (α�T )2

]
. (4.35)
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Table 4.1 Coefficients of thermal
expansion, α, for several
common materials.

Material α[(◦C)−1, per ◦C]

Aluminum 24× 10−6

Brass 20× 10−6

Copper 14× 10−6

Glass 4− 9× 10−6

Steel 12× 10−6

Zinc 26× 10−6

The question then arises: Do we need to keep (and use) all three terms in
eq. (4.35) to calculate the area change due to heating or cooling?

The answer to the foregoing question depends in part on the coefficient
of thermal expansion, α, which is typically a very small number, as can be
seen in Table 4.1. Thus, it is tempting to say that because α is small we can
neglect the quadratic term in eq. (4.35). And while this may, in fact, be
practically alright, in principle it would be wrong, for two reasons. First, if
the temperature difference�T is large enough, the productα�T might not
be negligible. Second, we have cautioned that comparisons should always
be made to some reference, so we normally say that it is some dimensional
ratio that is small, as we did for l/2c for the catenary. This means that we
are making a straightforward numerical estimate. For the present case, the
comparable—and proper—statement is that the product α�T is small, so
that we can approximate eq. (4.35) as:

A ∼= A0(1+ 2α�T ). (4.36)

From this truncation we can define a surface coefficient of expansion,

γ ∼= 2α, (4.37)

where γ is thus derived from our approximating (1 + α�T )2 by
(1+ 2α�T ).

Problem 4.14. Develop a volume coefficient of expansion, β, for a
solid of length L0, width W0, and height H0, that
parallels the surface coefficient, γ , of eq. (4.37).

Problem 4.15. To what temperature difference would an aluminum
solid have to be subjected for the surface coefficient of
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expansion to produce errors of 1% in the area change
compared to the exact area change?

Problem 4.16. To what temperature difference would an aluminum
solid have to be subjected for the volume coefficient of
expansion to produce errors of 1% in the area change
compared to the exact area change?

4.3 Numerical Approximations: Significant

Figures

We now shift our attention to approximations that we make both in meas-
urements and in calculations, that is, we turn to the subject of significant
figures. All measurements and virtually all calculations involve approxima-
tions or truncations and, therefore, they involve error. When measuring
things we try to minimize these errors by being very careful about what
we read and record. Although analog displays have been almost completely
displaced by digital displays, it is worth revisiting the “good old days” to
emphasize an important point about what we regard as significant.

In Figure 4.3 we show an old-fashioned analog display with a graduated
scale that goes from 0 to 50 V. The needle points to a number between 12
and 14, and since there are no lines or gradations between 12 and 14, we
have to estimate where the needle points within that 2 V interval. Since the
needle appears to be about 20% of the distance between these numbers,
we estimate that the added voltage measured is 0.20× (14− 12) ∼= 0.40 V,
so that the correct reading is 12.4 V. We would characterize this reading as
“good to three significant figures” because two digits are read directly from
the graduated scale, and the third digit is estimated.

It is important to recognize that the number of significant figures is
not determined by the placement of the decimal point. Had the voltage
scale been from 0 to 5 V on the meter in Figure 4.3, we would have
recorded a voltage of 1.24 V good to the same three significant figures
because we would have directly read 1.2 V plus 20% of the distance between
1.2 and 1.4 V.

We show some examples of how numbers are written in Table 4.2,
together with assessments of the number of significant figures of each.
The confusion arises because of the presence of terminal zeros. In general,
we don’t know whether those zeroes are intended to signify something, or
whether they are placeholders to fill out some arbitrary number of digits.

It is equally important to recognize that a very similar situation is con-
fronted when doing calculations. Much of the data that engineers and
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Figure 4.3 An old fashioned analog meter,
the standard face before the advent of the
digital display. We still see them in many
automobile instrument panels, and there are
some people who still wear analog
watches—but these are uses in which
accuracy beyond the gradations is seldom
critical. When measuring in the lab and
interpreting the results, however, it becomes
quite important to know just how many
significant figures should be recorded.

Table 4.2 Examples of the ways numbers are typically written and
assessments of the number of significant figures that can be assumed
or inferred. Confusion arises because of the unstated meaning of the
terminal zeroes.

Measurement Assessment Significant Figures

9415 Clear Four
9400 Possibly Confusing Two (94× 102) or three

(940× 101) or four (9400)
52.0 Clear Three
63.2 Clear Three

6.32 Clear Three
0.00632 Clear Three
6.32× 105 Clear Three
0.041 Clear Two
0.0410 Possibly Confusing Two (0.41) or three (0.0410)
0.00008 Clear One
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scientists use is given only to a limited number of significant figures,
sometimes as few as one. For example, there is a much-used material
parameter called the modulus of elasticity. Denoted by E , this modulus
is 30 × 106 lbf/in2 in British units, implying that at most only two fig-
ures (i.e., 30) are significant. It is possible to infer that there is only one
significant figure here, but in that case we should write E = 3×107 lbf/in2.

Much of the confusion could be mitigated or even eliminated if all tech-
nical calculations and experimental data were written in scientific notation,
wherein numbers are written as products of another number and a power
of 10, and where the “new” number is normally between 1 and 10. Thus,
numbers both large and small can be written in one of two equivalent, yet
unambiguous forms:

256,000,000 = 2.56× 108 = 0.256× 109,

0.000075 = 7.5× 10−5 = 0.75× 10−4.

In scientific notation, the number of significant figures is equal to the num-
ber of digits counted starting from the first nonzero digit on the left to
either (a) the last nonzero digit on the right if there is no decimal point,
or (b) the last digit (zero or nonzero) on the right when there is a decimal
point. This notation or convention assumes that terminal zeroes without
decimal points to the right signify only the magnitude or power of ten.

We should always remember that we cannot generate more significant
digits or numbers than the smallest number of significant digits in any of our
starting data. In other words, the results of any calculation or measurement
are only as accurate as the least accurate starting value. We illustrate this
with three examples of multiplication and division showing that the num-
ber of significant figures in the result is equal to the smallest number of
significant figures in any of the calculation’s components:

21.982× 3.72 = 81.77304→ 81.8,

101.572× 0.0031 = 0.3147337→ 0.31,

789.30÷ 0.05 = 15,786→ 2× 104.

It is far too easy to become captivated by all of the digits that pop up in
the displays of our electronic calculators or in computer printouts, but it is
really important to remember that any calculation is only as accurate as the
least accurate value we started with.

In addition and subtraction, the same principle applies. Thus, here we
compare the positions of the last significant figure of each number relative
to its decimal point because the one that is furthest to the left defines the
position of the last allowable significant figure of the sum or difference
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being calculated. For example,

53.24
+3.333
+2.4
58.9

489.3213
−5.487

483.834

Another important issue when dealing with numbers is that of round off,
that is, when should we round off numbers, or should we round them off
at all? We generally round off numbers at the end of a calculation because
dropping insignificant numbers earlier increases uncertainty. The standard
convention for rounding off uses the number 5 as its benchmark: Numbers
less than 5 following the last retained significant digits are dropped, while
numbers greater than 5 cause us to add 1 to the last significant digit retained.
If the digit to be rounded or dropped is itself a five, we make the preceding
digit even (i.e., even digits are left so, while odd digits are “rounded up” to
the next even digit). Thus, for example,

5.017→ 5.02,

5.015→ 5.02,

5.014→ 5.01,

5.025→ 5.02.

These results also indicate the degree of uncertainty in the true value of a
number that has been rounded off. From the data just given and the rules
behind it, we see that the number 5.02 could mean a number that is actually
between 5.015 and 5.025.

Finally, it is worth noting that there are numbers that have unlimited
significant figures. Some are whole numbers representing an exact count,
and thus contain an unlimited number of significant figures. They are
usually written without any digits after the decimal point, or they may not
have a decimal point at all. To indicate such a number, we might write “35.”
or, as in the formula for the circumference of a circle, C = 2πr , wherein
the number “2” represents an exact count and is written without a decimal
point. The number π is itself a number that has an infinite number of
significant figures, as does e, the base of Naperian logarithms. However,
we write “35.0” or “2.0” when we want to indicate that we are measuring
something to the first decimal place.

Whether reporting measurement data or doing calculations, we should
always keep in mind the significance of our initial data so that we can assess
the validity of our results.
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Problem 4.17. Round off each of the following numbers to two (2)
significant figures:
(a) 5.237 (b) 0.82549 (c) 81.356 (d) π
(e) 6.2305 (f ) 0.0428 (g) 10.45 (h) 4.035

Problem 4.18. Round off each of the following numbers to three (3)
significant figures:
(a) 5.237 (b) 0.82549 (c) 81.356 (d) π
(e) 6.2305 (f ) 0.0428 (g) 10.45 (h) 4.035

Problem 4.19. Complete the following multiplications and express
the results to the correct number of significant figures:

(a) (6.28× 103)× 2.712 (b) 43.32× 0.3
(c) 928× 4.23

Problem 4.20. Do 99.9 and 100.1 have the same number of signific-
ant figures? Explain your answer.

Problem 4.21. Estimate the ranges within which each of the follow-
ing numbers lie:
(a) 7.7 (b) 7.70 (c) 1200 (d) 1.200× 10−3

4.4 Validating the Model–I: How Do We

Know the Model Is OK?

There are two issues that arise when we speak of the validity or correct-
ness of a model. The more obvious one is whether or not the model can
predict the measured or observed behavior of whatever object or device
is being modeled. Thus, if we are modeling the period of the oscillations
of a pendulum, as we started to do in Chapter 2, we could reasonably
expect that changes in the pendulum length would produce oscillations at
correspondingly different periods or frequencies. As we see from eq. (2.2),
if we double the length l of a pendulum, we would expect its period to
increase by about 41% . Similarly, were we doing pendulum experiments
on the moon, we would expect to see an increase in the period of about
145%. These predictions of the pendulum’s behavior are confirmed by the
available experimental data, and so the model is validated. Alternatively,
given empirical data without an underlying theory, we could construct a
model to explain the empirical data—although it is also quite likely that
the (new) model or theory would be further tested by making predictions
about experiments as yet undone or measurements as yet untaken.

(We note parenthetically that the measurement [and containment] of
experimental error is a complex subject that is closely linked to the field or
discipline in which the experiment is intellectually housed. However, there
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are some fundamental ideas about error and about statistics that apply
generally, and we will introduce them in Sections 4.5–4.8.)

The less obvious question about model validity is concerned with the
inherent consistency and validity of the model. If we hark back to the mod-
eling meta-principles outlined in Section 1.2, we see issues and questions
that pertain directly to model validation. For example, have we identified
the right governing principles? Have we used the right equations? And,
is the model consistent with its principles and assumptions? The first two
of these questions are about ensuring that we apply the proper principles
and formulations when we try to find what we are seeking. Again, when
modeling the pendulum, our basic principles are Newton’s law of motion,
and our assumptions will depend on whether we are anticipating small
angles of oscillation or large. As we will see in Chapter 7, a linear equa-
tion of motion suffices in the former case, while a complete nonlinear
formulation is needed for the latter (large oscillations).

4.4.1 Checking Dimensions and Units

There are several checks or tests we can bring into play while we build
models and approximate the mathematics. The first is the application of the
principle of dimensional homogeneity (cf. Section 2.2), which requires that
each term in an equation has the same net dimensions. For example, the
stiffness or spring constant of a cantilever beam, k, can be written in terms of
the beam’s length, L, second moment of its cross-sectional area (commonly
but erroneously called the “moment of inertia”), I , and modulus, E , as:

k = 3EI

L3
. (4.38)

The physical dimensions of the parameters in eq. (4.38) are F/L for the
spring constant, L for the beam length, L4 for I , and F/L2 for the modulus.
Thus, we can apply the principle of dimensional homogeneity to ensure
that eq. (4.38) has the correct dimensions and is dimensionally consistent:

[k] = (F/L) =
[

3EI

L3

]
= 1× (F/L2)× L4

L3
= (F/L). (4.39)

If the dimensions of all the terms in an equation or model are not known,
as is sometimes the case, then the principle of dimensional homogeneity
can be applied to properly determine the dimensions of the unknown
quantity. In the case of the cantilever beam, if we didn’t know the dimen-
sions of I , we would solve eq. (4.38) for I and then apply the principle of
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dimensional homogeneity again:

[I ] =
[

kL3

3E

]
= (F/L)L3

F/L2 = L4. (4.40)

We can also take the principle of dimensional homogeneity one step
further and use it as a guiding principle for checking the specific units used
in a numerical calculation. If we measured the properties of a particular
cantilever beam, say a standard (12 in) steel ruler to be used in a classroom
project, we would find

E = 2.05× 102 GPa,

I = 6.78× 10−5 cm4, (4.41)

L = 2.81× 10−1 m.

If we substitute these values into eq. (4.38), we see immediately that we
have a mismatch of units:

k = 3(2.05× 102 GPa)(6.78× 10−5 cm4)

(2.81× 10−1 m)3
. (4.42)

The units’ mismatch is easily rectified if we use proper unit conversions,
that is,

k =
3

[
2.05× 102 × 109 Pa

(
N/m2

Pa

)][
6.78× 10−5 cm4

(
m

102cm

)4
]

(2.81× 10−1 m)3
,

(4.43)
or

k = 3
[
2.05× 1011 N/m2

] [
6.78× 10−13 m4

]
(2.81× 10−1 m)3

= 1.88× 101 N/m.

(4.44)

Two final notes here. First, it is generally a better strategy to write all of the
data to be used in the same system of units at the beginning of a calculation
as this reduces the chance for error. Thus, here we could have converted the
units immediately after the measurements were taken. Second, note that
we have used scientific notation in both writing the measurements and
performing the arithmetic. Thus, there can be no doubt about the number
of significant figures in the answer (4.44).
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4.4.2 Checking Qualitative and Limit Behavior

Model validation is integral to the modeling process. Models are validated
by having their predictions confirmed experimentally, or statistically, or
by some other quantitative means. In both our physical and mathematical
reasoning we must make explicit our assumptions and their limits, and we
must ensure that our mathematics does indeed reflect the physics we are
modeling. In addition to looking at numbers, the mathematical behavior
should “feel right” in qualitative terms. We did just such qualitative analysis
at the beginning of this section when we described the expected behavior
of the pendulum as a function of its length, l . Similarly, as also indicated
by eq. (2.2), it feels intuitively right that pendulums will swing faster and
have shorter periods in stronger gravitational fields. Thus, when we are
constructing mathematical models, and especially when we are making
mathematical approximations, we need to take care that we are admitting
mathematical behaviors that are qualitatively appropriate.

Still another example of such reasoning is available from our just-
completed dimensional check of the stiffness of a beam. Here we rewrite
eq. (4.38) in a form that explicitly identifies the physical meaning of each
parameter that appears in the equation:

(k = beam stiffness) ∝ (E = material stiffness)(I = cross− sectional 2nd moment)

(L = beam length)3
.

(4.45)

Equation (4.45) can be viewed through the eyes of a structural engin-
eer talking about the meaning of its mathematical version, eq. (4.38).
It supports the engineer’s intuitions as follows. It stands to reason that
the beam’s stiffness is proportional to the material stiffness, that is, it
increases or decreases as does E . The beam’s stiffness is also proportional
to the second moment of the beam’s cross-section, I . It also is intuitively
pleasing that the stiffness is inversely dependent on the length, so that
the beam’s stiffness increases as L becomes very small and decreases as L
becomes very large. Finally, if we look at the limiting cases of each para-
meter decreasing to zero or becoming indefinitely large, we would see that
each of the trends exhibited by eq. (4.45) is consistent with the reasoning
just outlined, as well as with our practical experience of beams in the real
world.

Reasoning about the way that variables appear in equations is of second
nature in mathematical modeling, and we will have many opportunities to
invoke such reasoning in the discussions of applications that follow. One
simple example is afforded by the fundamental frequency of free vibration
of a cantilever beam, ω, of mass density, ρ, and cross-sectional area, A,
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with a mass, m, at its tip. That frequency is, approximately,

ω ∼=
√

3EI/L3

ρAL(1+m/ρAL)
. (4.46)

Does eq. (4.46) exhibit the right qualitative and limit behavior? It does. It
reduces to a well-known result for a cantilever beam when the tip mass, m,
vanishes, and eq. (4.46) correctly describes the frequency of a mass-less
beam with a tip at its end when that tip mass gets so large that it dominates
the beam mass.

It may seem that much of what has been said in this section is common
sense. It is, as long as it is commonly applied! To invert a popular saying,
“If we expect our model to be a duck, then it should look like a duck, walk
like a duck, and quack like a duck.”

Problem 4.22. By what percentage would the period of a pendulum
change if its length was halved? If it was reduced by
one-third? If the length was reduced to one-third of
its original length?

Problem 4.23. Explain why the pendulum period increases by 145%
on the moon.

Problem 4.24. How would the period of a pendulum change, com-
pared to its value on earth, if the pendulum was on
Mars? On Pluto?

Problem 4.25. How would the period of a pendulum change as
a function of its height, h, above the surface of
the earth? (Hint : The variation of the gravitational
acceleration g can be represented as a function of h
from Newton’s law of gravitational attraction.)

4.5 Validating the Model–II: How Large Are

the Errors?

Building mathematical models means using numbers derived from experi-
mental or empirical data, or from analytical or computer-based calcula-
tions. Errors are thus always present, whether due to data reading or data
manipulation. Since error is always present, we turn now to a discussion of
error and statistics—the way we deal with error.
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4.5.1 Error

Error is defined as the difference between a measured (or calculated) value
and its true or exact value. Error is always present. How much error
is present depends on how skillfully the data is read or manipulated.
Therefore, error analysis should be a part of every modeling process.

There are two types of error. Systematic error occurs whenever an
observed or calculated value deviates from the true value in a consistent
way. Systematic error occurs in experiments when instruments are improp-
erly calibrated because their output varies during use. Thus, instruments
must be properly calibrated before an experiment is run and before data
is measured and recorded. Improper calibration affects both analog and
digital data recorders, although analog displays are also subject to other
kinds of systematic error, such as a bent needle on a meter face such as that
shown in Figure 4.3. Systematic error also affects calculations, although
this is more controllable as it is likely due to using incorrect values of
“known” variables or to improper control of the number of significant
figures retained during the calculation process.

Random errors are, not surprisingly, due to chance. They arise largely in
experimental work because unpredictable things happen and because not
everything in an experimental set-up is known with complete certainty:
Connections can be loose or break altogether, dirt may get into a sensit-
ive moving part, or the amount of friction present in a moving part may
not be controllable. The resulting random error varies in both magnitude
and sign. The laws of statistics help us to describe and account for the
distribution of such random errors. Indeed, it has been said that random-
ness is a mathematical model for variability that cannot be explained in a
deterministic way.

The absolute error is defined as the difference between the true or expec-
ted value, Xe , and the measured value, Xm , that is, as Xe − Xm . The true
value, Xe , may be known or it may have an expected value based on a cal-
culation or some other data source. The relative error is the absolute error
divided by the measured value, that is, (Xe − Xm)/Xm .

The statistic found most useful is the percentage error, which is the
percentage-based relative error:

% error = (100)
(Xe − Xm)

Xm
. (4.47)

For example, suppose that an ammeter has a systematic error of +2 A
(amperes) because of either a bent needle (analog) or improper calibration
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(digital or analog). When the display reads 100 A the percentage error is

% error = (100)
(102− 100)

100
= 2%,

while if the same ammeter reads 20 A the percentage error is

% error = (100)
(22− 20)

20
= 10%.

The percentage error is much larger in this instance, providing another
example of how scale affects results!

Similarly, errors are introduced when series expansions are truncated
(cf. Section 4.1.2). For example, for θ = π/12(15◦), the percentage error
incurred by replacing sin x with x is:

% error = (100)
(sinπ/12− π/12)

π/12
= −1.14%.

Note that errors and mistakes are not the same thing. Errors are defined
as the difference between a true or expected value and a measured (or
calculated) value. Further, as we discussed above, some error is unavoid-
able. On the other hand, mistakes are blunders made by the person doing
the experiment (or analysis or calculation). Blunders are made by read-
ing or recording erroneous data, using instruments inappropriately (e.g.,
improperly calibrated instruments, inadequately sensitive meters), using
the wrong formulas, using inconsistent or wrong units, and so on. These
kinds of mistakes can—and obviously should—be avoided.

4.5.2 Accuracy and Precision

Since we have to contend with systematic and random errors, as well as
with the hopefully rare mistake, it is important that we be able to estimate
the effects of these errors and mistakes.

Accuracy is defined as a representation of how close a measured or cal-
culated value is to an established or true value. In experimental work,
accuracy is usually expressed as a percentage of the maximum scale value.
Thus, voltages read on a 100 V scale with an accuracy of 5% are accurate
to within±5 V.

Precision is defined in terms of the ability to reproduce a set of data with
a specified accuracy. The more precise a set of readings or calculations,
the closer the individual readings or calculations are to each other. Thus,
suppose we measured an input voltage that is known to be 50 V with the
voltmeter having an accuracy of 5%. Five individual readings are taken
and recorded as, respectively, 54, 53, 55, 53, and 55 V. These clearly fall
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Figure 4.4 Some (made-up) experimental data
that illustrates: accuracy, the closeness of the
measured value to an established value, and
precision, the ability to reproduce a set of
measurements within a specified accuracy. These
data reflect measurements that are rather precise,
yet relatively inaccurate.

within the meter’s accuracy bounds of ±5 V. Since the average or mean
reading of the five readings is 54 V, and since the maximum deviation from
this mean of any one of the measurements is 1 V, the precision of the five
measurements is determined to be ±1% (remember that the meter has a
100 V scale). As we illustrate in Figure 4.4, our little virtual experiment has
produced precise but relatively inaccurate readings.

It is worth noting that the accuracy of a measuring device is controlled
by its sensitivity because it is the sensitivity that identifies the minimum
amount of change that the device can detect and indicate. Suppose we
wanted to measure very small voltages, say less than 1 millivolt (mV). Our
trusty voltmeter allows us to choose one of three measurement ranges:
0–50 V, 0–2.5 V, or 0–5 mV. With either of the first two ranges we will see
no reading at all. However, with the third scale, 0–5 mV, there will be a
noticeable measurement that can be recorded. Thus, moving from either
of the first two scales to the third produces a more sensitive voltmeter, and
so our readings will be more accurate. Hence, we see how scale influences
sensitivity and, therefore, accuracy.

Problem 4.26. Draw two circular archery targets and use them to
depict the “hit” patterns of (a) an archer who is accur-
ate, but not precise; and (b) an archer who is precise,
but not accurate.
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4.6 Fitting Curves to Data

Graphical presentations of calculations and experimental results are the
most convenient—and often the most informative—presentation of data
available. We can spot trends, identify discontinuities, and generally get an
intuitive “feel” for what the data “says” when we look at plots or curves.
Given this very human proclivity, how do we draw curves for a given collec-
tion of points? That is, since plotted data points rarely align themselves per-
fectly on a known or identifiable curve, how do we fit a curve through them?
Still further, how do we generate the “best fit” of a curve through the data?

The short answer to these questions is in a familiar spirit: It depends
on what you want. If the accuracy of the curve is not too important, and
if we’re only looking for a rough, qualitative idea of how one variable
depends on another, then we can draw the curve “by eye.” That is, we draw
a smooth curve that seems to go through the plotted data points with an
eye to perhaps “distributing” the data in roughly equal amounts above and
below the curve drawn, as we have done in Figure 4.5.

Often, greater accuracy is desirable, as when we want to interpolate to
obtain values between measured values, or even more so when we want
to extrapolate to estimate values beyond the range of the measured values.
Extrapolation can easily magnify errors in the estimated values, so that
greater accuracy is quite important. Further, extrapolation is most accurate
when the curve drawn is a straight line.

The method of least squares is the most commonly used approach to
obtaining a best straight line through a series of points. It assumes that
all of the scatter, the variation of the data from the drawn curve, derives

x

y
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8

6

4

2

108642

Figure 4.5 A best-fit curve that is drawn by hand
using visual estimation (i.e., “drawn by eye”).
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from error in measuring one of the variables. That variable is chosen as the
ordinate for the axes on which the straight line will be plotted. Then the
best-fit straight line is the one that has the minimum errors in the ordinate.

We are thus looking for an equation of the usual form

y = mx + b, (4.48)

where b is the y-intercept with [b] = [y], and m is the slope with [m] =
[y/x]. We first define the error in each reading as the difference in the
ordinate between the measured value, yi , and the straight line’s ordinate,
(mxi + b), for all values of the abscissa, xi :

Eyi = yi − (mxi + b). (4.49)

We define a measure S of the total error as the sum of the square of the
errors at every point on the abscissa, xi , where values of the ordinate, yi ,
are given, that is, as

S =
n∑

i=1

(Eyi )
2 =

n∑
i=1

[yi − (mxi + b)]2. (4.50)

The minimum of the measure of the total error is then found by differen-
tiating S with respect to m and b and so determining the values of m and
b needed to plot eq. (4.48):

∂S

∂m
= 2

n∑
i=1

[(yi −mxi − b)(−xi)]

= −2
n∑

i=1

xiyi + 2m
n∑

i=1

x2
i + 2b

n∑
i=1

xi = 0, (4.51)

and

∂S

∂b
= 2

n∑
i=1

[(yi −mxi − b)(−1)]

= −2
n∑

i=1

yi + 2m
n∑

i=1

xi + 2nb = 0. (4.52)

Equations (4.51) and (4.52) are a pair of linear algebraic equation that can
be solved (see Problem 4.28) to yield the following values of m and b:

m =
n

n∑
i=1

xiyi −
(

n∑
i=1

xi

)(
n∑

i=1

yi

)

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2 , (4.53)
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and

b =

(
n∑

i=1

x2
i

)(
n∑

i=1

yi

)
−
(

n∑
i=1

xiyi

)(
n∑

i=1

xi

)

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2 . (4.54)

Note that eqs. (4.53) and (4.54) have different physical dimensions
that depend on the particular physical problem being modeled (see
Problem 4.28).

Consider now the data displayed in the first two columns of Table 4.3,
which are the result of another, virtual experiment. We will now determine
the best straight line that can be drawn through the data. First, we calculate
the products shown in the third and fourth columns of Table 4.3. Then we
sum all four columns to find the data in the last row of the table, which are
then substituted into eqs. (4.53) and (4.54) to find m = 0.85 and b = 1.26.
The best straight-line fit through the data of Table 4.3 is, then,

y = 0.85x + 1.26. (4.55)

Equation (4.55) is plotted in Figure 4.6, together with the data from
Table 4.3, and we see that the straight line seems to fit the data pretty
well. Can we characterize the quality of that fit, that is, just how well does
eq. (4.55) fit the given data? The quality of fit is expressed in terms of R2,
called “R squared,” which describes how well a curve regresses toward the

Table 4.3 A table of data from a virtual experiment used to
calculate the best-fit straight line approximation shown in
Figure 4.6.

i xi yi xiyi x2
i

1 0 1.0 0 0
2 1.0 2.1 2.1 1.0
3 2.0 2.8 5.6 4.0
4 3.0 3.6 10.8 9.0
5 4.0 5.0 20.0 16.0
6 5.0 5.5 27.5 25.0
7 6.0 8.0 48.0 36.0
8 7.0 6.4 44.8 49.0
9 8.0 7.4 59.2 64.0

9∑
i=1

xi = 36.0
9∑

i=1

yi = 41.8
9∑

i=1

xiyi = 218.0
9∑

i=1

x2
i = 204.0
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data from which it was derived. R2 is a number between 0, which indicates
no fit at all, and 1, which describes a perfect fit. (There are many math-
ematical and statistical computational packages that include the formulas
needed to calculate R2.)

y

x
1 2 3 4 5 6 7 8

8

6

4

2

Figure 4.6 A best-fit straight line for the data in
Table 4.3 produced by least squares. It is
analytically represented as y = 0.85x + 1.26.

Problem 4.27. Verify the final forms of eqs. (4.51) and (4.52).
Problem 4.28. Verify the equations for m and b given in eqs. (4.53)

and (4.54).
Problem 4.29. Discuss and explain the dimensional differences

between eqs. (4.53) and (4.54).
Problem 4.30. Verify the terms in the third and fourth columns of

Table 4.3, as well as the sums of all four columns.
Problem 4.31. Verify the calculations of m and b found from the

results in Table 4.3.

4.7 Elementary Statistics

What do we do after we have recorded a bunch of measurements or cal-
culated several values of something? A more meaningful phrasing of this
question would be: How do we organize and present our results so that we
are better able to understand and communicate the data? Our answer to this
question comes in two parts. In the first, we define the meaning of average,
while in the second, we discuss ways of drawing curves through data.
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4.7.1 Mean, Median, and Standard Deviation

We often want to average our results when making several measurements or
calculating several values of something. There are several ways of defining
the meaning of average, but we will limit our discussion to two: the mean
and the median.

In Figure 4.4 we showed data from a virtual experiment whose individual
measurement readings (and, occasionally, model calculations) vary from
one another. We want to deal with a single value, a best estimate of the
magnitude of the entire set of readings. We will take the average or mean of
a sample of n measurements as such a best estimate, where the arithmetic
mean or sample mean x̄ is defined as the sum of all of the individual readings
xi divided by the number of readings, n:

x̄ = x1 + x2 + x3 + · · · + xn

n
= 1

n

n∑
i=1

xi . (4.56)

Note that the calculation of the mean of a set of values given by eq. (4.56)
strongly resembles the way that the centroids of areas are calculated, and
for good reason!

There is one other measurement that is often cited as a meaningful indi-
cator of an “average” of a number of readings and that is the median,
which is defined as the measured value that is at the middle of the dis-
tribution. The median removes any bias that might be introduced by a
few values that differ significantly from the mean. For example, in the
virtual voltmeter experiment of Section 4.5.2, the median is 54, which
is the same as the mean. On the other hand, had the five readings been
54, 53, 65, 53, and 55 V, then the mean rises to 56 V, while the median
stays at 54.

In Table 4.4 we show a collection or sample of 100 noise level measure-
ments of the noise due to traffic as measured in a schoolyard playground.
In addition to traffic noise, the microphones also picked up the occa-
sional noise due to children in the playground who, excited by the
experiment, made some loud sounds as they passed by. We see that
for these measurements the mean is higher than the median, which is
likely due to the relatively large number of readings in the 90–91 dB
interval.

In addition to identifying the mean as our best estimate, we would like
to estimate the spread or dispersion of the set of measurements about the
mean. Clearly, if this estimate of the spread is small in some sense, then
we can attach a high precision to the mean x̄ . The accepted statistical
measure of this estimate of dispersion is the sample variance, s2, defined in
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Table 4.4 A sample of 100 noise level
measurements (in decibels (dB)) made in
a schoolyard playground.

Decibels Number of Observations

90–91 x x x x x x x x
88–89 x x x x x
86–87 x x x
84–85 x x
82–83 x x x x
80–81 x x
78–79 x x x
76–77
74–75 x x x x x x
72–73 x x x x

Mean 70–71 x x x x x x
68–69 x x x

Median 66–67 x x x x x x x
64–65 x x x x x
62–63 x x x x x x x x x
60–61 x x x x x x x x x x x x x x
58–59 x x x x x x
56–57 x x x x x x x x
54–55 x x x x
52–53 x
50–51

terms of the deviation of each reading from the mean, (xi − x̄), as:

s2 ≡ (x1 − x̄)2 + (x2 − x̄)2 + (x3 − x̄)2 + · · · + (xn − x̄)2

n − 1

= 1

(n − 1)

n∑
i=1

(xi − x̄)2.

(4.57)

The standard deviation, s, is defined as the square root of the sample
variance:

s ≡
[

1

(n − 1)

n∑
i=1

(xi − x̄)2
]1/2

. (4.58)

We often see the symbol σ used for the standard deviation, but that usage
is correct only when the calculation is performed for the total population
or the complete set of all the objects being measured. When we are taking
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readings or doing calculations, we are taking a sample of all of the values
that could, in principle, be obtained. In that case, s is the correct notation
for the standard deviation of that sample. (Similarly, when the calculation
of a mean is done for an entire population, it is denoted by µ, rather
than x̄ .)

Note that in calculating the standard deviation, the deviation of each
value or reading from the mean is squared before being added to the com-
parable deviations of the rest of the readings. This is done to eliminate the
sign differences that occur because the deviation (xi − x̄) can be positive
or negative, depending on whether the reading xi is greater or smaller than
the mean x̄ . Thus, only positive numbers are added when the standard
deviation is calculated. Also note that eq. (4.58) clearly suggests that the
best way to increase the precision of the answer is to increase the number of
readings or calculated values. Indeed, an infinite number of measurements
would, in theory, produce perfect precision because the standard deviation
vanishes in the limit n→∞. We also point out that just as the calculation
of the mean parallels the calculation of the location of the centroid of an
area about one axis, the calculation of the variance (eq. (4.57)) parallels
the calculation of the second moment of area about that same axis.

Notwithstanding the physical analogy just given, the interpretation of
the standard deviation, s or σ , is difficult because its units are squares of
the units of the variable, x . However, we can give meaning to the standard
deviation when we relate it to the mean of the data set, x̄ orµ. This meaning
is embedded in the Empirical Rule that tells us, approximately, where the
data points lie with respect to the mean. The following heuristics describe
the data set that underlies a distribution that is, approximately, a mound
shape:

• almost all of the data points lie within 3 standards of deviation of the
mean of the data set, that is, within the window (x̄ ± 3s) for samples
and within the window (µ± 3σ) for complete populations;
• some 95% of the measurements lie within 2 standards of deviation of

the mean of the data set, that is, within the window (x̄±2s) for samples
and within the window (µ± 2σ) for complete populations; and
• some 68% of the measurements lie within 1 standard of deviation of

the mean of the data set, that is, within the window (x̄± s) for samples
and within the window (µ± σ) for complete populations.

4.7.2 Histograms

Another way of displaying measured data is the histogram or bar chart in
which a distribution of the frequency of occurrence of the measured quant-
ity is displayed. The histogram’s abscissa indicates the values recorded,
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Figure 4.7 A histogram of the noise
measurements given in Table 4.4, with a
continuous approximation of the same noise
level data superposed as a dotted line. Here the
data were taken and recorded in 6-dB windows
or intervals. For example, there are 30
measurements registered in the 56–62 dB
window.

while its ordinate represents the number of times the values occur. The
histogram shown in Figure 4.7 displays the same data given in Table 4.4
with the measured sound pressure levels grouped in 6-dB intervals or win-
dows. Thus, the bar between 56 and 62 dB represents the total number of
measurements that registered, respectively, 56, 57, 58, 59, 60, or 61 dB.
Two questions occur immediately: Why construct histograms? and How
big should the intervals be?

The main reason for constructing a histograms is that it offers a graphic
depiction of the frequency of events, so that problematic repetitions of
particular events are readily identified. Histograms can also be used to
generate approximate plots based on the data they express. For example,
Figure 4.7 also shows a continuous approximation of its 6-dB histogram.
Both the histogram and its continuous counterpart show us that the largest
number of readings of outdoor noise in the schoolyard occur in the 56–62
and 86–92 dB windows. This prompts us to inquire about the cause(s) of
readings at these two levels. In response, we can identify the peak in the
86–92 dB window as deriving from the children yelling at the microphone,
which in turn allows us to note that the playground noise is more generally
at levels less than 86 dB, with the remaining peak occurring at the relatively
low levels of 56–62 dB.
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Figure 4.8 Two more histograms of the noise measurements given in
Table 4.4. The data were taken and recorded in, respectively, (a) 2-dB
and (b) 10-dB windows.

How do we decide on the size of the intervals or windows? We want the
interval to be large enough to have enough data to minimize the chance of
spurious fluctuations, yet small enough that we don’t throw out data that
would indicate serious events within the interval. The data of Table 4.3
(and the 6-dB histogram of Figure 4.7) are displayed in Figure 4.8 in histo-
grams with intervals of (a) 2 dB and (b) 10 dB. We see that with the larger
interval we have lost the (identifiable) peak due to the children’s screaming,
while with the smaller interval we have many more peaks and fluctuations.
As a practical matter, experience suggests that the number of bars in a
histogram should roughly equal the square root of the number of data
entries,

√
n.

How did we draw the curve representing the continuous version of the
histogram in Figure 4.7? First, we assumed the validity of the continuum
hypothesis, which states that such discrete data can be plotted as a con-
tinuous curve. Second, we chose the number of intervals to get a relatively
smooth and meaningful curve. Just as with the underlying histogram, this
meant going back to the original data (i.e., Table 4.4) to choose an inter-
val size large enough to contain a significant number of points, yet not so
large that variations within the interval are drowned out. We constructed
Table 4.5 to aid in this process of choosing an interval size. Table 4.5 organ-
izes the data in Table 4.4 in terms of the number of points within intervals
of length� centered around 66 dB: There are 13 readings in the interval of
� = 4 dB, 27 in the interval of� = 8 dB.

A plotted curve of the data of Table 4.5, in Figure 4.9, helps us better
visualize and understand the data. If the length of the measuring interval�
is too small, say< 4 dB, the density fluctuates a lot and is not representative
of the complete picture. If the interval � is too large, say > 8 dB, the



4.7 Elementary Statistics 105

Table 4.5 An organizing chart of the data in Table 4.4 that allows us to
estimate the number of data points in intervals of varying length �. This form
of the data enables the drawing of the plot shown in Figure 4.9.

Interval
length,�

1 2 3 4 5 6 7 8 10 20 30 40 50

Interval, 66.5 67 67.5 68 68.5 69 69.5 70 71 76 81 86 91
66±�/2 65.5 65 64.5 64 63.5 63 62.5 62 61 56 51 46 41

Number of
readings in
interval

6 9 12 13 17 19 24 27 37 68 78 85 100

Density 6 4.5 4 3.25 3.4 3.17 3.43 3.34 3.7 3.4 2.6 2.38 2.00

density curve is smoothed out to the extent that all of the meaningful
variations have disappeared. Thus, an interval such that 4 < � dB < 8
would appropriately approximate the number of readings as a continuous
function of the noise level. We have 100 readings here, so 10 = √100
histogram bars are appropriate for the range 50–90 dB, resulting in the
shown width of 4 dB. However, as with other aspects of modeling, the
number of histogram bars is to some extent a matter of taste.

We have not offered any criteria to aid in choosing a measuring interval
because there are none. The best path is to organize the data as in Table 4.5,
use it to plot a curve such as that in Figure 4.9, and then exercise our best
judgment as to the size of�.
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Figure 4.9 An illustration of the continuum
hypothesis, showing how the density of the
readings depends on variation of the measuring
interval.



106 Chapter 4 Approximating and Validating Models

Lastly, all of the calculations outlined in this section can be done on a
computer. Care and thought are invaluable because, at best, a computer
does only what it’s told to do. Given erroneous instructions or bad data, its
results will be erroneous and bad!

Problem 4.32. Determine the standard deviation for the data presen-
ted in Table 4.4.

Problem 4.33. Draw a histogram for the data in Table 4.4 with 10
intervals of 4 dB width.

Problem 4.34. Show that the square of the sample variance of
eq. (4.57) can be cast in the alternative form

s2 = 1

(n − 1)


 n∑

i=1

x2
i −

1

n

(
n∑

i=1

xi

)2

 .

4.8 Summary

We have devoted this chapter to discussions of approximations and their
limits, and of model validation, including both qualitative and statistical
methods. We have shown the importance of Taylor and algebraic series
expansions, including applications to stretched strings (Taylor series of
hyperbolic functions), gravitational forces (binomial expansions), and
thermal expansion (algebraic approximations). We have emphasized the
need to validate models, as well as the roles played by dimensional and
qualitative analyses in model validation. We have also stressed the import-
ance of numerical approximations and of significant figures, especially as
regards their proper display and interpretation.

Working with mathematical models means that we are constantly using
numbers that derive from calculations or experiments. These numbers
always incorporate error. We have discussed both random and systematic
errors, and how they affect the precision and accuracy of any set of data. We
also looked briefly at statistical techniques that could be used to quantify
such errors, introducing the concepts of mean, median, and standard devi-
ation. We showed how curve fitting could be used to approximate functions,
and we showed illustrative examples using both the least squares method
and the continuum hypothesis to develop statistically based numerical
approximations.
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4.9 Appendix: Elementary Transcendental

Functions

The so-called elementary transcendental functions are the trigonometric
functions (sin x , cos x), the exponential functions (ex , ax ), the hyperbolic
functions (sinh x , cosh x), and the logarithmic functions (ln x =
loge x , loga x). We will present some basic results and relationships for
these functions, rather than derivations and proofs. Some of the results
make use of the notation i = √−1, which is central in relating, for example,
the trigonometric functions to the exponential. In fact, we will use what
famed physicist Richard Feynman called “the most remarkable formula in
mathematics”:

eix = cos x + i sin x . (4A.1)

We also note that that the imaginary (as it is often called) number i is
often denoted instead by j = √−1, especially by the electrical engineering
community, but we will stick to the traditional i. Thus, this Appendix
assumes some comfort with basic notions of the arithmetic of complex
numbers.

We begin with the formal definition of the natural logarithm (also called
the Naperian or the hyperbolic logarithm), ln x :

ln x ≡
∫ x

1

dt

t
, (4A.2)

where the t in the integrand of eq. (4A.2) is a dummy variable of integration,
and where three special values of the natural logarithm are noted:

ln 1 = 0, ln 0 = −∞, ln e = 1. (4A.3)

The number e is defined as:

e = lim
n→∞

(
1+ 1

n

)n

= 2.7182818284 . . . . (4A.4)

In view of the properties (4A.3), the Taylor series representation (see
eq. (4.1)) of the natural logarithm is defined in terms of an argument
that is centered around the value a = 1 (for x �= −1 and |x| ≤ 1):

ln(1+ x) = x − x2

2
+ x3

3
− · · · . (4A.5)

Further, the natural logarithm is related to the common or Briggs logarithm,
which we colloquially call the logarithm to base 10, by

ln x = (ln 10)(log10 x) ∼= 2.303 log10 x . (4A.6)
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The exponential function is defined as the inverse of the natural logarithm,
that is, x = ln y if y = ex . The Taylor series for the exponential function is:

ex = 1+ x + x2

2! +
x3

3! + · · · +
xn

n! + · · · . (4A.7)

The results that now follow are obtained by formal manipulation from this
Taylor series. For example, from eq. (4A.7) it can be shown that

ex+y = 1+ (x+y)+ (x + y)2

2! + (x + y)3

3! + · · ·+ (x + y)n

n! + · · · = ex ey ,

(4A.8)
and that for complex numbers a

eax = 1+ ax + (ax)2

2! +
(ax)3

3! + · · · +
(ax)n

n! + · · · = (e
x)a . (4A.9)

Further, building on the result (4A.9), we can confirm the formula
(4A.1) that Feynman found remarkable, which is known as the De Moivre
Theorem:

eix =
(

1− x2

2! +
x4

4! − · · ·
)
+ i

(
x − x3

3! +
x5

5! − · · ·
)
= cos x + i sin x .

(4A.10)
In the last step of eq. (4A.10) we are recognizing the standard Taylor series
expansions of the trigonometric functions that appear as the middle terms
in that equation. Further,

e−ix =
(

1− x2

2! +
x4

4! − · · ·
)
− i

(
x − x3

3! +
x5

5! − · · ·
)
= cos x− i sin x ,

(4A.11)
so that from eqs. (4A.10) and (4A.11) we find we can write the
trigonometric functions as:

cos x = 1

2

(
eix + e−ix

)
, sin x = 1

2i

(
eix − e−ix

)
(4A.12)

We are now in a position to write down relations for the hyperbolic
functions by replacing x by ix, and recalling the definition of i, so that:

cosh x = 1

2

(
e−x + ex) = cos(ix), sinh x = 1

2

(
ex − e−x) = −i sin(ix).

(4A.13)
It also follows from eqs. (4A.13) that

cosh(ix) = 1

2

(
eix + e−ix

)
= cos x , sinh(ix) = 1

2

(
eix − e−ix

)
= i sin x .

(4A.14)



4.9 Appendix: Elementary Transcendental Functions 109

While the structure and appearance of the trigonometric and hyperbolic
functions appear to be very similar, their behavior is not. The trigono-
metric functions are periodic, with period 2π , and their values are always
bounded by ±1, that is, −1 ≤ (sin x , cos x) ≤ 1. The hyperbolic cosine
increases monotonically for both positive and negative values of its argu-
ment, while the hyperbolic sinusoid is asymmetric about the origin and
so approaches −∞ as x → −∞. Oh, what a difference an i makes! We
show further details of all of the elementary transcendental functions in
Table 4A.1.

Table 4A.1 Behavioral features of the elementary transcendental
functions.

Behavior
f (x) Value at x = 0 as x →∞ Behavior of f (x)

sin x 0 | sin x| ≤ 1 Oscillates continuously between ±1
cos x 1 | cos x| ≤ 1 Oscillates continuously between ±1
ex 1 →∞ Uniformly increases as (x > 0)→∞
sinh x 0 →∞ Uniformly increases as (x > 0)→∞;

Uniformly decreases as (x < 0)→−∞
cosh x 1 →∞ Uniformly increases as x →±∞
ln x −∞ →∞ Uniformly increases as (x > 0)→∞
log10 x −∞ →∞ Uniformly increases as (x > 0)→∞

Finally, some derivatives and integrals of the elementary transcendental
functions are:

d

dx
sin x = cos x ,

d

dx
cos x = − sin x ,

d2

dx2
sin x = − sin x ,

d2

dx2
cos x = − cos x .

(4A.15)

d

dx
ex = ex ,

dn

dxn
ex = ex . (4A.16)

d

dx
sinh x = cosh x ,

d

dx
cosh x = sinh x ,

d2

dx2
sinh x = sinh x ,

d2

dx2
cosh x = cosh x .

(4A.17)

d

dx
ln x = 1

x
,

∫
ln x dx = x ln x − x . (4A.18)
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4.11 Problems

4.35. Estimate the error made in approximating y(x)= sin x with a
Taylor’s formula to n = 4 by evaluating the remainder R5.

4.36. Do the statements that sin x 
 1 and tan x 
 1 produce similar
approximations? Confirm and explain your answer.

4.37. The readings of an old-fashioned analog voltmeter—it has dials,
not digital readouts!—are subject to some systematic error where
all of its readings are too large. The magnitude of the error has been
found to vary linearly from 1 V at a dial reading of 5 V to 4 V at a
dial reading of 80 V.

(a) What are the correct voltages for dial readings of 80, 100, 50, 1,
35, and 10 V?

(b) What is the percentage error for each of the six (6) readings in
part (a)?

4.38. (a) Is it possible to have a set of measurements that are precise but
not accurate? Explain.

(b) Is it possible to have a set of measurements that are accurate but
not precise? Explain.

4.39. (a) Write the Taylor series expansion for ex about x = 0.
(b) Calculate e0.5 to five significant figures using the first four terms

of the series found it part (a).
4.40. (a) What percentage error was incurred in the calculation of part

(b) of Problem 4.39 if the “true value” of e0.5 is 1.6487?
(b) Use the Taylor remainder (eq. (4.5)) to calculate the error in

e0.5 after only four terms. Is the error calculated in part (a) of
this problem acceptable? Explain.

4.41. Evaluate the following function by hand (no calculators or com-
puters, please) for x = 4:

(
1+ 2

x

)1/4

.

4.42. How does an observer know when enough is enough, that enough
measurements have been taken?

4.43. Make a list of five new (i.e., not found in the text) examples of
systematic errors.
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4.44. Make a list of five new (i.e., not found in the text) examples of
random errors.

4.45. The resistance of a resistor, R, is made by passing several currents, I ,
through it and measuring the corresponding voltage drops, V , and
currents with imprecise, analog meters. The resulting data are:

xi = V (V ) 10 20 30 40 50 60 70 80

yi = I (A) 0.8 1.1 2.5 4.2 4.3 4.7 5.8 6.4

(a) What kinds error will be found in the data?
(b) Assuming that V = IR, plot the data (by hand!) and “eyeball”
in the best-fit line for that data.

4.46. Use the method of least squares to plot a V versus I curve for the
data of Problem 4.45. How does it compare with the “eyeball” result
of Problem 4.45?

4.47. The data presented below comprise 100 readings of noise levels taken
6 mi away from an airport, taken late in an evening at 15 s intervals.
Find the mean, median, and standard deviation of these data.

Observed Decibel Values (dB), n = 100

50 50 53 48 45 51 57∗ 75∗ 85∗ 82∗
75∗ 71∗ 65∗ 61∗ 60∗ 60∗ 55∗ 55∗ 51 50
49 49 48 51 49 54 48 48 47 49
49 49 49 49 48 47 50 49 48 49
47 48 48 50 50 54 48 47 47 48
48 49 48 47 50 49 48 48 48 48
48 48 52 50 53 49 49 48 49 47
49 55 51 50 49 48 49 45 48 50
50 51 49 50 47 47 47 47 47 47
48 50 49 49 49 49 49 49 56 49

4.48. The starred numbers in the data of Problem 4.47 are readings taken
while an aircraft was flying directly overhead. If these data are
deleted, what are the mean, median, and standard deviation of
the remaining 88 data points?

4.49. Draw (a) a histogram of all of the data of Problem 4.47 and (b) a
continuous curve of the number of readings as a function of the
measured noise level.

4.50. Determine a far-field approximation of the function f (r) given below
as a binomial expansion for values of r � a.

f (r) =
√

a2 + r2.
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4.51. The electric potential, Ve , at a distance, r , along the axis of revolution
of a disk of radius a is given by

Ve = q

2πa2εo
(
√

a2 + r2 − r),

where q is the total charge that is distributed uniformly over the
surface of the disk and ε0 is the permittivity constant. Using the
results of Problem 4.50, find a far-field approximation for the electric
potential for values of r � a.

4.52. Compare the minimum number of terms kept in the binomial
expansions of the solutions to Problems 4.50 and 4.51. Are those
numbers the same, or not? Why are those numbers the same, or not?

4.53. Suppose we need to calculate the radial extension or deflection w
of a very thin, spherical balloon, meaning that the sphere’s radius
extends from R to R + w as the balloon is pressurized. It is made of
an elastic material. A colleague finds a textbook that shows a formula
for the pressure, p, that looks reasonable:

w

R
= pR

Eh
,

where h is the balloon’s wall thickness, and E is the modulus of the
material of which the sphere is made. Is this equation dimensionally
consistent?

4.54. Analyze the limit behavior of the equation presented in Problem 4.53
as the pressure, modulus, radius, and thickness both go to zero and
become infinitely large. Does this limit behavior conform with your
intuitive estimate of what should happen?

4.55. Use the equation in Problem 4.53 to derive an estimate of the mag-
nitude of the pressure, p, as a fraction of the modulus, E . Estimate
the pressure fraction for a thin-walled sphere, for which h/R 
 1.



5
Exponential Growth and

Decay

This chapter is devoted to a discussion of exponential models that share
a common characteristic: The rate of change of a variable, whether posi-
tive (as it grows) or negative (as it decays), is directly proportional to the
immediate value of that variable. More often than not, the rate of change
is a time rate of change that is proportional to the variable’s instantaneous
value. Similar exponential decays also occur spatially, that is, with respect to
a spatial coordinate. Here, behaviors decay over some distance so as to have
little or no effect at distances sufficiently far from the initiating behavior. We
will see that exponential models are ubiquitous and have many applications,
including in physics, finance, and population and resource predictions.

5.1 How Do Things Get So Out of Hand?

As we have just indicated, the primary characteristic of exponential growth
or decay of a population is the dependence of the rate of growth of the
population on its size at any instant. Thus, if a population is large, its
growth rate will be proportionately large, and its continuing growth will
accelerate with its increasing size. As we will soon see, this kind of growth
exhibits itself in nice, smooth curves whose ordinate values increase very
rapidly in relatively short periods of time. One application area where Why?

117
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this behavior is often modeled is the field of population studies. Indeed,
much has been made in recent years of the dangers of overpopulation and
of the related resource and environmental issues. In fact, with regard to
the principles of modeling outlined in Section 1.2, common sense would
indicate in this instance that we have a pretty good idea of what we are
looking for, what we know, and what we want to know.

Consider the two population projections shown in Figures 5.1 and 5.2.
Even though they are now somewhat dated, both curves project very rapid
increases in the world’s population in relatively short times. The first curve
(Figured 5.1) reflects both historical data for the years prior to 1960 and
a projection from a 1960 world population estimate of 3 billion people
growing at a rate of 2% per year. The world population was quite small until
1700, but it has been growing rapidly since the end of the 19th century.
However, even though the projections past 1960 are at a modest rate ofFind?

2% per year, we should wonder about the validity of the steepness of the
projection, especially after the year 2100.

If we were to extend the projection shown in Figure 5.1 for another
700 or 800 years, we would obtain the results shown in Figure 5.2. The
assumed annual growth rate is still 2% and the population is still measured
in billions. However, the time scale has been expanded by a factor of two
and the population projections are now measured in millions of billions!
While these population projections are almost certainly unrealistic, the
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Figure 5.1 A historical view (solid line, for
1700–1960) and a projection (dashed line, for
1960–2165) of the world’s population.
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Figure 5.2 A longer projection, for 1950–2700, of
the world’s population, annotated to show the
amount space that each person would be
accorded were the projections to become reality.

projection curve clearly illustrates the nature of unrestrained exponential
growth: The bigger it is, the faster it grows.

We also emphasize (again, as in Section 3.5.2) the importance of scal-
ing when examining exponential growth. Consider the magnitudes of the
numbers involved. For example, at a 2% annual growth rate, the world
population grows from 3 billion in 1960 to 5,630,000 billion in 2692 (cf.
Figure 5.2). What does it mean to have

5,630,000 billion people

or

5,630,000,000,000,000 people

or

5.63× 1015 people

on earth in the year 2692? Is there room for all of these people? Could we
even count this many people in a census? (And if you think that this is not a
meaningful question or issue, there were vigorous debates within the U.S.
Congress about the role of statistical sampling in the 2000 census—and
they were talking about counting “only” some 285 million Americans!)
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Let’s try to answer the “room” issue first, that is, is there space enough onWhat?

earth for more than five million billion people? The total surface area of the
earth is approximately 5.10 × 108 km2 (∼ 5.49 × 1015 ft2), of which 72%
is water. Assuming that people cannot stand on water, the net “standingGiven?

area” is approximately 1.43 × 108 km2 (∼ 1.54× 1015 ft2). If each person
were given just 1 square foot of personal standing space, people would have
to be stacked more than three deep in order to accommodate everyone!

How long would it take to physically count all of the people on earth in
2692? Suppose we could tally the population at a rate of 1000 people perAssume?

Predict? second. Then it would take

5.63× 1015 people

1000 people/s
= 5.63× 1012 s.

This seems like a lot of counting time. In fact, it easily shown that this
simple calculation suggests that it would take almost 200,000 years to count
the population growth that occurred in (only!) 800 years at a 2% annual
growth rate.

We have presented the above numbers in part because they are patently
absurd, to show just how things get out of hand. These numbers showValid?

how simplistic calculations with exponentials can lead to results that are
arithmetically correct yet fail the test of basic credibility. We also note
again the effect of scale in displaying such results. The ordinate scales of
Figures 5.1 and 5.2 are linear and represent, respectively, 100 billion people
per 1.50 in of graph and 2,000,000 billion per in. To express the projected
population of 5.63× 1015 people on the same ordinate scale of Figure 5.1,
we would need a piece of paper that is 85,000 in long (you do the math!).
It is also readily shown (see, for example, Problems 5.38 and 5.40) that
exponential curves do not always portray such dramatic results.

Remember, therefore, that a change in scale does not, by itself, gener-
ate or dissipate true exponential behavior. Scale changes add or disguise
perspective on the underlying mathematics. What is more important isImprove?

that exponential behavior can express other kinds of response, illustrated
in Figure 5.3, both of which occur when the proportionality factor is neg-
ative.Figure 5.3(a) shows a classic decay or dissipation curve in which an
initial value decays to zero, while Figure 5.3(b) shows how some vari-
able grows evermore slowly, asymptotically, to a limiting value as time
becomes infinite. We will see both of these behaviors in Section 5.4, for
example, when we describe the charging and discharging of a capacitor in
a very elementary electrical circuit. Thus, after we introduce the necessary
mathematics, we should also expect to see mathematical behavior that is
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Figure 5.3 Illustrations of the kinds of exponential behavior
that result when the constant of proportionality is less than zero
(negative): (a) classic decay from a given initial value; and
(b) asymptotic growth toward a limiting value or asymptote as
time becomes indefinitely large.

more complicated and more interesting than simple, unrestrained expo-
nential growth. We will then see that such exponential behavior is an
important part of very practical and useful modeling in many disciplines.
The foregoing discussion should, therefore, be taken as a cautionary “word
to the wise” about some of the dangers in exponential modeling, not as a
reason to dismiss or ignore it.

Problem 5.1. If you were asked to conduct a population study, what
would you be looking for, what would be known, and
what would you want to know?

Problem 5.2. What sort of assumptions would you make if you were
asked to conduct a population study? On what basis
could those assumptions be justified?

Problem 5.3. What factors might restrain or otherwise influence the
unrestrained growth seen in Figures 5.1 and 5.2?

Problem 5.4. Determine the radius of the earth in both meters and
feet from the surface areas given in Section 5.1. Are
these values consistent with the conversion factors
given in Table 2.3?

Problem 5.5. Confirm that it would take almost two hundred thou-
sand years to count a population of 5.63 million billion
people at a rate of 1000 people/s.
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5.2 Exponential Functions and Their

Differential Equations

In this section we first describe some of the arithmetic that underlies all of
the numbers and curves given in Section 5.1. We follow that with a very
brief primer on the first-order differential equation from whence derives
the exponential function. This primer is intended to serve as a reminder
of—not a substitute for—comparable introductory material in differential
equations.

5.2.1 Calculating and Displaying Exponential

Functions

The exponential behavior discussed in Section 5.1 can be put in mathema-
tical terms as follows. Let N (t ) be the number or population of a collection
of objects, and let t be the independent variable on which N depends and
with which it changes. For most of our applications, t will be associated with
time, but that is a result of the models we exhibit, not due to any underlying
mathematical requirement. As we indicated in Section 5.1, exponential
growth results when the rate of growth is proportional to a population or
number. If we introduce a constant of proportionality, λ, then exponential
growth occurs when

dN (t )

dt
= λN (t ). (5.1)

We see from eq. (5.1) that the constant of proportionalityλ can be written as

λ = dN/N

dt
. (5.2)

Thus, λ represents the fractional change dN/N of the population per unit
change of the independent variable, dt. The dimensions of λ are seen to be

[λ] = 1

[t ] = [t
−1]. (5.3)

If the independent variable, t , is a measure of time, then the dimensions of
λ are 1/time.

Equation (5.1) is a first-order differential equation that is linear in the
dependent variable N (t ) and has constant coefficients. As we show in the
next section, eq. (5.1) has a solution that can be written as

N (t ) = N0eλt , (5.4)
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where the constant N0 is an arbitrary constant whose value remains to be
determined. The dimensions (and units) of N0 must be the same as those
of N (t ). Further, the number e is the base of the natural logarithm. It has
an approximate value e ∼= 2.71828. Since e0= 1, it also follows that the
number N0 must be the initial value of the population, that is, the number
of objects whose change we are modeling at t = 0, when the model “starts.”
Note, too, that N (t ) grows in time if λ is positive, much like the curves in
Figures 5.1 and 5.2, and that it decreases in magnitude or decays if λ < 0,
as does Figure 5.3(a).

Since e is the base of natural logarithms, we can take the (natural)
logarithm of both sides of eq. (5.4) to show that

λt = ln N (t )− ln N0 = ln (N (t )/N0) . (5.5)

Equation (5.5) tells us that if we want to find a time, tn , when the number
N (tn) = nN0, that is, when the population size is a specified multiple of
its initial value, all we need to do is calculate

tn = ln n

λ
. (5.6)

People frequently ask how long it takes something to double in size, in
which case the answer is the doubling time, t2, determined from eq. (5.6)
with n = 2:

t2 = ln 2

λ
∼= 0.693

λ
. (5.7)

One immediate application of eq. (5.7) is to investment: Money grows Why?

as it earns interest. Suppose that we want to know how long it would take
Find?to double an amount of money with continuously compounded interest.

We determine that by interpreting λ in terms of percentage, P , in which
case P = 100λ. Then eq. (5.7) becomes

t2 = 69.3

P
. (5.8)

The approximate time it would take to double some money as a function
of different percentage growth rates P is shown in Table 5.1.

There are two other interesting properties of exponential growth. The
first is the inversion of the doubling time that occurs when we calculate the
half-life of a population. That is, suppose we want to know how long it
takes for a population that started at N0 to decrease to a value of N0/2. In
this case, λ would represent a (negative) decay rate, and from eq. (5.6) we
would get a formula for the half life t1/2 that is formally identical to eq. (5.7)
or eq. (5.8). Thus, we need only change the column headings in Table 5.1
to “Annual Decay (P < 0, %)” and “Half-Life (t1/2, years),” respectively, to
obtain the variation of half-life as a function of decay rate.
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Table 5.1 The time it takes to double one’s
money, measured in years, as a function of
continuously compounded growth rates,
measured in percentages.

Annual
Growth (P , %)

Approximate Doubling
Time (t2, years)

1 69.3
2 34.6
5 13.9

10 6.93
20 3.46

The second interesting property is this. The time, tn , it takes for a popula-
tion, N (t ), to grow by a constant factor, n, remains unchanged throughout
the growth. Thus, from time t = 0 to t = t2, the population doubles;
from t = t2 to t = 2t2, the population doubles again; and so on. Thus, we
obtain the results shown in Table 5.2.

Finally, for this section, some remarks on the display of exponential
functions are now in order. We saw in Section 5.1 that exponential growth
can lead to some horrifically large numbers. However, in the same way that
great strengths and great weaknesses are often intertwined, it is similarly
the case that the logarithms of exponential growth provide the means of
graphical (and representational) salvation. If we look back at eq. (5.5),
we see that one representation of exponential behavior can be expressed in
the form:

ln N (t ) = λt + ln N0. (5.9)

Equation (5.7) suggests that a semi-logarithmic plot of ln N (t ) against λt
(plus a constant) would produce results in which the ordinate values are

Table 5.2 The growth of the
exponential function as gauged by
multiples of the doubling time.

Time (units of t2) Population (N (t ))

t = 0
= t2

= 2t2

= 3t2

= 10t2

= nt2

N = N0 = 20N0

= 2N0 = 21N0

= 4N0 = 22N0

= 8N0 = 23N0

= 1024N0 = 210N0

= 2nN0
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Figure 5.4 Population projections for the
period 1960–2400 based on the data of
Figures 5.1 and 5.2, presented herein in a
semi-logarithmic plot. What had previously
been displayed as a set of steeply rising
exponential curves is now seen as a
relatively benign straight line with ordinate
values in particular that are much more
manageable.

more commensurate with those of the abscissa. In fact, in such a semi-
logarithmic plot, eq. (5.9) represents a straight line of slope λ and with
intercept ln N0. In Figure 5.4 we show such a linear “semi-log” using the
projected data of Figures 5.1 and 5.2.

Problem 5.6. Confirm by differentiating eq. (5.4) that the N (t ) given
therein satisfies eq. (5.1).

Problem 5.7. How would the projections of Figures 5.1 and 5.2
change if the growth rate were, respectively, 1% per
year and 3% per year?

Problem 5.8. What annual growth rate would be needed to double
one’s money in seven years?
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5.2.2 The First-Order Differential Equation

dN /dt − λN = 0
There is another interesting property of exponential behavior that has been
present but to which we have not paid much attention in our discussion
thus far. This special property is the fact that there is only one arbitrary
constant in the basic exponential model [see the discussion immediately
after eq. (5.4)]. Why is that so? There is only one constant because, as we
will now demonstrate, the exponential function (5.4) is the solution to a
first-order differential equation, that is, a differential equation in which the
highest-order derivative is of first order. The single arbitrary constant arises
from the fact that a first-order differential equation needs to be integrated
just once to obtain a solution.

Consider the differential equation governing population growth set out
in eq. (5.1):

dN (t )

dt
− λN (t ) = 0. (5.10)

This differential equation has constant coefficients, that is, the multipliers
of both N (t ) and its derivative are constants, namely, λ and 1, respectively.
Equation (5.10) can also be written in the form

dN (t )

N (t )
− λdt = 0, (5.11)

which can be integrated in exactly the same way that the Naperian logarithm
was defined in Section 4.9 and then inverted to yield the solution (see
Problem 5.9):

N (t ) = Ceλt . (5.12)

We can clearly identify C as the initial population by setting t = 0 in
eq. (5.12). Equally clearly, we can identify that initial value in the notation
introduced in eq. (5.4): C = N0.

The initial value C need not be determined at the time t = 0. We could
specify a starting condition that at some time t0, N (t0) = N0. Equation
(5.12) then dictates that

N (t0) = N0 = Ceλt0 ,

which means in turn that

C = N0e−λt0 . (5.13)

If we substitute this form of our constant of integration C into the solution
(5.12), we get

N (t ) = N0e−λt0eλt = N0eλ(t−t0). (5.14)
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This obviously defines a population that for λ > 0 is increasing through
N0 at t = t0, but that is less than N0 for t < t0.

Note that all of the foregoing manipulations are as valid for λ < 0 as
they are for λ > 0. The interpretations would obviously be different, since
we would be describing exponential decay (λ < 0) rather than exponential
growth (λ > 0), but the underlying mathematics is unchanged. However,
it is also true that the analysis to date is limited by the fact that our basic
differential equation (5.10) is a homogeneous equation, that is, there is no
forcing function on the right-hand side. When we discuss the charging of
a capacitor in a simple electrical circuit in Section 5.4, we will see that the
charge q(t ) in the capacitor in that circuit is described by an equation of
the form

dq(t )

dt
+ 1

RC
q(t ) = Vin(t ). (5.15)

Equation (5.15) looks very much like the differential equation (5.10) for
exponentials, except that it has a forcing function, Vin(t ), on the right-
hand side that forces or drives the change of the voltage in the circuit
being modeled. Further, the coefficient in eq. (5.15) is equivalent to taking
λ = −(1/RC) < 0 in eq. (5.10).

Problem 5.9. Verify that eq. (5.12) is the solution to the exponential
differential equation as given in eq. (5.10) by using
the result that∫

du

u
= ln u + constant.

Problem 5.10. Show that the solution (5.12) to the differential
equation (5.10) can also be found by assuming the
following trial solution for N (t ):

N (t ) = Ceαt .

Problem 5.11. Why is the proportionality constant in eq. (5.15)
equivalent to having λ < 0 in eq. (5.10)? What sort
of behavior would we then expect?

5.3 Radioactive Decay

We now want to model the decay of radioactive isotopes as exponential Why?

behavior. As physicists and chemists began to study radioactivity at the
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end of the 19th century, they found that the activity of radioactive isotopes
decreased with time at rates that varied with the material. When the emis-
sion of α and (primary) β particles was observed in the laboratory, it was
found that the number of particles collected over time was unaffected by
changes in pressure, temperature, chemical state, or the physical environ-
ment. Instead, the observed half-life of each isotope—the time it takes forFind?

the number of particles of the isotope to be reduced by half—was found to
be a characteristic of the material itself. Thus, once half-life is identified as
a material property, a measurement of a radioactive decay pattern can be
used to identify a material by its characteristic half-life.

In Figure 5.5 we show a generic, semi-logarithmic plot of the radioactiveGiven?

decay of an unspecified material. It strongly resembles Figure 5.4. In the
radioactive decay model, however, the proportionality constant is negative
(i.e., λ < 0). Further, in Figure 5.5, we have rendered the abscissa dimen-
sionless by measuring it in terms of an (unknown) half-life, t1/2. That is,
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Figure 5.5 A generic plot of the decay of
a radioactive isotope. Note that the data
is presented in a semi-logarithmic plot.
Note, too, that the abscissa has been
made dimensionless by measuring it in
terms of an (unknown) half-life, t1/2.
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time is measured here as a multiple of a parameter, t1/2, whose dimensions
(of time) are given but whose specific numerical value is not.

Decay rates are often used to characterize emitters as short-lived or long- Predict?

lived. For example, consider the decay of the element thorium (Th in the
atomic table of the elements). Thorium has a half-life of 16,500,000,000 yr,
which does seem like quite a long time! If that is indeed true, can we
calculate the effective decay constant, λ, and estimate how many thorium
atoms will decay in a year?

We can calculate λ by applying eq. (5.6) with n= 1/2 and How?

t1/2= 1.65× 1010 yr. Then the decay constant can be calculated as

λ = −0.693

t1/2
= −0.693

1.65× 1010 yr
= −4.20× 10−11 yr−1

= −4.20× 10−11 1

yr
× yr

365 day
× day

86,400 sec
(5.16)

= −1.33× 10−18 sec−1,

where reciprocal seconds are the units ordinarily used to express radioactive
decay constants. In view of the definition (5.2) of decay rate in terms of
fractional population change, eq. (5.16) suggests that only one thorium
atom in every (1.33 × 10−18)−1 = 7.51 × 1017 such atoms decays in one
second. Indeed, even in a year, only one of every 2.38×1010 thorium atoms
present initially will decay. Thus, it does seem that thorium can be safely
characterized as a long-lived emitter.

It is worth touching on two related points here. One is that the char-
acterization of a radioactive emitter as short- or long-lived seems, in the
above context, a straightforward and neutral piece of scientific reasoning.
However, similar calculations done in other contexts (e.g., the decay time Use?

for radioactive waste in a national storage facility for radioactive materi-
als from nuclear power plants, or the remediation time for gasses to fully
dissipate from a landfill) often turn these characterizations into political
(and emotional) debates that try to define the meaning of “short (or long)
enough for …”

The second point is a deeply philosophical one about the very under-
pinnings of the models of physics. What does it mean for a fraction of Valid?

a single isotope or atom to decay? Or, are the models really about aver-
ages calculated over a large number of particles? And, if that is the case,
how are such averages calculated? And, further, what is the meaning of Improve?

the various levels of models that are used to describe and predict these
behaviors?
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5.4 Charging and Discharging a Capacitor

We will now model the behavior of a very simple electrical circuit, incor-Why?

porating only two passive electrical elements, a capacitor defined by its
capacitance, C , and a resistor defined by its resistance, R. These two ele-
ments are depicted in Figure 5.6. The first step in our circuit modeling isAssume?

to identify a functional relationship for each element, called a constitutive
equation, which expresses its behavior in terms of the voltage drop across
the element and the current flowing through it.

The capacitor stores and discharges energy. This energy transfer occursHow?

as charge is transferred from one side plate or electrode to the other (viz.,
Figure 5.6(a)) and, in this process produces a voltage drop across the
capacitor given by:

[Va(t )− Vb(t )]C ≡ 	VC (t ) = q(t )

C
, (5.17)

where 	VC (t ) represents the voltage drop across the capacitor while the
charge, q(t ), flows through it. In SI units, C , the capacitance, is measured
in coulombs (of charge) per volt or farads.

Keep in mind that while we are used to talking about current flowing
through electrical devices in everyday life, here we are building our model
in terms of the charge, q(t ), whose first derivative in time is the current,

i(t ) ≡ dq(t )

dt
. (5.18)

(a)

(b)

C

R

Figure 5.6 Simple conceptual drawings of the
icons or symbols of two passive electrical
elements: (a) the capacitor, denoted by C ,
stores energy by storing charge and discharges
energy through the flow of charge (or current,
the time rate of change of charge); and (b) the
resistor, R , that allows charge or current to
flow, but that in so doing dissipates some of the
energy flow as wasted thermal energy.
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We will return to and amplify this point in Section 8.7 wherein we model
circuits more extensively and relate the electrical elements to analogous
mechanical elements.

The second passive element, the resistor depicted in Figure 5.6(b),
impedes or resists the flow of charge (or current) as the charge flows
through the element. The resistor thus dissipates energy, usually perceived
as wasted heat. The voltage drop across a resistor is usually expressed in
terms of voltage and current as Ohm’s law :

[Va(t )− Vb(t )]R ≡ 	VR(t ) = Ri(t ), (5.19)

where 	VR(t ) represents the voltage drop across the resistor while the
current, i(t ), flows through it. In SI units, R, the resistance, is measured in
volts per ampere or ohms. Since we are interested in expressing our current
model in terms of charge, we make use of eq. (5.18) to eliminate the current
from eq. (5.19) and rewrite Ohm’s law as:

	VR(t ) = R
dq(t )

dt
. (5.20)

5.4.1 A Capacitor Discharges

Having modeled our two circuit elements, we now model the simple elec-
trical circuit shown in Figure 5.7. That picture shows a resistor in series with
a capacitor, and with an (externally) applied voltage across the circuit’s two
“free” endpoints or nodes. Suppose first that no voltage is applied across
the free endpoints. In that case, it seems quite logical to stipulate that the
sum of the voltage drops across the capacitor and the resistor must simply
vanish because nothing is being put into the system, that is,

	VC (t )+	VR(t ) = 0. (5.21)

If we substitute eqs. (5.17) and (5.20) into eq. (5.21), we can replace its
voltage terms and express it entirely in terms of the charge q(t ) flowing
around this simple circuit:

dq(t )

dt
+ 1

RC
q(t ) = 0. (5.22)
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C

R

Vin(t)

Figure 5.7 A very simple electrical circuit that
connects a capacitor, C , in series with a resistor,
R , and an externally applied input voltage,
Vin(t ). Here we have directly connected the two
elements rather than showing their individual
nodes, but we have shown the two “free”
nodes or endpoints that normally would serve
as the terminals to which we would attach a
battery or some other voltage supply.

The resemblance between eqs. (5.22) and (5.10) is unmistakable, so itPredict?

follows immediately that the solution to eq. (5.22) can be written as [see
eq. (5.12)]

q(t ) = C1e−t/RC , (5.23)

where C1 is an arbitrary constant that can be taken as the initial charge:
C1= q0= q(t = 0). Equation (5.23) shows that the capacitor’s initial
charge, q0, left on its own, theoretically vanishes as t→∞. (In prac-
tice, the initial charge becomes so small that we can say it has vanished.)
Described in Section 5.1, this behavior was shown in Figure 5.3(a).

We also see from eq. (5.23) that the behavior of a simple RC circuitValid?

occurs in times that we can express and measure in terms of a characteristic
constant, namely, RC. This means, first of all, that the decay of the charge
is inversely proportional to both the resistance and the capacitance. It
is intuitively satisfying to see that the decay will be slowed if either the
capacitor is large, in which case it can hold a larger charge that will take
longer to dissipate, or if the resistance is large, in which case the discharge
of current through the resistor will be slowed down. Second, it is not
surprising that one widely used measure of the decay rate of such a circuit
is a time constant, τ , defined as:

τ = RC . (5.24)
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The time constant, τ , is the time it takes for an initial charge, q0, to be
reduced to the value, q0/e. With the definition (5.24), the RC circuit’s
governing equation can be written as

dq(t )

dt
+ 1

τ
q(t ) = 0. (5.25)

Note also that with the governing equation written this way, dimensional
consistency is much easier to discern and to verify.

Problem 5.12. Verify that each term in eq. (5.22) has the same
physical dimensions.

Problem 5.13. Confirm that eq. (5.23) is the correct solution to
eq. (5.22).

Problem 5.14. Use the definitions of resistance and capacitance
to verify that the product RC has the physical
dimensions of time.

5.4.2 A Capacitor Is Charged

Can we extend the foregoing circuit model to charge the capacitor? We can, Find?

by inserting a voltage source across the two free endpoints of the RC circuit
in Figure 5.7. (We should not confuse this with the familiar experience of
charging a dead car battery by connecting it with jumper cables to a good
battery because that charging results from a relatively rapid conversion of
electrical energy to chemical energy.) How do we incorporate a voltage
source to revise our circuit model?

There are two (at least) ways to answer this question. First, we would How?

extend the reasoning behind eq. (5.21) by simply adding to that equation
a term representing the input voltage Vin(t ) supplied by a battery or an
equivalent device:

	VC (t )+	VR(t ) = Vin(t ). (5.26)

Then, with the appropriate constitutive equations and the definition of the
circuit’s time constant, eq. (5.26) can be rewritten as

dq(t )

dt
+ 1

τ
q(t ) = Vin(t )

R
. (5.27)
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The differential equation (5.27) is called inhomogeneous in the terms of
mathematics because the voltage input makes its right-hand side take on a
non-zero value.

We can also demonstrate that eq. (5.27) is a correct model by applying aValid?

classical result of electrical circuit analysis, Kirchhoff ’s Voltage Law (KVL),
named after the German physicist Gustav Robert Kirchhoff (1824–1887).
Kirchhoff observed that the algebraic sum of the voltage drops across all of
the elements connected in a closed circuit loop is zero. Written in symbolic
terms, the KVL looks like the following:

K∑
k=1

[Va(t )− Vb(t )]k =
K∑

k=1

	Vk(t ) = 0, (5.28)

where K is the total number of elements in the closed circuit loop. Note
that we must pay close attention to the sign conventions built into the
constitutive laws of the circuit elements when we apply the KVL because it
calls for calculating an “algebraic sum” of the voltage drops. The KVL can
be applied to the circuit in Figure 5.7 (see Problem 5.16) to find once again
the result in eq. (5.27).

To return to our stated modeling task of charging a capacitor, let us
apply eq. (5.27) under the simple assumption of a constant input voltage,
Vin(t ) = V0 = constant:

dq(t )

dt
+ 1

τ
q(t ) = V0

R
. (5.29)

Remembering that the derivative of a constant is zero, it is not very hard to
show (see Problem 5.17) that we can construct a solution to eq. (5.29) in
the form

q(t ) = V0C + C1e−t/τ = τV0/R + C1e−t/τ . (5.30)

Once again the single arbitrary constant, C1, can be determined from the
circuit’s given initial conditions. In the simpler case where the initial charge
is supplied only by the voltage input, it follows from eq. (5.30) that

q(0) = 0 = V0C + C1.

The arbitrary constant is now determined and the complete correct solution
becomes:

q(t ) = V0C(1− e−t/τ ). (5.31)

Equation (5.33) is plotted in Figure 5.8, which is a more detailed version ofPredict?

the sketch given in Figure 5.3(b). We see that the charge increases exponen-
tially from its initially given value of zero. Here, however, the amount of
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Asymptote

Initial slope= V0 /R

q∞ = V0C

C
h

ar
g

e 
q

Time t

Figure 5.8 The charge in the capacitor
when an input voltage, V0, is applied
across the terminals shown in
Figure 5.7. Note the unmistakable
resemblance of this drawing to the
sketch in Figure 5.3(b). Here the initial
slope, V0/R , and the asymptotic value of
the charge, q∞ = V0C , are called out.

charge does not increase to infinity. Instead, it asymptotically approaches a
maximum value given by

q∞ ≡ q(t →∞) = V0C . (5.32)

This asymptotic value of the charge, q∞ = V0C , is the maximum value that
the capacitor can hold for the given capacitance, C , and applied voltage,
V0. We also can calculate that the initial slope of the charging curve is V0/R.
If this slope were zero, then no charging would be possible and the charge
would remain at its initial value of zero. Of course, this circumstance could
only arise if no voltage were applied or if the resistance to that applied
voltage was infinitely large. Thus, once again we have found results that are
intuitively pleasing.

One last point here. We have charged a capacitor even though the circuit’s Improve?

decay constant is negative, that is, λ = −1/τ . We have thus imposed growth
on an exponential system that otherwise would have decayed. This serves
to point out that external conditions, such as the input voltage applied
here, can influence the behavior of an exponential system to an extent not
anticipated by the sign of the constant λ.

Problem 5.15. Verify that eq. (5.29) was properly derived from
eq. (5.28).

Problem 5.16. Apply the KVL of eq. (5.28) to the circuit in Figure 5.7
to confirm the validity of eq. (5.27).
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Problem 5.17. Confirm by differentiating eq. (5.31) that it satisfies
eq. (5.29).

Problem 5.18. Calculate the initial slope of the charging capacitor
from the solution given in eq. (5.31).

5.5 Exponential Models in Money Matters

We will now talk about money, that is, we will model elementary expo-Why?

nential behavior as seen in two important aspects of our financial lives.
First, we will talk about interest and compound interest, the repeated calcu-
lation of interest over shorter periods of time that produces higher effective
rates of interest than may be evident. Then we will describe inflation, the
phenomenon we see when prices rise rapidly and dramatically.

5.5.1 Compound Interest

It is hard to listen to the news these days without hearing reports on the
stock and bond markets. When the markets and their underlying econom-
ies are not doing well, we hear about whether or not the Federal Reserve
Bank will adjust the interest rates that the banks, including “The Fed,”
charge each other on interbank loans. We are besieged by advertisements
promising high interest returns on various savings instruments and low
interest rates on credit card balances and mortgage loans. For all this talk
of interest, however, few understand that interest is an exponential phe-
nomenon, which is one reason that economists speak of the time value of
money, and that very serious consequences follow inattention to interest
rates and compounding practices.

Consider first the latest unsolicited offer of a credit card promising anFind?

Predict? interest rate of only 0.75% per month, which is advertised as “only” 9%
per year and sounds cheap in this context. If the monthly interest was
compounded on a monthly basis, the effective annual interest rate is found
from the 12-fold multiplication

(1.0075)(1.0075) · · · (1.0075) = (1.0075)12 ∼= 1.0938. (5.33)

Thus, monthly compounding produces an effective annual interest rate
of about 9.38% per year. If these rates were continuously compounded, we
would use eq. (5.4) to find:

N (t )

N0
= e(0.0075)(12mos) ∼= 1.0942, (5.34)
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which represents an effective rate of 9.42% per year. Thus, depending on
how interest is applied or compounded, the effective interest rate charged on
a 9% (nominal) card would be 9.39% for monthly compounding and 9.42%
for continuous compounding. (United States law requires that advertise-
ments and transaction documents list the nominal, uncompounded APR or
Annual Percentage Rate, with compounding details and effective rates often
left to the fine print.) If these effective interest rates don’t seem like a very
big deal, consider that they add noticeable surcharges to the nominal rates.

We can also see the effects of compounding by looking at returns on How?

investment. Suppose that interest is promised at a nominal rate of 10% per
year. That interest could be calculated and distributed in discrete amounts
of 10% annually, 5% semiannually, 2.5% quarterly, and so on. For m
compounding periods per year, the initial investment would grow to:(

N

N0

)
m
=

(
1+ 0.10

m

)m

. (5.35)

We have shown some results for various compounding intervals in
Table 5.3. Note that the investment promises larger returns as the number
of compounding periods, m, is increased. Thus, it seems interesting to con- Find?

sider what will happen to the value of the unit investment as the number
of compounding periods becomes infinitely large.

Table 5.3 The growth of a unit investment
(i.e., N0 = 1) at a nominal rate of 10% with
returns compounded and payable m times
per year. Equation (5.35) is used to calculate
that growth.

Number of
Compounding Periods
per Year (m)

Value of a Unit
Investment (N0 = 1)

0 1.0000
1 1.1000
2 1.1025
4 1.1038

12 1.1047
365 1.1051559

We can easily answer this question by first recasting eq. (5.35) in terms How?

of a new variable x = m/0.10. Then eq. (5.35) becomes:(
N

N0

)
m
=

(
1+ 1

x

)0.10x

. (5.36)
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We now take the limit of eq. (5.36) as x becomes infinitely large:

(
N

N0

)
∞
= lim

x→∞

[(
1+ 1

x

)x]0.10

. (5.37)

Within this limit lies, in fact, the formal definition of the base e of the
natural logarithm:

e ≡ lim
x→∞

(
1+ 1

x

)x

. (5.38)

We thus see that our unit investment, continuously compounded, attainsFind?

in one year a value only slightly larger than the daily compounding shown
in the last line of Table 5.3:(

N

N0

)
∞
= e0.10 ∼= 1.1051709. (5.39)

It is worth noting that, for economists, interest represents the priceUse?

of money. What does that mean? Putting money into a savings account
means giving up an opportunity to buy something now in exchange for
the promise of being able to spend a larger amount of money—the initial
investment plus earned interest income—at a future date. This means trad-
ing the opportunity to spend $1.00 now for the opportunity to spend $1.10
a year from now. The bank has “purchased” money for its own investment
purposes at a price of $0.10 for the year, and the saver bought the chance
to spend still more money, $1.10, one year later. This means that money
has both a price and, again, a time value because investors make decisions
about what their money will be worth in the future. This brings us to a
second money issue, inflation, in which exponential behavior significantly
affects the price of money.

Problem 5.19. Are eq. (5.35) and (5.38) related? How?
Problem 5.20. Verify all of the steps that lead from eq. (5.35) to

eq. (5.39).
Problem 5.21. Construct a version of Table 5.3 for an annual interest

rate of 18%.

5.5.2 Inflation

Inflation has been a major economic and political problem in the UnitedWhy?

States at various times in the 20th century, and it has troubled and even
destabilized the economies of many other countries in just the last few
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years. Asian economies suffered major bouts of inflation in the late 1990s,
and at the very end of 2001 Argentina had street riots and five (!) presid-
ents in less than two weeks because of economic problems triggered in part
by serious inflation. Inflation occurs when the value of money declines
and the prices of goods and services rise accordingly. Countries suffer-
ing from bouts of inflation see the value of their currencies drop against
those of other countries, and the consequences of such economic imbal-
ances may include unemployment, trade embargoes and trade wars, and
severe, spreading economic dislocation. These topics are the province of
economics, “the dismal science,” but they are interesting to us because
inflation is an exponential phenomenon and the mathematics of inflation
is provocative.

Consider first simple price inflation as measured by the purchase price Find?

of gasoline. Gasoline cost a nickel a gallon in 1933, while at the end of 2001
it cost $1.00 per gallon. We can calculate the annual price inflation rate for
gasoline with eq. (5.5):

λprice = ln(1.00/0.05)

68 yr
∼= 0.0440/yr, (5.40)

which corresponds to a price inflation rate of 4.40% per year. This price Predict?

inflation rate caused gasoline’s price at the pump to go up by a factor of 20
in 68 years.

As appealing as this simple calculation may be, it would be quite mis- Valid?

leading to say that the real price of gasoline went up twentyfold during the
time 1933–2001 because, while the nominal or apparent price of gasoline
was going up, the value of the dollar itself was going down. That is, inflation Improve?

affects not only the price of goods and services; it also affects the price of
money. During the 68 years included in the previous calculation, the value
of the dollar declined substantially, because a 1933-dollar and a 2001-dollar
are only nominally the same. If we assume that the dollar was losing its pur-
chasing power at only 2% per year, we could calculate the value of a single
dollar after t years, v(t ), from eq. (5.14) with λ$ = 0.02/yr:

v(t )

v(1933)
= e−λ$(t−1933) = e−0.02(t−1933). (5.41)

Thus, after 1, 10, and 68 years, the purchasing power or value of a 1933-
dollar would be $0.98, $0.82, and $0.26, respectively. So, after almost
70 years, the 2001-dollar has turned out to be worth little more than one-
quarter of the 1933-dollar!

However, an economist would view this differently. Recall from Use?

Section 5.5.1 that we noted that interest is the price of money bought in a
forward-looking transaction.Thus, we can rephrase the question about the
loss of value in the dollar into a purchasing question: How much would
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one have to pay in 1933 to have $1.00 available in 2001? That is a price
question answered simply by inverting eq. (5.41):

v(1933)

v(t )
= e+λ$(t−1933) = e+0.02(t−1933). (5.42)

So, repeating the calculation just done in this different form, a purchaser
would have to invest $0.98, $0.82, and $0.26, respectively, in order to have
$1.00 available to spend in the years 1934, 1943, and 2001. Equation (5.42)
thus can be said to represent the currency inflation rate.

Purchases can then be assessed either in terms of their current sales pricesPredict?

or in terms of inflation-adjusted dollars that support the calculation of a
real economic price that reflects changes in a currency’s purchasing power.
We would calculate that real price by subtracting the currency inflation
rate from the price inflation rate, that is,

λreal = λprice − λ$. (5.43)

Equation (5.43) then states that the real inflation rate over the time interval
1933–2001 is then, from the example data given above, λreal = 4.40 −
2.00 = 2.40%.

We do not mean to suggest that inflation is an easy problem because
it can be modeled with exponential mathematics. The foregoing analyses
have truly simplified the world of economics. Economics has become in
recent times a mathematically-oriented social science, as evidenced in part
by the sophisticated mathematical models that led to the prizes won by
most recent Nobel laureates. However, we do want to point out that the
cumulative effects of percentages in economics can be enormous. We haveImprove?

ignored some measures that have been developed to deal with inflation,
such as indexing, in which intended benefits are linked to a cost or price
index, such as the oft-cited CPI, the consumer price index. We have also com-
pletely ignored the effects of technical innovation, productivity changes,
new sources of energy, and many other factors that affect prices. Suffice it
to say that the economics and politics of exponential growth in monetary
affairs merit attention.

Problem 5.22. If gasoline cost $0.70/gallon in 1978, calculate and
compare the price inflation rates for the intervals
1933–1978 and 1978–2001.

Problem 5.23. If the cost of money exceeds the cost of goods, what
happens to λreal?

Problem 5.24. Speculate on the potential effects of λreal staying
negative for long periods of time.
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5.6 A Nonlinear Model of Population Growth

In Sections 5.1 and 5.2 we discussed population growth and projections Improve?

based on an elementary exponential model in which the population growth
rate is linearly or directly proportional to the current size of the population.
While we focused exclusively on growth rates, we could extend such linear
models to account for mortality or death rates simply by taking the growth
rate in eq. (5.1) as an effective or net rate that reflects the difference between
birth and death rates:

λeffective = λbirth − λdeath . (5.44)

In fact, we could also account for immigration and emigration in the How?

analysis of the population changes of a particular country by writing a
balance law much like eqs. (1.1) and (1.2) and accounting for the various
growth and decay rates as:

dN (t )

dt
= (λbirth − λdeath + λimmigration − λemigration)N (t ). (5.45)

However, it is certain that these models either grow or decay monotonically,
as simple exponentials, no matter how much we refine the details of these
linear growth and decay rates. The fundamental behavior is unchanged, so
that if we find the classic model inadequate, we need to change that model
in a different way.

We would like to expand the notion of exponential growth to incor- Why?

porate the idea of limited growth. There are many factors that do limit
growth and that modelers have tried to incorporate into population pro-
jections, including resources, both renewable and nonrenewable, energy,
capital (money), food supplies and distribution mechanisms, education,
and family planning. These models were very popular in the late 1970s,
but they were also both complicated and, by some, derided as unrealistic.
Much of the complexity of those models stemmed from the fact that many
of the growth variables are coupled, that is, the amount of capital formu-
lation may depend on pollution indices and on energy availability, as well
as on the instantaneous supply of money. Further, the right-hand side of
eq. (5.1) may be more complex because the relationships among single or
coupled variables may not be linear. How could that be?

It could be more complex if we were to think of the right-hand side of Assume?

eq. (5.1) as a Taylor series of a nonlinear function of N (t ) that is not yet
defined. Thus, we would start by replacing eq. (5.1) by a more general
formulation

dN (t )

dt
= f (N (t )), (5.46)
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which states that the rate of growth of a population N (t ) is equal to some
undefined function of the population, f (N (t )). Then, as we did for seriesHow?

representations of functions in Chapter 4, we could expand that function
into a Taylor series such that:

dN (t )

dt
= f (N (t )) = C0 + C1N (t )+ C2N 2(t )+ · · · . (5.47)

We would have to say first that C0 = 0 simply because the growth rate
of a population should be zero whenever the population size is zero. The
constant C1 must be our traditional growth rate, say λ1. Then there are
other constants, Ci , to evaluate, depending on how many terms we choose
to keep in this series representation of f (N (t )). How do we evaluate these
other constants?

We illustrate that by narrowing our focus to a particular quadraticPredict?

approximation in which eq. (5.47) takes the form:

dN (t )

dt
= λ1N (t )− λ2N 2(t ), (5.48)

wherein both of the parameters λ1 and λ2 are taken as positive: λ1, λ2 > 0.
In eq. (5.48) λ1 corresponds to the population’s uninhibited or net growth
rate. The meaning of λ2 emerges from noting that the rate of growth
vanishes when N (t ) = Nmax:

λ1Nmax − λ2N 2
max = 0,

or when
1

λ2
= Nmax

λ1
. (5.49)

Thus, the reciprocal of λ2 is the time needed for the maximum obtainable
population to be achieved by uninhibited growth. On the other hand, with
the aid of eq. (5.49), we can eliminate λ2 from that the nonlinear equation
and write it as:

dN (t )

dt
= λ1N (t )

(
1− N (t )

Nmax

)
. (5.50)

Equation (5.50) shows a modification of the elementary exponential
model where the growth rate is reduced by a factor representing the pro-
portion of unrealized population growth, that is, the population represented
by the difference between the maximum and instantaneous population
values:

dN (t )

dt
= λ1N (t )

(
Nmax − N (t )

Nmax

)
. (5.51)
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Figure 5.9 The logistic growth curve,
shown as a model of limited or bounded
growth as the population N (t ) moves from
an initial population value, N0, to its
maximum value, Nmax. It is plotted for the
values N0 = 1, Nmax = 10, and λ1 = 1.

There is a closed-form solution to eq. (5.51), despite the nonlinearity,
and it is (see Problem 5.28):

N (t ) = Nmax

1+
(

Nmax − N0

N0

)
e−λ1t

, (5.52)

where N (t = 0) = N0 is the initial population. We have plotted eq. (5.52),
known as the logistic growth curve, in Figure 5.9. Note that we can recover
both the initial value of the population at t = 0, as well as the maximum
value as time becomes indefinitely large.

We should observe again that we have not exhausted by any means the
spectrum of exponential growth models. Nevertheless, we have shown here
that models can lead to restricted or limited growth, which should provide
some interest in exploring different exponential models in greater detail.

Problem 5.25. Look up the U.S. birth, death, immigration and emig-
ration figures for the 10 decades of the 20th century
and use the balance equation (5.45) to calculate the
population changes that these rates predict.

Problem 5.26. How do the predictions of Problem 5.25 compare
with the actual U.S. census data?

Problem 5.27. What are the implications for the model of eq. (5.48)
of loosening the restriction that λ1, λ2 > 0?

Problem 5.28. Confirm by differentiating eq. (5.52) that it satisfies
eq. (5.51).
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5.7 A Coupled Model of Fighting Armies

We will now examine another exponential model wherein the complica-
tion of coupled populations is addressed. This model and the resulting
Lanchester’s law are named after Frederick William Lanchester (1868–
1946), a remarkable British aeronautical engineer who wrote serious works
on economics and fiscal policy, the theory of relativity, military strategy, as
well as aerodynamics. Lanchester wanted to describe the attrition of oppos-Why?

ing forces at war. Following this attrition required modeling the changes
Find?

of two army populations whose respective rates of attrition depend on the
size of the opposing army. Thus, there are two armies whose attrition orGiven?

decay rates are of interest, each of whose decay rates are proportional to
the size of the other force. We will identify the two army populations as
friendly forces, F(t ), and enemy forces, E(t ). Since the rate of change of
F(t ) depends on E(t ) and vice versa, we say that these variables are coupled,
or that we are solving a coupled problem. This model also has the nice fea-
ture, encapsulated in Lanchester’s law, that we can obtain a great deal of
information with a qualitative approach to the governing differential equa-
tions. We will use qualitative analyses to describe energy conservation and
dissipation for a vibrating pendulum in Sections 7.1.5 and 7.1.6 and for the
interaction of predators and prey in Section 7.6.

Consider that at some time, t , we have populations F(t ) of friendly
troops and E(t ) of enemy troops. Further, as we intended, let us assumeAssume?

that the rates of change of their respective populations are proportional to
the opposing combat force’s size:

dF(t )

dt
= −λE E(t ),

dE(t )

dt
= −λF F(t ).

(5.53)

The parameters, λE and λF , respectively, represent the effectiveness of theHow?

enemy and friendly forces, with interesting units: λE is the loss rate per
unit time of friendly troops per enemy troop. Thus, if λE is larger than λF ,
the enemy troops are more effective because more friendly troops are lost
per unit time and per unit of enemy forces.

Equation (5.53) also shows more explicitly the meaning of coupling in aUse?

set of equations. Simply put, dF/dt depends on E(t ), and dE/dt depends
on F(t ). That is why the pair of eqs. (5.53) are called coupled equations. It
can be shown that this coupled pair of first-order equations is equivalent
to a single second-order equation by, for example, simply treating the first
of eq. (5.53) as an equation that defines E(t ), and then substituting it into
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the second of eq. (5.53):

dE(t )

dt
= − 1

λE

dF 2(t )

dt 2
= −λF F(t ), (5.54a)

which is easily rearranged into the form:

dF 2(t )

dt 2
− λEλF F(t ) = 0. (5.54b)

Once this uncoupled second-order equation is solved for its single depend-
ent variable, F(t ), the second dependent variable, E(t ), can be found
without further integration (see Problem 5.29).

The formal solution to eqs. (5.53) or (5.54) can be found in terms of
hyperbolic sines and cosines, which are also exponential functions. We will
not do that here, although the form of eq. (5.54b) should be recalled when
we discuss the vibration of pendulums in Chapter 7. Instead, we will show How?

Predict?here how we can obtain a lot of information without formally solving the
governing equations. We do this by first multiplying the first of eq. (5.53)
by λF F(t ) and the second of eq. (5.53) by λE E(t ), after which we find:

λF F(t )
dF(t )

dt
= −λEλF F(t )E(t ),

λE E(t )
dE(t )

dt
= −λFλE E(t )F(t ).

(5.55)

Since the right-hand sides of eq. (5.55) are the same, it follows that:

λF F(t )
dF(t )

dt
= λE E(t )

dE(t )

dt
. (5.56)

It is easy to show that eq. (5.56) is equivalent to the statement that:

d

dt
(λF F 2(t )− λE E2(t )) = 0,

or
λF F 2(t )− λE E2(t ) = constant. (5.57)

The constant in eq. (5.57) must have the same value it had at the beginning
of the combat being modeled. With E0 = E(t = 0) and F0 = F(t = 0), it
follows that:

λF F 2(t )− λE E2(t ) = λF F 2
0 (t )− λE E2

0 (t ),

or

λF (F
2(t )− F 2

0 (t )) = λE(E
2(t )− E2

0 (t )). (5.58)
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Equation (5.58) is called Lanchester’s square law. We can use the square lawUse?

to calculate the final size of the winning army when the enemy forces have
been annihilated without solving any differential equations. Assume that
victory is declared when all of the enemy forces are gone from the scene. In
this case, Efinal = 0. The number of friendly troops remaining then follows
from eq. (5.58) as:

F 2
final(t ) = F 2

0 (t )−
λE

λF
E2

0 (t ). (5.59)

Thus, even in victory the number of (surviving) friendly troops is reduced
by an amount proportional to the square of the initial size of the enemy
force.

The dependence of the friendly and enemy force sizes on the respectiveValid?

squares has intriguing consequences. Suppose that two equally effective
armies oppose each other. This means λE = λF , and that Lanchester’s law
[eq. (5.58)] becomes:

F 2(t )− E2(t ) = F 2
0 (t )− E2

0 (t ). (5.60)

Suppose further that two combat scenarios were being considered by
military planners. In the first scenario, a friendly army of 50,000 soldiers
faces an enemy force of 40,000 and then meets a second enemy force of
30,000 soldiers. In the second scenario, the same friendly army meets an
enemy force of 70,000, that is, it meets the same number of enemy troops
assembled for a single fight. In the sequential scenario, the friendly army
prevails in the first of its two battles with a surviving forces of 30,000
because [(50,000)2− (40,000)2] = (30,000)2, which is just enough to force
a draw with the enemy in the second battle. If the armies meet in the
second scenario, however, the friendly forces lose by a significant margin
because (50,000)2 is less than (70,000)2. This clearly shows that strategy is
important, especially that well-known precept of divide and conquer !

Of course, all of the Lanchester results are predicated on the rate equa-Improve?

Verified? tions (5.53), an assumption that must be kept in mind when the model is
exercised. Suitably modified to include other effects (e.g., introducing rein-
forcements), the Lanchester model has modeled the outcomes of famous
battles such as Iwo Jima (see Problems 5.47 and 5.48).

Problem 5.29. Assuming that eq. (5.54b) can be solved for F(t ),
show that E(t ) can be determined without further
integration.

Problem 5.30. Confirm that eq. (5.57) does follow from eq. (5.55)
via eq. (5.56).
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Problem 5.31. Suppose you are given the solution for the enemy
population that satisfies eq. (5.53) as

E(t ) = E0 cosh αt −
√
λF

λE
F0 sinh αt ,

where α2 = λEλF . How much time does it take for
the enemy forces to be completely annihilated?

Problem 5.32. Would the strategy of divide and conquer work for a
“linear attrition law” that for equally effective armies
replaces eq. (5.57) with

F(t )− E(t ) = F0(t )− E0(t )?

5.8 Summary

We dealt with a wide variety of exponential behavior models in this chapter,
including population growth, radioactive decay, charging and discharging
of capacitors, inflation and interest, and armies at war. While some of the
behavior was about decay, it is the cases of exponential growth that really
draw our attention. We saw the importance of scale in presenting and
assessing various growth phenomena. We noted that decay effects can be
modified by external inputs, such as the charge in a capacitor responding to
an applied voltage. We also explored the nonlinear logistic growth model
and the coupled Lanchester square law.

It is worth noting that we have touched on some very timely issues. At
the same time, we have not “solved” any of these very real “problems.” But
we have shown that the models chosen can influence our projections and
perceptions of these problems, as well as the ways we might approach them
in the “real world”.
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5.10 Problems

5.33. Show that if it takes time, tc , to count a population, P(t ), that has a
growth rate of λ, the population will increase by an amount equal
to λtc P(t ).

5.34. (a) If the population counting rate is c , how long does it take to
count the population at time, t ?

(b) How much time does it take to count the increase in population
that occurred while it was being counted at time t ?

5.35. Find the actual world population figures for 1970, 1980, 1990, and
2000. Use these data to update the projections shown in Figures 5.1
and 5.2.
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5.36. Using the 2% growth rate, plot the world population from 1960 to
2060 with an ordinate scale of 10 billion people per 1.50 in. Does
this curve look like “reasonable” exponential growth?

5.37. The ordinate scales of Figures 5.1 and 5.2 are, respectively, 1.5 in =
100 billion people and 1.5 in= 3 million billion people. How much
paper is needed to plot the 1960 world population of 3 billion people
and the projected 2692 world population of 5.63×1015 people using
each of those scales?

5.38. Plot the growth of world population from a 1960 value of 3 billion
people at growth rates of 1, 2, and 3% per year through 2700 using
semi-logarithmic paper. What shapes are these curves? What are
their slopes and intercepts?

5.39. What is the time constant, comparable to that for an RC circuit, for
a population decaying at a rate per unit time λ?

5.40. How much should be set aside in 2002 in a savings account earning
5.5% per year to accumulate $1,000,000 by 2022? By 2042?

5.41. Suppose that there was a steady inflation rate of 3% per year, what
would the investments of Problem 5.40 have to be to accumulate
$1,000,000 in 2042 measured in 2002 dollars?

5.42. The noted (and recently deceased) historian Stephen Ambrose has
chronicled the growth of American railroads by listing the following
amounts of total track by decade: 726 mi (1834), 4311 (1844), 15,675
(1854), and 33,860 (1864). Determine:
(a) the decade-by-decade growth rate; and
(b) the growth rate for exponential growth across all the data given.

5.43. Verify by differentiation and substitution that the following solution
satisfies eqs. (5.53):

F(t ) = F0 cosh αt −
√
λE

λF
E0 sinh αt ,

E(t ) = E0 cosh αt −
√
λF

λE
F0 sinh αt .

5.44. Confirm that the solution verified in Problem 5.43 satisfies
Lanchester’s square law of eq. (5.58).

5.45. The initial strengths of two opposing armies are F0 = 10,000 and
E0 = 5000 troops, with equal loss rates of 0.1 per day. Who will win?
How long will the battle take? (Hint : See Problem 5.31.) How many
troops will the victor have when the enemy is vanquished? Graph
the army populations until the enemy is completely annihilated.

5.46. The initial strengths of two opposing armies are F0 = 10,000 and
E0 = 5000 troops, and λF = 0.1 per day. Who will win and with



150 Chapter 5 Exponential Growth and Decay

what remaining forces if λE = 0.2, 0.5, and 1.0 per day? What value
of λE would produce a draw?

5.47. The landmark World War II battle of Iwo Jima began with troop
sizes of F0 = 54,000 and E0 = 21,500 troops, with λF = 0.0106 per
day and λE = 0.0544 per day. Absent any reinforcements, how long
would this battle have lasted? How many troops would the victor
have when the loser’s forces were totally exhausted?

5.48. In order to end the fight for Iwo Jima in 28 days, how many troops
would the United States have had to have initially? How do the U.S.
losses in this scenario compare to those found in the scenario of
Problem 5.47?



6
Traffic Flow Models

People like to drive, especially in the United States. In fact, we can often
tell where people come from by how they refer to highways: people on
America’s east coast talk about taking the turnpike (or the ‘pike) or the
interstate, while on the west coast we get on the freeway or we take the
5 or the 101, referring to a particular highway by its number. In order
to design the roads and the cars that enable and facilitate such personal
transportation, we model both the behavior of individual cars with their
drivers in a (single) line of autos, and that of groups of cars in one or more
lanes of traffic. However, our concern is not with modeling the ergonomics
of operating a car. Rather, we focus on the interactions of autos on single
highway lanes, both individually and in dense lines.

6.1 Can We Really Make Sense of Freeway

Traffic?

No matter how we refer to traffic arteries, the flow of traffic on them is
modeled, analyzed, and predicted with traffic flow theory, which we now
detail at two levels. The macroscopic modeling of traffic assumes a suffi-
ciently large number of cars in a lane or on a road such that each stream
of autos can be treated as we would treat fluid flowing in a tube or stream.
Thus, to maintain the biological metaphor, traffic flow is treated as a flow
of a fluid field in an artery. Macroscopic models are expressed in terms of

151
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three gross or average variables for a whole line of traffic: the number of cars
passing a fixed point per unit of time, called the rate of flow ; the distance
covered per unit time, the speed of the traffic flow ; and the number of cars in
a traffic line or column of given length, which we identify as the traffic dens-
ity. The relationship between the speed and the density is embodied by mac-
roscopic modelers in a plot of these two variables called the fundamental
diagram. We also invoke the continuum hypothesis (viz. Section 4.7.2) to
confirm that it is appropriate to (mathematically) treat the traffic as a field.

The second level of traffic modeling, microscopic modeling, addresses
the interaction of individual cars in a line of traffic. Microscopic models
describe how an individual follower car responds to an individual leader
car by modeling its acceleration as a function of various perceived stimuli,
which might be the distance between the leader and follower cars, the rela-
tive speeds of the two cars, or the reaction time of the operator of the
follower car. Car-following models come in several varieties, and they can
be used to construct the speed-density curves that are the underpinning of
macroscopic modeling. Such speed-density plots, supported by data taken
from real traffic arteries, enable traffic experts to model and understand
road or freeway capacity as a function of traffic speed and density—even
if everyday drivers feel they do not fully “understand” what is happen-
ing around them. (The microscopic models are also used to support the
modeling of vehicular control, that is, to implement control strategies that
enable lines of traffic to maintain high flow rates at high speeds. However,
we will not delve into control theory and its applications here.)

We will start our brief overview of traffic modeling at the macroscopic
level, applying conservation principles for cars aggregated into a field (or
sufficiently large collection of cars) to define the fundamental diagram for
the flow of traffic on a highway populated with multiple vehicles. Then
we will examine how the continuum hypothesis influences our view of
individual cars (and drivers), as a guide to developing car-follower models
that model the interaction between a single car as its driver reacts to another
auto immediately ahead. These car-follower models are then used to derive
the speed-density relationships that allow us to put specific models and
numbers into the more general macroscopic traffic flow theory.

6.2 Macroscopic Traffic Flow Models

We start by asserting the validity of an analogy, namely, that the flow of aWhy?

stream of cars can be modeled as a field, much as we would model the flow
of a fluid. Thus, the collection of cars taking the 10 east out of Los Angeles
on any given evening is mathematically similar to the flow of blood in an
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artery or water in a home piping system. We want to relate the speed of Find?

a line of traffic to the amount of traffic in that line (or lane). We use three
variables to describe such traffic flows:

• the rate of flow, q(x , t ), measured in the number of cars per unit time;
• the density of the flow, ρ(x , t ), which is the number of vehicles per

unit length of road; and
• the speed of the flow, v(x , t ).

How are these three variables related?

6.2.1 Conservation of Cars

We can provide one answer to the foregoing question by applying the How?

conservation principle embodied in eqs. (1.1) and (1.2) to traffic moving
(in one direction) along an arbitrary stretch of a road. The conservation
principle states that the change in the number of cars within that stretch
of road results from the flow of traffic into and out of that road inter-
val, and from the generation or consumption of cars within the interval.
Notwithstanding the occasional pictures we have all seen of horrific mega- Assume?

accidents that occur during severe fogs or major storms, we will (safely)
assume that cars are neither generated nor consumed within that road
interval.

Thus, imagine a coordinate, x , along a particular stretch or interval
of road under consideration that has endpoints defined by x = x and
x = x +�x . The number of cars within this road interval of length �x is
given by �N (x , t ). Given our assumption that we will neither generate or
consume cars, the conservation principle of eq. (1.2) states that the change
in the number of cars within the interval �N (x , t ) during a time interval
�t is, in the limit, equal to the rate of traffic flow, q(x , t ):

q(x , t ) ≡ lim
�t→0

�N (x , t )

�t
. (6.1)

The change in the number of cars within the road interval, �N (x , t ), is
simply the difference between the number of cars going in and out of that
stretch of road at each end, N (x , t ) and N (x +�x , t ), respectively:

�N (x , t ) = N (x , t )− N (x +�x , t ), (6.2)

If �x denotes the length of road interval that is traveled during the time,
�t , the statement of conservation of cars (6.1) can also be written as

q(x , t ) = lim
�t→0

�N (x , t )

�x

(
�x

�t

)
, (6.3)
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where the fraction introduced in eq. (6.3) is the speed of the traffic, v(x , t ),
in the interval:

v(x , t ) =
(
�x

�t

)
. (6.4)

Equations (6.2) and (6.4) are now substituted into the conservation of cars
(6.3) to yield

q(x , t ) =
(

lim
�x→0

N (x , t )− N (x +�x , t )

�x

)
v(x , t ). (6.5)

Note that the limit in eq. (6.5) is now taken as�x→ 0, and that its dimen-
sions correspond to the number of vehicles per unit length of road, which
we define as the density of the traffic flow :

ρ(x , t ) ≡ lim
�x→0

N (x , t )− N (x +�x , t )

�x
. (6.6)

Thus, eq. (6.5) can be rewritten for the last time to cast the principle of
conservation of cars in the form

q(x , t ) = ρ(x , t ) v(x , t ). (6.7)

Beyond preserving the notion that “what goes in must go out,” what does
eq. (6.7) mean? First, we note that the equation is dimensionally consistent
and correct (see Problem 6.1). Second, we note that eq. (6.7) can be shown
to make “physical” sense by a rather simple argument derived by looking
at two different ways of counting the number of cars passing a (specified)
point on the road during a very small time interval.

One measure of the traffic count is that the number of cars,�N , passing
a point during a time interval, �t , is simply the product of the flow rate,
q, and the time interval: �N = q�t . The second measure count assumes
that during the same small interval of time a car moving with a speed, v ,
will cover a distance, �x = v�t . The number of vehicles passing through
that distance is found from another simple product: of density, ρ, times
distance: �N = ρ�x . Hence, equating the two measures of the number
of cars passing a point yields the result

q�t = ρ�x , (6.8)

which is clearly an averaged version of eq. (6.7) that accords well with this
elementary physical reasoning (see Problem 6.2).

We also observe that the single equation (6.7) is expressed in three vari-
ables: q, ρ, and v . Therefore, it is of very limited use in this form without
substantial further information. However, it is clear that traffic density, ρ,
and speed, v , are the two fundamental traffic variables because we can
determine the rate, q, at which traffic flows by inserting them into eq. (6.7).
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Further, if we could relate speed directly to density, i.e., v = v(ρ), then we
could write a direct relationship between the traffic flow rate, q, and the
density, ρ:

q(ρ) = ρ v(ρ). (6.9)

As we will see in Section 6.2.3, plots of traffic flow rate, q, against density, ρ,
are so widely used in modeling traffic flow that they are identified under
the rubric of the fundamental diagram of road traffic.

Speed-density relationships (e.g., v = v(ρ)) are clearly central to our
understanding of traffic flow, so we turn to them next.

Problem 6.1. Confirm that eq. (6.7) is dimensionally correct.
Problem 6.2. Explain which variables were averaged, and how, over

the intervals of distance (�x) and time (�t ) in the
heuristic derivation of eq. (6.8)?

6.2.2 Relating Traffic Speed to Traffic Density

Even inexperienced drivers would agree that traffic speed and traffic density
are related. Drivers speed up when traffic is sparse, and they slow down
(perhaps involuntarily!) to clog up arteries when traffic is thick. Thus, we Assume?

are tempted to postulate that there is a direct relationship between traffic
speed and traffic density:

v = v(ρ). (6.10)

Let us now reason a bit further about this relationship to determine any
conditions that need to be applied to any particular functional form, v(ρ),
that might be proposed.

Building on the intuition just mentioned, we expect that a driver will Assume?

drive fastest, vmax, when the density is at its smallest value, ρ→ 0. The
speed decreases as the density increases, which is a statement about the
slope of the v versus ρ curve. Finally, traffic grinds to a halt, v = 0, Assume?

at some maximum or jam density, ρjam, presumably when the traffic is
bumper-to-bumper. We can summarize these experience-born intuitions
in mathematical requirements on the function, v(ρ):

v(ρ = 0) = vmax, (6.11a)

dv

dρ
≤ 0, (6.11b)

v(ρ = ρjam) = 0. (6.11c)
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Figure 6.1 A generic schematic of the variation
of traffic velocity with density. It displays the
endpoints, [(0, vmax) and (ρmax, 0), respectively],
and shows that the slope is always
non-positive, dv /dρ < 0, which results from our
experience that traffic speed drops off as traffic
density increases.

We can also display these results graphically, in the generic curve shown in
Figure 6.1. Note that the precise shape of the curve is unknown; only the
endpoint values and the sign of the slope are specified at this point.

The elementary modeling assumptions just outlined do not exhaust all
of the possibilities, although experience suggests that eqs. (6.10) and (6.11)
adequately reflect the behavior of traffic that is accelerating or decele-
rating. Models behind traffic speed-density relations will reflect human
behavior—rather than mechanical laws—because they reflect how drivers
respond to stimuli. That is, drivers can respond to perceived distances
between cars, to relative speeds, to the perceived density further down the
road, and so on. In fact, speed-density relations such as eq. (6.10) are
found both from empirical data and from the very stuff of the modeling of
car-following interactions that we address in Section 6.3.

6.2.3 Relating Traffic Flow to Traffic Density: The

Fundamental Diagram

From the viewpoint of the traffic engineer who is designing a road and allWhy?

of its facilities (including entrance and exit ramps, traffic signs and signals,
toll booths, etc.), the most relevant variable is the capacity (or maximum
flow rate) that the road system must accommodate, as reflected in its traffic
flow rate, q(x , t ). For macroscopic models we can take the speed to beGiven?
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homogeneous, which means that it does not explicitly depend on the road
coordinate, x , or on time, t . Then, we can write v = v(ρ), anticipating as
in eq. (6.9), that traffic flow ultimately depends only on the density, ρ.

We can now extend our qualitative analysis of the speed-density rela-
tionship (of Section 6.2.2) to the relationship between the traffic flow rate
and the density. Thus, because a driver’s fastest speed, vmax, occurs when
the density is at its smallest, ρ = 0, eq. (6.9) tells us that q(ρ = 0) = 0,
that is, that the flow rate is zero. Similarly, when traffic slows to a halt at its
maximum density, v(ρjam) = 0, eq. (6.9) tells us once again that the traffic
flow rate is zero: q(ρjam) = ρjamv(ρjam) = 0. The traffic flow rate must be
positive for all values of the density (0 < ρ < ρjam), and must attain its
maximum value qmax somewhere in that interval. Further, the slope of the
traffic flow rate is given by (see Problem 6.3):

dq

dρ
= v(ρ)+ ρ dv

dρ
. (6.12)

The qualitative results just found are embodied in the generic curve shown
in Figure 6.2, which is called the fundamental diagram of traffic flow. As
with Figure 6.1, the precise shape of the curve is unknown: the endpoint
values are specified and the variation of the slope can be inferred (see
Problem 6.4).
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Figure 6.2 A generic schematic of the
variation of the traffic flow rate with density.
It displays the endpoints, [(0, 0) and
(ρmax, 0), respectively], and shows that the
slope is positive until the maximum flow
rate or capacity, qmax, is reached, and
negative thereafter.
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To make some of these qualitative ideas more specific, consider the
following linear speed-density relationship:

v(ρ) = vmax

(
1− ρ

ρjam

)
. (6.13)

This relationship clearly satisfies (see Problem 6.5) all of the conditions
required by eqs. (6.11a–c). Moreover, as the simplest (linear) mathematical
expression that satisfies these conditions, it is particularly attractive as a
“building block” for further modeling, provided that it adequately models
reality. When substituted into eq. (6.9), it produces a relationship for the
traffic flow rate as a function of density that is parabolic :

q(ρ) = vmax

(
ρ − ρ2

ρjam

)
. (6.14)

The maximum flow rate occurs when its slope vanishes:

dq(ρ)

dρ
= vmax

(
1− 2ρ

ρjam

)
= 0. (6.15)

Equation (6.15) shows that the maximum traffic flow rate under these
assumptions occurs at the mid-point of the fundamental diagram, when
ρ = ρjam/2, and that its value is

qmax = 1

4
ρjamvmax. (6.16)

So, is the linear speed-density relationship of eq. (6.13) just a nice
demonstration model, or does it have any real utility or validity in model-
ing traffic flow? As a matter of fact, it is useful. In studies conducted for the
Lincoln, Holland, and Queens-Midtown Tunnels leading into New York’s
Manhattan island, for example, the linear speed-density relationship has
been shown to be a very good approximation to the central (and dominant)
part of the speed-density data gathered empirically. Such a curve is shown in
Figure 6.3. We will return to this point in Section 6.3 because car-following
models are expressly used to derive speed-density relationships.

Problem 6.3. Demonstrate that eq. (6.12) is correct.
Problem 6.4. Confirm qualitatively that eq. (6.12) produces the

shape of the fundamental diagram of road traffic
shown in Figure 6.2.

Problem 6.5. Show that the relationship (6.13) satisfies the condi-
tions defined in eqs. (6.11a–c).
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Problem 6.6. Derive and sketch the fundamental diagram for the
speed-density relationship

v(ρ) = vmax

(
1−

(
ρ

ρjam

)2
)

.

Problem 6.7. Derive and sketch the fundamental diagram for the
speed-density relationship

v(ρ) = vmax

(
1−

(
ρ

ρjam

)m)
.
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Figure 6.3 Another generic view of the
variation of traffic velocity with density, based
on the results often obtained when data is
gathered for particular traffic systems. In
addition to displaying the endpoints, [(0, vmax),
(ρmax, 0)], and the non-positive (dv /dρ < 0)
slope behavior, it shows that a significant
portion of the curve can be modeled by a
linear speed-density relationship.

6.2.4 The Continuum Hypothesis in Macroscopic

Traffic Modeling

The macroscopic traffic flow analysis we have done so far has been predi-
cated on the proposition that we could treat a line of traffic in the same way
that we would model the flow of a fluid through an artery or tube, that is,
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as a field. This means that the traffic line contains enough cars that instead
of worrying about the speed of the ith car, vi(x , t ), we choose to deal with a
speed field in which every point along the x axis is assigned a unique speed
v(x , t ). Thus, we have replaced the line of discrete cars at coordinates,
x = xi , by an infinite sequence of points, each having a unique speed
expressed by the continuous function, v(x , t ). This is an application of the
continuum hypothesis that we discussed in Section 4.7.2. Taking advantage
of the continuum hypothesis allows us to deal with continuous fields (e.g.,
smooth curves) instead of discrete elements (e.g., histograms), which often
makes the mathematics of model building much nicer. However, it carries
drawbacks: in the present model, for example, we could not include cars
overtaking and passing each other because that would require some points
on the x axis to have two different speeds!

How many cars do we need for a macroscopic analysis? The answer
depends on how we characterize the number of cars. We saw in Section 6.2.1
that we could measure the number of cars in two ways. One way is to stand
at a fixed point and count the number of cars passing by during a fixed
time interval, thus finding the traffic flow rate, q(x , t ), with units of cars
per unit of time. The second way requires counting the number of cars in
a given length of road and so determining the traffic density, ρ(x , t ), with
units of cars per unit of distance. (As a practical matter, the density would
be determined from aerial photographs of a given length of road.) In both
instances we must ask whether our counting intervals are sufficiently long,
that is, have we taken enough time to measure the traffic flow or enough
distance to measure the density?

To measure the density, we must choose a length of road that is (1) not
so short that we too often see fractions of cars or intervals with no cars
at all, and (2) not so long that the meaningful fluctuations would simply
cancel out. For example, a spatial count over the length of Interstate 5
between Los Angeles and San Francisco—about 350 miles—would miss
both the buildup at cities along the way and the long stretches through
farm country with sparse amounts of traffic. Figure 6.4 shows a conceptual
sketch for just such a measurement, showing the variation of traffic density
with the length of the measurement interval. (Note how similar it is to
its cousin in Figure 4.9!) It illustrates the discontinuities arising from the
fluctuations when the measuring interval is too short, and it shows the
decline in the density when the measuring length becomes so long that
the meaningful variations disappear. The central portion shows a regime
where the local density is relatively constant. It is for this region that we
can model our traffic density with a continuous field ρ(x , t ), in much the
same way we replaced the speeds of individual cars with the continuous
speed field, v(x , t ).
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Figure 6.4 A conceptual plot of the variation
of traffic density, ρ, against the length of the
measuring interval. It shows that the central
portion of the curve defines a useful
approximation of the local traffic density that
is (1) preceded by a regime where the density
fluctuates too much because the measuring
interval is too short, and (2) followed by a
regime where the density progressively falls
off because the measuring interval is
too long.

A comparable situation obtains if the traffic flow rate, q(x , t ), is the
measurement of choice. Here it is the length of the time interval that must
be “just right.” Short intervals before and after the change of a traffic
light, say from red to green, would show no cars before and a sudden
burst after. Similarly, counting by days would almost certainly cover up the
peaks generated by morning and evening rush hours. Thus, again, there is a
balancing act that must be performed in order to get the time measurement
interval properly set.

To sum up, the continuum hypothesis enables us to deal with aver- How?

aged or gross variables of traffic speed, density, and flow rate that do
not pertain to individual cars or vehicles, but to the fields that repres-
ent them. And, these fields are good models, or good representations
of reality, if we have done our scaling properly in choosing the proper
measurement intervals, that is, if we have properly set the measurement
scales.
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Problem 6.8. Consider a road segment 0.5 mi long that is divided
into 10 equally-spaced intervals. There are 40 cars on
the road, spaced as shown below, where the density of
the dots represents the traffic density. Find a “good”
value for the local density at point A in terms of the
number of cars per mile, assuming for simplicity that
each car has zero length.

A∣∣∣ ∣∣∣
∣∣∣• •• •

∣∣∣ • •
∣∣∣••• •

∣∣∣ • • • •
∣∣∣• •••••

∣∣∣••• • ••
∣∣∣• • •

∣∣∣•• •••
∣∣∣•• •

∣∣∣ • ••
∣∣∣∣∣∣ 10

∣∣∣ 20
∣∣∣ 30

∣∣∣ 40
∣∣∣ 50

∣∣∣ 60
∣∣∣ 70

∣∣∣ 80
∣∣∣ 90

∣∣∣ 100
∣∣∣

6.3 Microscopic Traffic Models

We now turn from macroscopic models that use averaged variables to
microscopic models that look at individual cars. Our interest is in usingWhy?

the microscopic models to develop the traffic speed-density relations that
we need to do macroscopic evaluations of capacity, which we require if
we’re going to design highway systems. As we noted in Section 6.2.2, we areFind?

looking for models that describe how drivers respond to the stimuli of their
traffic situations. The driver will perceive a variety of stimuli, including
the distance between vehicles, their relative speed, and their perceived
relative acceleration. We thus seek psychological, not mechanical, models
in order to model human behavior. The driver’s response will depend on
the responder’s sensitivity to the given stimuli, as well as on the speed with
which the response is undertaken. Thus, some time delay should also be
incorporated into such models.

6.3.1 An Elementary, Linear Car-following Model

Imagine a line of cars traversing a given road, as shown in Figure 6.5. Each
car is identified by a discrete coordinate that varies in time, so that the
location of the nth car is given by xn(t ). We also assume that the line has aAssume?

reasonable value of local density and does not permit passing or overtaking.
Then the basic “equation” of car-following for such a single lane of trafficHow?

is the psychological one:

response= sensitivity • stimulus. (6.17)



6.3 Microscopic Traffic Models 163

d (t )Ln +1 Ln

x⋅n +1(t )

xn +1(t )

x⋅n(t )

xn(t )

Figure 6.5 The nomenclature for a line (or
lane) of cars on a highway of total length, LR .
Each car has the same length, L, and is
separated from its neighbors by a common
distance, d (t ). The discrete functions, xn+1(t )
and xn(t ), represent, respectively, the
coordinates of the follower and leader cars.

The response will generally be modeled as the acceleration of the (n+1)st
follower car, ẍn+1(t ), as it moves behind the nth leader car. The stimulus
will be modeled in terms of the coordinate of the follower car relative to the
leader car, which can in turn be written in terms of the traffic density, ρ.
The acceleration is then integrated to determine the speed of that car as Predict?

a function of the traffic density, which is the input we require for our
macroscopic modeling.

Consider a simple linear car-following model in which the driver of
the follower car responds to the speed of the leader car relative to the
follower car:

d2xn+1(t )

dt 2
= −Kp

(
dxn+1(t )

dt
− dxn(t )

dt

)
. (6.18)

The coefficient, Kp , introduced here is a sensitivity parameter that has
dimensions of per unit time. Note, that with Kp > 0, the follower car will
decelerate to avoid hitting the car in front if it is slowing down, relatively
speaking. We will discuss this in further detail later.

We can model the time it takes the following driver to respond to events
by building in a reaction time that slows the follower’s acceleration by the
delay time T :

d2xn+1(t + T )

dt 2
= −Kp

(
dxn+1(t )

dt
− dxn(t )

dt

)
. (6.19)

Assuming that the sensitivity parameter, Kp , is a constant, eq. (6.19) is a
linear ordinary differential equation with constant coefficients that can be
integrated once to yield

dxn+1(t + T )

dt
= −Kp(xn+1(t )− xn(t ))+ Cn+1, (6.20)
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where Cn+1 is the arbitrary constant, with dimensions of speed, that results
from the integration just performed. Note that eq. (6.20) clearly relates
the speed of the follower car to the distance maintained between the fol-
lower and leader cars. Thus, it is a natural precursor of the speed-density
relationship that we seek.

Let us further assume that all of the cars have the same length, L, and thatAssume?

the spacing between common points on any pair of cars (see Figure 6.5) is
given by d(t ):

d(t ) = xn(t )− L − xn+1(t ). (6.21)

It then follows that the number of cars, NR , found in a stretch of road of
length, LR , is

NR = LR

L + d(t )
, (6.22)

which means that the density of cars on that road is

ρ = LR

NR
= 1

L + d(t )
= 1

xn(t )− xn+1(t )
, (6.23)

where we have used the spacing defined in eq. (6.21) to obtain the final
form of eq. (6.23). Thus, we have in eq. (6.23) a relationship between the
(macroscopic) traffic density, ρ, and the (microscopic) coordinates of the
leader and follower cars.

There is an important point about the units of eq. (6.23) that should be
kept in mind. With particular reference to the units still used by American
traffic engineers, both car lengths and inter-vehicle distances are typically
measured in feet, while density is expressed in units of vehicles per mile.
Thus, for numerical calculations, eq. (6.23) should be written in consistent
numerical units:

ρ = 5280

L + d(t )

(
vehicles

mile

)
. (6.24)

Let us still further assume, for now at least, that the traffic flow is in aAssume?

steady state, by which we mean that all of the cars are traveling at the same
speed. Then

dxn+1(t + T )

dt
= dxn+1(t )

dt
≡ v . (6.25)

Equation (6.24) shows a relationship between the (macroscopic) speed, v ,
and the (microscopic) speeds of any of the follower cars. Additionally, for
this steady state, the arbitrary constant Cn+1 is the same for any adja-
cent pair of cars. Thus, we can now substitute eqs. (6.23) and (6.25) into
eq. (6.20) to find

v = Kp

ρ
+ C . (6.26)
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The constant, C , can be determined from the condition cited in eq. (6.11c),
namely, that the speed is zero when the density is at its maximum or jam
value. Hence it follows that

v = Kp

(
1

ρ
− 1

ρjam

)
. (6.27)

The speed-density relationship of eq. (6.27) is sketched in Figure 6.6.
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Figure 6.6 A schematic curve
illustrating the traffic speed-density
relationship [see eq. (6.27)]
corresponding to a linear car-following
model in which the driver responds to
the relative speed of the car ahead.

The curve shown in Figure 6.6 seems reasonable enough (see Valid?

Problem 6.10), except for the fact that it shows an infinite speed as the
density goes to zero, a result that hardly seems credible. This is an almost
classical modeling dilemma: we have a model that seems reasonable and
credible over a good portion of the relevant domain, but that crashes in
some region. Can this model be improved or fixed? It can be fixed, or Improve?

improved; it depends on what we want from this model.
Fixing the high (infinite at ρ = 0) speed at small values of the density is

straightforward enough. All we need do is stipulate that a maximum speed
applies for all values of density below some (specified) critical density. This
seems like a reasonable fix that roughly accords with our everyday driving
experience. This fix is shown in Figure 6.7 and in eqs. (6.28a–b):

v(ρ) =



vmax ρ < ρcrit

Kp

(
1

ρ
− 1

ρjam

)
ρ ≥ ρcrit

(6.28a)
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Figure 6.7 A schematic curve illustrating
the traffic speed-density relationship
[eqs. (6.28a–b)] corresponding to the fixed
linear car-following model in which the
driver responds to the relative speed of the
car ahead—except at small values of the
density, ρ < ρcrit, for which the maximum
speed has a fixed upper limit of v = vmax.

and

ρcrit =
(

vmax

Kp
+ 1

ρjam

)−1

. (6.28b)

The traffic flow rate corresponding to this fixed speed-density relationship
is found as:

q(ρ) =


ρvmax ρ < ρcrit

Kp

(
1− ρ

ρjam

)
ρ ≥ ρcrit

(6.29)

The traffic flow rate, pictured in Figure 6.8, increases linearly with density
(from zero), and reaches its maximum value, the capacity, when ρ = ρcrit:

qmax = q(ρcrit) = ρcritvmax = Kp

(
1− ρcrit

ρjam

)
. (6.30)

For density values ρ ≥ ρcrit, the traffic flow rate decreases linearly with
ρ from its maximum value at ρ = ρcrit until it vanishes altogether
at ρ = ρjam.

How good is this model? As luck would perhaps have it, having justVerified?

fixed a model that is incredible (literally!), we are still left with one that
does compare well with some available data. In Figures 6.9 and 6.10 we
show measurement data made in Orange County, California, on the I–405
freeway. It yields reasonable values of the jam (or maximum) density and,
as shown in Figure 6.10, the shape of the resulting traffic flow rate curve
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Figure 6.8 A schematic curve illustrating the
relationship between the traffic flow rate and the
density [eq. (6.29)] for the fixed linear car-following
model in which the driver responds to the relative
speed of the car ahead. Note that the maximum
traffic flow rate q = qmax occurs when ρ = ρcrit.
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Figure 6.9 Some traffic speed-density data measured for the
I–405 freeway in Orange County, California, plotted along with
corresponding results from the piecewise linear or triangular
car-following model [eq. (6.38)] (Recker, 2003). The
corresponding parameter values are Sf = 80 mph,
qcrit = 2300 cars/hr, and ρjam = 211 cars/mi.
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Figure 6.10 Some traffic flow rate data measured for the
I–405 freeway in Orange County, California, plotted along with
the piecewise linear or triangular car-following model
[eq. (6.35)] (Recker, 2003). The corresponding parameter
values are Sf = 80 mph, qcrit = 2300 cars/hr, and
ρjam = 211 cars/mi.

follows the data for traffic parameter values that are not uncommon on
California freeways, including speeds up to 80 mph and jam densities of
211 veh/mi/lane that correspond to vehicles stopped at 25 ft separation.

Another aspect of this model is worth noting. One of the heuristics or
rules of thumb offered by state Departments of Motor Vehicles (DMV) is
that drivers should maintain a distance behind the car immediately in front
that is equal to one car length, L (ft.), for each increment of 10 mph of the
car’s speed. Thus, the DMV heuristic would require that

d(t ) =
(

L

10

)
v . (6.31)

If eq. (6.31) is substituted into our previous, units-corrected defini-
tion of the traffic density (6.24), we immediately obtain a speed-density
relationship

ρ = 5280

L + (L/10)v
,

that can be recast in the form:

v = 5280(10)

L

(
1

ρ

)
− 10. (6.32)

Equation (6.32) bears an unmistakable resemblance to the result (6.27)
derived just above (see Problems 6.13–6.15).
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Problem 6.9. Derive eq. (6.21) from Figure 6.5.
Problem 6.10. Determine whether or not eq. (6.26) satisfies each of

the three conditions in eqs. (6.11a–c).
Problem 6.11. Derive the result presented in eq. (6.28b). Is it

dimensionally correct?
Problem 6.12. Confirm the traffic flow rate results shown in

eqs. (6.29).
Problem 6.13. Determine the values of the constants, Kp and ρjam,

that make eqs. (6.27) and (6.32) identical.
Problem 6.14. Why does the DMV model produce the same form

(and numbers) as the speed-sensitive car-following
model?

Problem 6.15. What is the physical interpretation of ρjam for the
DMV model?

6.3.2 An Alternate Derivation of the Same Model

Suppose we want to derive the above model using an empirical, yet Improve?

Assume?“mechanical” approach. We know that flow rate increases with density
until it reaches a critical value, and then it decreases to zero at the jam
density. Thus—without benefit of the car-following model (6.25) or the
data we have already seen in Figure 6.10!—we assume a priori that the
traffic flow rate will behave in a piecewise linear fashion, in the following
triangular traffic flow rate:

q(ρ) =



Aρ ρ < ρcrit

B

(
1− ρ − ρcrit

ρjam − ρcrit

)
ρ ≥ ρcrit

(6.33)

where the constants A and B are determined from the requirement that
q(ρ) be continuous at ρ = ρcrit, that is,

q(ρ = ρcrit) = qcrit. (6.34)

Thus, eq. (6.33) becomes

q(ρ) =




qcrit

(
ρ

ρcrit

)
ρ < ρcrit

qcrit

(
1− ρ − ρcrit

ρjam − ρcrit

)
ρ ≥ ρcrit

(6.35)
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The speed-density relationship corresponding to the traffic flow rate (6.35)
is then found by applying the relationship (6.9) between the traffic flow
rate and the speed, so that

v(ρ) =




qcrit

ρcrit
ρ < ρcrit

qcrit

ρcrit



ρjam

ρ
− 1

ρjam

ρcrit
− 1


 ρ ≥ ρcrit

(6.36)

While the speed-density relationship in eq. (6.36) does not have the nice,
linear properties of the speed-density of eq. (6.13), we have maintained the
corresponding piecewise linear flow-density relationship. Equations (6.35)
and (6.36) have the same form as, respectively, eqs. (6.29) and (6.28),
although they were derived by very different means!

One interesting version of the results in eq. (6.36) is their presentation
in terms of a parameter called the free-flow speed, Sf , which is the speed at
which a driver would travel if all alone on the road, that is, if the density
were zero. From the first of eq. (6.36) we find that

Sf = qcrit

ρcrit
, (6.37)

from which it follows that eqs. (6.36) now become:

v(ρ) = Sf




1 ρ < ρcrit

ρjam

ρ
− 1

ρjam

ρcrit
− 1


 ρ ≥ ρcrit

(6.38)

Equations (6.38) and (6.35), with parameter values of Sf = 80 mph,Verified?

qcrit = 2300 cars/hr, and ρjam = 211 cars/mi, are shown in Figures 6.9
and 6.10, together with data taken from the I–405 freeway measurements.
We see that the agreement is quite good over most of the range of density
for both the speed and the traffic flow.

6.3.3 Comments on Car-following Models

It is worth noting that the two models just presented were found in very dif-
ferent ways. The elementary and fixed car-following models of Section 6.3.1
were derived from a stimulus-response model that was re-worked into a
speed-density relationship, from which we then obtained the traffic flow
rate. The revised model presented in Section 6.3.2 was found by starting
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with traffic flow rate data and trying to create a model to match that data.
Indeed, we have not gone so far as to find a matching stimulus model for
the improved model. Does that matter?

The answer is a familiar one: it depends. If our principal goal is the one we
claimed earlier, that of modeling capacity, then it matters less which of the
two approaches we use as long as we can validate and verify the results. On
the other hand, in an emerging area of transportation engineering, efforts
are being made to model the control of vehicles, with the aim of trying
to maximize the flow of traffic by more effectively controlling how each
vehicle is driven. This area encompasses a number of exciting prospects
that are, unfortunately, beyond our present scope. Achieving results in the
latter case means that stimulus-response control modeling will be required,
while “only” good modeling of traffic speed and traffic flow rate is required
for capacity-based engineering to move forward.

6.4 Summary

This chapter has introduced some of the most fundamental ideas of traffic
modeling as they are applied in the engineering of traffic systems. We
described macroscopic models that predict the average variables of traffic
density and traffic flow rates because they are very important for calculating
the capacity of roads and highways. We then pointed out the role of scaling
and of the continuum hypothesis in moving from macroscopic models to
microscopic and in beneficially integrating the two. We introduced micro-
scopic models that predict how speed varies with driver sensitivities and
responses to various traffic stimuli because they provide a basis for obtain-
ing the gross traffic density and flow rates needed in macroscopic models.
Finally, we also noted in passing that the microscopic models are increas-
ingly used to investigate the control of individual vehicles, as well as lines
(or lanes) of vehicles.
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6.6 Problems

6.16. What is the meaning and physical significance of the statement,
∂q/∂x > 0, (i.e., that the macroscopic traffic flow rate, q(x , t ),
increases with the distance, x , along the line of traffic)?

6.17. If the average length of a car (in pre-Expedition days) is 5 m, what is
the density of traffic in a line when its cars are maintaining a distance
of two car lengths between themselves. What is the traffic flow if the
line is moving at 80 km/hr (50 mph)? (Hint : You may ignore the fact
that the data given ignores both AAA recommendations and your
own experience on a freeway or turnpike.)

6.18. (a) Assume that velocity depends linearly on density, such that
v(ρ) = a+ bρ. Determine the values of a and b in terms of the
maximum values of the speed and the density, assuming that
the assumptions of eqs. (6.11a–c) hold.

(b) How does the flow depend on the density?
6.19. (a) Sketch the fundamental diagram of road traffic for the model

developed in Problem 6.18 if a = 80 km/hr and b =
−105 m2/car·hr.

(b) Determine the values of the density and the speed when the flow
is a maximum.

(c) What is the capacity of the road being modeled?
6.20. Consider a flow-density relationship of the form q(ρ) = ρ(α−βρ).

The best fit (i.e., least squares) of this relationship to some real traffic
data occurred when α = 91.33 km/hr and β = 1.4 km2/car·hr.

(a) What is the maximum density?
(b) What is the maximum speed?
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(c) What is the capacity of the road?
(d) Identify the type of road being modeled and explain your

identification.
6.21. Find the speed of traffic on a line of traffic for which there are

three car lengths between the leader and follower cars. (Hint : Use
macroscopic traffic theory with a linear speed-density relation.)

6.22. Determine the capacity of the road described in Problem 6.21 if cars
are assumed to be 5 m long, vmax = 88.5 km/hr and ρmax = 0.22−1.

6.23. The data in the table shown below were obtained by recording the
indicated parameters along a busy stretch of highway.

(a) Sketch the fundamental diagram for this traffic flow.
(b) What is the maximum traffic flow?
(c) What are the density and speed at the maximum flow rate?

Speed (mph) Density (cars/mi)

42 44
40 49
37 53
35 58
32 64
28 67
26 69
23 74
20 80
19 85
18 90
17 95
16 101
15 106
14 112
13 120
12 128
11 139
10 151

9 166

6.24. Plot traffic speed against traffic density for the data given in
Problem 6.23. Draw an approximate curve through this data and
estimate the maximum values of the speed and the density on
this road.



7
Modeling Free Vibration

We now turn to modeling vibration, the behavior of something moving
back and forth, to and fro, usually in an evident rhythmic pattern. Vibration
not only occurs all around us, but within us as well, as noted in 1965 by a
well-known British mechanical engineer, R. E. D. Bishop:

After all, our hearts beat, our lungs oscillate, we shiver when we are cold, we sometimes
snore, we can hear and speak because our eardrums and our larynges vibrate. The
light waves which permit us to see entail vibration. We move by oscillating our legs.
We cannot even say ‘vibration’ properly without the tip of the tongue oscillating. And
the matter does not end there—far from it. Even the atoms of which we are constituted
vibrate.

Other vibratory phenomena that come to mind are pendulums, clocks,
conveyor belts, machines and engines, buildings subjected to a broad array
of moving forces (e.g., pedestrians, air conditioners, elevators, wind, earth-
quakes), as well as tides and seasons. Clearly, we could go on. But the more Why?

interesting questions for us are: Do these diverse instances of vibration
have anything in common? If so, what? How do we model their common
features?

We devote most of this chapter to modeling a well-known “golden oldie,”
the swinging or vibrating pendulum. It provides a familiar platform upon
which we can lay out a number of modeling strategies. Then we will provide
a few examples of freely vibrating phenomena. We will also illustrate how
the mathematics of free vibration can be used to model stability phenom-
ena. In Chapter 8 we will provide some more examples and then go on to
model forced vibration.

175
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7.1 The Freely-Vibrating Pendulum–I:

Formulating a Model

We will now model the free vibration of a pendulum, starting with someGiven?

experimental results and using dimensional analysis, some basic phys-
ics, and some basic mathematics (e.g., linearity, second-order differential
equations) to model that motion.

7.1.1 Some Experimental Results

We started by building some very simple pendulums in the laboratory,How?

each consisting of a lead-filled wooden ball suspended from a stand by an
ordinary piece of string. A basic schematic of the laboratory set-up is shown
in Figure 7.1. The balls were initially held at rest at some angle, θ0, and then
they were let go to swing back and forth until they all stopped moving. As
each pendulum swung, we measured its period of free vibration, the time T0

it takes to swing through two complete arcs (from θ = θ0 to θ = −θ0 and
back again). The periods of vibration were measured with photoelectric
cells that were placed at the lowest point on the pendulum arc (θ = 0) and
were in turn connected to digital counters operating with a gated pulse.
The counters were turned on by the first passing of the pendulum and then
off again at the second passing, thus providing a direct read of one-half of
the period T0.

Fixed point of pendulum (0,l )

String of length l

Mass (m) located at
coordinates (x, y )

x

y

Perigee
located
at (0, 0)

θ

Figure 7.1 The geometry of a planar
pendulum. Note that the origin of the
coordinate system is located at the
pendulum’s perigee, the lowest point of
its arc.
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Table 7.1 The dependence of the period, T0, of a freely-vibrating
pendulum on its initial amplitude of vibration, θ0. The mass is 390 gm
and the string length is 276 cm.

θ0(deg) θ0(rad) T0 measured (sec) (T0 measured)/(3.372)

8.34 0.1456 3.368 1.00
13.18 0.2300 3.368 1.00
18.17 0.3171 3.372 1.00
23.31 0.4068 3.372 1.00
28.71 0.5011 3.390 1.01
33.92 0.5920 3.400 1.01
39.99 0.6980 3.434 1.02
46.62 0.8137 3.462 1.03

The experiments were done with two different masses (237 gm and
390 gm), each of which was hung from strings of two different lengths
(276 cm and 226 cm). The experimental data thus obtained are shown in
Tables 7.1 and 7.2; note that each data point shown represents the average
of five measured values. Thus, the data presented result from a consistent,
repeatable experiment. The data in Table 7.1, for the larger mass (390 gm)
and the shorter string (276 cm), show how the period, T0, varies with dif-
ferent starting values of θ0. We see that the period varies with the initial
starting angle, θ0, but the dependence is very weak and exceeds 1% only
when θ0 ≥ 40◦.

Table 7.2 The dependence of the period, T0, of a
freely-vibrating pendulum on its length and on its
mass. The data show a marked change with length,
but virtually no change with mass.

m = 237 gm m = 390 gm

l = 226 cm 3.044 sec 3.058 sec
l = 276 cm 3.350 sec 3.372 sec

The data in Table 7.2 summarize the periods across the four possible
combinations of mass and length that were available for the pendulums
used in this experiment. This data suggest that the period varies very little,
if at all, with mass: increasing the mass by some 65% from 237 gm to 390 gm
changes the period by a fraction of 1%. On the other hand, increasing the
length by 22% from 226 cm to 276 cm increases the period by approxi-
mately 10%. Thus, the data suggest that the free motion of a vibrating
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pendulum is periodic, and that the period of vibration does not depend on
the pendulum’s mass, but that it does depend on the pendulum’s length.

Problem 7.1. Assume a hypothetical relationship, T0 = amb , for the
dependence of the period of a pendulum on its mass.
Determine the unknown parameters, a and b, using
the data in Table 7.2. (Hint : Logarithms may be useful
here.)

Problem 7.2. Assume a hypothetical relationship, T0 = cld , for the
dependence of the period of a pendulum on its length.
Determine the unknown parameters c and d using the
data in Table 7.2. (Hint : Logarithms may be useful
here.)

7.1.2 Dimensional Analysis

We will now apply some dimensional analysis results to formalize the results
we obtained in the laboratory. In Section 2.4.2 we used the Buckingham Pi
theorem to determine that the period of vibration, T0, of a pendulum was
related to its length, l , and the gravitational acceleration, g [see the first of
eq. (2.30)]:

T0 = �1

√
l

g
. (7.1)

Note that the pendulum’s period does not depend on mass, a result sup-Valid?

ported by the data in Table 7.2, and that the constant,�1 is dimensionless.
We can determine the value of �1 from the data given in Table 7.2. For
the pendulum of length l = 276 cm, one measured value of the period is
T0 = 3.372 sec, so that with g = 980 cm/sec/sec,

�1 = 3.372√
276/980

∼= 6.35. (7.2)

Is the number “6.35” in eq. (7.2) some new universal constant? Actually, no.
Rather, it is an approximation of another well-known constant: 2π ∼= 6.28.
Thus, substituting this judgment call about the constant into eq. (7.2) yields
the final result,

T0 = 2π

√
l

g
. (7.3)
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Table 7.3 Calculated values of
the period, T0, of a
freely-vibrating pendulum that
provide support for the
experimental data presented in
Table 7.2.

l (cm) T0 (sec)

226 3.02
276 3.33

We can use eq. (7.3) to predict values of the period to match the remaining Predict?

Verified?values displayed in Table 7.2, as shown in Table 7.3. The calculated pre-
dictions and the experimental data agree to within less than 1.5%. Thus,
it seems that we have a pretty good model—determined from dimen-
sional analysis and use of some experimental data—that works quite well
and predicts the remaining experimental data, including both the period’s
dependence on length and its independence of mass. We will confirm the
model (7.3) again before we’re done with the pendulum.

7.1.3 Equations of Motion

We formulate the problem by writing the mathematical expression of a How?

balance or conservation principle (see Section 1.3.3) from physics. The
principle is Newton’s second law: The time rate of change of momentum is
equal to the net force producing it; that momentum change is in the same
direction as the net force. Newton’s second law is both a balance principle
and a conservation principle: it reflects a balance of the forces acting on
a particle or system, and it also reflects the conservation of momentum.
Written as a balance principle (see Problems 7.3 and 7.4), Newton’s second
law in a plane is: ∑

Fx = m
d2x

dt 2
, (7.4a)

and ∑
Fy = m

d2y

dt 2
, (7.4b)

where x(t ) and y(t ) are the time-dependent coordinates of a mass, m, acted
on by net forces

∑
Fx and

∑
Fy , respectively.

We want to apply Newton’s second law, commonly referred to as equa-
tions of equilibrium, to the pendulum depicted in Figure 7.1. The pendulum
is simply a mass, m, attached to the end of a string of length, l . It swings in
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a plane from an attachment point with coordinates (0, l) so that the origin
of the coordinates coincides with the perigee or low point of the pendulum’s
arc. The coordinates (x , y) of the pendulum mass can be written in terms
of the string length and the angle θ between the string and the y-axis:

x(t ) = l sin θ(t ), (7.5a)

and
y(t ) = l(1− cos θ(t )), (7.5b)

In Figure 7.2 we show a free-body diagram (FBD) of the two forces that
act on the mass: the tension in the string, T , and the weight, mg , which
acts due to the pull of gravity. Then we can identify the net forces along
the coordinates from the FBD, so that eqs. (7.4) can then be written as
equations of motion:

m
d2x

dt 2
=

∑
Fx = −T sin θ , (7.6a)

and

m
d2y

dt 2
=

∑
Fy = T cos θ −mg . (7.6b)

x

y

mg

m

T

mg sin �
mg cos �

�

Figure 7.2 A free-body
diagram (FBD) of the oscillating
planar pendulum. It shows the
two forces acting on the
pendulum’s mass, m, the string
tension, T , and the weight, mg ,
and their components in the
radial and tangential directions.
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In principle, all we need to do now is integrate eqs. (7.6a–b) to find how
the pendulum’s coordinates vary with time, from which we can then find
out whatever else we might want to know about the pendulum. However,
life’s not that easy, for a number of reasons. First, we don’t know the tension
in the string, T , so that the right-hand sides of both of eqs. (7.6a–b) are
unknown. Second, since we have two equations with three unknowns— Improve?

x(t ), y(t ), T —we are prompted to wonder how Newton’s second law
would look if rewritten in radial (along the string) and tangential (to the
pendulum’s arc) coordinates. In fact, those equations are

∑
Fradial = ml

(
dθ

dt

)2

, (7.7a)

and ∑
Ftangential = ml

d2θ

dt 2
. (7.7b)

Equation (7.7a) clearly displays the familiar centripetal acceleration. If
we sum the forces in the FBD of Figure 7.2 in the radial and tangential
directions, we would find that

T = ml

(
dθ

dt

)2

+mg cos θ , (7.8a)

and

ml
d2θ

dt 2
+mg sin θ = 0. (7.8b)

Equations (7.8a–b) show two equations for two dependent variables,
the tension, T , and the angle, θ . Equation (7.8b) is a single equation with
a single unknown, θ , so it can in principle be solved on its own, which
thus determines the location of the mass [see also eqs. (7.5a–b)]. Then the
tension, T , can be obtained directly by substituting the newly-found θ into
eq. (7.8a). We also note that eqs. (7.8a–b) are equivalent to eqs. (7.6a–b):
both are representations of Newton’s second law, eqs. (7.8a–b) written
in radial and tangential coordinates (l , θ), eqs. (7.6a–b) in rectangular
coordinates (x , y).

We further note that eqs. (7.8a–b) are decidedly nonlinear because the
dependent variable θ(t ) or its derivatives have an exponent different than
1. This is most obvious in eq. (7.8a) because of the centripetal acceleration
(see Problem 7.5), but it is equally true of eq. (7.8b) because

sin θ = θ − θ
3

3! +
θ5

5! − · · · . (7.9)

As we noted in Section 1.3.4, the presence of such nonlinear terms means
that superposition, one of the most powerful weapons in the arsenal of
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mathematics, is no longer available. We will return to this point in greater
detail in Section 7.3.

Problem 7.3. Why do eqs. (7.4a–b) represent Newton’s second law
as a balance principle?

Problem 7.4. How would eqs. (7.4a–b) be written as a conservation
principle?

Problem 7.5. Identify and explain all of the nonlinearities in
eq. (7.8a).

7.1.4 More Dimensional Analysis

Are the dimensions of eqs. (7.8a–b) correct and consistent? Can we useValid?

dimensional information to further our understanding? In Table 7.4, we
show (again, see Table 2.2) the pendulum variables expressed in terms of
the fundamental dimensions of mass, length, and time. With this data, we
can confirm (see Problem 7.6) that each of the terms in eqs. (7.8a–b) has
the physical dimensions of force, or in terms of fundamentals, (M×L)/T2,
which is appropriate for an equation of equilibrium. Further, we have
satisfied the test that every stand-alone term in an equation has the same
dimensions.

We now introduce a scaling factor, ω0, that has, by definition, the dimen-
sions of 1/T. The scaling factor also allows us to introduce a dimensionless
time variable, τ , defined as

τ = ω0t . (7.10)

Table 7.4 The fundamental dimensions
of the six derived quantities chosen to
model the oscillating pendulum.

Derived Quantities Dimensions

Length (l) L
Gravitational acceleration (g ) L/T2

Mass (m) M
Period (T0) T
Angle (θ) 1
String tension (T ) (M× L)/T2
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Then the tangential equation of motion (7.8b) can be written as (see
Problem 7.7)

lω2
0

d2θ(τ )

dτ 2
+ g sin θ(τ ) = 0. (7.11)

Hence, if we choose the scaling factor, ω0, to be

ω0 =
√

g/l , (7.12)

we can write the tangential equation of motion (7.11) in a rather elegant
form that is completely dimensionless:

d2θ(τ )

dτ 2
+ sin θ(τ ) = 0. (7.13)

Note that the dimensions of the scaling factor are reciprocal to the dimen-
sions of the period of free vibration, T0, and that eqs. (7.3) and (7.12) can
be combined to eliminate the common radicand, thus yielding:

T0 = 2π

ω0
. (7.14)

Equation (7.14) strongly suggests that we should recognize that the scaling Use?

factor, ω0, is actually the circular frequency of the pendulum, that is, the
measure of the pendulum’s periodicity expressed in radians per unit of
time.

Now that we have confirmed dimensional consistency and cast at least
one of our equilibrium equations in an elegant, dimensionless form, can we
learn anything else? We can. We start by observing that | sin θ | ≤ 1. This
means that the acceleration term in eq. (7.11) must also exhibit similar
behavior: |d2θ/dτ 2| ≤ 1, which provides a time scale for the problem. To
demonstrate this, consider the function:

θ(τ ) = θ0 cos τ , (7.15)

for which it follows that

dθ(τ )

dτ
= −θ0 sin τ and

d2θ(τ )

dτ 2
= −θ0 cos τ . (7.16)

which means that θ(τ ) and all of its derivatives with respect to τ have the
same maximum amplitude θ0.

If we choose to make our independent variable, t , dimensionless as we
just did, are there any restrictions we need to place on its dimensionless
counterpart, τ ? No. Equations (7.10) and (7.12) tell us that

τ = tω0 = t

1/ω0
, (7.17)
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which can be seen as a “verbal” or “conceptual equation”:

τ = actual physical time

a constant with dimensions of time
. (7.18)

Equation (7.18) tells us that we get to choose how we make our equationsUse?

dimensionless by choosing “a constant with dimensions of time” to match
the problem of interest. If we are modeling something that takes years,
the “constant” should be expressed in years. Then, small values of the
dimensionless time, τ , would mean times of weeks, days, or even hours.
Large values of the dimensionless time, τ , would mean times of decades,
centuries, or even millennia.

Sometimes the “constant” is determined or dictated by the physics
of the problem being investigated. For example, for a pendulum that
is 1 m long, ω0=

√
g/l ∼= 3.13 sec−1, we would say that the system

has a characteristic time of about one-third of a second—implying that
the pendulum is moving rather fast. For a rather long pendulum, say
l = 98 m, ω0 =

√
g/l ∼= 0.31 sec−1 the system has a characteristic time of

about 3 sec.

Problem 7.6. Identify the fundamental dimensions of each free-
standing term in eqs. (7.8a–b) and confirm that each
has net dimensions of force.

Problem 7.7. Substitute the dimensionless variable of eq. (7.10) into
eq. (7.8b) to verify eq. (7.11).

7.1.5 Conserving Energy as the Pendulum Moves

We now turn to a qualitative analysis of the behavior of solutions to theWhy?

differential equations of motion (7.6) or (7.8). But we start not with the
differential equations themselves, but with considerations of energy rooted
in the basic physics. When the pendulum is swinging through its arc, it
possesses kinetic energy and potential energy. As we will see, each of these
energies may vary with position, but both are present and their sum will
be a constant.

The kinetic energy, KE , is found from a familiar calculation:

KE = 1

2
m(speed)2. (7.19)
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The speed can be calculated in the usual way by differentiating the
coordinates of mass [eqs. (7.5a–b)] with respect to time, to find that (see
Problem 7.8)

KE = 1

2
m

(
l
dθ(t )

dt

)2

= 1

2
mgl

(
dθ(τ )

dτ

)2

. (7.20)

The potential energy of the swinging mass, PE , is measured with respect
to a datum through the origin of the coordinates (x = 0, y = 0) in another
familiar calculation:

PE = mgy(t ) = mgl(1− cos θ(τ )). (7.21)

Then the total energy, E(τ ), is found by adding eqs. (7.20) and (7.21):

E(τ ) = KE + PE = mgl

[
1

2

(
dθ(τ )

dτ

)2

+ (1− cos θ(τ ))

]
. (7.22)

How does the total energy vary with time? A straightforward differenti-
ation shows that

dE(τ )

dτ
= mgl

[
d2θ(τ )

dτ 2
+ sin θ(τ )

] (
dθ(τ )

dτ

)
. (7.23)

Equation (7.23) is a remarkable result! The term in the brackets is identical
to the tangential equation of motion (7.8b). Thus, two lessons emerge.
First, we recover the equation of motion of a system by differentiating its
total energy. Second, if θ(t ) is such that the equation of motion is satisfied,
then the total energy is conserved :

dE(τ )

dτ
= 0 and E(τ ) = E0 = constant. (7.24)

Can we determine this constant value of energy, E0? We can by recog-
nizing that we imparted some energy to the pendulum when we let it start
swinging from a rest position θ0. Thus, the initial potential energy is, in
fact, the initial total energy:

PE(0) = mgy(0) = mgl(1− cos θ0) = E0. (7.25)
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Problem 7.8. What is the speed of the pendulum mass expressed in
polar coordinates? How does that relate to eq. (7.20)?

Problem 7.9. Can eq. (7.22) be simplified for small angles of
oscillation? If so, how?

Problem 7.10. How would eq. (7.23) appear after the simplifications
of Problem 7.9?

7.1.6 Dissipating Energy as the Pendulum Moves

Our discussion of the pendulum has thus far assumed it to be ideal in that
no energy was lost. We now extend our model to include the effects of theWhy?

damping forces that arise when motion is resisted by friction or air resist-
ance. Damping or friction forces are generally assumed to be the result ofHow?

viscous damping that is proportional to the speed of the object being ana-
lyzed (and slowed by the damping), with a constant of proportionality, c ,
called the damping coefficient. For a viscous damping force we have

Fdamping = −c(velocity), (7.26)

where c is a positive constant with dimensions of force per unit velocity or
M/T. The minus sign in eq. (7.26) reflects the fact that the viscous damping
slows or retards the pendulum motion by opposing it. For the swinging
pendulum, the retarding force would act tangentially, so that the friction
force would appear in a suitably modified version of the tangential equation
of motion (7.8b):

ml
d2θ

dt 2
+ cl

dθ

dt
+mg sin θ = 0. (7.27)

How does the inclusion of the damping force affect the energy of the
pendulum? The forms of the kinetic and potential energies are unchanged
by the damping force, so that the total energy can be written as before
[eq. (7.22)], except in terms of real time, t :

E(t ) = 1

2
ml2

(
dθ(t )

dt

)2

+mgl(1− cos θ(t )). (7.28)

The time rate of change of the energy is [again, much as before in eq. (7.23)]

dE(t )

dt
=

[
ml2 d2θ(t )

dt 2
+mgl sin θ(t )

] (
dθ(t )

dt

)
,
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which in view of eq. (7.27) can be cast as

dE(t )

dt
= −cl2

(
dθ(t )

dt

)2

. (7.29)

Equation (7.29) shows that the pendulum’s total energy steadily decreases
with time.

We can take this a step further with the following argument. The energy
of an ideal pendulum as it begins from rest is entirely potential energy, and
its energy is entirely kinetic when the pendulum swings through its perigee
(because the origin of our coordinate system is located at the perigee).
Thus, on average, the kinetic and potential energies are approximately the
same, even in the presence of all but the most severe damping. To the
extent this argument is reasonable, we can approximate the total energy of
the pendulum—whether damped or not—as twice the kinetic energy:

E(t ) ∼= ml2
(

dθ(t )

dt

)2

(7.30)

Now we can eliminate the term (dθ/dt )2 between eqs. (7.29) and (7.30) to
obtain a differential equation for the energy E(t ):

dE(t )

dt
= −(c/m)E(t ). (7.31)

Note that the dimensions of (c/m) are force per unit velocity per unit mass Verify?

or 1/T. Thus, eq. (7.31) is dimensionally consistent.
Equation (7.31) is also a first-order differential equation with constant

coefficients, like the models developed in Chapter 5. Thus, the solution to
eq. (7.31) is

E(t ) = E0e−(c/m)t . (7.32)

Equation (7.32) shows that the total energy decays exponentially from its Use?

initial maximum value, E0, imparted by the pendulum’s initial position.
The rate at which the energy decays depends on a characteristic decay time,
m/c . The characteristic decay time has the proper dimensions, and its
precise value (measured in seconds, days, or centuries) will depend on the
particular pendulum being modeled. However, we can calculate the energy
decay as a function of time measured as a multiple of the characteristic
decay time. Table 7.5 shows us that the energy of a damped pendulum is
halved in a time equal to 0.69(m/c)—which is a useful indicator of energy
decay time.

We note in closing this part of the discussion that we have already
learned a lot about the swinging pendulum—and we have determined
that information without knowing the specific form of θ(t ) and without
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Table 7.5 The decay of the total
energy of an oscillating pendulum
expressed in multiples of the
characteristic decay time, m/c .

Time Energy

t = 0 E(t) = E0

t = 0.10(m/c) E(t) = 0.905E0

t = 0.69(m/c) E(t) = 0.500E0

t = 1.00(m/c) E(t) = 0.368E0

t = 5.00(m/c) E(t) = 0.007E0

solving the differential equations of motion that describe the pendulum’s
arc. Note, too, that we have not had to distinguish between linear and
nonlinear models of the pendulum’s behavior, so that the results already
obtained—and the methods used to obtain them—are valid for a relatively
large class of problems. We will go on to solve the differential equations
for the linear model of the pendulum in Section 7.2 and for its nonlinear
model in Section 7.5.

7.2 The Freely-Vibrating Pendulum–II: The

Linear Model

In Section 7.3 we will come to know the linear model of the pendulum as
the ubiquitous spring-mass oscillator. But now we want to know: How doesWhy?

a nonlinear model become linear? What do the solutions to linear models
look like?

7.2.1 Linearizing the Nonlinear Model

We turn a nonlinear model into a linear model by the process of lineari-How?

zation in which magnitudes and behaviors are assumed to be sufficiently
small in some sense that their products can be neglected. This may not
always be possible, and it must be done carefully even when it is possible,
because some phenomena are so inherently nonlinear that they can never
be linearized. There are nonlinear terms in the pendulum’s radial and
tangential equations of motion (7.8), which we write here in terms of the
dimensionless time, τ , defined in eq. (7.10) and with the nonlinear terms
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underlined:

T = mg

[(
dθ(τ )

dτ

)2

+ cos θ(τ )

]
, (7.33a)

and
d2θ(τ )

dτ 2
+ sin θ(τ ) = 0. (7.33b)

Now let us assume that the angle of the pendulum can be written as

θ(τ ) = θ0f (τ ), (7.34)

where f (τ ) is a function whose absolute value is such that |f (τ )| ≤ 1. Then

θ0 = max |θ(τ )|. (7.35)

We can identify θ0 as the amplitude of the pendulum’s motion that
indicates the magnitude of the pendulum’s swings. We want to define
just how large that amplitude may be, whether it is small or large, which
means that we must provide a reference against which we can meaningfully
measure small and large. We do that by referring back to the Taylor series
for the trigonometric functions given in Section 4.1.2, now written in terms
of the amplitude θ0:

sin θ0 = θ0 − θ
3
0

3! +
θ5

0

5! −
θ7

0

7! + · · ·
∼= θ0 +O(θ3

0 ) (7.36a)

cos θ0 = 1− θ
2
0

2! +
θ4

0

4! −
θ6

0

6! + · · ·
∼= 1+O(θ2

0 ) (7.36b)

In writing these results we have again (see the last two paragraphs of Valid?

Section 4.1.2) assumed that the angle θ0, expressed in radians, is a num-
ber that is small compared to 1. In eqs. (7.36) we have also introduced the
order notation, O(θ2

0 ), that indicates the lowest exponent on the remaining,
unwritten terms in the series that represent the difference between a linear
approximation, the first term in each series, and the function being approx-
imated. The question of how many terms need to be retained in these series
is answered simply: What level of precision is required of the model we are
building? It is easy enough to show (see Problems 7.11–7.14) that we can
approximate the sine and cosine functions by their linear approximations
for angles |θ0| ≤ π/6 = 30◦ as follows:

sin θ0
∼= θ0 percent error ∼ 5% (7.37a)

cos θ0
∼= 1 percent error ∼ 15% (7.37b)
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With the approximation (7.37a), we can immediately linearize the
tangential equation of motion (7.33b):

d2θ(τ )

dτ 2
+ θ(τ ) = 0. (7.38)

A similar linearization of the cosine in the radial equation of motion (7.33a)
produces the result that

T = mg

[(
dθ(τ )

dτ

)2

+ 1

]
, (7.39)

which still retains a nonlinear term. However, in the light of eq. (7.34) and
the discussion of Section 7.1.4, it is easy enough to show (see Problem 7.15)
that the values of θ(τ ) and its derivatives with respect to τ are all of the same
order of magnitude or size. The underlined quadratic term in eq. (7.39) can
then be neglected compared to 1, so the linearized model of the pendulum
produces a constant tension:

T ∼= mg . (7.40)

We close this discussion of linearization by noting that notwithstanding
the argument just made about the derivatives of θ(τ ) with respect to τ , we
cannot assume that θ(t ) and its derivatives with respect to the real time,
t , are of the same order of magnitude. That assumption is valid only with
respect to the dimensionless forms discussed.

Problem 7.11. How many terms of the series (7.36a) are needed to
calculate sin θ0 to a precision of 1% for angles |θ0| ≤
π/6 = 30◦? To 2%? To 5%?

Problem 7.12. How many terms of the series (7.36b) are needed
to calculate cos θ0 to a precision of 1% for angles
|θ0| ≤ π/6 = 30◦? To 2%? To 5%?

Problem 7.13. Explain any differences between the answers to
Problems 7.11 and 7.12.

Problem 7.14. How does a computer produce values of the “trig”
and other transcendental functions?

Problem 7.15. Show (and explain) why the derivatives of eq. (7.34)
with respect to τ are all of the same magnitude or size.
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7.2.2 The Differential Equation md 2x /dt 2 + kx = 0

How do we determine the function θ(τ ) that satisfies and thus solves How?

eq. (7.38)? First, to be more general, let us return that equation to its
dimensional form,

ml
d2θ(t )

dt 2
+mgθ(t ) = 0. (7.41)

To be still more general, we write eq. (7.41) in the equivalent form (see
Problem 7.16) of

m
d2x(t )

dt 2
+ kx(t ) = 0, (7.42)

which is the classical equation for a simple spring-mass oscillator, which we
will begin to discuss in some detail in Section 7.3 and with great generality in
Chapter 8. In the meantime, we can safely refer to m as the (constant) mass
of the oscillator, k as its (constant) stiffness, and x(t ) as its displacement
(or movement or deflection). It is clear that if we can solve eq. (7.42) we
obtain a solution to eq. (7.38).

Equation (7.42) is a homogeneous, second-order, linear differential equa-
tion that has constant coefficients, k and m. Guided by the discussion of
Section 5.2.2, we assume a solution to eq. (7.42) in the form

x(t ) = Ceλt , (7.43)

which when substituted into eq. (7.42) leads to the characteristic equation
that defines the constant, λ,

mλ2 + k = 0. (7.44)

Equation (7.44) has two solutions,

λ1,2 = ±
√−1

√
k

m
≡ ±jω0, (7.45)

where we have now noted that j = √−1 and have redefined the scaling
factor, ω0, as

ω0 ≡
√

k

m
(7.46)

Since eq. (7.42) is of second order, we expect that it will have two
solutions, each corresponding to the two values of λ defined by eq. (7.45):

x(t ) = C1ejω0t + C2e−jω0t . (7.47)

These general forms of the homogeneous solutions are quite valid. How-
ever, guided by the “most remarkable formula” presented in Section 4.9,
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we can (see Problem 7.17) rewrite the solution (7.47) in terms of the
standard trigonometric functions:

x(t ) = B1 cosω0t + B2 sinω0t , (7.48)

where B1 and B2 are two arbitrary constants that are entirely equivalent to
the constants in eq. (7.47). It is also easily verified by direct substitution
(Problem 7.18) that eq. (7.48) is a solution to eq. (7.42).

Equation (7.48) is called the homogeneous solution of eq. (7.42) because it
solves a differential equation that has no forcing function on its right-hand
side. Equation (7.48) is also called the transient solution because it actuallyUse?

represents the initial conditions that initiate the pendulum’s motion. Thus,
if x(0) = x0 and dx(0)/dt = ẋ 0, it is easily shown (Problem 7.19) that

x(t ) = x0 cosω0t + ẋ 0

ω0
sinω0t , (7.49)

As we will further describe in the next section, the motion described by
eq. (7.49) is periodic and would go on indefinitely for an ideal pendulum
that experiences no damping. However, for a damped pendulum, this
initial motion will be damped out, which is why it is called the “transient
solution.”

Problem 7.16. What is the effective spring stiffness, k, for the
simple pendulum? Are its dimensions proper, for the
pendulum itself and as a stiffness?

Problem 7.17. Use “the most remarkable formula” in mathematics
to show how eq. (7.47) becomes eq. (7.48).

Problem 7.18. Substitute the solution (7.48) into eq. (7.42) and
confirm that it is a correct solution.

Problem 7.19. Determine the constants, B1 and B2, in eq. (7.48) for
the initial conditions x(0) = x0 and dx(0)/dt = ẋ 0.

7.2.3 The Linear Model

Returning now to the linear model of the pendulum, we can straightfor-Use?

wardly cast eq. (7.49) into the dimensionless notation of the pendulum
(see Problem 7.20):

θ(τ ) = θ0 cos τ + .
θ0 sin τ , (7.50)
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where we can now identify θ0 and
.
θ0 as, respectively, the initial location

and the initial speed with which the pendulum is set in motion. These
initial parameters are entirely independent, so that they can be specified
separately. Thus, to drop a pendulum from a fixed angle, θ0, but with no
initial speed, the transient solution would be

θ(τ ) = θ0 cos τ . (7.51)

On the other hand, to launch the pendulum from the origin, θ0 = 0, with
a specified initial speed,

.
θ0, the transient solution would take the form

θ(τ ) = .
θ0 sin τ . (7.52)

Since we are solving a linear problem, superposition applies (see
Section 1.3.4), and the general solution (7.50) is simply the sum of the
two solutions (7.51) and (7.52).

In Section 4.9 we noted that the elementary trigonometric functions are
periodic: the functions sin τ and cos τ have the same value when their
arguments are increased by 2π , that is,

cos(τ + 2π) = cos τ and sin(τ + 2π) = sin τ . (7.53)

In physical time t , then, the value of θ(t ) repeats at time intervals such that

t = 2πn

ω0
= nT0, n = 1, 2, 3, . . . . (7.54)

Hence, T0 is (again) the period of the pendulum motion and ω0 its cir-
cular frequency, measured in radians per unit time. We can also define a
frequency f0 with units of (time)−1 or hertz (Hz), named after a famous
acoustician, Heinrich Rudolf Hertz (1857–1894):

f0 = 1

T0
= ω0

2π
(7.55)

One last observation about the results just described: the period of the
vibrating pendulum, T0, depends only on the physical properties of the
pendulum and not at all on the amplitude of the oscillation. The uncoup-
ling of the amplitude from the period, like the applicability of the principle
of superposition, is another defining characteristic of linear models of
vibration.

Problem 7.20. Show how the solution (7.49) becomes the solu-
tion (7.50) for initial conditions θ(0) = θ0 and
dθ(0)/dt = .

θ0.
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7.3 The Spring-Mass Oscillator–I: Physical

Interpretations

We now explore some physical interpretations of the linear model justWhy?

How? developed. The more general form, eq. (7.42), is an equation of equilib-
rium, which means that its physical dimensions are of force or F = ML/T2.
Since x(t ) is the oscillator displacement and has the dimensions of length
or L, the stiffness, k, must have the dimensions of force per unit length
or F/L. Thus, the equation (7.42) represents a balance of an inertial force
with a spring force. Further, our everyday experience with springs con-
firms Hooke’s law, which states that a spring exerts a restoring force that
is directly proportional to the amount that it is stretched or compressed,
that is,

Fspring = kx(t ). (7.56)

Note that the sign of the spring force changes with the sign of the displace-
ment, so that extending a spring (x > 0) produces a positive, tensile force
that tends to return it to its original length, while compressing the spring
(x < 0) produces a negative, compressive force that also tends to restore
the spring to its original length.

How does this work for the pendulum? A slight rewriting of eq. (7.41)
shows that

m
d2θ(t )

dt 2
+

[
k = mg

l

]
θ(t ) = 0. (7.57)

Thus, we see that the pull of gravity acts just like a spring, exerting a larger
restoring force as the pendulum angle increases.

Another reflection of this behavior can be seen if we examine the energy
of the spring-mass oscillator. If we multiply eq. (7.42) by the oscillator
speed, dx(t )/dt , we find

[
m

d2x(t )

dt 2
+ kx(t )

]
dx(t )

dt
= 0. (7.58)

Now, both terms in eq. (7.58) are total derivatives. Therefore, we can
integrate this equation to obtain

1

2
m

(
dx(t )

dt

)2

+ 1

2
k(x(t ))2 = E0. (7.59)

Thus, by inverting the process by which we identified the pendulum’s total
energy in Section 7.1.5, we have here derived the energy of the spring-mass
oscillator and showed that it, too, is the sum of the kinetic and potential
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energies. Further, as we know from the pendulum and can easily demon-
strate (see Problems 7.21–7.23) with the solution (7.49), the energy moves
back and forth from being entirely kinetic energy when the pendulum is
at its perigee to a position when it is entirely potential energy, that is, at
its maximum amplitude. This means that each of the two elements in Predict?

Use?the spring-mass system acts as an energy-storage element : the spring stores
(and releases) potential energy, while the mass stores (and gives up) kinetic
energy.

Problem 7.21. Calculate the kinetic energy of a spring-mass oscil-
lator released from a rest position x(0) = x0 initially
and at time intervals, T0/4, T0/2, 3T0/4, and T0.

Problem 7.22. Calculate the potential energy of a spring-mass oscil-
lator released from a rest position x(0) = x0 initially
and at time intervals, T0/4, T0/2, 3T0/4, and T0.

Problem 7.23. What fractions of the total energy are the kin-
etic and potential energies at time intervals, T0/4,
T0/2, 3T0/4, and T0? (Hint : Use the results of
Problems 7.21 and 7.22!)

7.4 Stability of a Two-Mass Pendulum

In our brief review of the elementary transcendental functions (in
Section 4.9), we saw that trigonometric and hyperbolic functions are closely
related. The arithmetic difference between the two is traceable to the j
factor in the argument of the exponential function. Their behaviors dif-
fer as well, with the trigonometric functions showing bounded periodicity
and the hyperbolic functions showing exponential growth or decay. The Why?

change from periodic to exponential arithmetic behavior typically signals
a change in physical behavior from a stable, bounded configuration to
unstable, unbounded exponential growth. The transition from bounded
trigonometric behavior to unbounded exponential behavior occurs when
a model parameter passes through a critical value. We will illustrate this
transitional behavior for a two-mass pendulum.

Consider the vertically-arrayed dumbbell shown in Figure 7.3. If set
absolutely still in a perfectly vertical alignment, it conceivably could remain
in that precarious position. However, in the normal course of events, if
the dumbbell is let go and starts to swing, we would expect that its final
position—and its behavior in arriving at that position—will depend very
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Figure 7.3 A schematic of a
dumbbell, a two-mass
pendulum. Its initial state has a
mass, m1 on top, and a mass,
m2 on the bottom. The stability
of this state is dependent on the
relative magnitudes of the two
masses.

much on the relative sizes of the masses, m1 and m2. If m1<m2, we
would expect that the dumbbell would oscillate just like a simple pen-
dulum, around its present position. On the other hand, if m1>m2, we
would expect that the two-mass pendulum would swing downward until
the masses settled into an inverted position, with m2 at the top and m1 at
the bottom. Thus, this is a stability problem, with the operative questionPredict?

being: Is the configuration shown in Figure 7.3 a stable configuration?
To answer this question we must model the free vibration of the two-How?

mass pendulum.We can build that model by extending the elementary
pendulum model: First, we write the total energy for the dumbbell
and then we differentiate that total energy to derive the equation of
motion. Note that while there are two separate masses, only one degree
of freedom, the angle, θ(t ), is needed to specify the positions of both
masses. Thus, taking our cue from eq. (7.20), the kinetic energy for the
dumbbell is

KE2 = 1

2
(m1 +m2)

(
l
dθ(t )

dt

)2

. (7.60)
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The potential energy of the swinging mass, PE, is measured with respect
to a datum through the origin of the coordinates (x = 0, y = 0) in another
familiar calculation:

PE2 = m1gy1(t )−m2gy2(t ) = −(m1 −m2)gl(1− cos θ(t )). (7.61)

For a linear two-mass pendulum model, we can approximate the potential
energy as

PE2
∼= −1

2
(m1 −m2)gl(θ(t ))2. (7.62)

The total energy, E2(t ), is found by adding eqs. (7.60) and (7.62):

E2(t ) = 1

2
(m1 +m2)

(
l
dθ(t )

dt

)2

− 1

2
(m1 −m2)gl (θ(t ))2 . (7.63)

Then we can derive the equation of motion for the dumbbell by differ-
entiating eq. (7.63) with respect to time,

dE2(t )

dt
=

[
(m1 +m2)l

2 dθ2(t )

dt 2
− (m1 −m2)glθ(t )

] (
dθ(t )

dt

)
, (7.64)

from which it follows that

(m1 +m2)l
dθ2(t )

dt 2
− (m1 −m2)gθ(t ) = 0,

or
dθ2(t )

dt 2
+ (m2 −m1)

(m1 +m2)

(g

l

)
θ(t ) = 0. (7.65)

Equation (7.65) is the same homogeneous, second-order, linear dif-
ferential equation with constant coefficients that we solved before [i.e.,
eq. (7.42)] with the solution

θ(t ) = Ceλt , (7.66)

which leads to a characteristic equation for the constant, λ, that has two
solutions,

λ1,2 = ±j

√
(m2 −m1)

(m1 +m2)

(g

l

)
. (7.67)

Now the most interesting feature of eq. (7.67) is that the very nature of Verified?

the roots,λ1,2, changes according to the relative size of the two masses. For
the case m2 > m1, the roots are purely imaginary, so the dumbbell will
simply oscillate around its initial position (i.e., m1 at the top and m2 at the
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t

m2<m1

m2>m1

m2>>m1

m2=m1

� m2<<m1

Figure 7.4 A sketch of the solutions to the
linearized equations of motion of a dumbbell,
a two-mass pendulum. These solutions are
periodic when the initial configuration is
stable (m2 > m1) and are exponential when
the initial state is unstable (m2 < m1). The
case m2 =m1 is a critical point that defines
the border between the stable and unstable
states.

bottom). On the other hand, if m2 < m1, the roots (7.67) become two real
roots:

λ1,2 = ±j

√
−(m1 −m2)

(m1 +m2)

(g

l

)
= ∓

√
(m1 −m2)

(m1 +m2)

(g

l

)
. (7.68)

Equation (7.68) mean that the two homogeneous solutions for m2 < m1

are exponentials, one decaying to zero, the other growing without bound.
Thus, the case m2 < m1 represents an instance where the initial configur-
ation is unstable, a finding that accords with our intuition of what would
happen if we tried to stand a top-heavy dumbbell on its lighter end. Fig-
ure 7.4 shows a plot of schematic solutions for both real and imaginary
values of the roots, for both the periodic and exponential solutions. The
case m2 = m1 is a critical point that defines the border between a stable
initial configuration (m2 > m1) and an unstable initial state (m2 < m1).

Thus, we have seen here an instance where changes in the parameters
produce changes in the mathematical behavior of the model, which is a
signal that different physical behavior is to be expected. An often-askedUse?

question in engineering and the physical sciences is whether a system’s
parameters support its bounded oscillation about its equilibrium position,
or whether its instability is possible or even certain. We will see an instance
of the former in a nonlinear biological model in Section 7.6.
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7.5 The Freely-Vibrating Pendulum–III: The

Nonlinear Model

We now return to the classical single pendulum to illustrate one of the most Why?

elegant solutions in applied mathematics and to show how an approxima-
tion to the nonlinear results can be obtained with some of the series
introduced in Chapter 4. We begin with eq. (7.22) for the total energy of How?

the pendulum, while also noting that the energy is a constant (eq. (7.24))
for this conservative system:

1

2

(
dθ(τ )

dτ

)2

+ (1− cos θ(τ )) = E0

mgl
. (7.69)

Now for a pendulum released from the resting position, θ(0) = θ0, we can
determine (see Problem 7.24) the constant, E0, so that

(
dθ(τ )

dτ

)2

+ 2(1− cos θ(τ )) = 2(1− cos θ0). (7.70)

With the aid of a standard double-angle formula, we can rewrite
eq. (7.70) as (

dθ(τ )

dτ

)2

= 4 sin2 θ0

2
− 4 sin2 θ(τ )

2
. (7.71)

We now introduce a constant,

p ≡ sin
θ0

2
, (7.72)

and a change of variable to a new angle, φ,

sin
θ(τ )

2
≡ sin

θ0

2
sin φ = p sin φ, (7.73)

so that the energy equation (7.71) can be written as

(
dθ(τ )

dτ

)2

= 4p2 cos2 φ. (7.74)

Equation (7.74) does look neater and more elegant, but it has two dep-
endent variables, θ and φ. However, we can differentiate eq. (7.73) to
show that

1

2
cos

θ

2
dθ = p cosφ dφ,
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or

dθ = 2p
cosφ

cos θ2
dφ = 2p

cosφ√
1− p2 sin2 φ

dφ, (7.75)

which allows us to rewrite eq. (7.74) as

dτ = − dφ√
1− p2 sin2 φ

, (7.76)

with a minus sign [for the square root of eq. (7.74)] that arises because
θ(τ ) is measured positive counter-clockwise from the pendulum’s perigee.
Thus, for θ(0) = θ0 > 0, we have both dθ/dτ and dφ/dτ < 0.

Equation (7.76) can be formally integrated, but we must exercise care in
choosing the limits. The period of the nonlinear model, T̃0, differs from the
linear period, T0 = 2π/ω0. In terms of the dimensionless time variable,
τ = tω0, an integration over the first quarter of the period means that
0 ≤ τ ≤ (T̃0ω0/4 = π T̃0/2T0), and that π/2 ≤ φ ≤ 0:

T̃0

T0
= − 2

π

0∫
π/2

dφ√
1− p2 sin2 φ

= 2

π

π/2∫
0

dφ√
1− p2 sin2 φ

. (7.77)

The integral on the right-hand side of eq. (7.77) is an elliptic integral (of
the first kind), for which there are published tables of numerical values as a
function of p. Thus, the tabulated values of the integral make it possible to
calculate how the nonlinear period varies with p—which means how the
nonlinear period, T̃0, varies with the initial amplitude of the pendulum,
θ0 (recall the definition of p in eq. 7.73)). This confirms what we said
when we discussed the experimental data presented in Section 7.1.1: The
period of oscillation of the pendulum does depend on its initial position
or amplitude.

What happens with the linear model? The answer is that for very small
values of θ0, and thus of p, we make the same kind of approximation of the
radicand in eq. (7.77) that we did in eqs. (7.37a–b): We say 1−p2 sin2 φ ∼= 1,
in which case we recover the linear result, T̃0

∼= T0.
The reduction to the linear case also suggests that we apply the binomial

expansion (4.24) to the radicand in eq. (7.77) for small values of p:

T̃0

T0
= 2

π

π/2∫
0

dφ√
1− p2 sin2 φ

∼= 2

π

π/2∫
0

(1+ p2

2
sin2 φ)dφ, (7.78)
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which, after integration and another application of the small-angle
approximation, yields

T̃0

T0

∼= 1+ p2

4
= 1+ 1

4
sin2 θ0

2
∼= 1+ θ

2
0

16
. (7.79)

Once again we see here the dependence of the period on the amplitude,
and the results predicted from eq. (7.79) can be compared both to the exact
result given in eq. (7.77) and to the experimental data given in Table 7.1
(see Problems 7.25 and 7.26).

Problem 7.24. Determine the value of the constant energy, E0, in
eq. (7.69) for (a) a pendulum released from a resting
position θ(0) = θ0, and (b) for a pendulum given an
initial speed

.
θ0 while hanging vertically (θ(0) = 0).

Problem 7.25. Complete the integration of the last form of eq. (7.78)
and confirm the first equality in eq. (7.79).

Problem 7.26. Use tabulated values of the elliptical integral of the
first kind (eq. (7.77)) to determine the values of T̃0/T0

for the values of θ0 used in Table 7.1.
Problem 7.27. Compare and contrast the values found in the

last column of Table 7.1 with the results found in
Problem 7.26.

7.6 Modeling the Population Growth of

Coupled Species

In Section 5.6 we introduced the logistic growth model that shows how, in a
nonlinear fashion, the exponential growth of a single population or species
can be bounded. What happens if there are two species that interact with Why?

each other? The Lotka-Volterra model of population growth provides an
answer to this question, and in so doing it uses many of the modeling ideas
developed above for the pendulum. The two-species model is of particular
interest to biologists, with one species typically playing host to the second,
parasitic population.

The bounding effect of the single-population logistic model is produced How?

by the inclusion of the term −λ2N 2 in the population balance equation
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(see eqs. (5.48) and (5.50)). This term describes the inhibition of the popu-
lation’s growth. We start with two populations, the host (or prey) H (t )Assume?

and the parasite (or predator) P(t ), and we assume that the growth of each
population is inhibited by the size of the other population. Thus, in the
place of eq. (5.50) for a single population, we start with

dH (t )

dt
= λHH (t )

(
1− P(t )

Pe

)
, (7.80a)

and

dP(t )

dt
= −λPP(t )

(
1− H (t )

He

)
. (7.80b)

The positive constants, λH and λP, represent the uninhibited growth and
decay rates, respectively, of the host and parasite populations, and each
has physical dimensions of (time)−1. The population values, He and Pe,
correspond to the equilibrium values of the two populations, the point at
which the population rates, dH/dt and dP/dt , both vanish and the two
populations are in static equilibrium with each other.

Equation (7.80a) shows that the parasite population reduces the growthVerified?

rate of the host population, which is what parasites or predators do.
On the other hand, the presence of the hosts in eq. (7.80b) slows the
decline of the parasite population (for H (t )<He), since there are fewer
sources of sustenance when there are fewer hosts or prey. Thus, eqs.
(7.80a–b)—which are variously known as the Lotka-Volterra equations
or the predator-prey or parasite-host equations—do seem to be intuitively
correct.

Further, while eqs. (7.80) resemble the single-population logistical
model (5.50), there is one interesting and important distinction. While
the single-population model (5.50) incorporated a maximum population
Nmax, the predator-prey model refers to equilibrium populations that
may be exceeded, which means that there could be a change in the arith-
metic signs of the right-hand sides of eqs. (7.80a–b). For example, when
H (t ) > He, the parasite decay rate turns into a growth rate. This suggests
that the population sizes might oscillate or vibrate about their equilibrium
sizes.

Equations (7.80) are coupled, nonlinear, ordinary differential equations.
They are coupled because the dependent variables, H (t ) and P(t ), appear
in both equations, and nonlinear because of the products of H (t ) and
P(t ). No explicit solutions for H (t ) and P(t ) are known to exist for these
nonlinear equations. However, as with the pendulum, we can use other
means to extract a great deal of information.
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7.6.1 Qualitative Solution for the Nonlinear Model

While we cannot explicitly integrate eqs. (7.80a–b), we can divide one by How?

the other and obtain a form that is independent of the independent variable
t :

dH

dP
= −λH

λP

(1− P/Pe)H

(1−H/He)P
. (7.81)

If the fractions in eq. (7.81) are cleared and the populations are rendered
dimensionless with respect to their equilibrium populations, we find

1

λH

(
1

H/He
− 1

)
d(H/He)+ 1

λH

(
1

P/Pe
− 1

)
d(P/Pe) = 0. (7.82)

Equation (7.82) can be straightforwardly integrated to yield

1

λH

(
ln

H

He
− H

He

)
+ 1

λP

(
ln

P

Pe
− P

Pe

)
= constant. (7.83)

When plotted on the set of axes comprising the (H , P) space, eq. (7.83)
represents a family of closed curves “centered” around the equilibrium
point (He, Pe), as shown in Figure 7.5. Each member of the family of curves
corresponds to a different value of the constant in eq. (7.83), with the area
enclosed by the curve increasing with the value of the constant. We also

0 20 40 60 80 100

P

H0

20

30

Pe = 10

He= 25

Figure 7.5 Three curves that illustrate the family of
curves represented by eq. (7.83). Here λH = 1.00 per
unit time, λP = 0.50 per unit time, Pe = 10 and
He = 25. Note the equilibrium point, as well as the
horizontal and vertical flat spots discussed
previously, as well as the elliptical nature of the
curves closest to the equilibrium point (Pielou,
1969).
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note flat spots at abscissa values of H =He that correspond to the vanishing
of the slope dP/dH (or where dP/dt = 0 in eq. (7.80b)). Similarly, we note
vertical tangents (“vertical flat spots”) at ordinate values of P = Pe that
correspond to the slope dP/dH becoming infinite (or where dH/dt = 0
in eq. (7.80a)). More importantly, for given values of the constant, we can
trace the magnitudes of the two populations and can thus examine how
predator and prey or parasite and host interact.

7.6.2 Oscillatory Solution for the Linearized Model

A further examination of the curves in Figure 7.5 also shows that thoseHow?

nearest the equilibrium point are nearly elliptical in shape. Thus, let us
write the values of H (t ) and P(t ) in the forms

H

He
= 1+ h

He
and

P

Pe
= 1+ p

Pe
. (7.84)

Let us further assume that the values of h(t ) and p(t ) are small comparedAssume?

to their respective equilibrium values of the populations:

h

He
� 1 and

p

Pe
� 1. (7.85)

Equations (7.84) and (7.85) provide a basis for generating binomial expan-
sions of the natural logarithms in eq. (7.83). If that’s done, the result is that
to O(h, p)3, eq. (7.83) becomes (see Problem 7.28):

1

λH

(
h

He

)2

+ 1

λP

(
p

Pe

)2

= constant. (7.86)

Equation (7.86) is clearly that of an ellipse and so confirms the observation
made above about the shapes of the closed curves near equilibrium.

What happens when we substitute eq. (7.84) into our original model
equations (7.80a–b)? We would find that

dh(t )

dt
= −λHHe

(
1+ h(t )

He

) (
p(t )

Pe

)
, (7.87a)

and
dp(t )

dt
= λPPe

(
1+ p(t )

Pe

) (
h(t )

He

)
. (7.87b)

If we now linearize eqs. (7.87a–b) to keep only linear terms on their right-
hand sides, we get

dh(t )

dt
∼= −λHHe

(
p(t )

Pe

)
, (7.88a)
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and
dp(t )

dt
∼= λPPe

(
h(t )

He

)
. (7.88b)

We can now eliminate either of the functions h(t ) or p(t ) between
eqs. (7.88a–b) to show that they each satisfy the same equation (see
Problems 7.29 and 7.30):

d2h(t )

dt 2
+ λHλPh(t ) = 0, (7.89a)

and
d2p(t )

dt 2
+ λHλPp(t ) = 0. (7.89b)

Equations (7.89a–b) are the equations of simple harmonic oscillators!
Thus, h(t ) or p(t ) represent small oscillations about the equilibrium posi-
tion, a stable result. In fact, it is not hard to show (see Problems 7.31–7.33)
that a solution to eqs. (7.88) or (7.89) is

p(t ) = p0 cos
√
λHλPt

h(t ) = −p0

√
λH

λP

(
He

Pe

)
sin

√
λHλPt .

(7.90)

where p0 is a constant that will be determined by the initial conditions.
In terms of the original host and parasite populations, the solution (7.90)
appears as

P(t ) = Pe

(
1+ p0

Pe
cos

√
λHλPt

)

H (t ) = He

(
1− p0

Pe

√
λH

λP
sin

√
λHλPt

)
.

(7.91)

This result makes explicit the oscillation of the host and parasite popula- Verified?

tions around the equilibrium point. Moreover, the oscillations for both host
and parasite occur at exactly the same natural frequency, T0 = 2π/

√
λHλP.

It is worth noting that a potential instability phenomenon is embedded Predict?

Use?in the solutions (7.90) and (7.91). Recall that the uninhibited growth and
decay rates, λH and λP, were assumed to be positive constants. If one
of them were negative, that is, if the host population was declining or
the parasite population growing, the outcome would be far different (see
Problems 7.34 and 35).

We close this discussion by noting that we have gained a great deal
of information about host-parasite population systems without having
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obtained explicit solutions. We used both energy and small perturba-
tion formulations to derive considerable qualitative understanding of the
behavior of prey and predator. These qualitative approaches allowed us to
identify the equilibrium point, the family of closed-curve solutions, the
elliptical shapes of those curves in the neighborhood of equilibrium, and
the periodic vibration of the two populations about equilibrium.

Problem 7.28. Use eqs. (7.84) and (7.85) to generate binomial
expansions of the natural logarithms in eq. (7.83)
and to confirm eq. (7.86) to O(h, p)3.

Problem 7.29. Substitute p(t ) from eq. (7.88a) into eq. (7.88b) to
obtain eq. (7.89a).

Problem 7.30. Substitute h(t ) from eq. (7.88b) into eq. (7.88a) to
obtain eq. (7.89b).

Problem 7.31. Guided by the general solution (7.48), determine the
solutions to eqs. (7.88) or (7.89) that satisfy initial
conditions p(0) = p0 and dp(0)/dt = 0.

Problem 7.32. What initial conditions are satisfied by h(t ) in the
solution of Problem 7.31? Could they have been
specified differently or separately?

Problem 7.33. What are the initial values of the populations H (t )
and P(t ) corresponding to the solution (7.90)?

Problem 7.34. What does it mean for the rate λP to become a
negative constant?

Problem 7.35. Show how the solution (7.90) changes if λP is a
negative constant.

7.7 Summary

In this chapter we have used the classical pendulum to show a mathematical
model was derived, how it was grounded in and verified against experi-
mental results, and how we could obtain qualitative information about its
behavior. We also demonstrated the behavior of linear oscillators in several
domains, and drew some distinctions between the behaviors exhibited by
linear and nonlinear models. In so doing, we used concepts of linearity,
dimensional consistency, scaling, and some basic ideas of second-order
differential equations.

In terms of the behavior of the pendulum itself, we have shown how
the period of the linear model depends only on the pendulum’s properties
and not on its amplitude of vibration, as is the case for nonlinear models
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wherein the amplitude is large. We also developed an elegant exact solution
for the period of a pendulum and related it to the linear model. We also
showed, for both the two-mass pendulum and a predator-prey population
system, how the period of the vibrating system is sensitive to properties of
that system—especially for the two-mass pendulum, for which instability
occurs for certain combinations of masses.
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7.9 Problems

7.36. Use eq. (7.79) to determine the maximum angle, θ0, such that
the ratio, T̃0/T0, does not exceed 1.005.

7.37. (a) Determine which variables affect the period of free vibration
of the conical pendulum shown below from the accompanying
table of data.

(b) Determine which variables affect the period of free vibration of
the conical pendulum shown below using dimensional analysis.

Period of Revolution (sec)

θ m l1= 1 m l2= 3 m

θ1 m1 2.09 2.09 2.10 3.45 3.40 3.48
m2 2.07 2.08 2.08 3.46 3.44 3.44

θ2 m1 1.95 1.98 1.94 3.37 3.40 3.38
m2 1.96 1.93 1.95 3.36 3.38 3.35

θ3 m1 1.87 1.87 1.88 3.24 3.29 3.27
m2 1.86 1.85 1.87 3.22 3.25 3.21

m

� �

R
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7.38. Confirm the answer to Problem 7.37 (b) by deriving the equations
of motion for a conical pendulum.

7.39. A uniform rod or stick is supported by and swings from a pivot at
one end. The mass of this swinging rod is distributed over its length
(unlike that of the classical pendulum introduced in Section 7.1).
Use dimensional analysis to determine how the period of this
pendulum depends on its mass per unit length, m, its length, l ,
and the gravitational constant, g .

7.40. Determine the period of the uniform rod or stick of Problem 7.39
by deriving its linearized (small angle) equation of motion. (Hints:
Use Newton’s laws of rotational motion, which then provide an ana-
logy to the simple pendulum. The second moment of the rotational
inertia is given as I = ml2/3.)

7.41. Show that the total energy of the uniform rod or stick of
Problem 7.40 is conserved. (Hints: The kinetic energy is given as
I (dθ/dt )2/2. The potential energy is the pendulum’s weight multi-
plied by the height of its mass center with respect to an appropriate
datum.)

7.42. (a) Determine the rate at which energy is dissipated for a damped
planar pendulum when the damping force is proportional to
the square of the pendulum’s speed.

(b) Confirm that the answer to part (a) is dimensionally correct.
7.43. (a) Write the equation for the total energy of an undamped linear

spring-mass system in terms of its maximum displacement, A,
and the spring stiffness, k.

(b) Confirm that the answer to part (a) is dimensionally correct.
7.44. Kepler’s third law of planetary motion can be written as an equation

for the square of a planet’s period of motion around the sun,

T 2 = 4π2a3

GMs
,

where a is the semi-major axis of the elliptical planetary orbit, Ms

is the mass of the sun, and G is the universal gravitational con-
stant. Further, Newton’s first law states that the force of gravitation
between the sun and a planet can be written as

F = GMs(mass of planet)

(distance from planet to sun)2 .

(a) Starting with this form of Kepler’s third law, find an equation
for the frequency in the form ω = ω(a, G, Ms).

(b) Determine the appropriate approximation of Newton’s gravita-
tional law to obtain Kepler’s third law.
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7.45. Explain whether or not energy is conserved in planetary motion.
(Hint : The gravitational potential energy is GMs(mass of
planet)/(distance from planet to sun).)

7.46. Show from eq. (7.8b) that the mass of a simple pendulum attains its
maximum speed when θ = 0◦. Is this physically reasonable?

7.47. Show that the result just obtained in Problem 7.46 is valid for both
the linear and nonlinear models of the planar pendulum.

7.48. Would you expect to see energy conserved in laboratory experiments
with pendulums? If not, how would the dissipation of energy make
itself known?



8
Applying Vibration Models

As we noted in Chapter 7, vibration is omnipresent in our lives, both in
people-made and living objects and devices. Vibration is also complex.
For example, sound is modeled as a sum of harmonics, of vibrations with
different periods or natural frequencies. Certainly buildings and cars and
airplanes and dentists’ drills vibrate in complex, multi-modal ways as well,
with a lot of modes having different frequencies and different amplitudes.
Given that life seems so complex, is it worth doing elementary vibration
modeling? Yes, it is, as so eloquently said by one of the great pioneers of the
field of vibration, Sir John William Strutt, third Baron Rayleigh, known
quite widely as Lord Rayleigh:

The material systems, with whose vibrations Acoustics is concerned, are usually of
considerable complication, and are susceptible of very various modes of vibration,
any or all of which may coexist at any particular moment. Indeed in some of the
most important musical instruments, as strings and organ-pipes, the number of
independent modes is theoretically infinite, and the consideration of several of them
is essential to the most practical questions relating to the nature of the consonant
chords. Cases, however, often present themselves, in which one mode is of paramount
importance; and even if this were not so, it would still be proper to commence the
consideration of the general problem with the simplest case—that of one degree of
freedom. It need not be supposed that the mode treated of is the only one possible,
because so long as vibrations of other modes do not occur their possibility under other
circumstances is of no moment.

Guided by Lord Rayleigh’s insight, we will continue to limit our discus- Why?

sion of models of vibratory behavior to those having but a single degree of
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freedom. We will focus on two important elements. First, we develop the
mechanical-electrical analogy, wherein we make more explicit the several
commonalities of vibration behavior that we had identified in Chapter 7.
In our second focus, we note a dividing line that is extraordinarily powerful
for modeling vibration: some phenomena seem to go on indefinitely, quite
on their own, while others appear as responses to repetitive stimulation.
Thus far, our models have been in the first category, called free or unforced
vibration, referring to phenomena that continue after some initial jolt gets
them going. It includes the vibration of struck piano strings and the tides of
the seas. The second category that we take up in this chapter, forced vibra-
tion, occurs when there is a persistent, repetitive input, such as the kind
an air conditioning system imparts to the building it cools or an engine
imparts to the vehicle it powers.

8.1 The Spring–Mass Oscillator–II:

Extensions and Analogies

In Section 7.3 we noted that the pendulum could be modeled as a spring-How?

mass oscillator, a model we now develop by applying once again the force
balance embodied in Newton’s second law. We show such a spring-mass
system in Figure 8.1. Newton’s law states that (see Section 7.3.1) the motion
of the oscillator’s mass, m, is governed by

net force = m
d2x(t )

dt 2
. (8.1)

Two forces are shown acting on the mass: a specified applied force, F(t ),Given?

and a force exerted by the spring. The spring is an ideal elastic spring that
has no mass and dissipates no energy. Its attachment points at each end

x = 0

Unstretched
spring

k

Mass
m

Force
F (t )

Displacement coordinate
x > 0

Figure 8.1 An elementary spring-mass system the shows an
ideal spring exerting a restoring force on a mass, m, as does a
specified applied force, F (t ). The spring’s stiffness is k , and the
displacement or movement of the mass to which the spring’s
right end is attached is x (t ).
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are called nodes. The left node of the spring in Figure 8.1 is attached to
a fixed point, say on a wall, while the right node is attached to a mass
whose movement, x(t ), is the system’s single degree of freedom. Moreover, Assume?

the spring always exerts a restoring force on the node or mass that returns
the spring to its original, unextended position. Thus, if moved a positive
distance to the right, x(t ), the spring pulls the node back to the left; if the
spring is compressed a distance to the left, −x(t ), it pushes the node back
to the right. The magnitude of the spring force is given by

Fspring = kx(t ). (8.2)

The net force on the mass is the difference between the applied and the
spring forces,

net force = F(t )− Fspring. (8.3)

so that the equation of motion is found by combining eqs. (8.1), (8.2),
and (8.3):

m
d2x(t )

dt 2
+ kx(t ) = F(t ). (8.4)

Equation (8.4) was already introduced as an analog of the pendulum in
Section 7.3, where we made the argument that the gravitational pull on
the pendulum mass exerted a spring-like force on the pendulum (see
Problem 8.1). For free, unforced vibration, there is no applied force, and
the governing equation is

m
d2x(t )

dt 2
+ kx(t ) = 0. (8.5)

If we introduce a scaling factor, ω0, to make the time dimensionless, as we
did in eq. (7.10), the oscillator equation (8.5) becomes

mω2
0

d2x(τ )

dτ 2
+ kx(τ ) = 0, (8.6)

which suggests that the scaling factor for the spring-mass system is

ω0 =
√

k

m
. (8.7)

Equation (8.7) can be confirmed to be dimensionally correct (see
Problem 8.2) and, as for the pendulum, ω0 can be identified as the cir-
cular frequency of the spring-mass oscillator. The circular frequency can be
related to the frequency and the period:

f0 = 1

T0
= ω0

2π
= 1

2π

√
k

m
. (8.8)
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Again, both f0 and ω0 have the physical dimensions of (time)−1, but the
units of f0 are number of cycles per unit time, while those of ω0 are radians
per unit time.

Equation (8.7) is actually far more important than its simple appear-Use?

Predict? ance suggests. It provides a fundamental paradigm for thinking about the
vibration of systems: The natural frequency of the oscillator is proportional
to the square root of the stiffness-to-mass ratio. Thus, natural frequencies
increase (and periods decrease) with increasing stiffness, k, while natural
frequencies decrease (and periods increase) with increasing mass, m. We
will refer back to this paradigm often, and we will also see that it captures
a very useful design objective.

We now extend the spring-mass model to incorporate non-ideal, dissipa-Why?

How? tive behavior. We do this by attaching to the mass a damping or dissipative
element, sometimes called a dashpot or damper, which exerts a restor-
ing force proportional to the speed at which the element is extended or
compressed:

Fdamper = cẋ(t ). (8.9)

The damper acts in parallel with the spring, as shown in Figure 8.2, so that
the net force exerted on the mass is

net force = F(t )− Fspring − Fdamper, (8.10)

and the corresponding equation of motion for a spring-mass-damper
system is

m
d2x(t )

dt 2
+ cẋ(t )+ kx(t ) = F(t ). (8.11)

x = 0

Spring

k

Mass
m

Force
F (t )

Displacement coordinate
x > 0

Damper

c

Figure 8.2 An elementary spring-mass-damper system that
shows the ideal spring (of stiffness, k ) exerting a force on a
mass, m, the specified applied force, F (t ), and a viscous
damping element that exerts a restoring force that is
proportional to the speed, ẋ (t ), at which the mass moves.
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This result is very similar to the corresponding result for the damped pen-
dulum, eq. (7.27), save for the facts that the present result includes a forcing
function, F(t ), and its spring term is (already) linear.

Problem 8.1. We experience the pull of gravity as constant and not
dependent on position. How does it come to be inter-
preted as exerting a spring force that is linearly propor-
tional to position? (Hint : Think about the equation of
motion in which the relevant term appears.)

Problem 8.2. Identify the fundamental physical dimensions of the
spring stiffness, k, and the mass, m, and use them to
determine the physical dimensions of ω0 for a spring-
mass oscillator.

8.1.1 Restoring and Dissipative Forces and Elements

Equation (8.11) offers the prospect of generalizing the energy ideas of
Sections 7.1.5 and 7.1.6 in rather broad terms. The spring-mass-damper
system is itself a paradigm for a very broad range of vibration models—
physical, biological, chemical, and so on. Thus, we will not only be able to
identify a system’s mass, but we will also be able to identify a spring-like
element with a stiffness, such as the gravitational pull of the pendulum,
and a dissipative element with a damping constant, much like the shock
absorber of an auto suspension (see Section 8.3). There is one salient
feature common to each of these elements that will be true no matter
what physical, biological, chemical or other model we are analyzing: Each
element either stores energy or dissipates energy. Two elements store energy
in the spring-mass-damper: the mass, which stores kinetic energy,

KE = 1

2
m(ẋ(t ))2, (8.12)

and the spring, which stores potential energy,

PE = 1

2
k(x(t ))2. (8.13)

In an ideal system, where there is no damping, the spring and the mass
exchange energy from potential to kinetic to potential, and so on inde-
finitely. Thus, the two storage elements exchange their forms of energy
repetitively as the ideal spring-mass system vibrates.
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The damping element dissipates energy according to (see eq. (7.29))

dE(t )

dt
= −1

2
c(ẋ(t ))2. (8.14)

As a spring-mass-damper vibrates or oscillates, energy is no longer simply
passed back and forth between the spring and the mass. Rather, the damp-
ing element draws energy out of the system and dissipates it as wasted power
or energy, typically through the heat transfer we associate with frictional
devices.

Again, these characterizations turn out to be useful for helping us analyze
systems or phenomena as we try to build models of their behavior.

8.1.2 Electric Circuits and the Electrical-Mechanical

Analogy

Electric circuits and their elements offer a parallel paradigm for analyzing
oscillatory behavior. Consider the elementary, parallel RLC circuit shown in
Figure 8.3. It has three ideal elements connected in parallel that are driven
by a current source that produces a current isource(t ). The three elements are
idealized in the same way that the mass of a spring-mass system is perfectly
rigid and that its spring is mass-less. The first element we introduce is the
ideal capacitor that, when discharged, transmits a voltage drop, V (t ), that
is proportional to the electric charge, q(t ), stored on two plates separated

RL C
i (t)

Current
source

Figure 8.3 A parallel RLC circuit that has a
current source as its driver. The elements are the
capacitor of capacitance, C , the inductor with
inductance, L, and the resistor with resistance, R .
The current source provides a current of
magnitude, isource(t ).
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by an insulator:

V (t ) = q(t )

C
. (8.15)

The constant, C , is the capacitance of the capacitor and its units are farads,
named after the British chemist and physicist Michael Faraday (1791–
1867). The capacitor stores energy in an amount proportional to the square
of the voltage across it:

EC = 1

2
C (V (t ))2 . (8.16)

Notwithstanding the elegant simplicity of eqs. (8.15) and (8.16), electrical
circuit models are generally cast in terms of the time rate of change of
charge, called the current, because it is hard to measure charge:

i(t ) = dq(t )

dt
. (8.17)

This form of the capacitor model is an element that carries a current, iC (t ),
that is directly proportional to the time rate of change of the voltage drop,
V (t ), across the capacitor:

iC = C
dV (t )

dt
. (8.18)

The second element we introduce is the inductor, which is a coil that
builds up a magnetic field rate when a current flows through it. The mag-
netic field causes a voltage drop across the inductor that is proportional to
the time rate of change of the current flowing through it:

diL
dt
= V (t )

L
. (8.19)

The constant, L, is the inductance, which is measured in henrys, named
after the American physicist Joseph Henry (1797–1878). Now we integrate
eq. (8.19) with respect to time,

iL = 1

L

t∫
−∞

V (t ′)dt ′, (8.20)

where t ′ is a dummy variable of integration in the integral in eq. (8.20).
The inductor stores energy in an amount proportional to the square of the
current flowing through it:

EL = 1

2
L(iL(t ))

2 = 1

2L


 t∫
−∞

V (t ′)dt ′



2

. (8.21)
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The third element is the resistor. It impedes (or resists) the flow of charge
in proportion to the time rate of change of charge, or the current. The
resulting voltage drop across the resistor is directly proportional to the
current flowing through it:

iR = V (t )

R
, (8.22)

where the constant, R, is the resistance, which is measured in ohms, named
after the German physicist Georg Simon Ohm (1787–1854). The resistor,
like its mechanical counterpart, the dashpot, dissipates energy by throwing
it off as waste heat or power. Thus, in the context of Section 8.1.1, we can
regard the resistor and the dashpot as similar dissipative elements, and the
capacitor (like the mass) and the inductor (like the spring) as elements that
store energy.

Can we draw an analogy between the electrical elements just introducedWhy?

and the spring-mass-damper system described earlier in this section? Yes.
In fact, there are two well-known electrical-mechanical analogies. The
choice of analogy is to some extent a matter of taste, and we describe here
the one we prefer; this book’s first edition presented the other.

We first invoke Gustav Robert Kirchhoff ’s (1824–1887) current law (KCL)How?

to derive the governing equations for the parallel RLC circuit in Figure 8.3.
The KCL states that the time rate of change of the electrical charge flowing
into or out of a node or connection in a circuit must be zero. In other
words, a node cannot accumulate charge. Expressed mathematically, the
KCL states that

dqnode(t )

dt
=

N∑
n=1

in(t ) = 0, (8.23)

where the in(t ) are the currents taken as positive flowing into the node
through the N elements connected at that node. Thus, looking at the indi-
cated currents going into and out of either of the two nodes in Figure 8.3,
we see that

N∑
n=1

in(t ) = isource(t )− iC − iL − iR = 0, (8.24)

where, again, isource(t ) is the current provided by the current source in
the circuit, and the remaining terms are the currents flowing through the
capacitor, the inductor, and the resistor, respectively. Note that eq. (8.24)
looks remarkably like a force balance equation [e.g., eqs. (8.3) and (8.10)]!
We now replace the currents in the elements by their respective constitutive
equations (8.18), (8.20), and (8.22), that describe how the current flows
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through each relates to the voltage across each. Then eq. (8.24) becomes:

C
dV (t )

dt
+ V (t )

R
+ 1

L

t∫
−∞

V (t ′)dt ′ = isource(t ). (8.25)

If we differentiate eq. (8.25) once with respect to time, we find:

C
d2V (t )

dt 2
+ 1

R

dV (t )

dt
+ 1

L
V (t ) = disource(t )

dt
. (8.26)

Equation (8.26) is a second-order, linear differential equation with constant
coefficients. Its dimensions can be shown to be consistent and correct
(see Problem 8.4). When solved, it yields the common voltage across the Use?

Predict?three parallel elements, from which both the currents through each and
the energy stored by the capacitor and inductor can be calculated [using
eqs. (8.18), (8.20), and (8.22)].

What is most noteworthy about eq. (8.26) is its uncanny resemblance
to eq. (8.11), the equilibrium equation for the spring-mass-damper. It is
most tempting to conclude that voltage is analogous to displacement, and
that

C ∼ m,
1

R
∼ c ,

1

L
∼ k. (8.27)

Some further expressions of this electrical-mechanical analogy are shown in
Table 8.1. The analogy is interesting and useful. Consider, for example, the
fact that we described the RLC circuit in Figure 8.3 as a parallel circuit. In
the spring-mass-damper of Figure 8.2, we specifically inserted the dashpot
as an element in parallel with the spring. The mass can also be said to be
in parallel with the spring and the dashpot since it shares their common
endpoint displacement. Further, the analogy extends into the context of
system characterization: A system can be said to be very stiff if k is large or
its inductance, L, is small, or as having a large effective mass or inertia if
either its mass, m, or its capacitance, C , is large.

Now, to complete this introduction to the electrical-mechanical ana-
logy, we repeat the thought that the choice of analogies is a matter of
taste. The analogy presented here allows us to draw distinctions between
behaviors that go through elements (force and current), and those meas-
ured across elements (displacement and voltage). The analogy also enables
us to identify Newton’s second law and Kirchhoff ’s current law as similar
expressions of balance (force or current) or conservation (momentum or
charge). The other analogy identifies force with voltage and displacement
with charge. It, therefore, does offer some more immediately recognizable
appeal because the resemblance of basic equations is even more obvious.
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Table 8.1 Elements of one electrical-mechanical analogy.

Mechanical Electrical

Momentum (∼ Speed): mv(t ) Charge: q(t )

Force (∼ d(Momentum)/dt ): Current(∼ d : (Charge)/dt ):

F = m dv(t )
dt

i(t ) = dq(t )
dt

Displacement: x(t ) Voltage: V (t )

Newton’s 2nd @Massless Node: Kirchhoff ’s Current Law:
N∑

n=1

Fn(t ) = d(mvnode(t ))

dt
= 0

dqnode(t )
dt

=
N∑

n=1

in(t ) = 0

Fspring = k

t∫
−∞

v(t ′)dt ′ = kx(t ) iL = 1
L

t∫
−∞

V (t ′)dt ′

Fdamper = cv(t ) = cẋ(t ) iR = 1
R V (t )

Fnet = mv̇(t ) = mẋ(t ) iC = CV̇ (t )

PE = 1
2 k (x(t ))2 EC = 1

2 C (V (t ))2

KE = 1
2 m (ẋ(t ))2 EL = 1

2 L (i(t ))2 = 1
2 L
(
q̇(t )

)2

However, the preferred analogy described above is more consistent with
physical principles and conforms better to our intuition of how such
systems behave.

Problem 8.3. Taking as fundamental the dimensions of current, I,
as charge per unit time and voltage (or electromo-
tive force), V, as (force × distance) per unit charge,
determine the fundamental physical dimensions of the
capacitance, C , the inductance, L and the resistance,
R.

Problem 8.4. Using the fundamental dimensions identified in
Problem 8.3, confirm that eq. (8.26) is dimensionally
consistent and correct.

Problem 8.5. Using the fundamental dimensions identified in
Problem 8.3, determine whether the energy expres-
sions for EC and EL given in Table 8.1 are dimensionally
correct.

Problem 8.6. Determine the governing equation for the free oscil-
lation of the voltage in a parallel LC circuit with ideal
elements.

Problem 8.7. Determine the natural frequency of free vibration
and the period of the ideal parallel LC circuit of
Problem 8.6.
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8.2 The Fundamental Period of a Tall,

Slender Building

It is not surprising that buildings, especially tall and slender buildings,
respond to several kinds of forces by vibrating. Buildings respond to
aerodynamic forces set in motion by wind or by aircraft passing nearby.
They also respond to ground-borne motion induced by traffic, earth-
quakes, or even explosions. These various inputs force not only the
vibration of the building as a whole, but also its internal components (such
as walls, floors, and windows). Further, most tall buildings have their own
internal sources of vibration; for example, air conditioning systems, escal-
ators, and elevators. What is most noteworthy is that tall buildings tend
to be built lighter and with more flexibility than were earlier tall build-
ings (see Figure 8.4). For example, the Empire State Building is a good bit
heavier and stiffer than the Sears Tower in Chicago (or were the towers of
the World Trade Center in New York). As a result, building vibration, both
local to a room and global to the building, has become a critical element
in building design: vibration can create problems of annoyance, dysfunc-
tion, and outright danger for a building’s occupants. The assessment of the

Wind
pressure

Displacement
of top of building

(exaggerated!)

(b)(a)

Figure 8.4 A small collection of skyscrapers, including the Eiffel
Tower, the John Hancock center, the Empire State Building and the
Sears Tower (after Billington, 1983). They are (mostly) tall and slender
buildings that grace the skylines of modern cities. Also shown is a
generic schematic of the greatly exaggerated movement of such a tall
building in response to wind loading.
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m

Reed or beam

Wind
resultant

H

Elastic beam
of modulus E,
second area
moment I, and
density �.

(a) (b)

Figure 8.5 Two simple models used to estimate
the fundamental period of vibration of tall, slender
buildings: (a) a simple spring-mass system that is
shown as a reed with a mass at its end; and (b) a
cantilever beam model wherein the stiffness and
the mass are distributed (uniformly) over the
building height, H , but from which a simple
spring-mass system can be deduced.

vibration response of a tall building, or any such structure, requires deep
understanding of the building’s dynamic properties, such as its own funda-
mental period or its natural frequency. It turns out, interestingly enough,
that a “first-order” estimate of the natural frequency or period of a tall
building can be obtained by making a lot of assumptions and modeling the
entire building as a simple spring-mass system.

Consider the generic skyscraper shown in Figure 8.4, together with pro-
files of some real counterparts. We assume that the wind pressure is uniformAssume?

over the building height and oriented normal to the side shown. The wind
pressure produces a net force that pushes on that building face, thus mak-
ing the building bend, with the largest movement at its free end at the top.
Since buildings are made up of elastic structural members, which are them-
selves springs, we expect that the building will resist the bending motion
caused by the wind and return to its original straight configuration when
the wind ceases. In this sense, we can draw the building as a whole as if
it were a simple elastic reed with a mass concentrated at its free end [see
Figure 8.5(a)], but where this reed-and-mass system is exactly the same
as the spring-mass system defined in Sections 7.3 and 8.1. We need only
determine the stiffness, k, and the mass, m.

One way to determine the stiffness of a building is to measure its
deflection while a load or force is being applied to the building and
then back-calculate the stiffness. (For a yet-to-be-built design, a similar
measurement could be made on a comparable building.) Consider, forGiven?
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example,a recently-built building with a square cross-section, B = 30 m
(98.4 ft), on a side, and of height, H = 300 m (984 ft). (For a working cal-
culation in standard American units, an experienced engineer would be
likely to use B= 100 ft and H = 1000 ft.) A very strong, gale-force wind,
say 100 mph (44.7 m/sec), produces a pressure of 1.23 kN/m2 (25.7 lb/ft2)
on the building, or a total wind force of

wind force =
{

1.23 kN/m2 × 30 m× 300 m
25.7 lb/ft2 × 98.4 ft × 984 ft

=
{

11.1× 106 N
2.49× 106 lb

(8.28)
We will assume that the resultant of this force acts halfway up the building. Assume?

Given?The building will bend or move when it is loaded. A practical estimate is
that the top of the building will move about 0.3% of its height, or 0.003H .
Further, the deflection or movement of the building varies nonlinearly with Assume?

height, so we will assume that the movement at that height is one-third
of the movement at its top. With the building top expected to move 0.9 m
(2.95 ft), we can calculate its stiffness as

k =
{

11.1× 106 N÷ 0.30 m
2.49× 106 lb÷ 0.98 ft

=
{

37.0× 106 N/m
2.54× 106 lb/ft

(8.29)

To determine the building’s fundamental period or natural frequency, we
need its mass. A practical estimate of the weight of a building uses an average Given?

specific weight of γ = 1.50 kN/m3 (9.54 lb/ft3) for a modern steel-framed
tower with a 12 ft story height. In this case, the mass of the building can be
calculated as:

m = γHB2

g
=
{ [1.50 kN/m3 × 300 m× (30 m)2] ÷ 9.80 m/(sec)2

[9.54 lb/ft3 × 984 ft × (98.4 ft)2] ÷ 32.2 ft/(sec)2

=
{

4.13× 107 kg
2.82× 106 lbm

(8.30)

Thus, the fundamental period of this hypothetical generic skyscraper is

T0 = 2π

√
m

k
= 2π

{ √
4.13× 107 kg ÷ 37.0× 106 N/m√
2.82× 106 lbm÷ 2.54× 106 lb/ft

∼=
{

6.64 sec
6.62 sec

∼= 6.6 sec . (8.31)

The result of eq. (8.31) is well within the range that experience suggests Verified?

for the period of a modern, steel-framed building,which is about 5–10 sec
for buildings whose height is within the range of 214–427 m (700–1400 ft).
Another estimate is that the period of a building is within the range of



224 Chapter 8 Applying Vibration Models

0.05–0.15 times the number of stories or floors. Since our hypothetical
building is likely to have something like 85 floors, our estimate of its period
is once again verified.

Another way to estimate the period or natural frequency of a buildingHow?

is to model it as a simple cantilever beam where the stiffness and mass are
distributed over the length of the beam [see Figure 8.5(b)]. The theory ofGiven?

strength of materials says that the stiffness of a cantilever beam of length,
H , measured at the top, is given by

kbeam = 3EI

H 3
, (8.32)

and that its period of vibration is given by

Tbeam
∼= 1.78H 2

√
γA

gEI
. (8.33)

Here γ is, again, the specific weight of the beam (or building), A is the
beam’s cross-sectional area, I its second moment of the cross-sectional area,
and E the modulus of elasticity of the material of which the beam is made.
Given that the dimensions of E are force per unit area and of I are (length)4,Given?

it is easily verified that eq. (8.33) is dimensionally correct (see Problems 8.8–
8.9). Note that the stiffness decreases with H 3, while the period increasesPredict?

Use? with H 2, which means that its natural frequency also drops as H 2. Thus,
a short building is stiffer than a tall building. In fact, the stiffnesses of two
buildings made of the same material and having the same floor plan are
related to each other as the cube of the inverse ratio of their heights.

It is also clear from eqs. (8.32) and (8.33) that the beam’s stiffness
increases with the product EI , and the period decreases with 1/

√
EI . What

do E , I , and their product EI mean for a beam and for a building? The mod-
ulus, E , represents the stiffness of the material of which the beam is made,
and, not surprisingly, Esteel> Econcrete> Ewood. So, in very loose terms, a
higher modulus is more suitable for taller buildings because of their higher
material stiffness. (There are other issues involved, for example, the specific
weight and the failure strength of materials, but that is well beyond our cur-
rent modeling scope.) The second moment of the area, I , also (erroneously)
called the moment of inertia, reflects the distribution of the cross-sectional
area about its own centerline. For a building of square cross-section, I ∼ B4

roughly speaking, so that both the second moment of a building and its
stiffness increase with its basic plan dimension to the fourth power, B4.

This very brief overview of building vibrations suggests why engineers
have had to worry only relatively recently about the effects of wind on tall
buildings. Certainly tall structures were built long ago; one can point to
the amazing cathedrals built during the Middle Ages (recall the discussion
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in Section 3.2.3), and even to the Eiffel Tower built in 1889. However, with
the advent of both high-strength steels developed in the 20th century and
new architectural styles, the flexible skyscraper came into being, bring-
ing along both interesting problems and equally interesting opportunities.
Thus, designing a building now means designing its dynamic properties
and vibration response for sources of dynamic loading, including wind,
earthquakes, nearby traffic, and mechanical systems within. Back-of-the-
envelope estimates such as we have made play an important role in these
designs because they enable engineers to make reasonable estimates of their
designs long before they have to specify those designs to costly, detailed
levels (see also Problems 8.41 and 8.42).

Problem 8.8. Given that the dimensions of the modulus of elasti-
city, E , are force per unit area, what are the dimen-
sions of the second moment, I , that make eq. (8.32)
dimensionally correct?

Problem 8.9. Using the dimensions identified in Problem 8.8, con-
firm that eq. (8.33) is dimensionally consistent and
correct.

Problem 8.10. What is the pressure produced by a 100 mph wind
expressed as a fraction of atmospheric pressure?

Problem 8.11. Show that the ordering of elastic moduli Esteel >

Econcrete > Ewood is correct in both metric and
standard American units. (Hint : Use the library!)

Problem 8.12. For a tall cantilever of specific weight, γ , what
are the physical dimensions of the parameter, c ≡√

E/(γ /g )? What could this parameter signify?
Problem 8.13. For the tall cantilever of Problem 8.12, with I ∼

B4, show that T0 ∼ (H/c)(H/B). Is this result
dimensionally meaningful?

8.3 The Cyclotron Frequency

To show that fundamental periods and frequencies are also important in Why?

other domains, we now present a simple model of the cyclotron, the device
that forces charged particles to move in a circular path when subjected to a
magnetic field. Electrons, protons, and ions are among the charged particles
spun in cyclotrons. We will determine the fundamental frequency of the How?

cyclotron by using some basic results from electromagnetism. A charged
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Figure 8.6 The cylindrical coordinate system and
the basic vector structure needed to portray the
elementary cyclotron. The coordinate system has
the radial, tangential, and vertical unit vectors er , eθ ,
and ez , respectively. The particle location is given
by r = |r|er . The magnetic field is directed in the −z
direction, that is, B = −|B|ez , and the magnetic force
exerted on the charged particle is Fm.

particle moving through a magnetic field is subjected to a magnetic force
(vector), Fm, given by:

Fm = qv × B, (8.34)

where B is the magnetic induction (vector) due to currents other than that
produced by the particle charge of magnitude q, v is the velocity (vector)
of the moving charged particle, and the symbol × denotes the vector or
cross product of the v and B vectors.

The geometry underlying our cyclotron model is shown in Figure 8.6.
The particle motion is described in a cylindrical set of coordinates having
radial, tangential, and vertical unit vectors er , eθ and ez , respectively. The
location of the particle is given by r = |r|er . The magnetic field is directed
in the –z direction, that is, B = −|B|ez . Thus, the vector equation (8.34)
can be written as

Fm = qv × (−|B|ez ), (8.35)

where will soon identify the angle between the v and B vectors as θ .
Equations (8.34) and (8.35) indicate that the magnetic force, Fm, is per-

pendicular to the particle velocity, v. Thus, the magnetic field, B, imparts no
power to the particle. Further, since both the force, Fm, and its consequent
particle acceleration are perpendicular to the velocity, v, the particle must
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be traveling in a circle of radius, |r|, at a (radian) frequency, ω0, that also
corresponds to simple harmonic motion. Further, that circular harmonic
motion also means that the velocity vector is simply v = |v|eθ = |r|ω0eθ
(see Problems 8.17–8.19). It then follows that eq. (8.35) becomes:

Fm = q(|v|eθ )× (−|B|ez ) = q(|r|ω0eθ )× (−|B|ez ) = −q|r|ω0|B|er .
(8.36)

Equation (8.36) shows that the force, Fm, is directed radially inward, so
that the acceleration is centripetal and also directed radially inward. Thus,
just as with the centripetal acceleration of the pendulum (see eqs. (7.7a) and
(7.8a)), the centripetal acceleration of the cyclotron particle is −|r|ω2

0er .
Then, with the net force being Fm of eq. (8.36), Newton’s second law in the
radial direction appears as

Fm = −q|r|ω0|B|er = −m|r|ω2
0er ,

which finally yields the cyclotron frequency,

ω0 = q

m
|B|. (8.37)

Equation (8.37) shows that the frequency depends only on the strength of
the magnetic field, B, and the charge-to-mass ratio, q/m, of the particle.
It is independent of the radius of the circle and, therefore, the tangential
velocity. Again, eq. (8.37) is the fundamental relationship behind cyclotron
design.

Problem 8.14. If the fundamental dimension of charge is Q, deter-
mine the dimensions of the magnetic field or mag-
netic flux density B that ensure that eq. (8.34) is
dimensionally correct.

Problem 8.15. The magnetic field B has units of webers per square
meter (Wb/m2) in SI units. Using eq. (8.34), express
these units in terms of units of charge (the coulomb,
C) and other fundamental dimensions in SI units.

Problem 8.16. Verify that the cyclotron frequency as given in
eq. (8.37) is dimensionally correct.

Problem 8.17. Calculate the velocity components of a point located
in a plane by the relation r = |r|ejω0t = x(t )ix +
y(t )iy . Express that velocity in terms of (a) the time
derivatives of x(t ) and y(t ) and then (b) in terms
of |r|ejω0t .

Problem 8.18. Why do the results of Problem 8.17 express simple
harmonic motion?
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Problem 8.19. Calculate the velocity components of a point loca-
ted in a plane by the relation r = |r|er and express
the results in plane polar coordinates. How does this
result compare with that found in Problem 8.17?

8.4 The Fundamental Frequency of an

Acoustic Resonator

What is an acoustic resonator? We have all blown air across the top of a
bottle and heard a deep, foghorn-like response. In fact, the frequency (or
pitch) that we hear is very much a function of the size of the air cavity
in the bottle (and not a function of the kind of liquid in the bottle!).
An acoustic resonator is a flask or bottle with an air cavity that is used
to produce sound. Such resonators are also called Helmholtz resonators
after the German physicist who investigated it, Herman von Helmholtz
(1821–1894). By what mechanism do acoustic resonators work?Why?

How? We will answer that equation by modeling the flask shown in Figure 8.7
and, in so doing, we will account for the mechanics and thermodynamics
of the changes in pressure and volume of a gas as it transmits a sound
signal. The flask has an “interior” cavity of volume V0, that contains a gas
of density ρ0, at ambient pressure, p0. The neck of the flask is of length L
and has a cross-sectional area A. We will see that the gas in the flask neckPredict?

moves like a mass and that the cavity exerts a spring-like response to that
movement, so that our resonator model will be a mass-spring system.

We take the mass of gas in the neck as our mass, m = ρ0AL, to developAssume?

this model (or this analogy). The stiffness in the system comes from the gas
in the cavity that resists being compressed as the neck mass moves toward
it. That resistance is transmitted at the interface between neck and cavity
by the pressure, p0. The pressure, p0, and the cavity volume of gas, V0, that
contains it are assumed to obey the adiabatic gas law :

pV γ = constant, (8.38)

where in this instance, γ is the ratio of heat capacities (γ = 1.4 for air,
for example), and p and V are, respectively, pressure and volume. When
the mass of gas in the neck, m, moves a distance, x , to the right, the cavity
volume must be reduced by

δV = −Ax . (8.39)
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A   Cross-sectional area

l   Length of neck

V0, �0, p0

Flask interior volume V0
with gas of density  �0
at ambient pressure p0

Figure 8.7 The flask used to
model the acoustic or Hemlholtz
resonator. The flask has a neck
of length L, with area A, that is
connected to an acoustic cavity
of volume, V0. The cavity
contains a gas of density ρ0, at
pressure, p0. When the mass in
the neck moves, the cavity
responds like a spring.

A small change of volume, δV , is related to a small change of pressure, δp,
by the gas law (eq. (8.38)),

δ(pV γ ) = V γ (δp)+ p(γV γ−1δV ) = 0,

which, after dividing through by pV γ , becomes

δp

p
+ γ δV

V
= 0. (8.40)

We now let the pressure and volume take on their ambient values, so
eq. (8.40) becomes

δp = −γ p0

V0
δV = 0. (8.41)

Finally, we substitute the volume change, δV , from eq. (8.39) to find that
the pressure change, δp is related to the distance moved by the neck mass, x ,
according to:

δp = γ p0
Ax

V0
. (8.42)
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Note that the dependence of δp on x is strongly suggestive of spring-like
action, but the dimensions certainly don’t look like those of a spring. On
the other hand, if we recognize that the cavity-produced restoring force,
Fcavity, acting on the neck mass is the product of pressure times area, then
we see that

Fcavity = δpA = γ p0A2

V0
x . (8.43)

Now the resemblance to the classic spring is more evident (see
Problem 8.20).

Then, if we blow across the open end of the flask with a force, F(t ), the
mass, m, is pushed down the neck a distance, x , toward the cavity, and
the cavity pushes back with a spring stiffness, kcavity, the acoustic resonator
behaves as a spring-mass system:

ρ0AL
d2x(t )

dt 2
+ γ p0A2

V0
x(t ) = F(t ). (8.44)

We can rewrite eq. (8.44) in terms of a parameter that is often used in
acoustics and vibration problems, the speed of sound of the gas in the
flask, c0. That speed is related to the specific heat capacity, ambient pressure,
and density of the gas:

c2
0 = γ

p0

ρ0
. (8.45)

Then the oscillator equation for the Helmholtz resonator is

ρ0AL
d2x(t )

dt 2
+ ρ0c2

0 A2

V0
x(t ) = F(t ). (8.46)

The natural frequency or fundamental period follows from the homo-
genous version of the equation of motion (8.46) for the acoustic resonator
(see Problem 8.22):

ω0 = 2π

T0
= c0

√
A

V0L
. (8.47)

Equation (8.47) could be accepted as the final result. It has the correctPredict?

Use? dimensions and shows that the frequency increases with the neck area
but decreases as the neck gets longer and the cavity volume gets larger,
which effects are consistent with our intuition (see Problems 8.23–8.26).
However, a bit of reflection suggests that eq. (8.47) can be further massagedImprove?

by identifying the volume of the neck (which is also the volume of the
moving mass m) as Vn = AL. Then the frequency and period become:

ω0 = 2π

T0
= c0

L

√
Vn

V0
. (8.48)
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This version of the natural frequency of the acoustic resonator is even more Verified?

interesting (and satisfying) because it shows the dependencies in a more
meaningful way. The frequency goes down if we elongate the neck because
it takes the mass longer to move down the neck, as we see from the ratio
c0/L. Further, the effect of increasing flask volume to get deeper (lower)
frequencies will not be seen unless that volume reduction is done with
respect to the neck volume.

Finally, the inhomogeneous version of the resonator model, eq. (8.46),
begins to set the stage for the rest of this chapter. What does happen when Why?

there is a forcing function F(t )? What does F(t ) look like? It is easy enough
How?

to imagine that the wind blowing across the top is an acoustic signal that
is, like most sounds, composed of many frequencies. Since eq. (8.46) is
linear, we could obtain a complete solution by solving it for each frequency
represented in F(t ) and then superposing or adding all of those solutions.
This suggests that we seek a generic solution to

d2x(t )

dt 2
+ ω2

0x(t ) = F0

ρ0Vneck
cosωt . (8.49)

The radian frequency, ω, in eq. (8.49) is arbitrary and can assume any
value, so the forcing function represents any oscillatory signal or input. As
we will see in Sections 8.6 and 8.7, there are some very interesting effects
that occur. But, first, we want to explore another way in which forcing
functions occur in models of vibration (Section 8.5), and then we will talk
about the mathematics (Section 8.6) and the physics (Section 8.7) that
occur in governing equations like eq. (8.49).

Problem 8.20. Show that the dimensions of γ (p0A2/V0) are such
that eq. (8.43) identifies the stiffness of the flask
cavity, kcavity.

Problem 8.21. How does the stiffness of a cavity change if the gas
is assumed to be governed by the ideal gas law,
pV = nRT ?

Problem 8.22. Show that the homogeneous solution of eq. (8.46)
requires that the resonator’s natural frequency must
be given by eq. (8.47). (Hint : Recall Section 7.2.2.)

Problem 8.23. Estimate the natural frequency of the cavity of a
standard (750 ml) wine bottle. How does that fre-
quency compare with the note middle C, for which
f = 262 Hz?
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Problem 8.24. How long would the wine bottle flask have to be to get
its cavity frequency below the lowest note produced
by a piano (∼ 55 Hz)?

Problem 8.25. How long would the wine bottle flask have to be to get
its cavity frequency above the highest note produced
by a piano (∼ 8360 Hz)?

Problem 8.26. Assume that a set of acoustic resonators is built like
wine bottles, each with neck radius rn , neck length Ln ,
cavity radius r0, and cavity length L0. How would the
ratio Ln/L0 vary with the radii if every bottle were to
have the same natural period?

8.5 Forcing Vibration: Modeling an

Automobile Suspension

We finished our discussion of the acoustic resonator by noting how itWhy?

could be forced to vibrate or respond, in that case with an excitation that
was external and obvious. However, excitation can show up in models in
other ways, as we now illustrate. Consider the damped oscillator shown inHow?

Figure 8.8(a) that is no longer connected to a fixed point or wall; rather,
its free end travels over a specified contour, y(z). It is a schematic for the
suspension systems we are accustomed to seeing in cars, for example, and
nowadays on high-end bikes. For the auto, the mass is that of the body, the
power train, and the passengers and cargo. The spring is typically a coil
spring that is wrapped around the shock absorber or damper. There was
a time when auto springs were leaf springs, but their suspension systems
would have been modeled the same way. The important feature is that
both leaf and coil springs share common connection points with the shock
absorber on the auto frame at one end and on the wheel at the other. Thus,
spring and damper are in parallel with the auto’s mass.

One way to set an auto suspension system in motion is to push rhyth-
mically on its fender, a fairly common qualitative test of whether the shock
absorbers retain much damping. This might be modeled in the same way
we proposed modeling blowing over an acoustic cavity by including a for-
cing function, F(t ). In addition, however, the suspension system is excited
or driven by the end connected to the wheel as it follows the road, y(z). The
model for the auto following the road contour is shown in Figure 8.8(b),
where a(t ) is the amount that the wheel-end of the suspension moves with
respect to a fixed wall. This means that the net extension of the spring is
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x = 0

Spring

F (t )

x (t) > 0

Dampera (t )

Spring

Mass
m

Shock absorber

Road contour

Mass
m

(a)

(b)

Figure 8.8 The spring-mass-damper system used to
model the behavior of a vehicle suspension system: (a)
the system’s three elements (m, k , c) act in parallel and
share the single coordinate, x (t ), while the other ends of
the spring and damper share the wheel as a common
connection point that follows the road contour, y (z ); and
(b) the revision of the model to show the road-following
wheel motion as a support that moves a distance, a(t ),
with respect to the “traditional” spring-mass-damper.

x(t ) − a(t ), and that the relative speed to which the damper responds is
d[x(t )−a(t )]/dt . The spring force is then k[x(t )−a(t )], and the damping
force is cd[x(t )− a(t )]/dt , so that Newton’s second law for this model is:

m
d2x(t )

dt 2
= F(t )− k[x(t )− a(t )] − c

d[x(t )− a(t )]
dt

,

or
mẍ + cẋ(t )+ kx(t ) = F(t )+ cȧ(t )+ ka(t ). (8.50)
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Equation (8.50) shows that the terms due to the wheel motion, a(t ), remain
on the right-hand side, because they are a known input. Thus, eq. (8.50)
represents an instance of forced vibration even absent an explicit forcing
function, that is, even when F(t ) = 0.

Consider the case of an auto without an explicit forcing function (i.e.,Given?

with F(t ) = 0) traveling in the z direction along a road whose contour
y(z) is given as:

y(z) = a0 sin αz , (8.51)

where α is a parameter with dimensions of (length)−1. If the auto moves
down the road at constant speed, v , it follows that z = vt , so that the wheel
motion is

a(t ) = y(z = vt ) = a0 sin αvt . (8.52)

Then the governing equation for the traveling suspension system is found
when eq. (8.52) is substituted into eq. (8.50):

m
d2x(t )

dt 2
+ cẋ(t )+ kx(t ) = a0(k sin αvt + cαv cosαvt ). (8.53)

Thus, for this model, we once again have a non-zero right-hand side or
forcing function made up of trigonometric terms. And, again, this resulted
not from an explicit external forcing function, but from the fact that the
system’s spring and damper were not attached to an immovable point.

Problem 8.27. What are the physical dimensions of the term αv in
eq. (8.53)? Explain whether or not those dimensions
are correct.

Problem 8.28. Determine the values of C1 andφ that allow the right-
hand side of eq. (8.53) to be written in the form
a0C1(cos(αvt − φ)).

Problem 8.29. Determine the values of C2 andφ that allow the right-
hand side of eq. (8.53) to be written in the form
a0C2(sin(αvt + φ)).

8.6 The Differential Equation

md 2x /dt 2 + kx = F (t )

How do we determine the solution to the inhomogeneous differential equa-How?

tion that describes the dynamic response of an ideal, undamped oscillator
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that is driven by a harmonic forcing function (see Problems 8.28 and 8.29
above):

m
d2x(t )

dt 2
+ kx(t ) = F0 cos(ωt − φ). (8.54)

The solutions to inhomogeneous differential equations have two parts that
are superposed. The first part is the transient solution to the homogeneous
equation that we had already found as eq. (7.48) or (7.49) in Section 7.2.2.
The second part is the particular or steady-state solution that is crafted to
solve only the differential equation without regard to the system’s initial
conditions.

As a trial particular solution let us assume that

x(t ) = X0 cos(ωt − φ), (8.55)

where X0 is a constant yet to be determined. By direct substitution of
eq. (8.55) into eq. (8.54), we get:

(k −mω2)X0 cos(ωt − φ) = F0 cos(ωt − φ),
which means that

X0 = F0

k −mω2
= F0/k

1− (ω/ω0)2
, (8.56)

where once again ω0 is the natural frequency of the ideal oscillator defined
in eq. (8.7). The final form of the steady-state solution is, then,

x(t ) = F0/k

1− (ω/ω0)2
cos(ωt − φ). (8.57)

This all seems perfectly straightforward but for one detail: If the fre-
quency of the driving force, ω, happens to equal the natural resonance of
the system, ω0, the solution (8.57) “blows up” or becomes infinite. Now in
the real world that may not literally happen because of damping, but even
with the ameliorating effect of damping there is a problem when ω = ω0.
In the next section we will identify that as resonance, but here we want to
stay focused on the formal mathematics. To complete that we note simply
that a formal solution to eq. (8.54) does exist for the case ω = ω0, and that
solution can be shown to be (see Problem 8.31):

x(t ) = F0

2mω0
t sin(ω0t − φ). (8.58)

Note that x(t ) depends linearly on t in eq. (8.58), a result that clearly
confirms the singular behavior of the ideal spring-mass system when it is
excited or driven at its natural frequency. In the real world, again, damping
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comes very much into play, and avoiding such resonant behavior (even
with damping) is a major priority in the design of vibrating systems. We
will have more to say about that in Section 8.7.

Problem 8.30. Determine the value of X0 in eq. (8.55) by substitut-
ing eq. (8.55) into eq. (8.54) and ensuring that the
equation of motion is indeed satisfied.

Problem 8.31. Confirm that the solution (8.58) does satisfy
eq. (8.54) for the special case of resonance, that is,
when ω = ω0.

Problem 8.32. Determine and explain the dimensions of the coeffi-
cients (F0/mω0) in eq. (8.58).

8.7 Resonance and Impedance in Forced

Vibration

We now turn to the meaning and physical implications of the mathematics
of simple forced oscillators. So, we again start with the equation of motion
of an ideal spring-mass system that is driven by a harmonic excitation:

m
d2x(t )

dt 2
+ kx(t ) = F0 cos(ωt − φ). (8.59)

The complete solution to eq. (8.59) is the sum of the homogeneous or
transient solution (7.48) and the particular or steady-state solution (8.57):

x(t ) = B1 cosω0t + B2 sinω0t + F0/k

1− (ω/ω0)2
cos(ωt − φ). (8.60)

where B1 and B2 are arbitrary constants that will be determined by the
initial conditions set for the system. Having written the complete solution,
it must be said that our primary interest lies in the steady-state solution
because it predicts the behavior of the spring-mass system for as long as
we drive it with the harmonically varying force in eq. (8.59). Further, it is
independent of the initial conditions, which, as we noted in Section 7.22,
affect only the transient behavior. (It should be noted that the notion of
a transient solution that, implicitly, does not affect the steady state, does
assume that there is at least a little bit of damping, so that solutions initiated
only by the initial conditions will die out. The steady-state solution persists
even in the face of damping because the excitation persists.)
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Since we can always incorporate the effects of the initial conditions by
suitably adjusting the two arbitrary constants in the complete solution
(8.60), we take eq. (8.60) in the following form as the solution of interest:

x(t ) = F0

m(ω2
0 − ω2)

cos(ωt − φ). (8.61)

We note that x(t ) has the same temporal behavior as the forcing function,
that is, its behavior in time is the same. Thus, we say that the motion of the
mass is in phase with the action of the driver. On the other hand, the speed
of the response is given by

dx(t )

dt
= − ωF0

m(ω2
0 − ω2)

sin(ωt − φ), (8.62)

which shows that the speed is out of phase with the driver by 90◦, that is,
the speed of the mass lags behind the force by a time equal to t = π/2ω.
Now eq. (8.62) can also be written as (see Problem 8.35):

dx(t )

dt
= F0

mω0[(ω/ω0)− (ω0/ω)] sin(ωt − φ), (8.63)

As we just saw in Section 8.6, the displacement and the speed become infi-
nitely large as the forcing frequency, ω, approaches the natural frequency,
ω0. Thus, when the driving frequency equals the natural frequency, we
have the condition of resonance. The oscillatory forcing function produces
an infinite response. In fact, resonance is what we are trying to achieve
when we time the pushes given to someone seated on a playground swing!
In Figure 8.9 we have sketched the shape of the ideal response curve of
eqs. (8.61) or (8.57) on a set of axes rendered dimensionless: kx(t )/F0

against ω/ω0. The infinite peak for the ideal case is quite obvious. We have
also shown there a sketch of the damped response, which we will discuss
shortly, but note that it is bounded and finite.

In acoustics and vibration research and practice, resonance and other
vibratory phenomena are exhibited and measured in terms of a system’s
impedance, which for the system modeled here is:

Z (ω) ≡ |F(t )|
/∣∣∣∣dx(t )

dt

∣∣∣∣,
which means that the impedance for an ideal spring-mass system is

Z (ω) = mω0

(
ω0

ω
− ω

ω0

)
. (8.64)
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Figure 8.9 A sketch of the shape of the ideal response
curve of a spring-mass system driven by a harmonic
excitation. The axes are dimensionless: kx (t )/F0
against ω/ω0. The infinite peak for the ideal case is quite
obvious. The damped response is bounded and finite.

We see in eq. (8.64) that the impedance vanishes at resonance, that is,
Z (ω0) = 0. Thus, when the speed of the mass becomes infinite, nothing
impedes its motion—even if the magnitude of the force is very small. Thus,
an alternate statement of the condition of resonance is that it occurs at the
frequency for which the impedance Z (ω) = 0 vanishes.

The form of eq. (8.65) also suggests that the behavior of Z (ω) might be
substantially different for ω < ω0 than it would be for ω > ω0. In fact, for
frequencies below the natural frequency (i.e., for ω � ω0), eq. (8.64) can
be approximated as

Zk(ω)
∼= mω2

0

ω
= k

ω
. (8.65)

Thus, for low frequencies, where the excitation is applied slowly, the oscil-
lator responds as a spring: The impedance decreases as the frequency
increases toward the natural frequency. For low frequencies, of course,
we are closer to the static limit of ω = 0, so it should not be a surprise that
stiffness dominates the response.

On the other hand, for frequencies above the natural frequency (i.e., for
ω � ω0), eq. (8.64) can be approximated as

Zm(ω) ∼= −mω. (8.66)

At high frequencies we expect the dynamics to be more important, and so
it is not unexpected that the mass dominates. It is also not surprising that
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the impedance increases with frequency, meaning that it gets progressively
harder to push around a mass at ever-higher frequencies.

So much for the ideal case. What happens in the “real world” where there
is friction and damping and energy loss? The mathematics of modeling
damped systems get more complex (see Problems 8.37 and 8.38), so we
will present a few key results here. The governing equation for analyzing
the dynamic response of a damped oscillator is:

m
d2x(t )

dt 2
+ c

dx(t )

dt
+ kx(t ) = F0ejωt . (8.67)

A damping element is included here, and we also have introduced complex
arithmetic in the notation for the excitation: The forcing function is written
in exponential form (see Sections 4.9 and 7.2.2) and, in order that eq. (8.67)
remain real, the forcing amplitude must be a complex number. It can
be shown that the square of the magnitude of the resulting motion of a
spring-mass-damper is:

|x(t )|2 = |F0|2
m2(ω2

0 − ω2)2 + c2ω2
, (8.68)

while the magnitude of the impedance is:

|Z (ω)|2 = m2ω2
0

(
ω0

ω
− ω

ω0

)2

+ c2. (8.69)

We note immediately that eqs. (8.68) and (8.69) reduce to their respect-
ive counterparts for the ideal model (eqs. (8.61) and (8.64)) when c = 0.
Further, and still more important, note that the presence of damping elim-
inates both the singular response and the vanishing of the impedance at
resonance. Thus, at resonance, when ω = ω0,

|x(t )|2ω0
= |F0|2

c2ω2
0

, (8.70)

and

|Z (ω0)|2 = c2. (8.71)

Equation (8.70) shows that the response is bounded and non-infinite as
long as there is damping, and that it becomes infinite when c = 0. Equation
(8.71) shows that the impedance vanishes altogether only if the damping
vanishes altogether. In fact, eqs. (8.69) and (8.71) both also confirm our
intuitive sense that damping impedes motion.
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Problem 8.33. What are the fundamental physical dimensions of
impedance for a mechanical oscillator?

Problem 8.34. Show that the mechanical impedance of an ideal
spring-mass system can be written in the form

Z (ω) = k

ω
−mω.

Explain why this form of impedance does not work
as well as eq. (8.64) to discern the stiffness- and mass-
controlled regions of response.

Problem 8.35. Write the governing equation for a parallel LC
circuit subject to a harmonic current input
−(i0/ω) cos(ωt − φ) and determine the resulting
impedance.

Problem 8.36. What are the fundamental physical dimensions of
impedance for an electrical oscillator? [Hints: Ima-
gine eq. (8.71) and its predecessor with a resistor,
R, in place of the damping coefficient, or solve
Problem 8.35.]

Problem 8.37. Assume an exponential solution to the homogeneous
counterpart of eq. (8.67) and determine the roots for
which a solution exist.

Problem 8.38. Determine the particular solution to eq. (8.67) by
assuming that x(t ) = B exp(jωt ), where B andωmay
be complex.

Problem 8.39. Determine and explain the dimensions of the coeffi-
cients, (F0/mω0), in eq. (8.58).

Problem 8.40. Sketch the impedance, Z (ω), of a spring-mass-
damper against the dimensionless frequency and
identify the regimes where stiffness, mass, or damp-
ing controls the response.

8.8 Summary

We have devoted this chapter to the simple harmonic oscillator, without
and with damping, without and with a forcing function, and in several
different guises. These applications have included the classical mechanical
spring-mass system, inductor-capacitor oscillators, a parallel RLC circuit,
the vibration of tall buildings, and oscillation in a cyclotron and of a vehicle
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suspension system. We also developed the electrical-mechanical analogy
and pointed out its usefulness for thinking about the meaning of the
different terms in the various oscillator models.

In addition, we solved the differential equation and described the solu-
tion for the forced harmonic vibration of an oscillator. In so doing, we
were able to bring out the very important concepts of resonance and
impedance. In discussing impedance, we showed how the various elements
(spring, mass, and damper) provided different response regimes, that is,
frequency regimes that are controlled, respectively, by stiffness, mass, and
damping.

And, finally, we pointed out the commonality of both the mathemat-
ics and the physics of such system models. Thus, to develop oscillatory
behavior, systems must have elements with stiffness that store poten-
tial energy (springs and capacitors) elements with mass that store kinetic
energy (masses and inductors), and elements that dissipate energy (dash-
pots and resistors). Stiffness may take many forms, but there must always be
an element that stores potential energy in order for there to be an exchange
with an element that stores kinetic energy.

8.9 References

D. P. Billington, The Tower and the Bridge: The New Art of Structural
Engineering, Basic Books, New York, 1983.

R. E. D. Bishop, Vibration, Cambridge University Press, Cambridge, UK,
1965.

R. E. D. Bishop and D. C. Johnson, The Mechanics of Vibration, Cambridge
University Press, Cambridge, UK, 1960.

M. Braun, Differential Equations and Their Applications: Shorter Version,
Springer-Verlag, New York, 1978.

R. H. Cannon, Jr., Dynamics of Physical Systems, McGraw-Hill, New York,
1967.

P. D. Cha, J. J. Rosenberg, and C. L. Dym, Fundamentals of Modeling and
Analyzing Engineering Systems, Cambridge University Press, New York,
2000.

C. L. Dym and E. S. Ivey, Principles of Mathematical Modeling, 1st Edition,
Academic Press, New York, 1980.

C. L. Dym and I. H. Shames, Solid Mechanics: A Variational Approach,
McGraw-Hill, New York, 1973.

F. Fahy, Sound and Structural Vibration, Academic Press, London, 1985.
M. Farkas, Dynamical Models in Biology, Academic Press, San Diego,

CA, 2001.



242 Chapter 8 Applying Vibration Models

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on
Physics, Vols. I and II, Addison-Wesley, Reading, MA, 1963.

B. R. Gossick, Hamilton’s Principle and Physical Systems, Academic Press,
New York, 1967.

R. Haberman, Mathematical Models, Prentice-Hall, Englewood Cliffs, NJ,
1977.

D. Halliday and R. Resnick, Fundamentals of Physics, 2nd Edition, Revised
Version, John Wiley & Sons, New York, 1986.

G. W. Housner and D. E. Hudson, Applied Mechanics: Dynamics, Von
Nostrand-Reinhold, New York, 1959.

E. C. Pielou, An Introduction to Mathematical Ecology, Wiley Interscience,
New York, 1969.

A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and
Applications, McGraw-Hill, New York, 1981.

J. W. S. Rayleigh, The Theory of Sound, Vol. 1, 2nd Edition, Dover
Publications, New York, 1945. (The 1st edition was published in 1877.)

E. Simiu and R. H. Scanlan, Wind Effects on Structures, John Wiley & Sons,
New York, 1978.

J. M. Smith, Mathematical Ideas in Biology, Cambridge University Press,
London and New York, 1968.

G. W. Swenson, Principles of Modern Acoustics, Boston Technical Publishers,
Cambridge, MA, 1965.

B. S. Taranath, Structural Analysis and Design of Tall Buildings, McGraw-
Hill, New York, 1988.

P. A. Tipler, Physics, Worth Publishers, New York, 1976.
J. W. Tongue, Principles of Vibration, 2nd Edition, Oxford University Press,

New York, 2001.
M. R. Wehr and J. A. Richards, Jr., Physics of the Atom, Addison-Wesley,

Reading, MA, 1960.
R. M. Whitmer, Electromagnetics, Prentice-Hall, Englewood Cliffs, NJ,

1962.
H. B. Woolf (Editor), Webster’s New Collegiate Dictionary, G. & C. Merriam,

Springfield, MA, 1977.

8.10 Problems

8.41. The height of a World Trade Center (WTC) tower was 1370 ft (110
stories) and its fundamental period was about 11 sec. The height of
the Empire State Building is 1250 ft (102 stories) and its fundamental
period is about 8 sec.

(a) How do their respective average specific weights compare?
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(b) If the average specific weight for the WTC is as given in
Section 8.2 for slender steel-framed towers, what would be the
corresponding number for the Empire State Building?

8.42. The height of the Citicorp Building is 915 ft (59 stories) and its
fundamental period is about 6.5 sec. Given the data in Problem 8.41
for a WTC tower, find:

(a) how the period varies with building height; and
(b) how the period varies with number of stories.

8.43. Obtain an expression [analogous to eq. (7.28)] for the total energy
in a parallel RLC circuit and calculate its rate of change with respect
to time [analogous to eq. (7.29)].

8.44. Obtain an approximate expression [analogous to eq. (7.30)] for the
total energy in a parallel RLC circuit that can be used with the
results of Problem 8.43 to obtain a differential equation [analogous
to eq. (7.29)] for the circuit’s energy.

8.45. Use the results of Problem 8.44 to determine how the energy of the
parallel RLC circuit behaves over time? What is the relevant time
constant, and how would you characterize that constant? (Hint :
Reread Section 7.1.6.)

8.46. (a) Find the impedance of an acoustic resonator as a function of
ρ0, A, L, V0 and ω; and

(b) What are the physical dimensions of the resonator impedance?

8.47. Charged particles are accelerated in a cyclotron travel in circles of
radius r that depends on their speed, v , and magnetic flux density,
B, according to:

r = mv

qB
,

where m and q are the particle’s mass and charge, respectively.
The speed and the energy are boosted every half-cycle, so that the
particles execute forced harmonic motion in circles whose radii are
increasing .

(a) At what resonant frequency ω0 must the energy be supplied?
(b) What is the impedance of this system?
(c) Show that the rate of change of the energy in the system is of

the form
dE(t )

dt
= (qB)3(r2

2 − r2
1 )

2πm2
> 0.

8.48. A simple seismograph is shown in the accompanying figure. If y
denotes the displacement of m relative to the earth, and η the
displacement of the earth’s surface relative to the fixed stars, the
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equation of motion of the mass is

m
d2y(t )

dt 2
+ c

dy(t )

dt
+ ky(t ) = −m

d2η(t )

dt 2
.

(a) Determine the steady-state response if η(t ) = C cosωt .
(b) Sketch the amplitude of y(t ) as a function of ω.

m

Earth

k

8.49. What are the dimensions of the damping quality factor, Q = ω0m/c?
8.50. A long-period seismometer has mass, m = 0.01 kg, period, T0 =

30 sec, and damping quality factor, Q = 3. An earthquake triggers
the earth’s surface to respond with a oscillations with a period of
15 minutes and a maximum acceleration of 2× 10−9 m/sec2. What
is the amplitude of the seismometer vibration?

8.51. Given that power equals force times velocity or speed, deter-
mine the average power needed to maintain the oscillations of
a damped system driven by F = F0 cosωt and responding as
x(t ) = X0 cos(ωt + φ), where φ is the phase angle by which the
response lags behind the force.

8.52. For the forced oscillator of Problem 8.51, let the phase angle φ =
π/2 rad, ω0 = 500 rad/sec, Q = 4 when

X0 = F0

k

ω0/ω√(
ω0

ω
− ω

ω0

)2

+
(

1

Q

)2
,

with sin φ = Q(kX0/F0)(ω/ω0).

(a) Plot the average power input found in Problem 8.51 against the
frequency, ω, of the driving force.
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(b) Find the width�ω of the power curve of part (a) at one-half of
the maximum power, centered around the resonance frequency.
This range of frequencies, the half-power band, is that within
which resonance effectively occurs.

8.53. (a) Repeat the calculations of Problem 8.52 with a damping quality
factor Q = 6.

(b) What does a comparison of the two half-power bands for
different values of Q reveal about the effect of damping on
resonance?

8.54. List resonant systems that we see in nature, over as wide a range as
possible.

8.55. A weight hanging on the end of a spring causes a static deflection
xst = W /k. If the static deflection is measured in inches, show that
the resonant frequency in cycles per second is f = 3.13/

√
xst (Hz).

8.56. A bridge is 100 m long and supported by steel beams whose
modulus of elasticity is E = 2 N/m2 and whose second moment
I = 0.002 m4. Determine the bridge’s natural frequency if its mass
is 105 kg and a weight of 1.8× 105 N causes it to deflect 0.01 m?

8.57. A group of 200 soldiers who collectively weigh 1.8× 105 N marches
in step across the bridge of Problem 8.56. Their right feet hit the
bridge at regular intervals of 0.9 sec, forcing the bridge to vibrate.
Would an observer see that vibration? Explain how you know that.



9
Optimization: What Is the

Best…?

This final chapter is about achieving the best result, obtaining the maximum
gain, finding the optimal outcome. Thus, this chapter is about optimiza-
tion—an especially interesting subject because finding an optimum result
may be difficult, and at times even impossible. Our experience with find-
ing maxima and minima in calculus suggests that we can often find a point
where the derivative of a function vanishes and an extreme value exists.
But in engineering design and in life generally, we often have to “satisfice,”
that is, in the word of Herbert A. Simon, be satisfied with an acceptable
outcome, rather than an optimal one. Here, however, we will focus on Why?

How?modeling the ways we seek optimal solutions. In so doing, we will see
that the formulation of an optimization problem depends strongly on how
we express the objective function whose extreme values we want and the
constraints that limit the values that our variables may assume.

Much of the work on finding optimal results derives from an interest in
making good decisions. Many of the ideas about formulating optimization
problems emerged during and after World War II, when a compelling need
to make the very best use of scarce military and economic resources trans-
lated in turn into a need to be able to formulate and make the best decisions
about using those resources. Thus, with improved decision making as the
theme, we will also present (in Section 9.4) a method of choosing the best
of an available set of alternatives that can be used in a variety of settings.

247
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We will close with a miscellany of interesting, “practical” optimization
problems.

9.1 Continuous Optimization Modeling

We start with a basic minimization problem whose solution is found using
elementary calculus. Suppose that we want to find the minimum values ofFind?

the objective function

U (x) = x2

2
− x , (9.1)

which we have drawn in Figure 9.1. That picture of the objective function
U (x)—so called because we set our objective as finding its extreme value—
is a parabolic function of x , as the algebraic form of eq. (9.1) confirms.
Thus, it has only a single minimum value, called the global minimum. TheHow?

value of x at which this global minimum is found is determined by setting
the first derivative of U (x) to zero:

dU (x)

dx
= x − 1 = 0, (9.2)

from which it follows that the minimum value of U (x) occurs when xmin =
1 and is

Umin = U (xmin) = −1

2
. (9.3)

U (x )

U(x ) = ½x2– x

Umin = –½
xmin= 1

x

Figure 9.1 The objective function
U (x ) = x 2/2− x plotted over the
unrestricted range of –∞ ≤ x ≤ +∞. The
minimum value of the objective function,
Umin = −1/2, occurs at xmin = 1.
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We also note from eq. (9.2) that the slope of U (x) increases monotonically
as x goes from−∞ to+∞, which means that U (x) itself can have only one
flat spot. We can confirm this by calculating the rate of change or derivative
of the slope,

d2U (x)

dx2
= 1, (9.4)

which is always positive. Thus, there is only one minimum, and it is a global
minimum. In fact, we can go a step further and identify the minimum value
of eq. (9.3) as an unconstrained minimum because we did not constrain or
limit the values that the variable x could assume.

Suppose we did impose a constraint, say of the form x ≤ x0, which Assume?

requires the independent variable, x , to always be less than or equal to a
given constant, x0. This means that search for the minimum of U (x) is How?

limited to the admissible values of x: x ≤ x0.We can visualize a procedure
for implementing this constraint as putting a line on the same graph as the
curve, U (x), and then “moving” this line to different values of x0, as shown
in Figure 9.2. The constraint then shows as the set of lines, x01< x02< x03,
so we can now briefly consider the three problems of determining the min-
imum values of U (x) with x ≤ x0i , i = 1, 2, 3. In the first case, i = 1, the
admissible range of x is so restricted that the constrained minimum value

U (x )

U (x ) = ½x2– x

Umin

xmin

x

Unconstrained Umin 

x01< x02< x03

x03
x02x01

Figure 9.2 The objective function
U (x ) = x 2/2− x plotted together with three
constraints that restrict the range of admissible
values: the set of lines, x01 < x02 < x03. These
lines allow us to consider the three problems of
determining the minimum values of U (x ) with
x ≤ x0i , i = 1, 2, 3.
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of U (x) is apparently significantly greater than the unconstrained min-
imum of eq. (9.3). For example, if x01=−3, the corresponding constrained
minimum is U (−3) = 7.5. As the constraint “moves” further to the right
(i = 2, 3), we approach and then go through the unconstrained minimum.
Thus, the range of feasible solutions for the minimum of U (x)may include
the unconstrained minimum, Umin—or it may not—depending on just
where the constraint boundaries happen to be.

The constraints so far imposed are inequality constraints, x ≤ x0, that
bound the range of feasible values at the upper end by the equality, x = x0,
and include the interior region, x < x0. We might have posed only a simple
equality constraint, x = x0, in which case we would have found a (highly)
constrained minimum U (x0).

If our objective function were only slightly more complicated, the search
for extreme points would become significantly more complicated. Consider
the objective function

U (x) = sin x , (9.5)

This elementary function could have, depending on the limits placed on
the range of admissible values of x , an infinite number of maxima and
of minima, or a constrained extremum somewhere between the two (see
Problem 9.1). The point of this seemingly trivial example is simple. Char-
acterizing and finding the extrema can be complicated even when the
objective function is well known and its properties well understood.

The objective functions (9.1) and (9.5) have only a single variable.
However, multi-dimensional optimization problems are almost always theWhy?

norm in engineering practice because engineered devices and processes
rarely, if ever, depend only on a single variable. One simple example can be
found at the local post office, where postal regulations typically stipulate
that the rectangular package shown in Figure 9.3 can be mailed only if the
sum of its girth (2x + 2y) and length (z) do not exceed 84 in (2.14 m).
What is the largest volume that such a rectangular package can enclose?Find?

The objective function is the package’s volume,

V (x , y , z) = xyz , (9.6)

where x and y are the two smaller dimensions whose sum comprises the
package’s girth, and the length, z , is its longest dimension. We assumeAssume?

that these three dimensions are positive real numbers (i.e., x > 0, y > 0,
z > 0).

The constraint on the package dimensions stemming from the postal
regulations can be written as:

2x + 2y︸ ︷︷ ︸
girth

+ z︸︷︷︸
length

≤ 84, (9.7)
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Since we seek the largest possible volume, this inequality constraint on the Assume?

package dimensions can be expressed as an equality constraint:

2x + 2y + z = 84. (9.8)

Thus, the volume maximization problem is expressed as the objective
function (9.6) to be maximized, subject to the equality constraint (9.8).
Although the problem is formulated in three dimensions, we can use the How?

equality constraint to eliminate one variable, say the length, z , so that the
objective function becomes:

V (x , y) = xy(84− 2x − 2y) = 84xy − 2x2y − 2xy2. (9.9)

Now we want to find the maximum value of V (x , y) as a function of x and y .
As we recall from calculus, the necessary condition that V (x , y) takes on
an extreme value is:

∂V (x , y)

∂x
= 84y − 4xy − 2y2 = 2y(42− 2x − y) = 0, (9.10a)

and

∂V (x , y)

∂y
= 84x − 2x2 − 4xy = 2x(42− x − 2y) = 0. (9.10b)

Equations (9.10a–b) can be reduced to a pair of linear algebraic equations
whose non-trivial solution can be found (x = y = 14 in) to determine
the corresponding package volume, V = 5488 in3. This volume can be
confirmed to be a maximum (see Problems 9.4, 9.5).

The package problem, albeit multi-dimensional, was still relatively
simple because its inequality constraint could logically and appropriately be
reduced to an equality constraint that could, in turn, be used to reduce the
dimensionality of the problem. Then we found the maximum volume of
the package by applying standard calculus tools and seemingly without any
further reference to constraints (see Problem 9.6). Consider for a moment
the problem of finding the minimum of the following objective function:

U (x , y) = x2 + 2(x − y)2 + 3y2 − 11y . (9.11)

We show a three-dimensional rendering of this parabolic surface in
Figure 9.3. It has an unconstrained minimum at the point (x = 1, y = 1.5),
where Umin = −8.25 (see Problem 9.7). What happens if an equality con- Find?

straint is imposed? That is, in the style and terminology of the field of
operations research, suppose that we want to find the

minimum of U (x , y) = x2 + 2(x − y)2 + 3y2 − 11y ,
subject to x + y = 3.

(9.12)
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We could again use standard calculus techniques to show that the con-
strained minimum occurs at the point (x = 31/24, y = 41/24), where
Umin = −385/48 (see Problem 9.8). Note that the minimum is located
on the boundary plane where the constraint intersects U (x , y), that is,
at a point such that x + y = 31/24 + 41/24 = 72/24 = 3. If the
equality constraint of eq. (9.12) was replaced with the (strict) inequal-
ity constraint x + y < 3, we would find that the minimum sought lies
inside the intersecting boundary plane.

U (x, y )

x

y

Plane  x + y = 3

Constrained minimum of U

Unconstrained minimum of U
Surface U (x, y )

Figure 9.3 The objective function
U (x , y ) = x 2 + 2(x − y )2 + 3y 2 − 11y “plotted” in
three dimensions, along with the plane x + y = 3
that could form the boundary of an equality
constraint or of a corresponding inequality
constraint.

Problem 9.1. Determine the maxima and minima of the elementary
function, U (x) = sin x , when the range of admissible
values is:

(a) unconstrained;
(b) 0 < x < π/2;
(c) 0 ≤ x ≤ π/2; and
(d) 3π/4 ≤ x ≤ 9π/4.

Problem 9.2. Assume an equality constraint is applied to the mini-
mization of the objective function (9.1).

(a) Determine the corresponding value of Umin.
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(b) How would you characterize that extreme value
(e.g., it is an _____ minimum)?

Problem 9.3. Solve the linear algebraic equations (9.10) and deter-
mine the three corresponding package dimensions and
the package’s volume, V .

Problem 9.4. If eqs. (9.10a–b) are the necessary conditions to find the
maximum value of the function, V , of eq. (9.9), what
additional requirements are needed to have sufficient
conditions to obtain the maximum of V ?

Problem 9.5. Apply the sufficient condition(s) found in Problem 9.4
to the package volume problem to confirm that the
result calculated in Problem 9.3 is, in fact, a maximum.

Problem 9.6. Are there any “invisible” or implicit constraints in the
package maximization problem? (Hint : Start with the
fact that x , y , and z represent real physical quantities
that can never be negative.)

Problem 9.7. Determine the location and value of the minimum of
the parabolic surface given by eq. (9.11).

Problem 9.8. Use standard calculus methods to determine the con-
strained minimum defined by eq. (9.12). (Hint :
Eliminate a variable.)

9.2 Optimization with Linear Programming

The section just completed showed that the search for an optimum or
extreme value of a function subject to an inequality constraint requires a
search over the interior of the region defined by the constraint boundary.
Thus, as shown in Figure 9.2, we must search for all values of x ≤ x0i .
This is true more generally because an objective function may fluctuate in
value, perhaps like the sinusoid of eq. (9.5). Consider, for example, the
sketch of a generic objective function in Figure 9.4. The good news is that
the standard methods of calculus are usually adequate for searches where
the objective functions are relatively tractable. The bad news is that, in
such cases, we generally need to search the entire domain, x04 ≤ x ≤ x05

to find global optima. However, there is a very important class of problems
where a search of the interior region is not required because the optimum
point must occur on one of the constraint boundaries. This class of prob-
lems is made up of objective functions that are linear functions of the
independent variables, and their optimization searches are known as linear
programming (LP).
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x

f (x)

x04 x05

Figure 9.4 A generic sketch of an objective
function that shows some variation or fluctuation,
with peaks and valleys in the domain of interest.
The bad news is that here we do need to search
the entire domain, x04 ≤ x ≤ x05, to find a global
optimum. The good news is that the standard
methods of calculus are usually adequate for
searches if the objective functions are relatively
straightforward.

Suppose we want to find (see Figure 9.5) the

minimum of U (x) = mx + b,
subject to x1 ≤ x ≤ x2.

(9.13)

Now, the minimum of U (x) must lie within the admissible range of val-
ues of x , defined by the two inequality constraints just given. Geometry,
however, tells us that the optimal values of the linear objective function,

x

U (x)

x = x2

x = x1

U = mx + b,
     m > 0

U = mx + b,
     m <0

Figure 9.5 A generic linear programming problem
which is characterized by an objective function that is a
linear function of the variable x . Note that the optimal
values, both maxima and minima, for m > 0 or m < 0,
occur at points where the objective function intersects
the constraint boundaries, that is, on the constraint
boundaries themselves.
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U (x) = mx + b, occur at points where U (x) intersects one of the two
constraint boundaries. For m > 0, Umin must occur at x = x1 and Umax

must occur at x = x2. Thus, for this linear programming problem, we can
find the optima of U (x) without searching the interior region defined by
the constraint boundaries: We know a priori that the optima must occur
on the constraint boundaries. In fact, it can be shown that the optimum
solutions for LP problems are found by searching only at the boundary
intersections or vertices. The search problem is thus “reduced” to solving
for a set of intersection points defined by various linear equations.

Is requiring an objective function to be linear too much of a simplifica-
tion? Are LP problems useful, or a cute mathematical artifact? In fact, LP is
extremely important and useful, and is one of the cornerstones of the field
of operations research. The field of operations research (OR)—pronounced
“oh r”—developed first in Britain and then in the United States during
World War II when there was a compelling interest in optimizing scarce
military and economic resources. Since that time, OR has been applied
to both military and civil problems, including in the latter a wide variety
of commercial enterprises, allocating medical resources, managing traffic,
and modeling the criminal justice system. The hallmark of LP is the deter-
mination of optimal results for single objectives: minimizing transportation
costs, optimizing the product mix, maximizing hospital bed availability,
minimizing the number of highway toll attendants when traffic is slack, or
minimizing drivers’ waiting times when traffic is heavy.

9.2.1 Maximizing Profit in the Furniture Business

Suppose that we are in the furniture business and making desks and tables Why?

Given?that are made of oak and maple. Desks and tables consume different
amounts of lumber: a desk requires 6 board-feet (bft) each of oak and
maple, while a table requires 3 bft of oak and 9 bft of maple. The local
lumber mill will supply up to 1200 bft of oak at $6.00/bft and up to 1800
bft of maple at $4.00/bft. The market for desks and tables is such that they Assume?

Find?can be sold for, respectively, $90.00 and $84.00. How many desks and how
many tables should we make to maximize our profit?

We will soon find out (see eq. (9.16)) that under the conditions assigned
here, the profits earned by selling a desk are the same as the profits earned
by selling a table, namely, $30.00 each. Suppose that this was not the case
and that the profit in selling a table was only $18.00. Then it might seem
reasonable to first make only desks to maximize profit—except that we will
run out of oak after only 200 desks are made and have an excess, unusable
supply of maple left over. It will also turn out that the profit earned in
this case, $6000, is not the maximum profit possible. This problem is
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interesting because the constraints supply limits on the available materials,
which means in turn that we must make trade-offs between desks and tables
to maximize our overall profit.

We formulate this profit optimization problem as an LP problem, mean-How?

ing that we build an objective function—the difference between sales
income and cost of manufacture—and the relevant operating constraints.
If x1 is the number of desks made, and x2 the number of tables, the income
derived by selling desks and tables is:

income = ($/desk)x1 + ($/table)x2

= $(90x1 + 84x2). (9.14)

The cost of manufacture is reckoned in terms of the quantity of lumber
required for each product and the unit costs of that lumber:

cost =($/oak)[(oak/desk)x1 + (oak/table)x2]
+ ($/maple)[(maple/desk)x1 + (maple/table)x2]
=($6.00)(6x1 + 3x2)+ ($4.00)(6x1 + 9x2)

=$(60x1 + 54x2). (9.15)

The profit to be maximized, the objective function, is the difference
between the income (eq. (9.14)) and the cost (eq. (9.15)):

profit = $(90x1 + 84x2)− $(60x1 + 54x2)

= $(30x1 + 30x2). (9.16)

Note that the income, cost, and profit are all expressed in a common unit
of currency, in this case U.S. dollars ($).

There are three constraints for this linear programming problem, deriv-
ing from the limitations of the wood’s availability from the lumber mill and
the fact that wood is a real physical object. On availability, the manufac-
turer can’t use any more wood than the lumber mills can make available,
so that

amount of oak used = (oak/desk)x1 + (oak/table)x2

= 6x1 + 3x2 ≤ 1200 (bft), (9.17a)

and

amount of maple used = (maple/desk)x1 + (maple/table)x2

= 6x1 + 9x2 ≤ 1800 (bft). (9.17b)

Note that both constraints are expressed in terms of a common dimension,
board-feet (see Problems 9.9 and 9.10).
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The third constraint follows from the simple fact that the numbers of
tables and desk must be real, positive numbers. Thus, there is a non-
negativity constraint :

x1, x2 ≥ 0. (9.18)

So, to sum up our furniture LP problem, then, we want to find the

maximum of $(30x1 + 30x2),

subject to




6x1 + 3x2 ≤ 1200(bft),
6x1 + 9x2 ≤ 1800(bft),
x1, x2 ≥ 0.

(9.19)

Note that the non-negativity constraint is almost always a part of LP How?

formulations, largely because the variables involved in LP or optimization
problems are real physical variables that by their very nature are greater
than (or sometimes equal to) zero. In addition, it is fairly easy to con-
vert “negative” variables to “positive” variables by suitable sign changes
in the objective function and in the constraints. Finally, and likely most
importantly, there is a significant computational advantage when all of
the variables are positive because the non-negativity constraint limits the
admissible space of the variables substantially.

The solution to the LP problem posed in eq. (9.19) will be found graphi- How?

cally. In Figure 9.6 we show the admissible space as the first quadrant in the
(x1, x2) plane; the objective function (9.16) as a series of dotted lines; and
the two inequality constraints (9.17) as (labeled) solid lines. The feasible
region, wherein all (in this case both) constraints are satisfied, is shaded.
The objective function can be thought of as a series of parallel dotted
lines that can take on different, increasing values as the variables x1 and
x2 increase (see Problem 9.11). We observe that the objective function will
reach its largest value when it reaches the point (150, 100) because it is the
last point on the constraint boundary that is within the feasible space—
here at the intersection of the two inequality constraints (9.17). The value
attained by the objective function at that point is $6300.

We might have spotted this solution immediately on the basis of our Valid?

previous observation that LP optima must lie on the constraint bound-
ary. In the present case, the objective function, 30(x1 + x2), must reach
its maximum at one of the vertices formed by the intersection of the con-
straint boundary with the feasible region ((200, 0), (0, 200)) or with each
other (150, 100). Clearly, the point among these three that produces the
largest objective function is that at the intersection of the two inequality
constraints. So, again, the furniture maker will reap the most profit by Use?

making (and selling) 150 desks and 100 tables, which will yield a profit of
$6300.
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x1

x2

Constraint boundary
6x1+ 3x2= 1200 (oak constraint)

Constraint boundary
6x1+ 9x2 = 1800
(maple constraint)

(150, 100)

Objective function (30x1+ 30x2)
shown as dashed lines for increasing
values shown in parentheses

(1125)

(1875)
(2250)

100 200 300

100

200

300

400

Figure 9.6 The graphical solution to the LP problem
posed in eq. (9.19). Note that the admissible space is
the first quadrant in the (x1, x2) plane; the objective
function (9.16) is portrayed in a series of dotted lines;
and the two inequality constraints (9.17) are the
(labeled) solid lines. The region of feasible solutions,
wherein all (in this case both) constraints are satisfied,
is shaded.

9.2.2 On Linear Programming and Extensions

The example presented just above is rather simple because it has only
two variables, which made it amenable to graphical solution. LP prob-
lems often have hundreds or even thousands of variables and so cannot
be handled graphically, but they can be solved straightforwardly with a
variety of standard computational approaches. All of these approaches to
LP problems, the most notable of which is the simplex method, work by
identifying the boundary vertices at which optima must lie in ways that are
analogous to our graphical solution. There are also many other classical
OR/LP problems, including the feed-mix and product-mix problems that
occur repeatedly in industry, and the transportation problem that we will
discuss in the next section.

There are other so-called programming problems and methodologies
that are used to solve more complicated optimization problems. For
example, nonlinear programming (NLP) refers to the set of techniques used
when the objective functions are nonlinear. Dynamic programming refers to
the class of problems that require sequential, hierarchical decisions, that is,
problems where the solution to one problem serves as input to or a starting
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point for another problem. For example, in an extension of the furniture
problem just solved, the lumber prices might vary over time because of
external supply factors, in which case different production decisions might
be made. Similarly, integer programming is designed to deal with those
problems in which variables must be treated as integers, rather than as
continuous variables. For example, we treated the numbers of desks and
tables as continuous variables in the furniture optimization problems, but
it is hard to imagine that we would make 150.7 desks or 99.6 tables. The
results could, of course, be rounded off, but then we lose our guarantee
of optimality. More importantly, however, integer programming is used
for problems that have binary variables (for example, zero or one). For
example, scheduling problems, such as when an election agency locates
polling places within particular zip codes, are the kind of “go or no go”
situations where integer programming is of most use.

9.2.3 On Defining and Assessing Optima

The optimal or best solution may well depend on the perspective of the
person conducting or sponsoring the study. Someone has to say what he
or she means by “the best.” Consider the three cities that are spaced as
in Figure 9.7. New connecting highways are to be built between the three
cities, and the taxpayers clearly want the best result. The question is: What
is the best result? If the best result is defined as the shortest travel time
between two adjacent cities, then the configuration shown in Figure 9.7(a)
will be the best. If the best result is defined as the least amount of road
construction, then the configuration shown in Figure 9.7(b) will be the
best. Thus, as the old saying goes, “Where you stand depends on where you
sit.” Optimizing travel time (the commuter’s perspective) may be the best,
but minimizing road construction (the taxpayer’s perspective) may also be
the best.

Further, the choices are rarely as simple as that. The reduction of com-
muter travel time may lead to tangible economic benefits, perhaps from
more rapid delivery of goods, perhaps from a reduced pollution burden, or
it may prompt more travel that increases noise and air pollution. A careful
calculation of such benefits might be used to decrease the net cost of the
first highway configuration, which might change the assessment of which
highway pattern is truly the best. Clearly, doing such calculations requires
the assignment of economic values to waiting time, delivery time, invent-
ory costs, pollution burdens, and to other aspects of “reality” that may be
relevant. Even the choice between scenic and direct routes can be modeled
as an economic choice because it reflects a value judgment about whether
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City A(a) (b) City A

City B City C City B City C

Highway layout for
minimum travel time

Highway layout for minimum
road construction

Figure 9.7 Alternate highway configurations for
connecting three cities. (a) The first configuration
minimizes travel time between adjacent cities.
(b) The second configuration minimizes the amount
of road construction needed.

it is more important to enjoy the landscape or to get to the destination as
quickly as possible. Thus, three important points are:

• With LP and other OR techniques, we are modeling decisions, rather
than physical behavior or the like.
• When making such decisions, we are making trade-offs between costs

and benefits.
• When formulating and modeling such decisions, we are using cost-

benefit analysis to make explicit our values and preferences.

Problem 9.9. Verify the dimensions of eqs. (9.14–9.16).
Problem 9.10. Verify the dimensions of eqs. (9.17a–b).
Problem 9.11. Determine the slope of the dotted lines in Figure 9.6

that represents the objective function (9.16) of the
furniture LP problem. How does it compare with the
slopes of the two constraint boundaries?

9.3 The Transportation Problem

Having decided in Section 9.2 how many desks and tables we must make inWhy?

order to maximize our profit from making furniture, we now turn to selling
our desks through a distribution network of furniture outlets. The stores
are at varying distances from the furniture maker’s two plants—we have
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been doing well and have expanded our operations!—and each store has
its own demand, based on its own marketing analyses. Thus, we have the
logistical problem of deciding how to allocate the desks among the stores.
This class of OR problems is called the transportation problem.

Three furniture stores have ordered desks: Mary’s Furniture Emporium Given?

wants 30, Lori’s Custom Furniture wants 50, and Jenn’s Furniture Bazaar
wants 45. We have made 70 desks at Plant 1 and another 80 at Plant 2. The
distances between the two plants and the three stores are given in Table 9.1,
and the shipping cost is $1.50 per mile per desk. We want to minimize the What?

How?shipping costs of filling the three orders. Since the cost of shipping a desk is
easily calculated (see Problem 9.12), we have to calculate how many desks
go from a specified plant (of two) to a particular store (of three).

Table 9.1 The distances (in miles)
between Plants 1 and 2, where the
desks are made, to Mary’s Furniture
Emporium, Lori’s Custom Furniture,
and Jenn’s Furniture Bazaar, where
the desks will be sold.

Product

Plant (1) Mary’s (2) Lori’s (3) Jenn’s

1 10 5 30
2 7 20 5

Is an optimal solution available easily? Doesn’t it seem reasonable to
ship first along the shortest (and cheapest) routes? Here we would send
50 desks from Plant 1 to Lori’s, 45 desks from Plant 2 to Jenn’s, and so
on; and this approach might yield the optimal solution in this case (see
Problem 9.13). However, this is a simple problem that has only two plants
and three stores, and thus only six plant-store combinations to consider. In
addition, the supply of desks is distributed so that the demand for all three
stores can be met with only the shortest routes (see Problem 9.14). Thus,
this simple problem does not need the kind of trade-off among alternatives
that was needed to maximize profit for making furniture. However, it
is a useful template for more complex problems, so let us solve it in a
formal way.

This transportation problem of shipping desks from two plants to three
stores can be represented as an elementary network problem, as depicted
in Figure 9.8. The circles represent nodes at which desks are either sup-
plied (the plants) or consumed (the stores). In more elaborate problems
the nodes may be points to which material is supplied and from which
material is distributed. The directed line segments (the arrows) are links
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Plant 1 supply = 70

Plant 2 supply = 80

(1) Mary’s demand = 30

(2) Lori’s demand = 50

(3) Jenn’s demand = 45

Figure 9.8 A network representation of the elementary
transportation problem of shipping desks from two
plants to three stores. The circles represent nodes at
which desks are either supplied (the plants) or consumed
(the stores). The directed line segments (the arrows) are
links that represent the routes along which the desks
could be shipped.

that represent the routes along which the desks could be shipped, and in
more elaborate problems, these directed line segments may thus signify
two-way or bi-directional links.

One possible—although sub-optimal—solution to this transportation
problem is shown in Figure 9.9. We can calculate the shipping cost for this
solution as $1387.50 (see Problem 9.15), which is substantially higher than
the optimal solution (see Problem 9.13 again).

The transportation problem can be formulated as an LP problem, for
which some additional notation will be useful. Thus, we now identify xij as
the number of desks shipped from Plant i = 1, 2 to Store j = 1, 2, 3. (Note

Plant 1 supply = 70

Plant 2 supply = 80

(1) Mary’s demand = 30

(2) Lori’s demand = 50

(3) Jenn’s demand = 45

30

40

10

45

Figure 9.9 One possible solution to the elementary
transportation problem of shipping desks from Plants 1
and 2 to Mary’s Furniture Emporium, Lori’s Custom
Furniture, and Jenn’s Furniture Bazaar.
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that the two plants were numbered from the beginning, and the stores were
assigned numbers in Table 9.1.) Then we have

x11 = number of desks from Plant 1 to Store 1 (Mary’s),
x12 = number of desks from Plant 1 to Store 2 (Lori’s),
x13 = number of desks from Plant 1 to Store 3 (Jenn’s).
x21 = number of desks from Plant 2 to Store 1 (Mary’s),
x22 = number of desks from Plant 2 to Store 2 (Lori’s), and
x23 = number of desks from Plant 2 to Store 3 (Jenn’s).

Since the unit cost of shipping is a constant ($1.50 per desk per mile), we
can use the data in Table 1 to establish an objective function that is equal
to the shipping cost:

shipping cost = ($1.50)(10x11 + 5x12 + 30x13 + 7x21 + 20x22 + 5x23).
(9.20)

The constraints for this problem arise from the supply of desks produced
by the two plants and the demand for the desks by the three stores. The
two plants cannot exceed their capacities for producing desks:

x11 + x12 + x13 ≤ 70,

x21 + x22 + x23 ≤ 80.
(9.21)

The stores, in turn, must have enough desks shipped to them to meet their
demands:

x11 + x21 ≥ 30,

x12 + x22 ≥ 50,

x13 + x23 ≥ 45.

(9.22)

Finally, the numbers of desks must satisfy a non-negativity constraint
because the desks are real, so that:

xij ≥ 0. (9.23)

Thus, to sum up the formulation of our shipping problem as an LP
problem, we want to find the

minimum of ($1.50)(10x11 + 5x12 + 30x13 + 7x21 + 20x22 + 5x23),

subject to




x11 + x12 + x13 ≤ 70,
x21 + x22 + x23 ≤ 80,
x11 + x21 ≥ 30, (9.24)
x12 + x22 ≥ 50,
x13 + x23 ≥ 45,
xij ≥ 0.
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The shipping problem posed thus far has supply exceeding demand.
A more restricted version, the classical transportation problem, sets the total
supply equal to the total demand. The five inequality constraints (9.21)
and (9.22) become simple equality constraints, which reduces the number
of independent constraints by one. Suppose that Plant 1 produces only 45
desks (instead of 70). This reduces the (total) supply to a level that equals
the demand level of 125 desks. Thus, the supply constraints (9.21) become

x11 + x12 + x13 = 45,

x21 + x22 + x23 = 80,
(9.25)

whose sum, a constraint on the total supply, can then be found to be:

x11 + x12 + x13 + x21 + x22 + x23 = 125. (9.26)

Similarly, the demand constraints (9.22) become

x11 + x21 = 30,

x12 + x22 = 50,

x13 + x23 = 45,

(9.27)

and their sum, a constraint on the total demand, adds up to the same
result as for the total supply [eq. (9.26)]. Since the total demand and the
total supply equations are the same, the set of constraints (9.25) and (9.27)
represent only four—not five—independent equations.

This reduction in the number of independent constraints produces some
real computational benefits in solving classical transportation problems.
One of the benefits is that all of the variables turn out to be integers
when the constraints are expressed as integers. Further, the “extra” con-
straint produced by equating supply to demand results in comparatively
straightforward and efficient computations of the optimum.

If the demand exceeds the supply, the LP model cannot even get star-
ted because it is impossible to get into the feasible region—from which
the solutions derive. This is clear from summing the supply constraint
inequalities (9.21), ∑

i,j

xij ≤ supply, (9.28)

and comparing it to the sum of the demand inequalities (9.22),∑
i,j

xij ≥ demand. (9.29)

Of course, if supply exceeds demand, so that there is a net, positive surplus,
an LP solution can proceed in a straightforward fashion.
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Problem 9.12. Formulate and verify the dimensions of the equation
needed to calculate the cost of shipping a desk from
either plant to any of the three stores.

Problem 9.13. Complete the easily available optimal solution to the
desk shipping problem and determine the minimum
shipping cost.

Problem 9.14. Which of the six available plant-store routes
were used in achieving the optimal solution of
Problem 9.13?

Problem 9.15. Find the actual shipping cost of the transportation
solution shown in Figure 9.9.

Problem 9.16. Confirm the objective function (9.20). (Hint : Use the
result of Problem 9.12.)

Problem 9.17. Verify the constraints (9.21) and (9.22).
Problem 9.18. Verify that the sums of the supply (9.25) and demand

(9.28) equality constraints add to the same sum as
eq. (9.26).

9.4 Choosing the Best Alternative

People choose among alternatives all of the time: voters rank candidates; Why?

designers rank objectives; and students rank colleges. In each of these
circumstances, the voter or decision maker is charged with choosing among
the alternatives.

9.4.1 Rankings and Pairwise Comparisons

In recent years, questions have been raised about how voters establish
rankings of alternatives. Further, since people seem to compare objects
in a list on a pairwise basis before rank ordering the entire list, there is a
special focus on how pairwise comparisons are performed as a means of
assembling information for doing rank orderings. In pairwise comparisons,
the elements in a set (i.e., the candidates, design objectives, or colleges) are
ranked two at a time, on a pair-by-pair basis, until all of the permutations
have been exhausted. Points are awarded to the winner of each comparison.
Then the points awarded to each element in the set are summed, and
the rankings are obtained by ordering the elements according to points
accumulated. However, it is worth noting that as both described here and
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practiced, the number of points awarded in such pairwise comparisons is
often non-uniform and arbitrarily weighted. But, as we will note below, it is
quite important that the points awarded be measured in fixed increments.

The pairwise comparison methodology has been criticized particu-
larly because it violates the famous Arrow impossibility theorem for which
Kenneth J. Arrow was awarded the 1972 Nobel Prize in Economics. In that
theorem, Arrow proved that a perfect or fair voting procedure cannot be
developed whenever there are more than two candidates or alternatives that
are to be chosen. He started by analyzing the properties that would typify
a fair election system, and stated (mathematically) that a voting procedure
can be characterized as fair only if four axioms are obeyed:

1. Unrestricted : All conceivable rankings registered by individual voters
are actually possible.

2. No Dictator : The system does not allow one voter to impose his/her
ranking as the group’s aggregate ranking.

3. Pareto Condition: If every individual ranks A over B, the societal
ranking has A ranked above B.

4. Independence of Irrelevant Alternatives (IIA): If the aggregate ranking
would choose A over B when C is not considered, then it will not
choose B over A when C is considered.

Arrow proved that at least one of these properties must be violated for
problems of reasonable size (at least three voters expressing only ordinal
preferences among more than two alternatives). It is worth noting that a
consistent social choice (voting) procedure can be achieved by violating
any one of the four conditions. Further, some voting procedures based on
pairwise comparisons are faulty in that they can produce ranking results
that offend our intuitive sense of a reasonable outcome—and quite often a
desired final ranking can be arrived at by specifying a voting procedure.

Among pairwise comparison procedures, the Borda count (which we
describe below, in Section 9.4.2) most “respects the data” in that it avoids
the counter-intuitive results that can arise with other methods. As D. G.
Saari notes, the Borda count “never elects the candidate which loses all pair-
wise elections … always ranks a candidate who wins all pairwise comparisons
above the candidate who loses all such comparisons.”

The Borda count does violate Arrow’s final axiom, the independence of
irrelevant alternatives (IIA). What does it mean that IIA is violated? And, is
that important? The meaning depends to some extent on the domain and
whether or not there are meaningful alternatives or options that are being
excluded. In an election with a finite number of candidates, the IIA axiom is
likely not an issue. In conceptual design, where the possible space of design
choice is large or even infinite, IIA could be a problem. However, rational
designers must find a way to limit their set of design alternatives to a finite,
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relatively small set of options. Thus, options that don’t meet some criteria
or are otherwise seen as poor designs may be eliminated. It is unlikely that
IIA matters much if it is violated for one of these two reasons—and there is
some evidence to support this—unless it is shown that promising designs
were wrongly removed early in the process.

The violation of IIA leads to the possibility of rank reversals, that is,
changes in order among n alternatives that may occur when one alternative
is dropped from a once-ranked set before a second ranking of the remaining
n–1 alternatives (as we will soon see below). The elimination of designs or
candidates can change the tabulated rankings of those designs or candidates
that remain under consideration. The determination of which design is
“best” or which candidate is “preferred most” may well be sensitive to the
set of designs considered.

Rank reversals occur when there are Condorcet cycles in the voting pat-
terns: [A 
 B 
 C , B 
 C 
 A, C 
 A 
 B]. When aggregated over all
voters and alternatives, these cycles cancel each other out because each
option has the same Borda count. When one of the alternatives is removed,
this cycle no longer cancels. Thus, removing C from the above cycle unbal-
ances the Borda count between A and B, resulting in a unit gain for A that is
propagated to the final ranking results. Thus, the rank reversals symbolize a
loss of information that occurs when an alternative is dropped or removed
from the once-ranked set.

We now describe a way to use pairwise comparisons in a structured
approach that parallels the role of the Borda count in voting procedures
and, in fact, produces results that are identical to the accepted vote-
counting standard, the Borda count. The method is a structured extension
of pairwise comparisons to a pairwise comparison chart (PCC) or mat-
rix. The PCC produces consistent results quickly and efficiently, and these
results are identical with results produced by a Borda count.

9.4.2 Borda Counts and Pairwise Comparisons

We begin with an example that highlights some of the problems of
(non-Borda count) pairwise comparison procedures. It also suggests the
equivalence of the Borda count with a structured pairwise comparison
chart (PCC).

Twelve (12) voters are asked to rank order three candidates: A, B, and C .
In doing so, the twelve voters have, collectively, produced the following sets
of orderings:

1 preferred A 
 B 
 C , 4 preferred B 
 C 
 A,
4 preferred A 
 C 
 B, 3 preferred C 
 B 
 A.

(9.30)



268 Chapter 9 Optimization: What Is the Best…?

Pairwise comparisons other than the Borda count can lead to incon-
sistent results for this case. For example, in a widely used plurality voting
process called the best of the best, A gets 5 first-place votes, while B and
C each get 4 and 3, respectively. Thus, A is a clear winner. On the other
hand, in an “antiplurality” procedure characterized as avoid the worst of the
worst, C gets only 1 last-place vote, while A and B get 7 and 4, respectively.
Thus, under these rules, C could be regarded as the winner. In an iterative
process based on the best of the best, if C were eliminated for coming in last,
then a comparison of the remaining pair A and B quickly shows that B is
the winner:

1 preferred A 
 B, 4 preferred B 
 A,
4 preferred A 
 B, 3 preferredB 
 A.

(9.31)

On the other hand, a Borda count produces a clear result. The Borda
count procedure assigns numerical ratings separated by a common con-
stant to each element in the list. Thus, sets such as (3, 2, 1), (2, 1,
0) and (10, 5, 0) could be used to rank a three-element list. If we use
(2, 1, 0) for the rankings presented in eq. (9.30), we find total vote counts
of (A: 2+8+0+0 = 10), (B: 1+0+8+3 = 12) and (C : 0+4+4+6 = 14),
which clearly shows that C is the winner. Furthermore, if A is eliminated
and C is compared only to B in a second Borda count,

1 preferred B 
 C , 4 preferred B 
 C ,
4 preferred C 
 B, 3 preferred C 
 B.

(9.32)

C remains the winner, as it also would here by a simple vote count. It must
be remarked that this consistency cannot be guaranteed, as the Borda count
violates the IIA axiom.

We now make the same comparisons in a PCC matrix, as illustrated in
Table 9.2. As noted above, a point is awarded to the winner in each pairwise
comparison, and then the points earned by each alternative are summed.
In the PCC of Table 9.2, points are awarded row-by-row, proceeding along

Table 9.2 A pairwise comparison chart (PCC) for the ballots cast
by twelve (12) voters choosing among the candidates A, B and C
(see eq. (9.30)).

Win/Lose A B C Sum/Win

A — — 1+ 4+ 0+ 0 1+ 4+ 0+ 0 10
B 0+ 0+ 4+ 3 — — 1+ 0+ 4+ 0 12
C 0+ 0+ 4+ 3 0+ 4+ 0+ 3 — — 14
Sum/Lose 14 12 10 — —
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each row while comparing the row element to each column alternative in
an individual pairwise comparison. This PCC result shows that the rank
ordering of preferred candidates is entirely consistent with the Borda results
just obtained:

C 
 B 
 A. (9.33)

Note that the PCC matrix exhibits a special kind of symmetry, as does the
ordering in the “Win” column (largest number of points) and the “Lose”
row (smallest number of points): the sum of corresponding off-diagonal
elements, Xij + Xji , is a constant equal to the number of comparison sets.

We have noted that a principal complaint about some pairwise com-
parisons is that they lead to rank reversals when the field of candidate
elements is reduced by removing the lowest-ranked element between order-
ings. (Strictly speaking, rank reversal can occur when any alternative is
removed. In fact, and as we note further in Section 9.4.3, examples can be
constructed to achieve a specific rank reversal outcome. Such examples usu-
ally include a dominated option that is not the worst. Also, rank reversals
are possible if new alternatives are added.) Practical experience suggests
that the PCC generally preserves the original rankings if one alternative is
dropped. If element A is removed above and a two-element runoff is con-
ducted for B and C , we find the results given in Table 9.3. Hence, once again
we find

C 
 B. (9.34)

The results in inequality (9.34) clearly preserve the ordering of inequality
(9.33), that is, no rank reversal is obtained as a result of applying the
PCC approach. In those instances where some rank reversal does occur, it
is often among lower-ranked elements where the information is strongly
influenced by the removed element (see Section 9.4.3).

Table 9.3 A reduced pairwise comparison chart
(PCC) for the problem in Table 9.2 wherein the
“loser” A in the first ranking is removed from
consideration.

Win/Lose B C Sum/Win

B — — 1+ 0+ 4+ 0 5
C 0+ 4+ 0+ 3 — — 7
Sum/Lose 7 5 — —
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9.4.3 Pairwise Comparisons and Rank Reversals

Rank reversals do sometimes occur when alternatives are dropped and the
PCC procedure is repeated. We now show how such an example can be
constructed.

Thirty (30) designers (or consumers) are asked to rank order five designs,
A, B, C , D, and E , as a result of which they produce the following sets of
orderings:

10 preferred A 
 B 
 C 
 D 
 E ,

10 preferred B 
 C 
 D 
 E 
 A,

10 preferred C 
 D 
 E 
 A 
 B.

(9.35)

Here too, the procedure chosen to rank order these five designs can
decidedly influence or alter the results. For example, all of the design-
ers ranked C and D ahead of E in the above tally. Nonetheless, if the
following sequence of pairwise comparisons is undertaken, an inconsistent
result obtains:

C vs D ⇒ C ; C vs B ⇒ B; B vs A⇒ A; A vs E ⇒ E . (9.36)

Table 9.4 shows the PCC matrix for this five-design example, and the results
clearly indicate the order of preferred designs to be:

C 
 B 
 D 
 A 
 E . (9.37)

If the same data are subjected to a Borda count, using the weights (4, 3, 2,
1, 0) for the place rankings, we then find the results displayed in Table 9.5.
When we compare these results to the PCC results shown in Table 9.4, we
see that the PCC has achieved the same Borda count results, albeit in a
slightly different fashion.

Table 9.4 A collective pairwise comparison chart (PCC) for a case
before alternatives are dropped and the PCC is repeated.

Win/Lose A B C D E Sum/Win

A — — 10+ 0+ 10 10+ 0+ 0 10+ 0+ 0 10+ 0+ 0 50
B 0+ 10+ 0 — — 10+ 10+ 0 10+ 10+ 0 10+ 10+ 0 70
C 0+ 10+ 10 0+ 0+ 10 — — 10+ 10+ 10 10+ 10+ 10 90
D 0+ 10+ 10 0+ 0+ 10 0+ 0+ 0 — — 10+ 10+ 10 60
E 0+ 10+ 10 0+ 0+ 10 0+ 0+ 0 0+ 0+ 0 — — 30
Sum/Lose 70 50 30 60 90 — —
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What happens if we drop the lowest-ranked design and redo our assessment
of alternatives? Here design E is least preferred, and we find the results
shown in Table 9.5 if it is dropped. These results show a rank ordering of

C 
 B 
 A 
 D. (9.38)

Rank order is preserved here for the two top designs, C and B, while the
last two change places. Why does this happen? Quite simply, because of the
relative narrowness of the gap between A and D when compared to the gap
between A and E , the two lowest ranked in the first application of the PCC
in this example.

Table 9.5 The Borda count with weights
(4, 3, 2, 1) for the case where alternative E is
dropped and the PCC is repeated. Compare
these results with those in Table 9.4.

Element Points

A 40+ 10+ 20 = 70
B 30+ 40+ 10 = 80
C 20+ 30+ 40 = 90
D 10+ 20+ 30 = 60

It is also useful to “reverse engineer” this example. Evidently, it was
constructed by taking a Condorcet cycle [A 
 B 
 C , B 
 C 
 A,
C 
 A 
 B] and replacing C with an ordered set (C 
 D 
 E) that
introduces two dominated (by C) options that are irrelevant by inspection.
Removing only E produces a minor rank reversal of the last two alternatives,
A and D. Removing only D, the third best option, produces the same result
among A, B, and C as removing E , although without creating a rank
reversal. Removing both D and E produces a tie among A, B, and C .

9.4.4 Pay Attention to All of the Data

We now present an example that shows how pairwise ranking that does
not consider other alternatives can lead to a result exactly opposite to a
Borda count, which does consider other alternatives. It also indicates that
attempting to select a single best alternative may be the wrong approach.

One hundred (100) customers are “surveyed on their preferences” with
respect to five mutually exclusive design alternatives, A, B, C , D, and E .
The survey reports that “45 customers prefer A, 25 prefer B, 17 prefer C ,
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13 prefer D, and no one prefers E .” These data suggest that A is the preferred
choice, and that E is entirely “off the table.”

However, as reported, these results assume either that the customers are
asked to list only one choice or, if asked to rank order all five designs, that
only their first choices are abstracted from their rank orderings. Suppose
that the 100 customers were asked for rankings and that those rankings are:

45 preferred A 
 E 
 D 
 C 
 B,

25 preferred B 
 E 
 D 
 C 
 A,

17 preferred C 
 E 
 D 
 B 
 A,

13 preferred D 
 E 
 C 
 B 
 A.

(9.39)

Again, the procedure used to choose among the rank orderings of these
five designs can decidedly influence or alter the results. For example, if A
and B are compared as a (single) pair, B beats A by a margin of 55 to 45.
And, continuing a sequence of pairwise comparisons, we can find that (see
Problem 9.23):

A vs B ⇒ B; B vs C ⇒ C ; C vs D ⇒ D; D vs E ⇒ E . (9.40)

Proposition (9.40) provides an entirely different outcome, one that is not
at all apparent from the vote count originally reported. How do we sort out
this apparent conflict?

We resolve this dilemma by constructing a PCC matrix for this five-
product example, and the results clearly indicate the order of preferred
designs to be (see Problem 9.24):

E(300) 
 D(226) 
 A(180) 
 C(164) 
 B(130). (9.41)

A Borda count of the same data (of eqs. (9.39)), using the weights (4, 3,
2, 1, 0) for the place rankings, confirms the PCC results, with the Borda
count numbers being identical to those in eq. (9.41) (see Problem 9.25).
In this case, removing B and re-voting generates a relatively unimportant
rank reversal between A and C , thus demonstrating the meaning of IIA
and showing that dropping information can have consequences.

This example is one where the “best option” as revealed by the
PCC/Borda count is not the one most preferred by anyone. Is the PCC
lying to us? In a real market situation, where all five options are available,
none of the surveyed customers would buy E . Perhaps this data was collec-
ted across too broad a spectrum of customers in a very segmented market
in which design E provided a “common denominator,” while the other four
designs responded better to their separate market “niches.” There is really
no “best design” under these circumstances. It is also possible that these
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designs were extremely close to each other in performance, so that small
variations in performance have translated into large differences in the PCC.
Both of the above explanations point to the need to treat PCC results with
caution because there are cases where more detailed selection procedures
might be more appropriate.

9.4.5 On Pairwise Comparisons and

Making Decisions

The structured PCC—an implementation of the Borda count—can
support consistent decision making and choice, notwithstanding concerns
raised about pairwise comparisons and violations of Arrow’s theorem.
Rank reversals and other infelicities do result when “losing” alternatives
are dropped from further consideration. But simulation suggests that such
reversals are limited to alternatives that are nearly indistinguishable. Pair-
wise comparisons that are properly aggregated in a pairwise comparison
chart (PCC) produce results that are identical to the Borda count, which in
Saari’s words is a “unique positional procedure which should be trusted.”

Practicing designers use the PCC and similar methods very early in the
design process where rough ordinal rankings are used to bound the scope
of further design work. The PCC is more of a discussion tool than a device
intended to aggregate individual orderings of design team members into a
“group” decision. Indeed, design students are routinely cautioned against
over-interpreting or relying too heavily on small numerical differences. In
political voting, we usually end up with only one winner, and any winner
must be one of the entrants in the contest. In early design, it is perfectly fine
to keep two or more winners around, and the ultimate winner often does
not appear on the initial ballot. Indeed, it is often suggested that designers
look at all of the design alternatives and try to incorporate the good points
of each to create an improved, composite design. In this framework, the
PCC is a useful aid for understanding the strengths and weaknesses of
individual design alternatives. Still, pairwise comparison charts should be
applied carefully and with restraint. As noted above, it is important to
cluster similar choices and to perform the evaluations at comparable levels
of detail.

In addition, given the subjective nature of these rankings, when we
use such a ranking tool, we should ask whose values are being assessed.
Marketing values are easily included in different rankings, as in product
design, for example, where a design team might need to know whether it’s
“better” for a product to be cheaper or lighter. On the other hand, there
might be deeper issues involved that, in some cases, may touch upon the
fundamental values of both clients and designers. For example, suppose
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two competing companies, GRAFT and BJIC, are trying to rank order
design objectives for a new beverage container. We show the PCCs for the
GRAFT- and BJIC-based design teams in Tables 9.6(a) and (b), respectively.
It is clear from these two charts and the scores in their right-hand columns
that the GRAFT designers were far more interested in a container that
would generate a strong brand identity and be easy to distribute than in it
being environmentally benign or having appeal for parents. At BJIC, on the
other hand, the environment and taste preservation ranked more highly,
thus demonstrating that subjective values show up in PCCs and, eventually,
in the marketplace!

Table 9.6 Using PCCs to rank order design objectives at two
different companies designing new beverage containers (Dym
and Little, 2003).

Environ. Easy to Preserve Appeals to Market Brand
Goals Benign Distribute Taste Parents Flexibility ID Score

(a) GRAFT’s weighted objectives

Environ. Benign • • • 0 0 0 0 0 0
Easy to Distribute 1 • • • 1 1 1 0 4
Preserve Taste 1 0 • • • 0 0 0 1
Appeals to Parents 1 0 1 • • • 0 0 2
Market Flexibility 1 0 1 1 • • • 0 3
Brand ID 1 1 1 1 1 • • • 5

(b) BJIC’s weighted objectives

Environ. Benign • • • 1 1 1 1 1 5
Easy to Distribute 0 • • • 0 0 1 0 1
Preserve Taste 0 1 • • • 1 1 1 4
Appeals to Parents 0 1 0 • • • 1 1 3
Market Flexibility 0 0 0 0 • • • 0 0
Brand ID 0 1 0 0 1 • • • 2

It is also tempting to take our ranked or ordered objectives and put them
on a scale so that we can manipulate the rankings in order to attach rel-
ative weights to goals or to do some other calculation. It would be nice to
be able to answer questions such as: How much more important is port-
ability than cost in a ladder? Or, in the case of a beverage container, How
much more important is environmental friendliness than durability? A little
more? A lot more? Ten times more? We can easily think of cases where one
of the objectives is substantially more important than any of the others,
such as safety compared to attractiveness or to cost in an air traffic control
system, and other cases where the objectives are essentially very close to
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one another. However, and sadly, there is no mathematical foundation for Valid?

normalizing the rankings obtained with tools such as the PCC. The num-
bers obtained with a PCC are approximate, subjective views or judgments
about relative importance. We must not inflate their importance by doing Use?

further calculations with them or by giving them unwarranted precision.

Problem 9.19. Would you find election procedures that violated
Arrow’s third axiom offensive? Explain your answer.

Problem 9.20. Would you find election procedures that violated the
Pareto condition, Arrow’s fourth axiom, offensive?
Explain your answer.

Problem 9.21. Engineering designers often use quantified perform-
ance rankings to compare alternatives on the basis
of measurable criteria. If this comparison were done
on a pairwise basis, would it violate Arrow’s fourth
axiom? Explain your answer.

Problem 9.22. Defend or refute the proposition that ranking criteria
that are of the less-is-better, more-is-better, or
nominal-is-best varieties will violate Arrow’s first
axiom. (Hint : Are all theoretically possible orders
admissible in practice?)

Problem 9.23. Verify the ordering of the five alternatives displayed in
eq. (9.40) by performing the appropriate individual
pair-by-pair comparisons.

Problem 9.24. Construct a PCC of the data presented in eq. (9.39)
and confirm the Borda count results given in
eq. (9.41).

Problem 9.25. Using the weights (4, 3, 2, 1, 0), perform a Borda
count of the preferences expressed in eq. (9.39) and
confirm the results obtained in eq. (9.41) and in the
previous problem.

9.5 A Miscellany of Optimization Problems

In this section we present some simple yet interesting optimization and
“Can we do better?” problems. Their interest derives more from their sub-
ject matter than from the optimization technique applied. As a result, some
elementary models are introduced and described in just enough detail to
make the search for optimum behavior meaningful. These optimization
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problems include forming nuclei in solids, maximizing the range of planes
or birds, and reducing the weight of a cantilever beam. Along the way
we will introduce some further wrinkles in the modeling of searches for
a good—if not globally optimum—method of searching for an optimum
result.

9.5.1 Is There Enough Energy to Create a Sphere?

Nucleation refers to the formation of tiny, even submicroscopic, particles.
Such particles or nuclei initiate the phase transformations in which the
microstructures of materials are changed during various materials pro-
cesses. For example, steel alloys come in various forms (e.g., cementite
and ferrite) that have substantially different properties (e.g., ferrite is softer
than cementite, but it is also less brittle). How do such nuclei form?Why?

Given? The nucleation process occurs in a solution that has, for example, a
small number of β atoms relative to a much larger number of α atoms.
The β atoms diffuse together, form a small volume and then re-arrange
into a crystal structure that is enclosed in a volume, V , with an interfacial
(with the surrounding α atoms) area, A. This process can occur only if an
activation energy barrier is overcome. In the simplest formulation, wherein
the distribution of the interfacial energy is isotropic (or independent of
direction within the solution), the total free energy exchange 
G needed to
bring about this change is given by


G = −(
GV −
GS)V + γA, (9.42)

where (
GV − 
GS) is the (positive) difference between the volume free
energy and the misfit strain energy, and γ is the surface free energy per
unit area. Further, the misfit strain energy reduces the free energy exchange
because it is subtracted from the volume free energy. Note that all of the
energy terms are specific, expressed as they are in terms of energy per unit
volume of β.

Notwithstanding this meager, skeletal introduction to some of the lan-
guage of thermodynamics, the important point is that the free energy
exchange needed to allow creation of a volume, V , is the sum of a term
that decreases with V but increases with its area, A. Is there a point belowPredict?

which the free energy exchange cannot happen? If so, what is the value of
that free energy exchange barrier?

To answer these questions,we assume that the volume will form, at leastAssume?

initially, a sphere of radius r . With appropriate substitutions for the sphere’s
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surface area and volume, eq. (9.42) becomes


G = −(
GV −
GS)

(
4

3
πr3

)
+ γ (πr2) . (9.43)

We can now employ the standard techniques of calculus to show that there
is a minimum radius, r∗, below which there is not enough free energy
to overcome the free energy exchange barrier, 
G∗ (see Problems 9.25
and 9.26):

r∗ = 2γ

(
GV −
GS)
, (9.44)

and


G∗ = 16πγ 3

3(
GV −
GS)2
. (9.45)

The free energy exchange is plotted on Figure 9.10 and it shows the barrier
that needs to be overcome quite clearly. It also shows how the behavior
of the free energy exchange depends differently on r , depending on whether
the sphere is smaller or larger than that with the minimum radius, r∗ (see
Problems 9.27 and 9.28).

r

Aγ ~ r 2

–V (∆GV – ∆GS) ~ –r 3

r *

∆G

∆G*

Figure 9.10 The variation of the free energy exchange,

G , with the radius, r , of a nucleating sphere (Porter and
Easterling, 1992). We see that there is an activation
energy barrier, 
G∗, that must be overcome, and that
the free energy exchange decreases for values of r < r ∗,
while it increases for r > r ∗.
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Problem 9.25. Verify eqs. (9.44) and (9.45) by performing the
appropriate calculus.

Problem 9.26. Demonstrate that eqs. (9.44) and (9.45) have the
correct dimensions.

Problem 9.27. Write eq. (9.43) in terms of a dimensionless coordin-
ate, ρ = r/r∗, and expand it in a power series valid
for small values of ρ. What part of the curves in
Figure 9.10 does that result portray?

Problem 9.28. Expand eq. (9.43) in a power series valid for large
values of the dimensionless coordinate ρ = r/r∗.
What part of the curves in Figure 9.10 does that result
portray?

Problem 9.29. Is the surface area-to-volume ratio of a cylinder of
radius, R, and length, L, smaller or larger than that of
a sphere of radius R? (Hint: Write a ratio of the ratios
as a function of R/L.)

9.5.2 Maximizing the Range of Planes and Birds

Airplane pilots share a challenge with flying birds: How far can they go—
what is their range—for a fixed amount of fuel? Still better, can theyWhy?

maximize their range? It turns out that for a given amount of fuel, the
speed that maximizes the range is the one that maximizes the aerodynamic
quantity, called the lift-to-drag ratio, or, conversely, minimizes its inverse,
the drag-to-lift ratio.

We show a typical jet in Figure 9.11 with a free-body diagram (FBD)Given?

superposed. The plane is climbing at an angle, α, at a speed, V , relative to
the ground. The climb or flight direction angle, α, is zero for level flight,
and positive for ascending flight and negative for descending flight. The
FBD shows the forces that act to support the plane and move it forward,
as described in the aerodynamic literature. The plane’s weight, W , is sup-
ported by a lift (force), L, that is perpendicular to the flight path. The
engines provide a thrust, T , that moves the plane along the flight path
by overcoming the drag (force), D, that also acts along the flight path,
albeit it in a direction that retards flight. Due largely to preceding experi-
mental work and subsequent confirming analysis, aerodynamicists have
known since the end of the 17th century that the lift and drag forces on
a flying body can be expressed in terms of the density of the surround-
ing air, ρ, the wing or lifting surface area, S, and the body’s speed, V , as,
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W

x

y

L

T

α

D

Figure 9.11 A typical jet with a superposed
free-body diagram showing the aerodynamic
forces acting. The plane is climbing at an angle, α,
at a speed, V , relative to the earth below. The
plane’s weight, W , is supported by a lift (force), L,
that is perpendicular to the flight path. The jet
engines provide a thrust, T , that moves the plane
along the flight path by overcoming the drag
(force), D , that also acts along the flight path,
although in a direction that opposes flight. The
plane’s wing has a surface area, S , and span, b.

respectively,

L = 1

2
ρSV 2CL, (9.46a)

and

D = 1

2
ρSV 2CD, (9.46b)

where CL and CD are the corresponding lift and drag coefficients. (We
should note that the drag-velocity relation is more complicated when planes
fly closer to the speed of sound, due to drag produced by compressibility
effects either on rapidly rotating propellers or on the wings of jet aircraft.)
The makeup of the CL and CD coefficients and their relationship provide
the complexity we will see in our search for an optimum flight speed. But
first we need to do a little equilibrium analysis because taken superficially,
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eqs. (9.46a–b) suggest that the drag-to-lift ratio L/D is independent of the
speed V , so how could it be minimized with respect to V ?

We sum the forces superposed on the plane in Figure 9.11 in the x and
y directions:

∑
Fx = −T cosα + L sin α + D cosα = 0, (9.47a)

and

∑
Fy = T sin α + L cosα −W − D sin α = 0. (9.47b)

If the climb angle, α, is assumed to be small, along the lines of the approxi-
mations introduced in Section 4.1.2, eqs. (9.47a–b) can be simplified and
solved to show that the lift L is, in fact, a constant (see Problem 9.30),

L ∼= W

1+ α2
∼= W , (9.48a)

which means that the drag-to-lift ratio is simply

D/L ∼= D/W . (9.48b)

Equation (9.48a) clearly shows that the lift force supports the plane’s weight,
while eq. (9.48b) provides a speed-dependent ratio of the drag force to the
weight.

Now we return to the drag coefficients because that is the logical step for
casting the D/L ratio in terms of the plane’s speed, V . It turns out that the
drag coefficient is expressed as a sum of two terms,

CD = CD0 +
kSC2

L

πb2
. (9.49)

The first term represents the parasite or friction drag caused by shear stresses
resulting from the air speeding over and separating from the wing. The
second term is the induced drag : it is independent of the air viscosity and
is created by wings of finite span (i.e., real wings!) because of momentum
changes needed to produce lift, according to Newton’s second law. Note
that the induced drag is proportional to the square of the lift coefficient, C2

L .
Now we can combine eqs. (9.46b) and (9.48b) to write the drag-to-lift

ratio as
D

L
= ρSV 2CD

2W
, (9.50)
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after which we can further combine eqs. (9.46a), (9.48a), and (9.49) to
rewrite eq. (9.50) as (see Problem 9.31):

D

L
= C01V 2 + C02V−2, (9.51)

with the constants C01 and C02 defined as:

C01 = ρSCD0

2W
, C02 = 2kW

πρb2
. (9.52)

Thus, the objective function or cost for this optimization problem is defined
in eq. (9.51), and its coefficients as presented in eq. (9.52) are simply
constants reflecting the values of the problem’s physical parameters: ρ, S,
W , the wing span, b, the parasite drag coefficient, CD0, and a dimensionless
shape constant, k (see Problem 9.32).

The extreme value of this unconstrained optimization problem is then
found by the standard calculus approach, that is,

d

dV

(
D

L

)
= 2C01V − 2C02V−3 = 0, (9.53)

which has the following extreme value:

(
D

L

)
min
= 2

√
C01C02 at Vmin =

(
C02

C01

)1/4

. (9.54)

With the aid of eq. (9.52), the minimum drag-to-lift ratio can then be
written in its final form (see Problem 9.33):

(
D

L

)
min
= 2

√
kSCD0

πb2
. (9.55)

This is a classical result in aerodynamics. Further, it is also easily demon-
strated that this minimum D/L ratio occurs only when the parasite drag
and the induced drag are equal and, consequently, independent of the
plane weight W (see Problem 9.34). In the next section we will obtain this
result again by introducing still another method of searching for optimal
results.

Problem 9.30. Solve eqs. (9.47a–b) for (T−D) as a function of L and
W and confirm that eqs. (9.48a–b) are correct while
identifying any additional needed approximations.
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Problem 9.31. Combine eqs. (9.46a), (9.48a), and (9.49) and
develop eq. (9.51).

Problem 9.32. Show that the constants C01 and C02 have the correct
physical dimensions. (Hints: What are their physical
dimensions according to eq. (9.51)? Do they have
those dimensions?)

Problem 9.33. Use the standard calculus test to confirm that the
value of D/L given in eqs. (9.54) and (9.55) is a
minimum.

Problem 9.34. Show that the induced drag equals the parasite
drag at the minimum D/L ratio, and that both are
independent of the plane weight, W .

Problem 9.35. The minimum of eq. (9.51) can also be seen “by
inspection.” Inspect eq. (9.51) and explain why that
minimum can be so determined.

9.5.3 Geometric Programming for a Plane’s

Optimum Speed

The objective function (9.51) for the plane range problem considered just
above is a member of the class of functions called posynomials, polyno-
mials whose coefficients are always positive. Clarence Zener, inventor of
the Zener diode, noted that if the objective functions whose minima wereHow?

being sought were posynomials, then each term in such an objective func-
tion could be considered an independent variable whose contribution to
the overall minimum sum could be established. Zener proposed doing that
by constructing a dual function that would be maximized. The mathem-
atician Richard J. Duffin recognized that a posynomial cost function could
be viewed as a weighted arithmetic mean, and Zener’s dual function as
its weighted geometric mean. Cauchy’s inequality—the arithmetic mean is
always greater than or equal to its geometric mean—could be brought to
bear, and thus Zener’s optimization invention became known as geometric
programming.

Consider a rectangle bounded by lines of length a and b. Geometrically,
then, the rectangle’s perimeter is P = 2(a + b) and its area is A = ab. The
Greeks asked, What is the smallest perimeter of a rectangle of given area?
Well, the answer to that equation is not hard to find. The perimeter can be
written as

P = 2(a + b) = 4

[(
a

2
+ b

2

)2
]1/2

, (9.56)
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from which it follows that (see Problem 9.36):

P = 4

[
ab +

(
a − b

2

)2
]1/2

≥ 4
√

ab. (9.57)

Thus, in terms of the rectangle’s perimeter and area, eqs. (9.56) and (9.57)
tell us that (see Problem 9.37):

P ≥ 4
√

A. (9.58)

Equation (9.58) also tells us something else. For any two numbers a and
b, we can define their arithmetic mean, aarith = 1

2(a + b), and their

geometric mean, ageom =
√

ab. Then eq. (9.58) turns out to be a very
simple expression of the Cauchy inequality :

aarith ≥ ageom. (9.59)

For a collection of numbers or functions, Ui , the Cauchy inequality
becomes

U arith = 1

N

N∑
i=1

Ui ≥
N∏

i=1

U 1/N
i = U geom. (9.60)

Equation (9.60) can be generalized still further. Consider that each object
in the sum that is the arithmetic mean is weighted by a positive constant,
wi . Then the extended Cauchy inequality is:

U arith =
N∑

i=1

wiUi ≥
N∏

i=1

U wi
i = U geom. (9.61)

Finally, if we define a set of modified numbers or functions, Vi = wiUi , we
can write the central inequality of eq. (9.61) as

N∑
i=1

Vi ≥
N∏

i=1

(
Vi

wi

)wi

, (9.62a)

or, written in extenso,

V1 + V2 + · · ·VN ≥
(

V1

w1

)w1
(

V2

w2

)w2

· · ·
(

VN

wN

)wN

. (9.62b)

The weights, wi , are restricted in two ways that reflect their roots in
geometry. The first is that they must satisfy a normality condition, that
is, their values must sum to one:

w1 + w2 + · · ·wN = 1. (9.63)
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The second restriction is an orthogonality condition, which requires that the
geometric mean terms on the right-hand sides of eqs. (9.62a–b) must be
free of—or dimensionless in—the independent variables that make up the
functions, Vi . The weights that satisfy both the normality and orthogonality
conditions then maximize the geometric mean and, consequently, minimize
the arithmetic mean. This lovely piece of geometry brings us back to our
optimization problem.

We start with an objective or cost function that is written as a sum of
posynomials, Vi(x), each of which is a function of some or all of a set of
independent design variables, x = (x1, x2, . . . xk):

V (x) = V (x)1 + V2(x)+ · · ·VN (x) =
N∑

i=1

Vi(x). (9.64)

We then define the following weighted product as the dual to the cost
function, U (x):

d(w) =
(

V1

w1

)w1
(

V2

w2

)w2

· · ·
(

VN

wN

)wN

=
N∏

i=1

(
Vj

wj

)wj

, (9.65)

where w = (w1, w2, . . .wk) is the set of weights that satisfy the appro-
priate normality and orthogonality conditions. By the geometric analysis
culminating in eqs. (9.62a–b), we can then say that:

min V (x) = max d(w). (9.66)

To illustrate the application of geometric programming (GP), consider
once again the determination of the optimum D/L ratio for maximizing a
plane’s range. The objective function is the D/L ratio given in eq. (9.51),
and it is clearly a sum of two posynomials: V1 = C01V 2 and V2 = C01V−2.
The corresponding dual function can then be constructed as defined by
eq. (9.65):

dγ (w) =
(

C01V 2

w1

)w1 (C02V−2

w2

)w2

=
(

C01

w1

)w1
(

C02

w2

)w2 (
V 2(w1−w2)

)
(9.67)

The orthogonality condition that renders eq. (9.67) dimensionless with
respect to the independent variable V is:

2w1 − 2w2 = 0. (9.68)

In conjunction with the appropriate (N = 2) version of the normality
condition (9.63), eq. (9.68) produces the weights w1 = w2 = 1/2, which
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can then immediately be substituted into the dual function (9.67) to yield
the minimum D/L ratio:

dγ (w) =
(

C01

1/2

)1/2 (C02

1/2

)1/2

= 2
√

C01C02 (9.69)

This result is, of course, exactly the same as the one we obtained before (see
eq. (9.54)).

Two features of this solution are worth special note. The first is that
the solution proceeded quite directly to the sought minimum D/L ratio.
This contrasts with the calculus solution, which yielded first the velocity
at which the minimum ratio occurs, with the ratio itself being determined
after its additional calculation from the critical value of the velocity. The
second point is that this solution was remarkably simple. In principle,
and by extension to more complicated cases (see Problem 9.40), all we
had to do was solve a set of linear equations—the normality and ortho-
gonality conditions—to immediately obtain the optimum we were after.
The typical calculus approach, for such evidently nonlinear cost functions,
clearly requires much more work.

Finally on GP, we note that we have presented GP in its simplest form.
We have not dealt with any constraints, whether equality or inequality. The
principles applied to more complicated, more “real” problems are similar—
but they will require more work. Given the role of computers in our lives,
techniques such as GP are not invoked much any more. However, GP still
offers a neat and direct approach to an interesting class of (posynomial)
problems.

Problem 9.36. Construct the steps that get one from eq. (9.56) to
eq. (9.57).

Problem 9.37. When does the soft inequality in eq. (9.58) become a
simple equality?

Problem 9.38. Use the principle of induction to prove the general
statement (9.60) of Cauchy’s inequality.

Problem 9.39. Can eq. (9.43)—in the discussion of nucleation
in Section 9.5.1—be cast into a form suitable for
solution by geometric programming? Explain your
answer.

Problem 9.40. Minimize the objective function 2x2
1 x−1

2 +4x3
2 x1/2

3 +
x−2

1 x2x−1/2
3 + 2x−3

2 using geometric programming.
Problem 9.41. Confirm the results of Problem 9.40 using the stand-

ard calculus approach of determining extrema.
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9.5.4 The Lightest Diving Board (or Cantilever

Beam)

Cantilever beams are ubiquitous in life, appearing as diving boards, trees,
tall slender buildings, freeway signs, and the arms of grandparents picking
up their grandchildren. Their optimal design will vary with their situational
circumstance. We present here an analysis that leads toward significantly
improved designs that may or may not be optimal. The question answered
by such analysis is, therefore, much less like “What is the best … ?” and
much more like “Can we do better than … ?”.

Our “doing better” problem is simple. We want to determine the profileFind?

or shape of a tip-loaded cantilever beam that weighs significantly less while
yielding the same tip deflection, δ, for a given tip load, P . We will useGiven?

the classic elementary model of beam bending, the origin of which can be
traced to Galileo Galilei (1564–1642), to model the cantilever beam shown
in Figure 9.12. This widely applicable model assumes that the beam is long
and slender, meaning that its thickness, h, and width, b, are both small
compared to its length, L, and that its response to an applied load is almost
entirely due to bending, meaning that the stress through the thickness is
distributed as

σxx(x , z) = M (x)z

I
, (9.70)

where σxx(x , z) is the axial stress that occurs when the beam is bent, M (x)
is the moment that forces the beam to bend, z the vertical coordinate meas-
ured positive downward from the centerline of the beam’s cross-sectional
area, and I is the second moment of that area (see Figure 9.12).

We will assume that the cross-sectional area is rectangular, with constantAssume?

width but thickness that may vary with the axial coordinate, x . In this case
the second moment, I , is

I (x) = bh3(x)

12
. (9.71)

Finally, the bending theory of beams states that the moment produced by
a force, P , at the cantilever tip (x = 0) is M (x) = −Px , and that the
resulting deflection at the tip is:

δ(x = 0) =
∫ I

0

Px2dx

EI (x)
. (9.72)

Our base model for comparison is the case of a uniform cantilever of
constant thickness, h0, and length, L0. For this case, the second moment of
the area is the constant

I0 = bh3
0

12
, (9.73)
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z

x

σxx < 0

σxx (x, z)

σxx > 0

= Pxz
I

L1

L1=
L0

2

x
L1

h1h(x) =

L

h

b

x
P

(a)

(b)

(c)

(d)

–

Figure 9.12 The classic cantilever beam:
(a) Galileo Galilei’s famous picture; (b) a modern
incarnation; (c) the distribution of stress through
the thickness, as indicated by eq. (9.70); and
(d) the optimal shape, including a significantly
shorter length, that produces a 67% reduction in
the total volume (and thus the beam’s weight)
(after Bejan, 2000).
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and its volume is
V0 = bh0L0, (9.74)

while its tip deflection is found by integrating eq. (9.72):

δ0 = PL3
0

3EI0
= 4PL3

0

Ebh3
0

. (9.75)

The maximum stress in the beam will occur at the root or support, x = L0,
at the beam’s outer edges, z = h0/2, and is determined by eq. (9.70) to be:

σmax = σxx(L0, h0/2) = 6PL0

bh2
0

. (9.76)

Therefore, if a maximum stress that must not be exceeded is given as a
design constraint, it follows that the minimum thickness required for a
uniform beam to support a load, P , is:

h0 =
√

6PL0

bσmax
. (9.77)

Finally, for the base case, and in view of eqs. (9.75) and (9.76), we can
rewrite the volume (9.74) in a form that is independent of the beam’s
geometrical parameters:

V0 = 9
EPδ0

σ 2
max

. (9.78)

Consider now a second case where the cantilever has variable thickness,
h(x), and length, L1. The variation of the thickness is determined by the
requirement that, again, a given maximum stress not be exceeded. In this
instance, eq. (9.70) states that (see Problem 9.42):

h(x) =
√

6PL1

bσmax

√
x

L1
≡ h1

√
x

L1
, (9.79)

where h1 is the maximum thickness of a parabolic profile that begins at the
tip (x = 0) and reaches its maximum at the support (x = L1).

The volume for this beam of varying thickness is

V1 =
∫ L1

0
bh(x)dx = 2

3
bh1L1. (9.80)

The corresponding tip deflection is found by substituting eq. (9.79) into
eq. (9.72) and then performing the indicated integration:

δ1 = 8PL3
1

Ebh3
1

. (9.81)



9.5 A Miscellany of Optimization Problems 289

Once again we can cast the volume (9.80) of the beam with parabolically-
varying thickness in a form independent of the beam’s geometrical
parameters, now in view of eqs. (9.79) and (9.81):

V1 = 3
EPδ1

σ 2
max

. (9.82)

How are we to compare these two cases? Which is the better beam?
What do we mean by the “better beam”? There are (at least) two bases for
comparison. In the first, we ask: How do the volumes compare if we require
each beam to have the same tip deflection while supporting the same load,
P? This question is easily answered by comparing the volumes given by
eqs. (9.78) and (9.82):

V1

V0
= 1

3

δ1

δ0
= 1

3
. (9.83)

Thus, we have the astounding result that we can reduce the volume by 2/3
or 67%! An amazing improvement. By equating the formulas (9.77) and
(9.81) for the respective deflections, and by rewriting the volumes in terms
of their geometries, we can find that (see Problem 9.43):

h1

h0
= L1

L0
= 1√

2
. (9.84)

Our volume savings come at a price of a beam that is not only thinner,
but almost 30% shorter. This length shortening may or may not matter; it
depends on the context in which this beam will be used.

Suppose we looked for a different “better beam.” Suppose we require
that the beams carry the same load, P , have the same maximum thickness,
h0 = h1, and the same length, L0 = L1 = L. It is then easy enough to show
that (see Problems 9.44 and 9.45):

V1

V0
= 2

3
(9.85)

and
δ1

δ0
= 2. (9.86)

In this case we still have a substantial volume reduction of 33% , but at the
price of doubling the deflection. We have maintained the original length
(and maximum thickness), but we now pay a different price for a different
saving.

There are other ways to improve the behavior of a beam. While we
have focused on the more visible external structure of the beam (i.e., its
thickness and its length), we could also change the inner structure. For
example, we might consider the volume (and material) saving that results
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from taking a beam of a solid circular cross-section, and then hollowing it
out to make it a tube (see Problems 9.57 and 9.58). Further, we might also
combine changes in the internal and external structure to see what costs
are reduced (see Problems 9.59 and 9.60). In fact, we can see such examples
in nature any time we choose to look. Tree trunks are thicker at their bases,
and branches thicker at their initial branching points, thus exemplifying
external structuring. And the internal structuring of tubes shows up in
bamboo and various reeds. Thus, nature seems to be paying attention to
the search for optimal behavior.

Problem 9.42. Show that a beam with varying thickness, h(x), that
is required to have a maximum stress ≤ σmax, will
have the thickness distribution given in eq. (9.79).
(Hint : Where does the maximum stress occur for
varying h(x)?)

Problem 9.43. Show that eq. (9.84) is correct for a comparison of
beams required to have the same tip deflection, δ,
when under the same load, P .

Problem 9.44. Confirm that the volume ratio (9.85) is correct when
beams whose lengths and maximum thickness are
required to support the same load, P .

Problem 9.45. Confirm that the tip deflection ratio (9.86) is correct
when beams whose lengths and maximum thickness
are required to support the same load, P .

9.6 Summary

This final chapter has been devoted to optimization, the search for the
optimum or best outcome to a problem. We have briefly reviewed several
well-founded techniques, including calculus, linear programming (LP),
and geometric programming (GP). We also talked about making the best
decision when voting for candidates and choosing among alternatives. Our
emphasis throughout has been less on the intricacies of the particular tech-
niques, and more on framing the question. In this context, it is particularly
important to recognize that any search for an optimum solution is to some
extent “biased” or influenced by the way the question is framed. This was
most evident in the discussion of voting and the expression of preferences,
but it is also the case in the more “rigorous” calculus- and programming-
based approaches. When we ask which is the cheapest design or product,
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we are choosing money as our metric, not the design’s esthetics or the
product’s effects on the environment. To be sure, such externals can be
taken into account, but the means for so doing are neither rigorous nor
entirely objective.

Having said that, we also note that we have only scratched the sur-
face of tools that support the making of optimal decisions. For example,
while linear programming is a very valuable tool and an important part of
operations research, there are many other optimization techniques, includ-
ing nonlinear, integer, dynamic, and geometric programming. Operations
research also includes queueing theory, game theory, and simulation (par-
ticularly Monte Carlo simulation). These approaches are concerned with
such issues as assessing the costs of having too few or too many service
lines at a service facility, rationalizing economic and strategic decisions in
the face of uncertainty, and performing simulations of problems that are
analytically intractable or experimentally too expensive. There is also a vast
body of literature on and experience with what might be called “continu-
ous optimization” techniques, and their digital implementations are often
used with finite element methods (FEM) and other numerical programs to
seek the best designs of large complex designs, such as aircraft. All in all,
the foregoing discussion is only an appetizer; more than a few full meals
remain.
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9.8 Problems

9.46. (a) Find the extreme values of the function y = sin x for
0 ≤ x ≤ π . Are the extreme values maxima or minima?

(b) What are maxima and minima of y=sin x in the interval 0 ≤
x ≤ 2π . Are the extreme values maxima or minima?

9.47. (a) What are the extreme values of the function y = x in the interval
0 ≤ x ≤ 2π?

(b) What are the extreme values of the function y = x − x3/3! in
the interval 0 ≤ x ≤ 2π?

(c) How do the answers to parts (a) and (b) of this question relate
to the answers to Problem 9.46?

9.48. A string of length, l , can be used to outline many simple geometrical
figures, such as an equilateral triangle with sides l/3, a square with
sides l/4, a pentagon with sides l/5, and a circle of circumference, l .
For the figures mentioned:

(a) calculate their areas and show how they vary with the number
of sides; and

(b) guess (and explain!) the maximum area that can be enclosed by
a string of given length l .

9.49. Determine the maximum area of a triangle that can be inscribed in
the shown semicircle of diameter, d . (Hint : Show that the area of
the triangle is bc/2 and that the height, c , can be expressed [and
eliminated] through a relationship between the triangle’s sides and
the semicircle’s diameter.)
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9.50. Graphically solve the following linear programming problem cast in
terms of two nonnegative variables, x1 and x2.

Maximize z = 5x1 + 3x2

subject to

{
3x1 + 5x2 ≤ 15

5x1 + 2x2 ≤ 10

9.51. Graphically solve the following linear programming problem cast in
terms of two nonnegative variables, x1 and x2.

Maximize z = 2x1 + x2

subject to

{
4x1 + 3x2 ≤ 24

3x1 + 5x2 ≤ 15

9.52. Graphically solve the following linear programming problem cast in
terms of two nonnegative variables, x1 and x2.

Maximize z = 2x1 + x2

subject to

{
x1 + x2 ≤ 4

3x1 + x2 ≤ 10

9.53. A manufacturing company regularly produces three products that
are sold at unit prices of, respectively, $6, $11, and $22. These prices
seem to be independent of the firm’s output, that is, the market
seems able to absorb any amount of product without any adverse
effect on their price. Four input factors are needed to make these
three products, with the specific amounts, costs, and available sup-
plies shown in the table below. Assuming that no other restrictions
are placed on the company’s manufacturing decisions, how much
of each product should be made to maximize the company’s profits?
(Hint : Formulate the problem as a linear programming problem.)

Supply of
input

Product

Input Unit cost ($) 1 2 3

1 2.0 0 1 2 150
2 1.0 1 2 1 200
3 0.5 4 6 10 400
4 2.0 0 0 2 100
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9.54. A vendor customarily produces three washers whose materials and
unit (per washer) costs are, respectively, brass at $0.60, steel at $1.20,
and aluminum at $1.00. The washers are sold in two collections of
mixed types, as shown in the table below, as is the supply of raw
materials. Mixture A sells at $1.50/lb and mixture B sells at $1.80/lb.
The vendor would like to know, how much of each mixture should
she make? (Hint : Formulate the problem as a linear programming
problem.)

Mixture Brass Steel Aluminum

A 0.25 0.50 0.25
B 0.00 0.50 0.50

Supply (lb) 1,000 400 400

9.55. A trucking firm has received an order to move 3000 tons of
miscellaneous goods. The firm has fleets of 150 15-ton trucks and
100 10-ton trucks whose operating costs per ton are, respectively,
$30.00 and $40.00. The firm also has a policy of retaining in reserve at
least one 150-ton truck with every two 10-ton trucks. How many of
each fleet should be dispatched to move the goods at minimal oper-
ating cost? (Hint : Formulate the problem as a linear programming
problem.)

9.56. Ingredients A and B are mixed in varying proportions to make
massage oil and machine oil, each of which is sold at the (same)
wholesale price of $3.00 per quart. The cost of massage oil is $1.50
per quart, while machine oil costs $2.00 per quart. While there is no
fixed formula or algorithm for mixing A and B to obtain a specific
type of oil, two rules are generally followed: (1) Massage oil may
contain no less than 25% of A and no less than 50% of B; and
(2) machine oil may contain no more than 75% of A. If 30 quarts of
A and 20 quarts of B are available for mixing, how much of each oil
should be made to maximize profit? (Hint : Formulate the problem
as a linear programming problem.)

9.57. Determine the volume and tip deflection of a tip-loaded cantilever
beam of length, L, and circular cross-section of constant radius, R.

9.58. What savings of volume (or material) could be made for the beam
of Problem 9.57 if the beam cross-section were a hollow tube of
constant mean radius, R, and tube wall thickness, t ?

9.59. What savings of volume (or material) if a beam of constant rectangu-
lar cross-section b×h were replaced with a beam of the same length
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whose cross-section is an idealized I-beam that has two, symmetric-
ally placed small rectangles of thickness t < h and area A = b × t
that are separated by the beam’s height, h? (Hint : Remember that I
is the second moment of the area, I = ∫A z2dA.)

9.60. What savings would be made if the radius of the solid circular beam
varied along the axis, R = R(x), and was restricted to have the same
deflection under the same load?

9.61. What savings would be made if (only) the radius of the tubular
circular beam varied along the axis, R = R(x), and was restricted to
have the same deflection under the same load?

9.62. Develop a model for the glide angle γ of a glider. (Hints: Reconsider
the small plane model developed in Section 9.5.2 in the absence of
thrust. How does the climb angle, α, relate to the glide angle, γ ?)

9.63. In the light of Problem 9.62, what is the optimum glide angle for a
glider?

9.64. Show that the power P = D × V of a small, propeller-driven plane
for equilibrium flight, during which the plane’s acceleration is zero,
can be modeled as:

P = C ′01V 3 + C ′02V−1.

How do the constants, C ′01 and C ′02, relate to those given for the
small plane model of Section 9.5.2?

9.65. Determine the optimum speed that minimizes the power consump-
tion for the plane model developed in Problem 9.64 using the
standard calculus approach.

9.66. Determine the optimum speed that minimizes the power consump-
tion for the plane model developed in Problem 9.64 using geometric
programming (GP). Does this answer agree with that obtained in
Problem 9.65?



Index

Absolute error, 93
Abstraction

deÞnition, 9, 33Ð34
units, 14Ð15

Accuracy, deÞnition, 94
Acoustic resonator

fundamental frequency determination,
228Ð232

impedance, 243
oscillator equation, 230
voice box, 50Ð51

Activation energy, nucleation, 276
Adiabatic gas law, 228Ð229
Aircraft

drag, 278Ð280
drag-to-lift ratio, 278, 280Ð281
geometric programming for ßight speed

optimization, 282Ð285
glider glide angle modeling, 296
lift, 278Ð279
lift-to-drag ratio, 278
range optimization, 278Ð282

Algebraic approximation, heating of solid
bodies, 82Ð84

Amplitude, pendulum motion, 189

Approximations, see Algebraic
approximation; SigniÞcant Þgures;
Taylor series

Arrow impossibility theorem, 266
Arrow, K. J., 266
Automobile suspension system, vibration

modeling, 232Ð234

Balance principles
abstraction, 10
law derivation, 10Ð11

Beam, see also Cantilever beam
bending stiffness, 60
dimensional analysis of compliance, 32
scaling and experimental design

considerations, 59Ð61, 68Ð69
stiffness model validation, 91

Binomial expansion, model approximation,
77Ð80

Bird ßight
geometric scaling of ßight muscle fraction,

36Ð37
hovering ßight dimensional analysis

limit to hovering size, 47
power availability, 46
power requirements, 45Ð46

297
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Bird ßight (Continued)
range optimization, 278Ð282
wing loading, 44Ð45

Bishop, R. E. D., 175
Borda count

comparison with pairwise comparison
chart, 268Ð269

failures, 271Ð273
independence of irrelevant alternatives

violation, 266
Boundary conditions, scaling effects, 52
Buckingham Pi theorem

dimensional analysis, 24Ð28
pendulum modeling, 26Ð28, 178Ð179

Buildings
fundamental period of tall slender

buildings, 221Ð225
geometric scaling of church buildings,

40Ð44

Cable
catenary parameter, 75, 81
sag determination using Taylor series,

75Ð77
Cantilever beam

examples, 286
lightest diving board problems, 286Ð290

Capacitors
capacitance, 130, 217
characteristic time, 54Ð55
charge modeling, 133Ð136
current ßow over time, 130, 131
discharge modeling, 131Ð133
resistance, 130
voltage drop equation, 130, 217

Cauchy inequality, geometric programming,
282Ð283

Cell growth, scaling examples, 67, 69
Characteristic decay time, pendulum, 187
Characteristic length, cable, 54
Characteristic time

capacitor discharge, 54Ð55
pendulum, 184

Circular frequency, spring-mass oscillator,
213Ð214

Compliance of a beam, dimensional
analysis, 32

Condorcet cycles, rank reversals, 267
Conservation principles

abstraction, 10
conservation of cars in trafÞc

modeling, 153Ð155
energy conservation in pendulum

movement, 184Ð186
law derivation, 10Ð11

Constant of proportionality, 122
Consumer Price Index (CPI), inßation

monitoring, 140

Continuous optimization modeling
equality constraints, 250
inequality constraints, 250
minimization problem example, 248Ð252
multi-dimensional optimization

problems, 250
package volume maximization example,

250Ð253
Continuum hypothesis, trafÞc modeling,

159Ð162
CPI, see Consumer Price Index
Curve-Þtting

extrapolation, 96
hand-drawn curves, 96
interpolation, 96
line equation, 97Ð98
method of least squares, 97
quality of Þt, 98Ð99

Cyclotron
frequency determination, 226Ð227, 243
representation, 225Ð226

Damping forces
pendulum modeling, 186Ð187
spring-mass oscillator, 214Ð215

Decay time, see Characteristic time
Delay time, trafÞc modeling, 163
De Moivre theorem, 108
Differential equations

Þrst-order differential equation of
exponential function, 126Ð127

forcing functions, 127
homogeneous equations, 127
inhomogeneous differential equation

solution in vibration modeling,
234Ð236

linear model of freely-vibrating
pendulum, 191Ð192

Dimensional analysis
advantages and limitations, 16Ð19
deÞnition, 13
dimension checking in model validation,

89Ð90
dimensionless groups of variables,

identiÞcation techniques
basic method, 20Ð24
Buckingham Pi theorem, 24Ð28

homogeneity and consistency of
equations, 9, 13, 15Ð16

hovering ßight in birds
limit to hovering size, 47
power availability, 46
power requirements, 45Ð46

peanut butter mixing example, 17Ð19,
25Ð26

pendulum modeling, see Pendulum
quantity derivation, 14Ð15
units, 14Ð15, 28Ð30
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Doubling time, deÞnition, 123
DufÞn, R. J., 282
Dumbbell, stability of a two-mass

pendulum, 195Ð198
Dynamic programming, 258Ð259

Ear
anatomy, 48
fundamental frequency of eardrum, 49Ð50
scaling effects on hearing, 48Ð50

EinsteinÕs general theory of relativity,
scaling, 35

Electrical-mechanical analogy, 216Ð220
Elementary transcendental functions

behavoiral features, 109
derivatives and integrals, 109
natural logarithm formal deÞnition, 107
types, 107

Engineering design, 5Ð6
Error

absolute error, 93
deÞnition, 93
mistake comparison, 94
percentage error, 93Ð94
random error, 93
relative error, 93
systematic error, 93

Exponential function, formal deÞnition,
107Ð108

Exponential models
capacitor charging and discharging, see

Capacitors
doubling time and half-life, 123
exponential functions

calculation, 122Ð124
display, 124Ð125
Þrst-order differential equation,

126Ð127
Þnancial models

inßation, 138Ð140
interest compounding, 136Ð138

LanchesterÕs law of Þghting armies,
144Ð146, 149Ð150

negative proportionality factor
characteristics, 120Ð121

radioisotopes, see Radioactive decay
world population growth

nonlinear model, 141Ð143
projections, 118Ð120

Falling body, dimensional analysis using
basic method, 20Ð21

Faraday, M., 217
FBD, see Free-body diagram
Flight, see Aircraft; Bird ßight
Free-body diagram (FBD)

aircraft modeling, 278Ð279
pendulum modeling, 180Ð181

Free energy change, nucleation, 276Ð277
Fundamental diagram of road trafÞc, trafÞc

ßow-density relationship, 155Ð158, 173
Fundamental frequency

acoustic resonator, 50Ð51, 228Ð232
eardrum, 49Ð50
strings, 50

Fundamental period, tall slender buildings,
221Ð225

Galileo, 286
Geometric programming (GP)

applications, 285
ßight speed optimization, 282Ð285
principles, 282

Geometric scaling
cube, 35Ð36
ßight muscle fraction in birds, 36Ð37
linear proportionality in similar objects,

37Ð38
log-log plots of data, 38Ð44

GP, see Geometric programming

Half-life
calculation, 123
radioisotopes, 128

Hayakawa, S. I., 12
Helmholtz resonator, 228Ð232
Henry, J., 217
Hertz, G. L., 48
Hertz, H. R., 193
Histogram, data display, 102Ð106

Imaginary number, notation, 107
Impedance

acoustic resonator, 243
forced vibration, 237Ð239

Inductance, 217
Inßation

Consumer Price Index, 140
exponential modeling, 138Ð140

Integer programming, 259
Interest compounding, exponential

modeling, 136Ð138
Iterative loop, model-building, 8

Jam density, trafÞc modeling, 155, 168

KCL, see Kirchhoff Õs current law
KE, see Kinetic energy
KeplerÕs third law of planetary motion,

209Ð210
Keynes, J. M., 28
Kinetic energy (KE)

pendulum equations, 184Ð185
spring-mass oscillator, 195, 215

Kirchhoff Õs current law (KCL), 218
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Kirchhoff Õs voltage law (KVL), 134
KVL, see Kirchhoff Õs voltage law

Lanchester, F. W., 144
LanchesterÕs law, 144Ð146, 149Ð150
Langhaar, H. L., 13
Larynx, see Voice box
Linear model

deÞnition, 11
principle of superposition, 11

Linear programming (LP)
distribution network transportation

problem, 260Ð265
feed-mix problems, 258
generic problems, 253Ð255
graphic solutions, 294
operations research, 255
optima deÞning and assessment, 259Ð260
product-mix problems, 258
proÞt maximization in furniture business,

255Ð257
simplex method, 258
variable number, 258

Line equation, curve-Þtting, 97Ð98
Log-log plots, geometric scaling data, 38Ð44
Logistic growth curve, population growth,

143
Lotka-Volterra model, population growth,

201Ð202
LP, see Linear programming
Lumped element model, deÞnition, 34Ð35

Mathematical model
deÞnition, 4
depiction of reality, 11Ð12
principles of modeling, 6Ð8

Mean, deÞnition, 100
Median, deÞnition, 100
Method of least squares, curve-Þtting, 97
Mistake, comparison with error, 94
Model

deÞnition, 3
languages, 3Ð4

Modulus of elasticity
fundamental period of tall slender

buildings, 224Ð225
signiÞcant Þgures, 86

Natural logarithm
base, 123
calculation, 123
formal deÞnition, 107

NewtonÕs law of gravitational attraction,
binomial expansion, 79Ð81

NewtonÕs second law
plane equations, 179

radial equation, 181
tangential equation, 181

Nonlinear programming, 258
Nucleation

activation energy, 276
deÞnition, 276
free energy change, 276Ð277

Ohm, G. S., 218
OhmÕs law, 131
Operations research, see Linear

programming
Optimization

best alternative selection
Borda count, 266Ð269
decision-making, 273Ð275
failures, 271Ð273
independence of irrelevant alternatives

violation, 266Ð267
pairwise comparisons, 265Ð266
rank reversals, 267, 270Ð271
rankings, 265, 272

cantilever beam problem, 286Ð290
continuous optimization modeling

equality constraints, 250
inequality constraints, 250
minimization problem example,

248Ð252
multi-dimensional optimization

problems, 250
package volume maximization example,

250Ð253
dynamic programming, 258Ð259
ßight range maximization, 278Ð282
geometric programming for ßight speed

optimization, 282Ð285
goals, 247
integer programming, 259
linear programming

distribution network transportation
problem, 260Ð265

feed-mix problems, 258
generic problems, 253Ð255
operations research, 255
optima deÞning and assessment,

259Ð260
product-mix problems, 258
proÞt maximization problems,

255Ð257, 295
simplex method, 258
variable number, 258

nonlinear programming, 258
nucleation energy problem, 276Ð278

Oscilloscope, scaling and data acquisition
considerations, 58Ð59

Pairwise comparisons
charts, 267Ð269
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comparison with Borda count, 268Ð269
decision-making, 273Ð275
failures, 271Ð273
principles, 265Ð266
rank reversals, 270Ð271

Parasite-host interactions, population
growth modeling, 201Ð206

PE, see Potential energy
Pendulum

model validation, 91Ð92
amplitude of motion, 189
damping forces, 186Ð187
dimensional analysis of freely-vibrating

pendulum
Buckingham Pi theorem, 26Ð28,

178Ð179
data collection, 176Ð178
dimensionless equation formulation,

183Ð184
dissipating energy in pendulum

movement, 186Ð188
energy conservation in pendulum

movement, 184Ð186
free-body diagram, 180Ð181
fundamental dimensions of descriptive

parameters, 182
scaling factor, 182Ð183

equations of equilibrium, 179Ð180
equations of motion, 180Ð181
linear model of freely-vibrating pendulum

characteristics, 192Ð193
differential equations, 191Ð192
linearization of nonlinear model,

188Ð190
nonlinear model, 199Ð201
period equations, 16
period of free vibration, 176Ð178
spring-mass oscillator, physical

interpretations, 194Ð195
stability of a two-mass pendulum,

195Ð198
Percentage error, 93Ð94
Period of free vibration

length-dependence for a pendulum, 178
measurement for a pendulum, 176Ð177

Population growth
effective growth rate, 141
logistic growth curve, 143
nonlinear model, 141Ð143
projections, 118Ð120, 148Ð149
Taylor series, 142
vibration modeling of coupled species,

201Ð204
Posynomial, deÞnition, 282
Potential energy (PE)

pendulum equations, 185
spring-mass oscillator, 195, 215

Precision, deÞnition, 94Ð95

Predator-prey interactions, population
growth modeling, 201Ð206

Principle of superposition, deÞnition, 11

Radioactive decay
decay constant calculation, 129
generic plot, 128Ð129
half-life, 128
short-lived versus long-lived

radioisotopes, 129
Random error, 93
Rank reversals, 267, 270Ð271, 273
Rate equation, examples, 10, 54
Rational equation, dimensional consistency

and homogeneity, 13, 15Ð16, 24
Rayleigh, Lord, 211
Reaction time, trafÞc modeling, 163
Relative error, 93
Resistor

resistance, 130
voltage drop equation, 218

Resonance, forced vibration, 236Ð237
Revolving bodies, dimensional analysis using

basic method, 21Ð23
Rotational inertia, scaling and data

acquisition considerations, 55Ð57

Saari, D. G., 266
Sample variance, deÞnition, 100Ð101
Scaling

consequences
data acquisition considerations, 55Ð59
experimental design considerations,

59Ð61
perceptions of presented data, 62Ð65

EinsteinÕs general theory of relativity, 35
equations, 52Ð54
geometric scaling

cube, 35Ð36
ßight muscle fraction in birds, 36Ð37
linear proportionality in similar objects,

37Ð38
log-log plots of data, 38Ð44

hearing example, 48Ð50
hovering ßight dimensional

analysis in birds
limit to hovering size, 47
power availability, 46
power requirements, 45Ð46

imposition, 35
Newtonian versus relativistic mechanics,

52
scale factor, 53, 182Ð183
speech example, 50Ð51
spring models, 9, 34, 68
technological advances and

nanotechnology, 51Ð52
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ScientiÞc method
models, 4Ð5
observation, 4
prediction, 5

ScientiÞc notation, signiÞcant Þgures, 86
Semi-logarithmic plots, exponential

functions, 124Ð125
Sensitivity, measuring devices, 95
SigniÞcant Þgures

addition and subtraction, 86Ð87
assignment, 84Ð86
exact values without decimals, 87
multiplication and division, 86
rounding off exercises, 88

Simon, H. A., 247
SI units, see Syst•me International units
Spring models

scaling, 9, 34, 68
spring-mass oscillator

applied force, 212
circular frequency, 213Ð214
damper, 214
dissipating energy, 215Ð216
electrical-mechanical analogy, 216Ð220
energy storage, 215
equation of motion, 214
physical interpretations in free

vibration, 194Ð195
restoring force, 213
stiffness-to-mass ratio, 214

Standard deviation
calculation, 101Ð102
deÞnition, 101
distribution rules, 102

Stimuli response, trafÞc modeling, 162Ð163
Suspension system, vibration modeling,

232Ð234
Swift, J., 33
Systematic error, 93
Syst•me International (SI) units, 29

Taylor series
amplitude of pendulum motion, 189
binomial expansion, 77Ð80
derivation, 72
hyperbolic functions, 74Ð78
one-term series, 72Ð73
population growth, 142
remainder term, 74
three-term series, 72Ð73
trigonometric functions, 74Ð78
two-term series, 72Ð73

TaylorÕs formula, 72Ð73
TrafÞc ßow modeling

macroscopic models
conservation of cars, 153Ð155
continuum hypothesis, 159Ð162

descriptive variables, 153
ßuid models, 152
fundamental diagram of road trafÞc for

ßow-density relationship,
155Ð158, 173

speed-density relationships, 155Ð156,
159

microscopic models
comparison of car-following models,

170Ð171
elementary linear car-following model,

162Ð169
following distance, 168
improved car-following model, 169Ð170
speed-density relationships, 164Ð167

theory, 151Ð152
Transcendental functions, power series, 53

Units
British system, 28Ð29
checking in model validation, 90
dimensional analysis, 14Ð15
interconversion, 15
preÞxes for orders of magnitude, 29Ð30
Syst•me International units, 29

Validation, models
accuracy, 94Ð95
checks

dimensions, 89Ð90
qualitative and limit behavior, 91Ð92
units, 90

curve-Þtting of data, 96Ð99
errors, see Error
experimental validation, 88
inherent validity, 89
precision, 94Ð95

Vibration models, see also Pendulum; Spring
models

automobile suspension modeling,
232Ð234

cyclotron frequency, 225Ð227
fundamental frequency of acoustic

resonator, 228Ð232
fundamental period of tall slender

buildings, 221Ð225
impedance in forced vibration, 237Ð239
inhomogeneous differential equation

solution, 234Ð236
linearized model, oscillatory solution,

204Ð206
nonlinear model, qualitative solution,

203Ð204
population growth of coupled species,

201Ð206
resonance in forced vibration, 236Ð237
vibratory phenomena, 175
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Voice box
anatomy, 49Ð50
fundamental frequency of acoustic

resonator, 50Ð51
scaling effects on, 50Ð51

Volume ßow rate, dimensional analysis, 32

Weber number, derivation using
dimensional analysis, 31

Zener, C., 282
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