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PREFACE

This book is designed to teach students how to apply mathematics by for-
mulating, analyzing, and criticizing models. It is intended as a first course
in applied mathematics for use primarily at an upper division or beginning
graduate level. Some course suggestions are given near the end of the preface.

The first part of the book requires only elementary calculus and, in
one chapter, basic probability theory. A brief introduction to probability
is given in the Appendix. In Part II somewhat more sophisticated mathe-
matics is used.

Although the level of mathematics required is not high, this is not an
easy text: Setting up and manipulating models requires thought, effort,
and usually discussion—purely mechanical approaches usually end in
failure. Since I firmly believe in learning by doing, all the problems require
that the student create and study models. Consequently, there are no trivial
problems in the text and few very easy ones. Often problems have no single
best answer, because different models can illuminate different facets of a
problem. Discussion of homework in class by the students is an integral
part of the learning process; in fact, my classes have spent about half the
time discussing homework. I have also encouraged (or insisted) that home-
work be done by students working in groups of three or four. We have usually
devoted one class period to a single model, both those worked out in the
text and those given as problems. I have also required students to report
on a model of their own choosing, the amount of originality required de-
pending on the level of the student.

Except for Chapter 6, each section of the text deals with the application
of a particular mathematical technique to a range of problems. This lets
the students focus more on the modeling. My students and I have enjoyed
the variety provided by frequent shifts from one scientific discipline to
another. This structure also makes it possible for the teacher to rearrange
and delete material as desired ; however, Chapter 1 and Section 2.1 should be
studied first. Chapter 1 provides a conceptual and philosophical framework.
The discussions and problems in Section 2.1 were selected to get students
started in mathematical modeling. :

Most of the material in this book describes other people’s models,
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vi PREFACE

frequently arranged or modified to fit the framework of the text, but hope-
fully without doing violence to the original intentions of the model. I believe
all the models deal with questions of real interest: There are no “‘fake”
models created purely to illustrate a mathematical idea, and there are no
models that have been so sanitized that they have lost contact with the com-
plexities of the real world. Since I've selected the models, they reflect my
interests and knowledge. For this I make no apology—caveat emptor.

The models have been chosen to be brief and to keep scientific back-
ground at a minimum. While this makes for a more lively and accessible
text, it may give the impression that modeling can be done without scien-
tific training and that modeling never leads to involved studies. I thought
seriously about counteracting this by adding a few chapters, each one de-
voted to a specific model. Unable to find a way to do this without sacrificing
‘“learnning by doing,” I abandoned the idea.

Course suggestions. On an undergraduate level, the text can be used at
a leisurely pace to fill an entire year. It may be necessary to teach some
probability theory for Chapter 5, and you may wish to drop Chapter 10.
More variety can be obtained by using the text for part of a year and then
spending some time on an in-depth study of some additional models—
with guest lecturers from the appropriate scientific disciplines if possible.
Another alternative is to spend more time on simulation models after
Section 5.2 if a computer is available for groups of students to develop their
own in-depth models.

Acknowledgments. Particular thanks are due to Norman Herzberg for
his many suggestions on the entire manuscript. My students have been
invaluable in pointing out discussions and problems that were too muddled
or terse to understand. I owe thanks to a variety of people who have com-
mented on parts of the manuscript, suggested models, and explained ideas
to me.

I'd appreciate hearing about any errors, difficulties encountered, sug-
gestions for additional material, or anything else that might improve future
editions of this book.

EDWARD A. BENDER

La Jolla, California
August 1977
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CHAPTER 1

WHAT IS MODELING

1.1 MODELS AND REALITY

The theoretical and scientific study of a situation centers around a model,
that is, something that mimics relevant features of the situation being studied.
For example, a road map, a geological map, and a plant collection are all
models that mimic different aspects of a portion of the earth’s surface.

The ultimate test of a model is how well it performs when it is applied
to the problems it was designed to handle. (You cannot reasonably criticize
a geological map if a major highway is not marked on it; however, this
would be a serious deficiency in a road map.) When a model is used, it may
lead to incorrect predictions. The model is often modified, frequently dis-
carded, and sometimes used anyway because it is better than nothing. This
is the way science develops.

Here we are concerned exclusively with mathematical models, that is,
models that mimic reality by using the language of mathematics. Whenever
we use “model” without a modifier, we mean “mathematical model.”
What makes mathematical models useful? If we “speak in mathematics,”
then

1. We must formulate our ideas precisely and so are less likely to let implicit
assumptions slip by.

2. We have a concise “language” which encourages manipulation.

3. We have a large number of potentially useful theorems available.

4. We have high speed computers available for carrying out calculations.

There is a trade-off between items 3 and 4: Theory is useful for drawing
general conclusions from simple models, and computers are useful for
drawing specific conclusions from complicated models. Since the thought
habits needed in formulating models are quite similar in the two cases, it
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2 WHAT IS MODELING

matters little what sort of models we use; consequently, I have felt free to
neglect computer based models purely for personal pedagogical reasons.
There are some references to a computer in Section 5.2 where Monte Carlo
simulation is discussed and, to a lesser extent, in Section 8.2 where numerical
solutions to differential equations are discussed.

Mathematics and physical science each had important effects on the
development of the other. Mathematics is starting to play a greater role in
the development of the life and social sciences, and these sciences are starting
to influence the development of mathematics. This sort of interaction is
extremely important if the proper mathematical tools are going to be
developed for the various sciences. S. Bochner (1966) discusses the hand-in-
hand development of mathematics and physical science. Some people feel
that there is something deeper going on than simply an interaction leading
to the formulation of appropriate mathematical and physical concepts.
E. P. Wigner (1960) discusses this.

1.2. PROPERTIES OF MODELS

We begin with a definition based on the previous discussion: A mathematical
model is an abstract, simplified, mathematical construct related to a part of
reality and created for a particular purpose. Since a dozen different people
are likely to come up with a dozen different definitions, don’t take this one
too seriously; rather, think of it as a crude starting point around which to
build your own understanding of mathematical modeling.

We now have a problem: To fully appreciate the general discussion
in the next two sections you should look at some concrete examples like
those in Sections 1.4 and 1.5; however, you will need some abstract back-
ground to appreciate the examples fully. I suggest reading the remainder of
the chapter through quickly and then coming back to this point and re-
reading more carefully.

As far as a model is concerned, the world can be divided into three
parts:

1. Things whose effects are neglected.
Things that affect the model but whose behavior the model is not
designed to study.

3. Things the model is designed to study the behavior of.

The model completely ignores item 1. The constants, functions, and so on,
that appear in item 2 are external and are referred to as exogenous variables



PROPERTIES OF MODELS 3

(also called parameters, input, or independent variables). The things the
model seeks to explain are endogenous variables (also called output or
dependent variables). The exogenous-endogenous terminology is used in
some areas of modeling. The input-output terminology is used in areas
of modeling where the model is viewed as a box into which we feed infor-
mation and obtain information from. The parameter-independent-dependent
terminology is the standard mathematical usage.

Suppose we are hired by a firm to determine what the level of production
should be to maximize profits. We would construct a model that enables
us to express profits (the dependent variable) in terms of the level of pro-
duction, the market situation, and whatever else we think is relevant (the
independent variables). Next we would measure all the independent variables
except the level of production and use the model to determine which value
of the level of production gives the greatest profit.

Now let’s look at things from the point of view of an economist who
is seeking to explain the amount of goods firms produce. A two-part model
could be constructed: Firms seek to maximize profits, and profits can be
determined as sketched in the previous paragraph. In this model profits
become an internal variable (of no interest except for the machinations of
the model), and level of production changes from an independent to a
dependent variable.

These three categories (neglected, input, and output) are important in
modeling. If the wrong things are neglected, the model will be no good. If
too much is taken into consideration, the resulting model will be hopelessly
complex and probably require incredible amounts of data. Sometimes, in
desparation a modeler neglects things not because he thinks they are un-
important, but because he cannot handle them and hopes that neglecting
them will not invalidate the conclusions. A. Jensen (1966) discusses the
development of a model for safety-at-sea problems. The main difficulty in
formulating the model was to determine what types of encounters between
ships were dangerous, that is, to separate items 1 and 2. He found this to be
hard even with the aid of nautical experts. (If you want to know the answer,
you’ll have to read the article.) '

Proper choice of dependent variables (i.e., output) is essential; we must
seek to explain the things we can explain. Often this choice is relatively clear,
as in the example involving the economist who wished to explain the level of
production of a firm. Sometimes we need to be careful ; for example, we could
explain profits in terms of level of production, but not conversely as we
might naively try to do, since we were asked to determine the best level of
production.

Since different models make different types of simplifying assumptions,
there is usually no single best model for describing a situation. R. Levins
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(1968, p. 7) observed that “it is not possible to maximize simultaneously
generality, realism, and precision.” In the social sciences one is often content
with a statement that something will increase; precision has been sacrificed
for realism and (hopefully) generality. Simulation models usually try for
precision and realism but sacrifice generality. These three trade-offs should
become clearer after you have studied some actual models.

Definitions of the variables and their interrelations constitute the
assumptions of the model. We then use the model to draw conclusions (i.e., to
make predictions). This is a deductive process: If the assumptions are true,
the conclusions must also be true. Hence a false prediction implies that the
model is wrong in some respect. Unfortunately things are usually not this
clear-cut. We know our model is only an approximation, so we cannot
expect perfect predictions. How can we judge a model in this case?

A conclusion derived from a crude model is not very believable,
especially if other models make contrary predictions. A result is robust if it
can be derived from a variety of different models of the same situation, or
from a rather general model. A prediction that depends on very special
assumptions for its validity is fragile. The cruder the model, the less believable
its fragile predictions.

You may notice that we have talked about conclusions, not explanations.
Can a model provide explanations? This is a somewhat philosophical
question, and different people have different notions of what constitutes an
explanation. Let us grant that, in some sense, models can provide explana-
tions. A decision about the validity of a model is usually based on the accuracy
of its predictions. Unfortunately, two different models may make the same
predictions but offer different explanations. How can this be?

We can think of the situation we are modeling as being a “black box”
which outputs something for every input. (“Something” can be no output.)
A model makes correct predictions if it outputs the model equivalent of the
black box output whenever the model equivalent of the black box input is
fed in. The mechanism is irrelevant when dealing with predictions, but the
nature of the mechanism is the heart of an explanation. Although there is
usually a situation in which two different models lead to different predictions,
we may not be able to determine which prediction is correct. For example,
a model of a politician can be constructed by assuming that his behavior
is (1) motivated by concern for his fellow man or (2) motivated by a desire
for public office. In many situations these two models lead to identical or
very similar predictions. It may be difficult to make contradictory predictions
that can be checked. Another examplefor those familiar with simple circuits is
the mathematical equivalence between perfect springs and perfect LC circuits.
Although the underlying mathematics is identical, no one would seriously
suggest that Hooke’s law for springs “explains” the circuit’s behavior.
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We have been talking about an ideal modeler. When any of us ap-
proaches a problem, we do so in a limited, biased fashion. The more open-
minded, communicative, and creative we can be, the better our model is likely
to be. The following poem illustrates the problems that can arise.

The Blind Men and the Elephant

It was six men of Indostan

To learning much inclined,
Who went to see the Elephant

(Though all of them were blind),
That each by observation

Might satisfy his mind.

The First approached the Elephant,
And happening to fall

Against his broad and sturdy side,
At once began to bawl:

“God bless! but the Elephant
Is very like a wall!”

The Second, feeling of the tusk,
Cried, “Ho! what have we here
So very round and smooth and sharp?
To me ’tis mighty clear
This wonder of an Elephant
Is very like a spear!”

The third approached the animal,
And happening to take

The squirming trunk within his hands,
Thus boldly up and spake:

“I see,” quoth he, “the Elephant
Is very like a Snake!”

The Fourth reached out an eager hand,
And felt about the knee.

“What most this wondrous beast is like
Is mighty plain,” quoth he;

“’Tis clear enough the Elephant
Is very like a tree!”
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The Fifth who chanced to touch the ear,
Said: “F’en the blindest man

Can tell what this resembles most;
Deny the fact who can,

This marvel of an Elephant
Is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,

Than, seizing on the swinging tail
That fell within his scope,

“I see,” quoth he, “the Elephant
Is very like a rope!”

And so these men of Indostan
Disputed loud and long,

Each in his own opinion
Exceeding stiff and strong.

Though each was partly in the right
And all were in the wrong!

John Godfrey Saxe (1816-1887)
Reprinted in Engineering Concepts
Curriculum Project (1971)

1.3. BUILDING A MODEL

Model building involves imagination and skill. Giving rules for doing it is
like listing rules for being an artist; at best this provides a framework around
which to build skills and develop imagination. It may be impossible to teach
imagination. It won’t try, but I hope this book provides an opportunity for
your skills and imagination to grow. With these warnings, I present an out-
line of the modeling process.

1. Formulate the Problem. What is it that you wish to know? The nature
of the model you choose depends very much on what you want it to do.

2. Outline the Model. At this stage you must separate the various parts
of the universe into unimportant, exogenous, and endogenous. The
interrelations among the variables must also be specified.
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3. Is It Useful? Now stand back and look at what you have. Can you
obtain the needed data and then use it in the model to make the pre-
dictions you want? If the answer is no, then you must reformulate the
model (step 2) and perhaps even the problem (step 1). Note that *“useful ”
does not mean reasonable or accurate; they come in step 4. It means:

‘ If the model fits the situation, will we be able to use it?

4. Testthe Model. Use the model to make predictions that can be checked
against data or common sense. It is not advisable to rely entirely on
common sense, because it may well be wrong. Start out with easy pre-
dictions—don’t waste time on involved calculations with a model that
may be no good. If these predictions are bad and there are no mathe-
matical errors, return to step 2 or step 1. If these predictions are accept-
able, they should give you some feeling for the accuracy and range of
applicability of the model. If they are less accurate than you anticipated,
it is a good idea to try to understand why, since this may uncover im-
plicit or false assumptions.

At this point the model is ready to be used. Don’t go too far; it is
dangerous to apply the model blindly to problems that differ greatly from
those on which it was tested. Every application should be viewed as a test
of the model.

You may not be able to carry out step 2 immediately, because it is not
clear what factors can be neglected. Furthermore, it may not be clear how
accurately the exogenous variables need to be determined. A common
practice is to begin with a crude model and rough data estimates in order
to see which factors need to be considered in the model and how accurately
the exogenous variables must be determined.

Some models mayrequire no data. If a model makes the same prediction
regardless of the data, we are not getting something for nothing because this
prediction is based on the assumptions of the model. To some extent, the
distinction between data and assumptions is artificial. In an extreme case,
a model may be so specialized that its data are all built into the assumptions.

Sometimes step 4 may be practically impossible to carry out. For
example, how can we test a model of nuclear war? What do we do if we have
two models of a nuclear war and they make different predictions? This can
easily happen in fields of study that lack the precisely formulated laws
found in the physical sciences. At this point experience is essential—not
experience in mathematics but experience in the field being modeled. Even
if predictions can be tested, the testing may be expensive to carry out and
may require training in a particular field of experimental science. Since the
absence of experimental verification leaves the modeling process incomplete,
I have given test results whenever I have been able to obtain them.
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1.4. AN EXAMPLE

We discuss models for the long term growth of a population in order to
illustrate some of the ideas of the two previous sections. We want to predict
how a population will grow numerically over a few generations. This is the
problem (step 1 in Section 1.3).

Let the exogenous (independent) variables be the net reproduction
rate r per individual, the time ¢, and the size of the population at t = 0. The
net reproduction rate is the birth rate minus the death rate. In other words,
it is the fractional rate of change of the population size: r = (dN/dt)/N.
There is only one endogenous (dependent) variable, the size of the population
at time t, which we denote by N(t). We also refer to r as the net growth rate.

To obtain a simple model, we ignore time lag effects; that is, we assume
that only the present value of N and its derivatives are relevant in determining
the future values of N. (This will lead to a differential equation.) If the fraction
of the population that is of reproductive age varies with ¢, this can be a very
poor assumption. Let’s also assume that the net reproduction rate r is a
constant. This gives us a rather crude model with the basic relationship

Lan _
(1) N dt

The model would certainly be useful if it fits the real world (step 3). The
solution of (1) is N(t) = N(0)e". Unless r = 0, the population will eventually
either die out (r negative) or grow to fill the universe (r positive). Reasonable
behavior of the population size is a very fragile prediction of the model.
This casts serious doubt on the validity of using a constant net reproduction
rate for predicting long term growth. This approach to a model illustrates
an important point: Study the behavior of your model in limiting cases (in
this case as time gets very long, i.e., as t — co).

Our test of the model (step 4) for long term growth indicates that it
must be rejected; however, it may be useful for short term predictions.
Unfortunately, we specifically asked for long term predictions.

Clearly the growth rate of a population will depend on the size of the
population because of such effects as exhaustion of the food supply. If the
population becomes very large, we can expect the death rate to exceed the
birth rate. Let’s translate this into mathematics. We replace the net repro-
duction rate r in (1) by »(N) which is a strictly decreasing function of N for
large N and becomes negative when N is very large. Thus

1 dN

() N r(N).
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We've now redone step 2. The model is less useful than the previous one,
because obtaining the exact form of #(N) will be hard, perhaps even im-
possible. However, rough estimates can be obtained, so let’s see what can
be done with them. On to step 4. It can be shown that N(t) approaches N,
the solution of HNNy) = 0O, as time passes. This is a robust prediction, since
we made very few assumptions concerning the nature of the function r(N).
Because the model was constructed to predict an upper limit for the size
of a population, it is not surprising that it does so.

The cycle of steps 4, 2, and 3 can be repeated, since the model described
by (2) has many drawbacks. For one thing, the population can only move
closer to N, in the future. A real population often overshoots the steady
state size N,, and even steady state populations fluctuate slightly in size
because of the somewhat random nature of births and deaths. One way to
eliminate the first objection is to introduce time lags. For example, if the
death rate m is not age dependent and the birth rate b changes from zero
to a constant at age p, we could replace (1) by

(3) ii—]:f = —mN(t) + bN(t — p).

The parameter p is called a time lag. Of course, we could make m ,and b
functions of N(t), N(t — p), or some weighted average of N on the interval
[t — p, t]. To allow for random fluctuations we must replace our deter-
ministic model by a random one.

Another drawback is the assumption that it makes sense to talk about
r(N). If the age or sex ratios in a population are changing, this may be non-
sense. To overcome this objection it is necessary to split the population
into subpopulations based on age and sex. Demographic models are designed
in this way: In a typical model time is broken up into discrete units such as
5 year periods, men are ignored, and women are divided into age classes
separated by a single time unit. For each age class there is no longer simply
anet birth rate but a death rate m; and a birth rate b, for female children. The
number of newborn girls at time ¢ + 1 is No(t + 1) = ) b;N{(t), and the
number of women in class i + 11is N;,,(t + 1) = (1 — m;)N(¢), the number
surviving from class i at time t. Linear algebra is a natural tool for handling
this model. Demographers frequently assume that b; and m; are independent
of N, because they are interested in relatively short term predictions.

Seasonality may beimportant for shorttermmodels,sincein manyspecies
births occur during a particular season and death rates are also dependent
on the time of year. An explicit time dependence must be built into r(N) to
allow for seasonal effects. In a long term model encompassing many years
we could probably avoid this complication by averaging birth and death
rates over an entire year.
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I hope this discussion makesit clear that we can’t formulate an adequate
model unless we know (1) what we hope to obtain from the model and
(2) how complicated a model we are willing to tolerate. The latter is practically
the same as how much data we are willing to supply, since complexity and
data demands usually grow simultaneously.

1.5. ANOTHER EXAMPLE

The manager of a large commercial printing company asks your advice on
how many salespeople to employ. Qualitatively, more salespeople will
increase sales overhead, while fewer salespeople may mean losing potential
customers. Thus there should be some optimum number. By “salespeople”
I don’t mean clerks, but people who travel, selling a company’s products
to other businesses; however, these ideas could be applied to salesclerks, too.
This problem has been adapted from A. A. Brown et al. (1956). The original
paper goes into greater depth than the following discussion and is well worth
reading.

The problem as stated is unanswerable. What are the production limita-
tions of the company? What are the goals of management ? Maximum profit?
Maximum “empire” with satisfactory profit? Something else? Unless these
and similar questions are very clearly answered, recommendations may be
quite inaccurate. A better approach would be to provide a description of the
consequences of sales forces of various sizes. This would leave the final
decision up to management, which is as it should be. To determine what
effect a sales force will have, we must know what salespeople accomplish.
Thus we can try to determine how salespeople spend their time and what
results they obtain as a consequence of spending their time in that way. As
long as salespeople need to be studied, we may as well ask: What is the best
way (in terms of obtaining sales) for them to spend their time? We can then
advise management on (1) how to obtain the greatest return from their
sales force, and (2) the impact various sizes of sales forces will have on sales.
This tentatively completes step 1.

Notice that we have changed the original problem considerably. We
were asked, “How many salespeople should be employed?” Instead, we
are going to answer two other questions which we formulated at the end of
the previous paragraph. Actually the questions need further refinement.
For example, different salespeople have different abilities, and their territories
are probably different. The question how salespeople should spend their
time contains a trap, because it invites us to ignore these variations. Again,
if we change the size of the sales force, we can change the total geographical
area covered, the effort expended per customer, or both. Thus the question
on the consequences of various sizes of sales forces also contains potential
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traps. Clearly step 1 hasn’t been completed ; however, the best idea is probably
to proceed and to realize that in studying a real situation we will eventually
need to return to step 1 and formulate the questions more precisely in a way
that depends greatly on the particular printing company being studied.

The major factor that will affect how much time a salesperson spends
on a customer is what the salesperson can hope to gain. Observations indicate
that businesses normally place most of their printing orders with one
company. Hence we can classify customers as “in hand” or “potential.” The
former need to be held, and the latter need to be converted. In addition, we
can classify customers according to how much money they have to spend. As
an approximation we can assume (but it should be checked) that holding
and conversion probabilities are independent of size. By running an experi-
ment with the salespeople, or possibly by examining records if we are lucky,
we can obtain an idea of how conversion and holding probabilities vary
with the amount of time per week devoted to a customer. From this we
can decide how a salesperson should spend their time, because one additional
hour per month should produce the same expected gain in revenue regardless
of which customer it is spent with. (If you don’t see this, don’t worry, I've
omitted some details. Try rereading it after Chapter 4) This completes
steps 2 and 3 for the first part of the problem. We don’t have the data to carry
out step 4, but it should be relatively straightforward.

The decision on how a salesperson should divide his time together with
the data on holding and conversion probabilities and data on the sizes of
orders various businesses place will determine gross revenue as a function
of number of salespeople. (Think about why this is so.)

The above outline indicates how we can attack the problem posed by
management—remember: How many salespeople should we employ? The
answer will consist of

1. A statement of how best to divide up a salesperson’s time as a function
of the number and type of customers being dealt with.

2. A table of expected gross income as a function of number of salespeople,
assuming that the sales districts are divided up evenly.

The model building will not be complete until we actually collect the data
and make predictions. As soon as we do this, we’ll find that the data permit
only rough estimates for items 1 and 2. Thus we should give some estimate
of the range of the numbers: If we have n salespeople, the gross sales will be
expected to be between X and Y dollars. We could also try to anticipate a
question management is likely to raise:

We can’t make salespeople divide their time just the way you recom-
mend. Besides, salespeople and customers are individuals. How sensitive
are your recommendations to all this?
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This example illustrates the importance of formulating the problem.
The problem as given was hard or impossible to solve. By breaking it down
and changing the goal (a tabulation of number of salespeople versus expected
sales rather than simply an optimal number of salespeople), it became more
approachable.

C. C. Lin and L. A. Segel (1974, Ch. 1) discuss applied mathematics
and present two further examples. You may enjoy reading their chapter
to obtain a somewhat different viewpoint. The first two chapters of J. Crank
(1962) are also interesting reading. Chapters 2 and 3 of C. A. Lave and
J. G. March.(1975) present an interesting discussion of modeling.

PROBLEMS

Some of the problems in this book lead you step by step through the develop-
ment of a model and thus resemble the mathematics problems you have seen
in other courses; however, many problems are closer to real life: They are
vaguely stated, have multiple answers (models), or are open ended. I strongly
recommend working in small groups on the problems to bring out various
ideas and evaluate them critically.

1. Suppose people enter the elevators in a skyscraper at random during
the morning rush. The result will be several elevators stopping on each
floor to discharge one or two passengers each.

(a) Discuss schemes for improving the situation.

(b) How could improvement be measured ?

(¢) How could you model the situation to decide what scheme to
adopt?

2. In the text we discussed models for the growth of a single population.
Discuss models for the growth of two interacting populations. This
problem has been phrased very vaguely, and before working on it at
home decide on a more concrete situation (or situations) in class.

3. How far can a migrating bird fly without food?

4. 1If all five employees can run all six machines in your shop, how should
you decide whom to assign to which job?

5. Discuss the differences and similarities in models of urban vehicular
traffic that you would construct to deal with the following problems.
To what extent could one model be used to handle problems it wasn’t
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designed for? Consider each case separately. Don’t try to set up detailed
models, just discuss your general approach.

(a) You are working for a citizens’ committee which wants to convince
the city council to ban private vehicles in the city because of
pollution.

(b) The city council has asked you as a traffic engineering expert to
study the possibilities of speeding up traffic flow by changing
traffic signal times, setting up one-way streets, and anything else
you can think of that will help the traffic problem, not upset the
voters, and not cost much to implement.

(c) Since your recent efforts have won you a reputation, the city council
has given you a contract to study the feasibility of banning private
vehicles and taxis in most of the city as a means of reducing
atmospheric and noise pollution, but in a fashion that won’t
interfere greatly with the mobility of the populace. Since this is a
thorny problem with many conflicting goals—a political hornets’
nest, the city fathers have told you to give them a straightforward
recommendation so they can avoid the onus of decision making.

Unless you have been extremely lucky, you have had a large class in a
poorly designed lecture hall.

(a) What are some criteria to be considered in designing a large
lecture hall?

(b)) One criterion is legibility of material written on the boards.
Construct a model of legibility as a function of the distance your
seat is from the board and the angle at which you look at the board.
What will the curves of constant legibility look like on a floor plan?
How can you test this prediction? Try it. Does this suggest shaping
the back of the hall differently than is usually done? How?

(¢) Can mathematical modeling help with any other criteria besides
the one mentioned in (b)? Try to pick a criterion from among these
possibilities and develop a model for it.

You may wish to look at A. A. Bartlett (1973) after working on this
problem.

A common technique when no models are available is to collect data,
try to fit curves, and then treat the curves as if they were a model or even
an explanation. Discusss Would you have faith in predictions made
from such models? Explain. Two commonly misused techniques are
factor analysis and linear regression. For a delightful spoof of the former,
see J. S. Armstrong (1967).
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8. One of the simplest models of population growth is the logistic equation
dN/dt = rN(1 — N/K).

(a) Interpretr and K. Discuss the model.

(b) Suppose you were given census data for a population (i.e., a table
of date versus population size). How could you test the fit of the
logistic model to the data? Remember that » and K are not given.

(¢) E.G. Leigh (1971, p. 124) quotes the following data from the U.S.
Census Bureau on the growth of the U.S. population and from
Gause on the growth of a population of the one-celled animal
Paramecium aurelia. How well does the logistic model fit the data?

Year N x 107¢ Day N
1790 3.93 1 2
1810 7.24 2 7
1830 12.87 3 25
1850 23.19 4 68
1870 39.82 S 168
1890 62.95 6 138
1910 91.97 7 190
1930 122.78 10 122
1950 150.70 11 280
1970 208.0 12 260
13 300

(d) Canyou suggest better models for the growth of the two populations
given above? “Better” is a vague word. It could mean simpler,
fitting the data more accurately, having a firmer biological and
sociological foundation, and so on.

1.6. WHY STUDY MODELING?

Why not always deal with the real world instead of studying models?
Modeling can avoid or reduce the need for costly, undesirable, or impossible
experiments with the real world, as the following problems illustrate:

1. What is the most efficient way to divide the fuel between the stages of a
multistage rocket?

2. What would be the effect of a very bad nuclear reactor accident?

3. How large a meteor was needed to produce Meteor Crater in Arizona?
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In trying to “explain” the world, modeling is essential. Scientific theories
are models and are frequently mathematical models. Every scientist from
the purest to the most applied must know how to use such models whether
he calls them that or not.

For anyone planning to use mathematical models, an understanding of
how to go back and forth between the world we live in and the world of
mathematics is essential. This is the crux of mathematical modeling and this
is what I hope this course will help you learn to do. It is neither science nor
mathematics, but rather how to put them together. Science and mathematics
courses are essential (you need something to put together), and this is no
substitute for them.
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CHAPTER 2

ARGUMENTS
FROM SCALE

Inthis chapter we consider arguments based on proportionality. For example,
if you make a scale model of an object with a scale of 1:/, surface area will
have a scale of 1:1* and the volume a scale of 1:/*. Models using this sort of
idea are discussed in the first section. The second section is based on the
observation that physical laws remain the same if the units of measurement
are changed.

2.1. EFFECTS OF SIZE

Cost of Packaging

Consider a product like flour, detergent, or jam, which is packaged in
containers of various sizes. You've probably noticed that larger packages
of such products usually cost less per ounce. This is often attributed to
savings in the cost of packaging and handling. Is this in fact the major cause
or are there other important factors? We try to see where this idea leads by
constructing a simple model.

The cost of a product is the endogenous variable. We are interested in
seeing how it varies with the exogenous variable, size. Cost clearly depends
on competition and the scale of the business. We neglect these factors and
concentrate on expenses due to materials and handling. Since we are
neglecting some important factors (name some), the resulting predictions
will be crude. In addition, there are various constants involved which we do
not even pretend to evaluate.

Let’s begin by studying the wholesale cost, that is, the price the retailer
pays for the product. This is a sum of several costs plus various profit mark-
ups by middlemen. Since profit markups are usually in terms of percentages,

19
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we can absorb them in constants later; for example, a 30 9% markup multiplies
constants by 1.30. The main costs that enter the wholesale price are:

Cost of producing the product, a.
Cost of packaging the product, b.
Cost of shipping the product, c.

Cost of the packaging material, d.

L=

We will consider each of these in turn.

It is reasonable to assume that a is proportional to the amount of the
good being produced. We write this as a oc w, which is read “a is proportional
to the weight w.”

The costs of packaging depend on how long it takes to fill the package,
how long it takes to close the package, and how long it takes to load the
package into a box for shipping. The first time is probably nearly proportional
to the volume (hence the weight), while the latter two times are probably
about the same for all sizes of packages in a reasonable range. Thus
b ~ fw + g for some positive constants f and g. (The symbol =~ means
“approximately equal to.”)

Shipping charges may depend on both weight and volume. Since
volume is proportional to weight for filled packages, we have ¢ oc w.

The cost of the packaging material is more complicated. It depends
on the costs the package manufacturer must meet. Thus we must consider
a, b, ¢, and d for the package manufacturer. We neglect d; that is, we neglect
the cost of the containers for the material from which the final packages are
made. From the analysis we have just completed, the cost per package
depends on the weight and volume of the package. If the range of packages
we are considering is not too large, it is reasonable to assume that the
packaging material is the same for all sizes of packages. Therefore the amount
of material per package (hence the weight of a package) is proportional to
the area of the surface to be covered. The volume per package is proportional
to either the surface area or the volume of the package, depending on whether
the packaging is shipped collapsed (like cardboard) or preformed (like glass).
Therefore the expenses per package of the packagesupplierare hw + kS + m,
for constants h > 0, k > 0, and m > 0, where S is the surface area. Except
for a markup, this is the cost d to the packager.

We now use a scale argument to reduce everything to one independent
variable, weight. Let us assume that the various packages are roughly
geometrically similar. The volume is nearly proportional to the cube of a
linear dimension, and the surface area is nearly proportional to the square
of a linear dimension: v oc I and S oc [>. Hence S oc v?/3. Since v oc w,
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we have S oc w?/3. Thus the wholesale cost per ounce is

—ntpw ity L
w

Cost a+b+c+d
wo w

(1)

for positive constants n, p, and g. From this we see that the cost per ounce
decreases as the size of the package increases, in agreement with the observa-
tion made at the start of this discussion.

Can we make any interesting predictions? Given three different costs
and weights, we could solve for n, p, and ¢ in (1) and use the results to predict
the prices for packages of other sizes. Because of the crudity of our model,
it is unlikely that our equation will fit very well. We should not take the
exact form of (1) too seriously. Another way to fit a curve, which allows for
inaccuracies, is the method of least squares. For this to be a reasonable test
of the model, we should have more data points than parameters. Since (1)
involves three constants, we should have more than three values for the cost
and weight of a single product. This is hard to obtain because of the limited
number of different-sized packages in which a particular product is available.
Therefore we need a different approach.

The cost per ounce decreases at a rate

d(cost/w)  p -I-i
aw 3

@ =

This is a decreasing function of w. Thus the increase in the rate of savings
per ounce is less when the package is larger. We can also compute the rate
of total savings:

1/3
1

w-
. + gw™ .

3

rw

It is also a decreasing function of w.
The consumer is not likely to understand this. We can make a statement
like (2) in simpler terms:

In purchasing prepackaged products, doubling the size of the package
purchased tends to result in greater savings per ounce when the packages
are small than when they are large.

You can prove this by taking the difference of (1) at w and 2w and verifying that
it is a decreasing function of w. We have said “tends to” because the model is
crude.

These predictions seem to rely heavily on the exact form of (1). Actually
qualitative predictions like these are usually quite robust. It would be
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desirable to derive them from a more general model if we wished to pursue
the model more seriously, but I don’t know how to do this and I don’t think
that the problem is worth the effort.

This discussion concerned wholesale prices. What about retail prices?
The retailer’s costs depend on wholesale prices and handling and storage
costs. Asabove, the latter two costs are of theform Hw + M. If the wholesaler
sets his price at a fixed percentage above his costs, then we again obtain
an equation of the form (1). The conclusions we reached above are therefore
valid for retail prices too.

In Problem 1 you are asked to study the model further and test it against
actual data.

Speed of Racing Shells

In the college sport of crew racing the best times vary from class to class. Why?
Can we advise a coach how to adjust the shells so that he can pit his teams
against each other on an equal basis in practice? This model is adapted
from T. A. McMahon’s article (1971) and deals with data for men only.
Racing shells are boats propelled by oarsmen in sporting contests.
Theyhold one, two, four, or eight oarsmen and are built to certain specifica-
tions. Figure 1 is a rough diagram of a racing shell. For an eight-man crew
there is a lightweight category and a heavyweight category. Heavyweight

—

(a)

o

Figure1 (a) Top view. (b) Cross section of center. / = length; b = beam; 4 =
cross-sectional area.
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Table 1 Times of Racing Crews in Four Meets

Number of men 1 1I 111 v
8 5.87 5.92 5.82 5.73
4 6.33 6.42 6.48 6.13
2 6.87 6.92 6.95 6.77
1

7.16 7.25 7.28 7.17

oarsmen average about 86 kilograms, and lightweight oarsmen about
73 kilograms. This gives five classes. (There are others which we ignore
because of a lack of data.) McMahon observed that there is a rather consistent
difference between the best times of the various classes. Table 1 lists the
information he presented on best times for 2000 meter races in four inter-
national competitions. The eight-man entry is the heavyweight time.
McMahon also states that the time of an eight-man heavyweight crew is
about 59/ better than the time of an eight-man lightweight crew.

We want to explain all this.

Rather than present the underlying assumptions of the model in one
ad hoc package, we develop them as we proceed.

A shell is propelled by the power of the oarsmen and retarded by the
drag of the water. The balance of these two forces determines the speed of
the shell, hence its time in the race. We assume

1. The only drag force on the shell is due to skin friction and this force
is proportional to Sv?, where S is the wetted surface area and v is the
velocity.

The expression for the skin friction drag given in the assumption is obtained
from hydrodynamics. The power P required to maintain velocity v is, by
definition, equal to the drag force times the velocity. Hence P oc Sv?, and so
v oc (P/S)Y3.

We assume

2. The oarsmen in the shell all have the same weight and the same constant
power output for the entire course of the race.

It follows that v is constant, except for the brief period when the shells are
starting up. Hence the course time ¢ is proportional to v !, and so

o (5]

N\
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We now consider the time difference between the heavyweight and
lightweight eight-man crews. We want to explain it and then see if we can
find a way to redesign the shells so that the two classes will be more nearly
equal.

The subscripts H and L denote heavyweight and lightweight, respec-
tively. From (3) we obtain

@ o _ §£ 1/3& 1/3.
ty Sy P,

We must say something about power output and wetted surface area if we
are going to explain the 5% edge of the heavyweight team. Unfortunately
power output information is not obtainable; however, we know that the
ratio of the weights of heavyweight and lightweight oarsmen is about 86
kilograms/73 kilograms = 1.18. Therefore we try to relate power and weight.

Sustained power output depends on such factors as lung volume
(actually lung surface area, but this is proportional to volume because the
lungs consist of small cells whose size is independent of the size of the person)
and muscle volume. For similarly proportioned people, these are proportional
to the total weight. Hence we can expect power output to be proportional
to the weight w of an oarsman times the number of oarsmen.  Since
wy/wp = 1.18 and both shells have eight oarsmen, Py/P; = 1.18. Combining
this with (4),

t LS\ IANE
5 — = (1.18)!3 = =106 —| .
g & ago(3E) .

If we make the rough assumption that S; = Sy, then (5) comes close to the
59 observed difference. Actually the surface area for a loaded heavyweight
shell is slightly greater than thatfor a lightweight shell. When this is taken into
account, the 6 % edge in (5) decreases slightly. We haven’t predicted the edge
precisely, but we have explained why it is in the neighborhood of 5%.

How can the shells be redesigned to achieve equality? For fixed power
~ output we obtain ¢ oc S*/3 from (3). To change the time we must change the
wetted surface area of the loaded shell. Let the subscripts p and r denote the
present and redesigned shells, respectively. Then

S, (1)’
S, \t,)°

The lightweight crews will have times about equal to those of the heavy-
weight crews if ¢,/t, = 0.95. By the above equation, S,/S, = 0.86. In words,
the wetted surface area of a loaded lightweight shell should be decreased
by about 14 9, or we could slow the heavyweights down by an increase of
wetted area of about 16 % (1/0.86 = 1.16).
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We now compare the times of various-sized shells by expressing the
endogenous variable, course time, in terms of the exogenous variable, team
size. To do this we have to relate S and P to the size of the team. If assumption
2 is extended to all oarsmen in all shells, the power will be proportional to
the number of oarsmen n. Hence (3) reduces to

S 1/3
6) t o <Z) -

We need some information about the relative sizes of the various shells
so that we can compute S. The information in Table 2 was presented by
McMahon as evidence for the assumption:

3. The shells are geometrically similar, and their loaded weights are

proportional to n. Furthermore, the submerged parts of the loaded shells
are also geometrically similar.

Table 2  Shell Design Parameters

n / b /b weight/n
8 18.28 0.610 30.0 14.7
4 11.75 0.574 21.0 18.1
2 9.76 0.356 27.4 13.6
1 7.93 0.293 27.0 16.3

Note: | = length; b = beam.

The variation in the “I/b” and “weight/n” columns shows that this is a
rather crude assumption, but it is about the best we can do, since a table of
wetted surface areas is not available.

The volume of water displaced by a shell is proportional to its total
weight. This volume is also proportional to /4. By assumption 3, weight is
proportional to the number of oarsmen #, and A oc [2. Thus

(7) nocldoc P

The values of [ and » listed in Table 2 do not satisfy n oc I*. Therefore the
similarity assumption is wrong. What can we do about it? For the sake of
continuity, we postpone discussing this problem.

The total submerged surface area is proportional to ! times the sub-
merged perimeter of cross section 4 in Figure 1. By assumption 3, this
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perimeter is proportional to 4'/? which is in turn proportional to I. Thus
S oc 2. From (7) we obtain S oc n*/3, and so (6) becomes

(8) _ tocn
This yields the prediction:

Times are proportional to the number of oarsmen raised to the
power —1.

We can test this prediction by graphing t versus » in some fashion. It is much
easier to see if points are close to a straight line than it is to see if they are
close to a curve. For this reason relationships like (8) are usually plotted on
what is called log-log paper. It gives the effect of plotting log n against
log t, which equals ¢ — log n/9 if (8) is correct. If you do this, you will discover
that the points come close to lying on a straight line of slope —3 as predicted.
For a least squares curve fit, see Section A.7, especially page 237.

We are in an awkward situation: the prediction in (8) has been verified,
but the intermediate result in (7) is wrong. One possible explanation for
this is that the central portions of the shells (which displace most of the water,
hence are the most important) obey the similarity assumptions better than
the ends of the shells. I do not have the data to check this possibility. This
central length 4 and the cross section enter into the calculations for volume
and surface area. A reasonable rough approximation is that volume and
surface area are proportional to A% and A2, respectively. The previous calcula-
tions can then be carried out with 4 replacing L.

We can give a more robust argument that leads to (8). The volume of the
submerged portion of the shell is proportional to the weight of the loaded
shell by Archimedes’ law. The weight is very nearly proportional to n.
Hence the volume is very nearly proportional to n. Since the shells are all
approximately the same shape, the surface area is nearly proportional to the
Z power of the volume. Hence S is nearly proportional to n?3. By (6),
t oc (n?*/n)}’* = n'/°. The important point in this argument is that surface
area tends to remain proportional to the 2 power of the volume, even when
the shape varies somewhat from shell to shell. Thus we do not need the exact
similarity assumption 3.

Size Effects in Animals

Why do animals have the proportions they do? You may have noticed that
larger animals tend to have stockier bodies and relatively heavier legs. For
instance, a deer is not a scale model of an elephant even if we neglect
superfluous things like the head and the pelt. Why is the largest bird much
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smaller than a large mammal? Why can fleas jump so high relative to their
size? (Is this the basis of flea circuses?)

Various people have applied proportionality arguments to biology.
The books by N. Rashevsky (1960, pp. 251-275) and J. Maynard Smith
(1968, pp. 6-17) contain a variety of examples from which the following
discussion was adapted. You may also wish to read J. B. S. Haldane (1928).
K. Schmidt-Nielson’s book (1972) is worth reading, but only a small part
of it deals with scaling problems.

We want to study how the size of a quadruped affects its locomotion
and the proportions of its body and limbs. The only locomotion question we
consider is jumping. J. Maynard Smith (1968, p. 12) has observed that the
height to which a jumping mammal can leap seems to be nearly independent
of its size. In particular, he notes that a jerboa (a mouselike rodent) and a
kangaroo can jump about equally high. We want to obtain some idea of what
this may mean. If you wish a fuller exposition of movement, see the books
mentioned above.

The structure of animals is quite complex, and so it is easy to build
very involved models. Rather than becoming lost in a morass of complicated,
uninterpretable results, we use very crude models. At a couple of critical
points we’ll unfortunately have to rely on some results from elasticity theory.

We now study how the dimensions of the body (trunk) of an animal
are related to its weight. As a crude approximation, we think of the trunk
of the animal as a flexible beam supported at the ends by the legs. Flexible
beams have been well studied in elasticity theory, so there are results ready
for our use. If a beam of length [, vertical thickness ¢, and cross-sectional
area A is subjected to a uniform load F while its end points are held fixed,
a result from elasticity theory states that the maximum deflection 6 satisfies

FP
0 oC —— o
The force F is due mainly to the weight of the trunk, which is roughly pro-
portional to /4. Using this we see that

6 P

) [ 2

where 9/1 is the relative sagging. It is reasonable to suppose that there exists
some physically determined upper limit to 6/ above which the animal’s trunk
will be cripplingly deformed. Some dog breeds (e.g, St. Bernard) may be
at this limit. When 9/! is much below this limit, body material is being used
unnecessarily for support. It is reasonable to suppose that such an inefficient
use of body material is eliminated by evolution. Hence we treat /I as a
constant. From (9) we obtain

(10) toc 32
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that is, larger animals have relatively thicker trunks. Rashevsky (1960,
vol. 2, p. 263) has plotted log t against log [ and found fair agreement with
(10). The mass m of the trunk is roughly proportional to [A4. Since most
animals have roughly similar cross sections, A4 o t2. Thus m oc It?> and so
m oc I* by (10). Combining these observations gives

(11) [ oc m'/%, t oc m¥8, —l; oc mi/8,
Interpret these results. ,

How does limb size vary with body weight? Our model here is even
cruder than the previous one. The leg bones must be strong enough to with-
stand the bending strain put on them when the animal moves. From elasticity
theory, the ability of a bone to withstand a force is proportional to its cross
sectional area A,. Force equals mass times acceleration. For slow moving
animals, acceleration is mostly due to gravity. For fast moving animals,
accelerations are still about equal because they depend on the rate of muscle
contraction, which has about the same maximum value in all species. Thus
the force applied is proportional to the mass m of the animal, and so 4, o«c m.
If d is the diameter of the leg bone, d* oc 4, and so d oc m*/2. Note that, if
everything remained in proportion for animals of different sizes, we would
have d oc m*/?. Hence our model predicts that bone diameter increases
faster than proportionally; that is, the legs of larger animals are relatively
thicker than the legs of smaller animals.

How does the height an animal can jump depend on its size? To jump
a height h an animal of mass m must do an amount of work proportional to
mh. This work is accomplished by the muscles as the legs move from a
crouched position at the start to a stretched position just before leaving the
ground. The work that can be done by a muscle is proportional to its volume
V,,. Thus mh is proportional to V,,, and so

(12) hoc 2.
m

If we make the plausible assumption that V,, is proportional to m, the
total mass of the animal, we obtain h = constant from (12). However, it
also seems plausible to assume that the cross sectional area of the muscle
is proportional to A,, the cross sectional area of the leg bones. Since A, oc m,
it follows from (12) that A, the length of the muscle, is proportional to h.
Since A increases with size, this leads to the conclusion that h increases with
size. Which approach is wrong and why? Actually, neither is correct. Rather
than make “plausible assumptions” in a naive fashion, we need to look at
the situation structurally: What is it that determines the size of leg muscles?
If the muscles are too strong, they will cause the leg bones or joints to break.
A plausible but somewhat technical bioengineering argument leads to the
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conclusion that, if bone breakage is the major consideration, V,, oc A,.
Thus (12) becomes

Ay
o

(13) Choc

If we accept our earlier conclusion that 4, oc m, we obtain h = constant.
This conclusion was based on the idea that the importance of leg bone cross
section derived from supporting the animal; however, we see from (13) that
for jumping mammals the importance of leg bone cross section may derive
from the height the animal wishes to jump.

It would be interesting to study a table of h, A,, V,,, and m for jumping
mammals. I have been unable to locate such data. In fact, not many data
are available to test our size effect models. Of course, one can always measure
photographs or actual animals. Perhaps you’d like to do it. Besides the
graphical data given by Rashevsky mentioned earlier, T. A. McMahon
(1973) presents further graphical data, and D. D. Davis (1962) notes that in
domestic cats and lions structures associated with locomotion satisfy mass
relationships of the form w oc m", where r > 1, while structures associated
with metabolism have r < 1. W. R. Stahl and J. Y. Gummerson (1967)
analyzed five species of primates (tamarins, squirrel monkeys, vervet
monkeys, macaques, and baboons). Among their results are the following
959 confidence estimates for r in x oc m".

x r
Trunk height 0.26-0.29
Chest circumference 0.35-0.38
Thoracic width 0.27-0.35
Midshaft humerus diameter 0.39-0.45

It wasnot clear to me what “trunk height ” meant. Thefirsttwo measurements
fit the [ and t results in (11) quite well, but the thoracic width does not fit the
t oc m*® prediction. The humerus diameter measurement leads to a value
of rin 4, oc m" considerably less than the predicted value of 1.

PROBLEMS

1. This problemrelatestothe model of the cost of packaging: The conclusion
drawn from (1) that costs per ounce for larger packages are less holds
for the data given at the end of this problem, but this is a relatively crude
result. Equation (2) cannot be checked, because we cannot compute
derivatives, only differences. Moreover, the rule on doubling the size of a
package cannot usually be checked, since manufacturers tend to package
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products in odd sizes. We want a more flexible form of the doubling rule,
and so we shall derive a finite difference analog of (2).

(a) Let w; < w, < wj be the weights of various-sized packages of a
packaged product and c;, ¢,, and c¢3 the costs per ounce of the
packaged product. Derive the following result.

€t —C ¢ p >02—C3
wy —wy o owiwy, o wilPwy 4+ (wwy)?? + wwd® T owy —w,

Why is this analogous to the statement that r is a decreasing function
of w?

(b) The following data was collected at random in a supermarket in
1972. Test the result given in (a). The samples in each group
came from the same store at the same time and were of the same
brand. The packages within a group appeared similar except for
the 12 and 32 ounce ketchup bottles. The former was labeled “wide
mouth” and the latter was labeled “jug.” It may be relevant that the
5 and 10 pound bags of flour were on a shelf marked “new low
price.” The data in each table is taken from a single brand.

Ketchup Powdered Milk
Ounces A Quarts 5
12 0.29 3 0.49
14 0.26 8 1.09
20 0.36 14 1.59
32 0.57 20 2.19

Tomato Sauce Flour
Ounces b Pounds h)

8 0.15 2 0.27
15 0.25 5 0.39
29 0.45 10 0.85

Detergent Powder

Pounds Ounces $
3 1 0.81
5 4 1.29

10 11 2.52
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(¢) To test the model further it would be desirable to make additional
predictions that could be checked against the data. Can you make
a testable prediction analogous to the statement that rw is a
decreasing function of w? Can you obtain any other qualitative
predictions from the model, which can be tested with the data?

Can you think of any data that it would be reasonable to try to obtain
and which would allow you to improve the model of the speed of racing
shells? :

T. A. McMahon has suggested that, if the lightweight eight-man shell
were a scale model of the heavyweight eight-man shell when loaded
[ie. if the dimensions had the ratio 1:(1.18)!/3], the 59 edge would
be eliminated. Do you agree with this? Why? (Recall that we needed
a ratio of redesigned to present surface areas of 0.86.)

Smaller mammals and birds have faster heart rates than larger ones.
If we assume that evolution has determined the best rate for each, why
isn’t there one single best rate? Is there a model that leads to a correct
rule relating heart rates? A warm-blooded animal uses large quantities
of energy in order to maintain body temperature, because of heat loss
through its body surfaces. Since cold-blooded animals require very little
energy when they are resting, the major energy drain on a resting warm-
blooded animal seems to be maintenance of body temperature. Let’s
explore a model based on this idea.

The amount of energy available is roughly proportional to blood
flow through the lungs—the source of oxygen. Assuming the least
amount of blood needed is circulated, the amount of available energy
will equal the amount used.

(a) Set up a model relating body weight to basal (resting) blood flow
through the heart. Use the data below to check your model.

(b) There are many animals for which pulse rate data is available but
not blood flow data. Set up a model that relates body weight to
basal pulse rate. What sort of assumptions do you need to make
about hearts? How could they be checked? Use the data below to
check your model.

(c) Discuss the discrepencies that arise in testing your models in
(a) and (b).

After working on the model you may wish to read M. Kleiber
(1961, Ch. 10, especially pp. 199-209). It would be good if someone did
this and reported on it.
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Data on Mammals (Altman and Dittmer, 1964, pp. 234-235)

Weight Pulse
Mammal (kilograms) (beats per minute)
Shrew 0.003-0.004 782
Bat 0.006 588
Mouse 0.017 500
Hamster 0.103 347
Kitten 0.117 300
Rat 0.252 352
Guinea pig 0.437 269
Rabbit - 1.34 251
Opussum 22-32 187
Seal 20-25 100
Goat 33 81
Sheep 50 70-80
Swine 100 60-80
Horse 380-450 34-55
Cattle 500 46-53
Elephant 2,000-3,000 . 25-50

Note: Rates may not be basal.

Data on Humans (Spector, 1956, p. 279)

Age 5 10 16 25 33 47 60
Weight (kilograms) 18 31 66 68 70 72 70
Pulse (beats per minute) 96 90 60 65 68 72 80

Blood flow through heart 23 33 52 51 43 40 46
(deciliters per minute)

Data on Some Mammals (Spector, 1956, p. 279)

Rabbit Goat Dog Dog Dog

Weight (kilograms) 4.1 24 16 12 6.4
Blood flow through heart 53 31 22 12 11
(deciliters per minute)
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Data on Small Birds (Altman and Dittmer, 1964, p. 235)

Bird Weight Pulse
(grams) (beats per minute)

Hummingbird 4 615

Wren 11 450

Canary 16 514

Sparrow 28 350

Dove 130 135

Data on Large Birds (Altman and Dittmer, 1964, p.235)

Bird Weight Pulse
(grams) (beats per minute)
Gull 388 401
Chicken 1,980 312
Vulture 8,310 199
Turkey 8,750 93
Ostrich 80,000 65

Note: Rates may not be basal.

In Gulliver’s Travels, the Lilliputians decided to feed Gulliver 1728
times as much food as a Lilliputian ate. They reasoned that, since
Gulliver was 12 times their height, his volume was 12* = 1728 times the
volume of a Lilliputian and so he required 1728 times the amount of
food of one of them ate. Why was their reasoning wrong? What is the
correct answer?

When you hear something, how does the apparent intensity vary with
the actual intensity? What about brightness, weight, and so on? In the
nineteenth century Weber formulated a law stating that the just notice-
able difference (jnd) in signal intensity is proportional to the intensity of
the signal. The constant of proportionality k varies from 0.003 for pitch
to 0.2 for salinity. Fechner took Weber’s law and assumed that all jnd’s
were psychologically equal for a given type of stimulus. This led to the
Weber-Fechner law relating psychological intensity S, measured in
jnd’s, to physical intensity F: S = g(F).

(a) Show that Weber’s law states that, if S; and S, differ by 1 jnd,
log F, and log F, differ by some constant k. Derive the Weber—
Fechner law: If S; and S, differ by an integral number N of jnd’s,
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log F, and log F, differ by kN. Conclude that g(F) = klog F + C.
Sound loudnessandstar brightness are both measured in logarithms
of energy (decibels and magnitude). Why is this done?

(b) Conclude from the Weber-Fechner law that, if F/F, = F3/F,,
then S, — S, = S; — S4; that is, the apparent intensities as
measured by a person seem to differ by the same amount. This
result is usually fairly accurate for intermediate values of intensity
but is often inaccurate at extremes. However, Weber’s law is usually
fairly accurate over the entire range. How can this be? (Find the
hidden assumption in Fechner’s derivation.)

(c) Stevens discovered thatequalratios of physical intensity correspond
to equal ratios of psychological intensity; that is,

i=E if and only if izﬁ

F, F, S, S,
Let s; = log S; and f; = log F;. Suppose f, = f; + 6 and f, =
f5 + 0. Letting 0 — 0, show that ds/df is a constant. Describe the
function S = g(F) in Stevens’ law.

(d) How can Weber’s law and Stevens’ law both be nearly true?

Various psychology texts discuss the subject of this problem,
for example, E. Fantino and G. S. Reynolds (1975, pp. 220-226).
For a more extended discussion see S. S. Stevens (1974, Ch. 1).
A. Rapoport (1976) discusses this problem and other topics in
mathematical psychology.

7. Atmospheric drag is roughly proportional to Sv?, where S is surface
area and v is speed, for many common objects (e.g., moving cars. and
falling bodies).

(@) Ifvis the terminal velocity of a falling object, show that for similarly
proportioned objects v oc m*/3.

(b) Show that on collision with the ground the kinetic energy per unit
area that must be converted into some.other form of energy is
proportional to m.

(c) Discuss the effect of falling on animals of various sizes. Remember
that larger animals have larger bones.

2.2. DIMENSIONAL ANALYSIS

Dimensional analysis is a tool of the physical sciences. It is based on the
observation that physical quantities have dimensions associated with them
and that physical laws remain unaltered when the fundamental units for
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measuring the dimensions are changed. For example, the area of a rectangle
is the base times the height regardless of whether we measure in feet or
meters as long as the units of area are (feet)? or (meters)?, respectively.

Dimensional analysis alone will not give the exact form of a function,
but it can lead to a significant reduction in the number of variables. As a
result, it may be much easier to prepare tables of a function experimentally.
A related usage of dimensional analysis is the design of scale models: It
helps you face the problem of how to scale the physical parameters of the
system so that predictions can be made for the real problem by analyzing
the behavior of the scale model. '

The examples presented here are adapted from L. I. Sedov (1959). The
first book on the subject was written by P. W. Bridgman (1931). J. F. Douglas
(1969) gives a recent, standard, elementary introduction to the subject. If
you would like to read a text containing problems with solutions, see H. L.
Langhaar (1951). S. J. Kline (1965) presents a critical introduction to
dimensional analysis and related topics.

Theoretical Background

The basic physical dimensions are usually mass, length and time. We denote
them by M, L, and T. Since we can measure velocity in feet per second, it
has the dimension of length/time. We express this by saying that the
dimension of velocity is L/T. By Newton’s law, force equals d(mv)/dt, where m
is mass, v velocity, and ¢ time. Hence it has the dimension of mv/t, which is
M(L/T)/T = MLT 2.

If all the terms in an equation have the same dimension, we say that
the equation is dimensionally homogeneous. By our definition of the dimension
of force, we have made Newton’s law dimensionally homogeneous.

Consider Newton’s law of gravitation:

_ Gmym,

1 F =
(14) A

where G is a universal constant, m; and m, are the masses of two bodies,
and r is the distance between them. We have just determined that the di-
mension of the left hand side is MLT 2. The dimension of m;m,/r? is
M?L~2. The two sides of the equation apparently have different dimensions.
Actually, the value of the constant G depends on the units of measurement
and so is also given a dimension. To make the law of gravitation dimen-
sionally homogeneous, the dimension of G must be

MLT™?

ST = MULT
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By assigning dimensions to variables and constants in this way, we
can make all the laws of physics dimensionally homogeneous. This is not as
surprising as it may sound. Almost everyone is aware to some extent that
it is not correct to compare things that have different dimensions.

The basic theorem of dimensional analysis is the Buckingham pi
theorem. It can be stated as follows.

THEOREM. An equation is dimensionally homogeneous if and only if
it can be put in the form

f(ry,my,...) =0,

where f is some function and =, 7,, ... are dimensionless products (and
quotients) of the variables and constants appearing in the original equation.
Not all dimensionless products need to be included in the list 7, 7,,. ... Only
a set from which all others can be formed by multiplication and division is
needed.

It can be shown that the number of products in the list 7,, 7,, ... need
not exceed the number of variables and physical constants in the original
equation.

As an example of the theorem we return to the law of gravitation (1).
Consider a product of the form

= G'mim§riFe,
where the exponents a, b, ¢, d, and e are arbitrary. The dimension of this
product is
(M—1L3T—2)aMchLd(MLT—2)e — Mb+t‘+e—aL3a+d+eT—~2(a+e)
From this we see that 7 is dimensionless if and only if
b+c+e—a=0, 3a+d+e=0, a+e=0.

We can choose a and b arbitrarily. Then ¢ = 2a — b,d = —2a,and e = —a.
Since (a, b) = a(1, 0) + b(0, 1), all dimensionless products can be obtained
from the two cases (a, b) = (1, 0) and (a, b) = (0, 1). These give

2
Gm; my
‘III = —5 2 = .
riF’ m,

Buckingham’s theorem tells us that any homogeneous equation involving
only the values of G, m,, m,, r, and F can be put in the form f(n,, 7,) = 0.
For example, the law of gravitation is of this form, since it can be written as
7,7, — 1 = 0. Note that we had to include G, even though it is a universal
constant. Everything that can enter into the function must be included.
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Two comments should be made about the mechanics of doing di-
mensional analysis. First, it is not always evident what should be included
in the list of relevant physical variables and constants. The only sure guide is
good intuition. Second, if you have had some linear algebra, you should
recognize the procedure we went through to obtain n; and n,: We found
a basis for the two-dimensional subspace of R> that makes the exponents of
M, L, and T in = equal to zero. Such a basis was given by (a, b, ¢, d, ) =
(1,0,2, =2, —1) and (a, b, c,d, e) = (0, 1, —1, 0, 0). This procedure works
in general: Find the exponents of M, L, and T in terms of the exponents of the
exponents of the variables and constants appearing in 7; then find a basis
for the null space of these exponents. Each basis vector determines one of the
dimensionless products 7; mentioned in the Buckingham pi theorem.

By formalizing the above idea we can obtain a proof of the Buckingham
pi theorem. Here is a sketch for those who are familiar with linear algebra.
Let x;, x5, ..., x; be the physical quantities we are studying. Define

SOUX3 - xg9) = (ay, az, . .., ay).

This sets up a natural one-to-one correspondence between products of
powers of x; and the elements of R*. We can replace each x; by its dimensions
and define another map d like f but this time into R". (Usually n = 3 for
M, L, T) Consider df ~'. It is a linear transformation from R* to R". Let
by,...,b; be a basis for the null space and extend it to a basis by, ..., by
for R*. Define m; = f ~!(b;). We can express X; as products of powers of the
m;, since the b; form a basis for R*. Hence any physical law expressed in
terms of x; can be expressed in terms of the n;. For every m > j there is a
change in the units of measurement which changes m,, but leaves the other =,
unchanged. Since the laws of physics are assumed to be independent of the
units of measurement, the law we are considering must be independent of
7,,. Thus it depends only on 7, ..., ;, and these are all dimensionless since
by, ..., b;lie in the,null space of df ~ 1.

The Period of a Perfect Pendulum

Legend has it that Galileo’s interest in motion began when he observed a
hanging lamp in the Pisa cathedral swinging back and forth. This is an
example of a pendulum. How fast does a pendulum swing? How does the
period of the swing vary with the length? The weight? The angle of swing?

We consider a pendulum in which all the mass is concentrated at a
distance [ from a perfect pivot and there are no frictional forces. From
observation or theory it can be determined that the motion of a frictionless
pendulum is periodic with some period ¢. Since we want to derive a formula
for t, it is our (only) endogenous variable.
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What quantities should enter into such a formula? In other words,
what are our exogenous variables? The length [ of the pendulum, the mass m
of the pendulum, the acceleration g due to gravity, and the maximum angle 0
the pendulum makes with the vertical appear to form a complete list. (Since
gravity is involved, you may wonder why G and the radius of the earth are
not on the list. The only effect of gravity is to provide a force equal to mg
acting on the pendulum. Both m and g are on our list.)

We now show that all dimensionless products can be formed from

T, =— n, =0.

The procedure is the same as the one we just used for the law of gravitation.
We know the dimensions of | and t. The acceleration g has dimension LT ~ 2.
Since-an angle is measured by the ratio of arc length to radius, the angle 6 is
dimensionless. Thus the product © = m%g®t1*0° has dimension M®Lb 4T~ 2b,
This vanishes if and only ifa = 0,b + d = 0,and ¢ — 2b = 0. It follows that
we can choose b and e arbitrarily and that a =0, ¢ = 2b, and d = —b.
We obtain n; from (b, e) = (1, 0) and =, from (b, e) = (0, 1). Note that m
does not appear, because no other quantity has M in its dimension.

Since the period of a pendulum is a physical law, Buckingham’s theorem
applies. Solving f(n,, m,) = 0 for n, gives m; = h(n,) for some function h.
Therefore

(15) Period = t = k(6) \/g,

where k? = h. The exact form of the function k() must be determined by other
means. It turns out to be an elliptic integral and is very nearly equal to 2n
when 6 is small.

Scale Models of Structures

Suppose you are an engineer and wish to study how a structure you’ve
designed will hold up. Since theoretical analysis of a complicated structure
is likely to be impossible, it is convenient to study a scale model. How
should you design the model and how should the observations you make
on it be translated into predictions about the real structure? We answer
these questions here.

Unless they are greatly deformed, most structures can be reasonably
approximated by assuming that they are built of materials that are elastic and
isotropic. (These are technical terms.) The important physical consequence of
this assumption is that, except for specifying shapes and forces, we need only
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two parameters to determine thechangesin shape (called deformations). Oneis
Poisson’s ratio ¢ which is dimensionless. (It is the ratio of the percentage
changes in the dimensions of a bar perpendicular and parallel to a compres-
sive force.) The other is Young’s modulus E. (It is the ratio of the compressive
force per unit area to the percentage change in the parallel dimension.)
The dimension of Young’s modulus is ML~ 'T 2. The important thing is
not how ¢ and E are defined, but rather the fact that as far as deformations
are concerned they are the only relevant inherent properties of the material(s).

What are the relevant variables and physical constants ? The endogenous
variables are the deformations 6 of the structure. Our structure has some
characteristic length [ by which we can relate all lengths of the scale model
to those of the real structure. The specific gravity (weight per unit volume) y
may also be important. Weight per unit volume is density times acceleration
due to gravity and so has dimension ML~ 2T ~2. E and o have already been
mentioned. Finally there are the forces F which are loading the structure
at various points.

Our list of relevant quantities is a, y, E, F, [, and . Actually, all of these
except [ should be subscripted to indicate that there may be several different
materials and a variety of forces. All dimensionless products can be formed
from the products

E; ly; F;

E’  E  (PEY
and §,/l. Each §,/I is determined by o;, v;, E;, F;, and [. It follows from

Buckingham’s theorem that 6,/I is a function of the various products in (16).
Therefore

(16) Gi,

If the quantities in (16) are the same for the scale model and the real
structure, all deformations will be scaled according to the scaling of I

We must therefore keep o, the same for the materials in the scale model and
the real structure. The easiest way to do this is to use the same materials in
both cases. Then all the E; and y; will be the same for the real structure and
the scale model. From the third relation in (16) it follows that the two values
of | must be the same, so the model is the same as the real structure.

How can we get around this? It is the density of a material that is
constant; the specific gravity y varies with the gravitational field. If we could
adjust y by changing the gravitational field, this would adjust . How can
we change the gravitational field? Since acceleration due to gravity is like
any other acceleration, we can effectively increase “gravity” by using a
centrifuge. This technique is actually used. Suppose the ratio of the scale
model [ to the real [ is 1:r. By the third expression in (16), the centrifuge must
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produce an acceleration r times that due to gravity. By the last expression,
the model forces should be »~2 times the real forces. As a check of what we
have been doing, let’s look at a force F due to weight. It equals mg and so is
proportional to yI?. This changes by a factor of rr~3 = r~2 as desired.

There is another approach to building scale models. The specific
gravity of the materials is important only because it determines forces on the
structure due to gravity. If we expand the list F; to include these forces as well,
we can neglect the specific gravities, hence the third type of ratio in (16). The
fourth ratio tells us that forces must be proportional to I?; however, if the
gravitational field is unchanged (no centrifuge), the gravitational forces will
vary as [*. (Why?) To compensate for this the scale model of the structure
can be loaded at various points with weights equal to the difference between
these two quantities. This may make it necessary to measure forces at many
points, but it eliminates the centrifuge. Without dimensional analysis these
ideas for building scale models would have been hard to discover.

PROBLEMS

1. This problem relates to the pendulum model. We want to include
frictional effects.

(a) Suppose that the frictional force is due primarily to air and is
proportional to v? with a constant of proportionality k. The value
of k¥ depends on the shape of the pendulum. Let t be the time
required for the pendulum to reach half its initial amplitude 6.
Argue physically that v is determined by m, [, g, k, 6, and the elapsed

time. Show that
T = \/I f <6, El)
g m

(b) Deduce a similar result if the frictional force is proportional to wv.

(c) Using the results of (a) and (b), describe an experiment for deciding
which (if either) of the assumptions about the dependence of the
frictional force on v is correct. Hint: Consider a pendulum with a
hollow weight which can be filled.

2. Why do stringed musical instruments have strings of different lengths
and thicknesses? The fundamental frequencies of vibrations of strings
of similar material depend primarily on length I/, mass per unit length p,
and tension (force) F on the string.
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Derive the formula for the fundamental frequency w for similar
materials:

Flu

T
In terms of the above result, explain the structure of a nylon string,
six-string guitar. There are several structural constraints imposed
on the instrument. Design and playing considerations dictate that
the strings must be of the same length and cannot have either too
large or too small a diameter, and impose upper and lower limits
on the tensions in the strings. The frequency of the low string is
only one-fourth the frequency of the high string. There is of course
no need to explain these facts. The following properties of the
guitar should be explained. When playing the guitar, different notes
are obtained by using the fingers to shorten the length of various
strings. Tuning is accomplished by adjusting the tension on the
strings. The strings vary in thickness and in the material of which
they are made. Roughly speaking there are three thicknesses
(T; < T, < Ts) and two materials nylon (N) and steel-wrapped
nylon (S). The strings, from highest frequency to lowest frequency,
are NT;, NT,, NT;, STy, ST,, and ST;.
If you arefamiliar with the structure of another stringed instrument,
interpret it as much as possible using the ideas in (a) and (b).
One of my students (R. T. Oberndorf) collected data to check the
formula in (a). He used guitar strings with an arrangement for
changing the tension and the length. He found that for a given
string wl was constant to within the accuracy of his measurements

when F was held fixed. The same was true for a)/\/F with [ held
fixed. However, when he used various strings but fixed [ and F,

w oC

he found that w,/pu was not constant. The largest deviations
occurred with the thinnest strings and the highest tension, w being
higher than predicted. Suggest some possible explanations.

Let’s take the material of the string into account. We assume that the
material is elastic and isotropic. Thus we need only consider
Poisson’s ratio ¢ and Young’s modulus E. See the scale models
of structures model in this section for a brief discussion of ¢ and E.

Show that
EP? F/u
= K| — S
v <F "’) 1
Use Oberndorf’s result to show that K depends only on ¢ for
guitar strings.
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How long should you roast a turkey? Cookbooks usually give directions
in the form: “Set the oven to T;, degrees and allow n minutes per pound
for cooking.” For turkey, which can range in weight from about 7 pounds
to about 30 pounds, a range of roasting times may be given. In this case,
one cookbook recommends cooking for 15 to 25 minutes per pound,
the longer time to be used for smaller birds. We study this in a problem
adapted from S. J. Kline (1965).

(@) A piece of meat is cooked when its minimum internal temperature
reaches a certain value dependent on the type of meat and the
desired doneness. Let the cooking time ¢ be the endogenous variable.
Present an argument to show that the exogenous variables are the
difference in temperature AT,, between the raw meat and the oven,
the difference in temperature AT, between the cooked meat and the
oven, some characteristic dimension [ of the meat, and some measure
k of the ability of the meat to conduct heat.

(b) The usual measure of ability to conduct heat is thermal conductivity
which is the amount of energy crossing a unit cross-sectional area
per second divided by the temperature gradient perpendicular to
the area. Hence « is measured in

energy/(area x time)
degrees/length

The dimension of energy is ML*T ~2. Temperature is measured in
energy per unit volume. Determine the dependence of cooking time
on the weight for similar pieces of meat for which AT,, and AT, are
the same.

(c) Discuss the accuracy of the cookbook rule. Comment on the rule
for turkeys.

Waves seem to roll in at a beach in a regular fashion, but their speed
seems to vary from place to place and, perhaps, from time to time. Why?
Does something similar happen out at sea as well? We discuss wave
motion in a perfect fluid; that is, a fluid with no viscosity or compression.
Let the endogenous variable be the velocity v of a wave.

(a) Arguethat the exogenous variables are acceleration g due to gravity,
the density p of the liquid, the length 4 of the wave, the height h
of the wave, and the depth d of the liquid.

(b) When the height of a wave is small compared to its length, it is known
that we can approximate the equations of motion by equations
that do not contain h. Conclude that we can ignore 4 in this case.
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Show that
d
U=/ }..gf<z>

Show that v is nearly proportional to \//Tg when d is large compared
with A. Thus wave speed at sea varies with the wavelength.
Suppose we want to build a scale model to study the effect waves
on the open ocean have on boats. How should everything be scaled ?
Hint: If all linear dimensions are scaled by a factor of r, what
happens to the time it takes a wave to travel the length of the boat.
You may also wish to refer back to the model dealing with scale
models of structures.

When d is small compared with A, the bottom interferes with the
wave, so that A is practically irrelevant. Show that v is nearly
proportional to \/ch in this case. The British government has used
this result to obtain depth surveys in certain remote coastal areas.
Two pictures were taken of the same region at slightly different
times so that wave speed could be measured (R. Carson, 1961,
p. 109).



CHAPTER 3

GRAPHICAL METHODS

3.1. USING GRAPHS IN MODELING

Graphs can be very useful in modeling if you are aware of their uses and
limitations. Since many people expect either too much or too little from them,
we discuss their uses and limitations before going into specific models.

People can take in an entire picture rather quickly and then deduce
consequences by using their geometric intuition. It follows that graphs
should be useful in conveying information. Those wonderful analog com-
puters people carry in their skulls can rapidly locate certain patterns in
visually presented .data. One of the easiest to spot is a straight line. For this
reason a variety of forms of graph paper (rectangular, polar, log—log, normal
probability, etc.) are marketed so that plotted data will appear linear if the
anticipated relationship exists.

Graphs are most useful in conveying qualitative relationships or
approximate data which involve only a few variables. A graphical approach
to a problem is most likely to be useful when not much information is
available or when it is given in a rather imprecise form. Analytical methods
are usually more appropriate when more precise information is available.
In complex simulation models, graphs are frequently used to illustrate the
qualitative behavior of several time varying endogenous variables simul-
taneously. This helps one obtain a qualitative feel for the behavior of a
complicated simulation model.

So far we have talked about graphs primarily as a way of presenting
data. Now let’s consider some major roles graphs play in model formulation.

Since our imagination is limited to three dimensions, graphical repre-
sentations of the interrelations of more than three variables are not directly
useful. However, it is often possible to graph a function with most variables
held fixed and then determine how the graph will change when one of
the fixed variables is changed. This is the heart of the geometric approach to

44
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comparative statics which is discussed in Section 3.2. The differential calculus
approach parallels the geometric arguments and provides a firm foundation
for making statements when any number of variables is involved. The basic
problem of comparative statics can be stated as follows: How does the
equilibrium point of a system move when certain exogenous variables are
changed? For example, how will the output of a firm be affected by a higher
tax rate?

Graphical methods are also useful in studying stability questions. The
analytical treatment of local and global stability theory is not easy. Therefore
it is desirable to use graphical methods whenever possible to suggest and
perhaps prove results. Section 3.3 touches on this approach. For a treatment
of the problems of stability theory from an analytical viewpoint see Chapter 9.

As a glance at the figures in this chapter shows, the intersections of
curves are of major importance in comparative statics. This is because they
determine the equilibrium points. A subtler observation is that slopes of
curves play a central role in stability questions. The slope of a curve is a rate,
and rates play a crucial role in stability theory.

Finally, graphical arguments are useful in optimization problems—
especially if the model is not quantitative. Since this straddles Chapters 3
and 4, I’ve decided to put it in Section 4.2.

3.2. COMPARATIVE STATICS

The Nuclear Missile Arms Race

The United States and the U.S.S.R. both feel that they require a certain
minimum number of intercontinental ballistic missiles (ICBMs) to avoid
“nuclear blackmail.” The idea is to ensure that enough missiles will survive
asneak attack so that “unacceptable damage” can be inflicted on the attacker.
Given this philosophy, it is claimed by some and denied by others that the
introduction of antiballistic missiles (ABMs) and/or multiple warheads on
each missile (MIRVs) will cause both nations to increase their stock of
missiles. Is this true? What about making missiles less vulnerable to attack
by hardening silos or building missile firing submarines? The wrong answers
to these questions could have drastic consequences. Who is right?

Obviously we cannot hope to settle the debate. However, a simple
graphical model can shed some light on the problems involved and hopefully
help lead to more intelligent debate. The following discussion is adapted from
T. L. Saaty (1968, pp. 22-25).

We deal with two countries which we call country 1 and country 2.
Let x and y be the number of missiles possessed by countries 1 and 2,
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respectively. We treat x and y as real numbers. Of course they are actually
integers; but since they are large, the relative errors introduced by treating
them as real numbers will be small; for example, the percentage difference
between 500 and 500.5 is quite small. For the time being we assume that all
missiles are the same and are equally protected. From the above discussion
it follows that there exist continuous, increasing functions f and g such that
country 1 feels safe if and only if x-> f(y), and country 2 feels safe if and only
if y > g(x). These functions are plotted in Figure 1. The shaded region is the
area in which armaments are stable, since both countries feel they have
sufficient weapons to prevent a sneak attack. We consider questions such as:
Does such a region actually exist? What effect do such things as ABMs,
MIRVs, and so on, have on the point A = (x,,, y,)?

First we show that the solid curves in Figure 1 are qualitatively correct.
Let’s look at things from the point of view of country 1. A certain number of
missiles x, is needed to inflict what is considered unacceptable damage on
country 2. When country 2 has no missiles, country 1 requires x,.

We show that for any r > 0 the curve x = f(y) crosses the line y = rx.
It suffices to show that there is a function x(r) such that, whenever x > x(r)

Acceptable
© /
country 2

ym .......................

Acceptable
to
country 1

Yo

*o

Xm

Figure 1 Country 1 introduces ABMs. A = initial status (shaded area stable); B =
country 1 protects its missiles; C = country 1 protects its cities. Axes show number of
missiles.
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and y = rx, country 1 believes that it has enough missiles so that the number
surviving a sneak attack by country 2 will be able to-inflict unacceptable
damage on country 2. In other words, country 1 wants to be practically
certain of at least x, of its missiles surviving a sneak attack by country 2.
Suppose that y = rx. To destroy the most missiles, country 2 should aim
about r missiles at each of country 1’s missiles. Since a warhead may fail to
reach and destroy its target, there is some probability, p(r) > 0, that a given
missile belonging to country i will survive a sneak attack. Thus country 1
can expect xp(r) missiles to survive. For large enough x = x(r), this will
exceed x, by an amount large enough to allow for uncertainties. This
completes the proof that the curves intersect. Thus the curve x = f(y)
starts at (xq, 0) and curves upward with a slope increasing to 0. By a sym-
metry argument, y = g(x) has the form shown, with a slope decreasing to 0.
Two such curves meet at exactly one point which we call (x,,, y,,). the mini-
mum stable values for x and y.

This analysis applies to all the situations discussed below, so there is
always a unique minimum stable point. We want to know how its position
compares with (x,,, ¥,,)-

Suppose the missiles of country 1 are made less vulnerable to sneak
attack by the use of hardened silos, ABM protection, or some other means.
This increases p(r), the probability that any given missile belonging to
country 1 will survive a sneak attack. Hence the curve f(y) moves to the
left with the point x, fixed. The shape of the curve is altered somewhat in the
process. The new curve is shown dashed in Figure 1. We can see that both
countries require fewer missiles for stability.

Suppose that country 1 protects its cities by some device such as ABMs.
Country 2 now requires more than y, missiles to inflict unacceptable
destruction on country 1. Thus the curve g(x) moves upward as shown by the
x —Xx — X curve in Figure 1. Both countries require more missiles for
stability.

What happens if multiple warheads are installed? This situation is
more complicated than the previous two. Suppose country 1 replaces the
single warheads on each of its missiles with N warheads. It will then require
that fewer of its missiles survive a sneak attack. (The number required is
about x,/N.) Thus x = f(y) moves to the left as in Figure 2. Country 2 will
be faced with N times as many warheads in a sneak attack, so from its point
of view the scale of the x axis has changed by about a factor of N, as shown
in Figure 2. It appears that country 2 will require more missiles, and country 1
will require fewer; however, this depends on the detailed shape of the curves.
Therefore probabilistic models should be used instead of, or in conjunction
with, graphical ones. This would require us to make more precise assumptions
regarding the capabilities of the missiles, so we do not go into it here.
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Figure 2 Country 1 introduces MIRVs. Axes show number of missiles.

It seems unreasonable to assume that country 2 will not also develop
and deploy multiple warheads if country 1 does. Therefore we should
analyze the situation in which both countries deploy multiple warheads.
There are two conflicting effects:

1. Since the axes measure missiles, the points [ f(0), 0] and [0, g(0)] will
move toward the origin, tending to decrease (x,,, y,,)-

2. f(y) becomes more horizontal and g(x) becomes more vertical, tending
to increase (x,,, V)

We cannot decide without further information which effect will dominate.
T. L. Saaty (1968, p. 24) presents an analytical model which leads to the
conclusion that both countries will require many more missiles.

In the above discussion, we assumed that all missiles were the same. This
is unrealistic. If we drop this assumption, each country will change its strategy
by aiming different numbers of missiles at the various enemy missiles. Of
these, some targeting makes the expected surviving firepower a minimum.
This targeting gives the curves for Figure 1, and the analysis proceeds as
before.
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You may be interested in the article by K. Tsipis (1975a) which contains
a discussion of the technology behind ultraaccurate MIRVs:

Biogeography: Diversity of Species on Islands

The diversity of species varies considerably from place to place, even when
the habitats appear to be the same. Conservationists have argued that the
size of a region is important for diversity, and so they often favor a few large
wilderness areas rather than many tiny ones. The subject is far from under-
stood. We study one corner of it briefly.

The world is broken into patches of differing habitats. Often a habitat
a species finds acceptable is surrounded by a large expanse of unacceptable
territory. Examples are alpine meadows, farm woodlots, lakes, game
preserves, and islands. The following discussion is confined to islands;
however, most of the ideas and results apply to other types of isolated habitats.
The material is adapted from R. H. MacArthur and E. O. Wilson (1967,
Ch. 3) which treats the subject in much greater depth.

Studies have indicated that the size of an island is an important factor
in determining the number of species the island is likely to contain. Also,
islands closer to the mainland tend to contain a greater variety of species
than more isolated islands. It seems reasonable that the effects of migration
of species and extinction of species (on islands) can account for this. We
develop this idea and briefly consider some of its consequences.

A species can become established on an island only by migrating to it
and prospering there. An organism migrates by flying, being carried, drifting
on currents, and so on. Since a population on an island is relatively small,
it can die out because of random variations in the environment. As a result
we expect the list of species present on an island to change much faster than
the list of species present on the mainland.

This is somewhat vague. Does a flock of migrating birds that stops on the
island for a day or a season become established and then die out? Even if a
species “intends” to stay on the island, we are still faced with the problem
of what we mean by “become established ”—if the island is too small to
support a large population, the species will always be on the verge of
extinction. When is a species established in this case? Since we are dealing
with a fairly crude model, we can afford to ignore these problems. A more
refined model would have to come to grips with them.

If we completely understood all the aspects of the situation (e.g., the
biological, geographical, and meteorological), we could determine the
probability of a particular species composition being present on the island
at a given future time. These would be tremendously complex calculations
involving vast quantities of data, and this approach would be hopeless.
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Let’s combine practically all the endogenous variables into one measure:
the total number of species present on the island. It seems reasonable to
suppose that this should vary around some average number of species in a
steady state situation. We discuss this average. For a discussion of transient
behavior see R. H. MacArthur and E. O. Wilson (1967, Ch. 3) or E. O. Wilson
and W. H. Bossert (1971, Ch. 4).

When the number of species present on the island is in equilibrium,
migration and extinction cancel out numerically; that is, the rate of migration
of new species to the island equals the rate of extinction of species already on
the island. These rates depend in a complicated way on the species present,
the season, and many other factors. If we regard a year as a short period of
time, seasonality will present no problem. In this sort of crude averaging over
many species, which species are actually present probably doesn’t matter
much. Therefore it makes sense to talk about ratesin a crude way independent
of which species are actually present on the island.

In Figure 3 are plotted the number of species N on the island versus
the migration and extinction rates. The two smaller graphs illustrate the
effect of distance from the mainland and the effect of island size. We discuss
the reasons for the shapes and positions of the curves.

Let’s consider the extinction rate curves. When more species are present
on the island, the chances that at least one species will become extinct in a
given time are greater. Hence the extinction rate curves have a positive slope.
Since extinction rates depend only on the island and the species present, the
extinction curve is not affected by the distance from the mainland. However,
we can expect that a species is more likely to die out on a small island because
the lack of space keeps the population lower. Thus the extinction rate curves
shift upward as the islands become smaller.

Why do the migration rate curves have a negative slope? The migration
rate relates to species not present on the island. The greater the diversity on
the island, the smaller the pool of potential migrating species on the mainland.
Hence the chances of migration decrease as the number of species on the
island increases. Migration rates depend on the distance of the island from the
mainland and on the size of the island. The rates decrease with distance,
because any given organism is less likely to reach the island. The rates increase
with island size because (1) an organism has a larger land area as a target
and (2) an organism is more likely to be able to establish itself on a larger
island.

It follows from Figure 3 that the number of species present increases
with island size and decreases with distance from the mainland. This is not
so surprising, since we practically put these results in as initial assumptions.

We can say something about species turnover by looking at the graphs
a bit more. Note that the equilibrium extinction rate (which equals the
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Figure 3 Migration.and extinction curves for islands. (a) Typical curves. (b) Effect of
distance. (c) Effect of size.

equilibrium migration rate) is greater for near islands than for far islands.
.Hence the species composition for two islands of equal size should change
more rapidly on the island closer to shore. If the effect of island size on
migration rate is not too great, we can similarly conclude that the species
composition changes faster on small islands than on large islands. Since
small islands have fewer species at equilibrium than large islands, this effect
should be quite noticeable.

There is some data supporting the conclusions that species turnover is
relatively and absolutely more rapid on smaller islands. R. H. MacArthur
and E. O. Wilson (1967, pp. 52-54) discuss the results of two botanical
surveys of some small islands off the Florida Keys. The first survey (1904)
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was conducted quickly and so may be incomplete. Since the 1916 survey
was quite complete, the species present in 1904 and absent in 1916 give some
measure of the turnover rate. Unfortunately the data involve only six islands,
two of which are very small.

R. H. MacArthur and E. O. Wilson (1967, pp. 55-60) also report on
some results of R. Patrick. She suspended glass slides in a spring in
Pennsylvania and counted the number of diatoms of various species that
were present. The glass slides can be thought of as islands. Four experiments
were done two times each: A glass slide with an area of either 12 or 25 square
millimeters was placed in the water for either 1 or 2 weeks. The slides sub-
merged for 1 week had more species present than those submerged for 2
weeks. We can explain this apparent contradiction by observing that as a
barren area becomes more populated the interaction between species may
cause extinction. This was not allowed for in our model. Clearly care must
be taken in modeling islands that are far from equilibrium. Because of this,
we do not consider the 1 week data further. We can check out two predictions
using the 2 week data:

1. Larger area implies more species: The smaller slides had 24 and 21
species, and the larger had 29 and 28.

2. Smaller area implies a higher migration rate: The migration rate may be
reflected somewhat in the differences in the species composition of the
slides. (Why?) Seven species appeared on one but not both of the smaller
slides. For the larger slides the number was one.

Theory of the Firm

You are the manager of a firm which produces, among many other items,
“zowies.” How can you decide -on a level of production? The price of the
main raw material for your zowies is going to increase. Perhaps you can
pass some of the cost on to your customers. How much? Can you pass on
enough to make it worthwhile to continue manufacturing zowies ? Quantita-
tive results are hard to obtain because data collection is extremely difficult;
however, we can obtain a qualitative picture of the situation fairly easily.

In the usual theory of the firm it is assumed that the manager of the firm
has complete information, that his decisions are carried out, and that he
acts so as to maximize the profits of the firm. There is an ongoing debate
about the usefulness of these assumptions, but we don’t want to get into that
here. If you are interested in the subject see R. M. Cyert and J. G. March
(1963, pp. 5-16) for a discussion of both sides of the question. In addition
to the above assumptions, we generally assume (as is of ten done in economic
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theory) that the functions with which we are dealing are well behaved ; that
is, they are continuous and usually differentiable.

The theory of the firm is discussed in most textbooks on mathematical
economics. There also exist books devoted exclusively to the topic, such as
K. J. Cohen and R. M. Cyert (1965). Consult such sources if you wish to see
the ideas in this example developed further.

For simplicity we assume that the firm produces only one product,
so that we can speak unambiguously of the level of production. It is measured
in units per time period, where a time period can be a day, a month, or any
other convenient interval. We want to find a way to determine the level of
production, so that we can discuss the influence of changing costs and prices
on the production level.

Suppose the production of the firm is at some equilibrium level. Since
profits are being maximized, the additional cost that would be incurred in
raising production slightly is equal to the additional gross income that
would be obtained by marketing these additional units of the product. You
should convince yourself that this is simply a restatement of the calculus
theorem that the function

Total gross income — Total cost

has maxima and minima where its derivative vanishes.

The additional cost required to produce one additional unit is called
the marginal cost, and the additional income is called the marginal income.
In general, both marginal cost and marginal income are functions of the
level of production. We have shown that marginal cost equals marginal
income at equilibrium. This equality could imply that the profit is a minimum
instead of a maximum. How can we distinguish one from the other? If we
move away from the equilibrium, profits must decrease. Thus the marginal
cost curve must lie above the marginal income curve for higher production
levels and below it for lower production levels. This is shown in Figure 4
where the horizontal axis is the quantity produced per unit time. This is the
basic result with which we work.

Although marginal cost and marginal income may seem to be straight-
forward concepts, they can be a bit fuzzy. During a short period of time
(the short term), wages and the cost of raw materials are fixed costs, because
they have been contracted for; consequently, they do not enter into marginal
calculations. From a slightly longer point of view, they are both variable
costs and so enter into the marginal costs. Equipment depreciation is a fixed
cost; but maintenance, fuel, and replacement costs enter into the marginal
calculations. Since our marginal curves vary with how long a view we take,
the optimum level of output may depend on the length of time we want to
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Figure 4 Marginal cost and income curves. Axes show quantity produced per unit
time and dollars per unit time.

consider. In the following discussion we make the vague assumption that
the manager is concerned with the firm’s profits over a reasonably long time
interval. As long as we don’t try to make any detailed applications, we can
afford to be vague.

What effect will taxation have on production? If the firm is required to
pay a lump sum tax independent of production (e.g., a property tax), the
marginal curves will not be affected. Hence the production level will be
unchanged. If the firm is required to pay a tax that depends on the level of
production (e.g., an income tax or a value-added tax), the result will depend
on whether or not the tax is passed on to the consumer. If it is not passed on,
the marginal cost curve will rise. We have shown that the marginal cost curve
intersects the marginal income curve from below at a maximum. It follows
that the new intersection will be to the left of the old one. Therefore the
production level will decrease. What will happen if the tax is passed on to the
consumer ? In this case both marginal curves will move upward by an amount
equal to the tax per unit of production, and the production level will be
unchanged. '

The above result on taxation can be generalized considerably, and we
can state another result on the income side:

The optimum level of production moves in the opposite direction from
the marginal cost and moves in the same direction as the marginal
income.
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Convince yourself that this is true by giving a graphical argument. Suppose
the price of raw materials increases. This raises the marginal cost, so the
production level tends to decrease. Decreased production may cause
consumers to drive up the cost (per unit) of the product, thereby increasing
the producer’s marginal income. Consequently the level of production will
rise. Since the product now costs more, the amount purchased by consumers
will probably be less. Thus the increase in cost will not be quite enough to
push production back to its original level. We discuss this in terms of supply
and demand curves.

In industries where the number of firms is large, it is reasonable to
suppose that the price per unit of product does not depend on the amount
any single firm produces. In this case the marginal income curve is horizontal.
The marginal cost curve is then the supply curve for the firm’s product, since
at a price p the firm produces the quantity Q at which the marginal cost equals
p. Since the marginal income curve is horizontal, our earlier discussion
shows that the supply curve must have a positive slope to ensure stability.
This agrees with the intuitive notion that higher selling prices lead to greater
production.

The demand curve is the amount of the product that will be purchased at
a given price. Usually demand falls as price increases. Figure 5 shows typical
supply and demand curves. At equilibrium, the quantity purchased must
equal the quantity sold. Hence the intersection of the supply and demand
curves gives the equilibrium values of price and quantity.

Price

Q

Figure 5 Supply and demand curves. Increased marginal costs shift supply curve
upward to dashed position.
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From Figure 5 we can see how much of the increased marginal costs
will be passed on to the consumer. The dashed curve shows the supply
curve (marginal cost curve) after the marginal costs have increased. The
flatter the demand curve, the greater the fraction of the increase the producer
must absorb. What does a flat demand curve mean? It indicates that
consumer buying patterns are very sensitive to price. Thus, if consumer
buying patterns are insensitive to price, you can pass most of your increased
expenses on to the consumer.

What about the theory of a firm that produces several products? It is
better to study such a situation using tools from calculus. However, our
graphical analysis indicates the sort of results we can expect to find in this
case.

PROBLEMS

Problems 1 to 5 deal with the arms race model.

1. Suppose that both countries install N warheads in each missile and that
the new warheads are as effective as the old ones. Show that both countries
will require more warheads.

2. Suppose a country is able to retarget missiles in flight so as to aim for
missiles that previous warheads have failed to destroy. Discuss the effect.

3. Various criteria have been used to evaluate proposed changes in missile
systems. Try to evaluate the changes discussed in the text and the
problems on the basis of (a) economics (cost) and (b) amount of radio-
activity released in the event of a war.

4. There are aspects of the armaments race that become important only
when a country is not as heavily armed as the United States and the
U.S.S.R. When a country is just developing a nuclear strike force, it
may be able to inflict heavy damage with a first strike but may be in-
capable of a retaliatory strike.

(a) Develop a model and use it to explain “preventive war.” Can you
apply the model to the People’s Republic of China?
(b) Can you model the early years of the missile race?

This is a rather unclear area, so class discussion may lead to a variety
of ideas. You may wish to consult M. D. Intriligator (1973).

5. The United States and the U.S.S.R. signed an arms limitation agreement
in May 1972. The number of offensive missiles allowed each country is
limited, with a trade-off formula for land-based versus submarine-
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based missiles. There is no limitation on the use of multiple warheads or
on improving missile technology. Each country is limited to two ABM
sites of 100 missiles each. One site is for protection of the capital city
and the other for protection of an ICBM site.

(a) Discuss this agreement in light of the models presented here.
Include any relevant later agreements in the discussion. Politics
is more complicated than our simple model, so you will have to
weigh various factors that might affect the model’s validity.

(b) How can the model be improved to help in answering (a)?

6. Will a group of small islands have more or fewer species per island than
an isolated small island? Assume that all the islands are about the
same distance from the mainland and the same size.

7. Discuss what happens in the model dealing with the theory of the firm
if the marginal cost curve does not intersect the marginal income curve.

8. In the short term, ordinary wages are a fixed cost and overtime wages
are a marginal cost.

(a) Explain the previous statement.

(b) Show that the marginal cost curve has a discontinuity at the level
of production corresponding to full usage of labor without overtime.

(c) What effect will this have on the results developed in the model of
production by a firm?

3.3. STABILITY QUESTIONS

Cobweb Models in Economics

We consider the dynamics of supply and demand when there is a fairly
constant time lag in production as, for example, in agriculture. It has been
observed that there are fairly regular price fluctuations in such situations.
This situation was studied by economistsin the 1920s and 1930s. The problem
contrasts sharply with the theory of the firm in Section 3.2, where we ignored
time. The following discussion is adapted from M. Ezekiel (1937/8).

When a commodity is marketed, the selling price is determined by the
demand curve. This price is one of the factors producers use in determining
how to alter production. In a “pure” situation, they produce the amount on
the supply curve that corresponds to the present price. (Supply and demand
curves are discussed more fully in the theory of the firm model in Section 3.2.
There we were interested in the intersection point of the curves.) Thus (see
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Figure 6 The cobweb model.

Figure 6), if the amount of potatoes produced in year 1 is g,, the price per
bushel will be p;. As a result, farmers will decide to produce the amount
g, in year 2, the market will set a price p, per bushel for this crop, and so on.
Because of the picture, this idea is referred to as the cobweb theorem. In
practice one does not know the supply and demand curves, but the above
model predicts that the demand curve can be obtained by plotting (g,,, p,) and
the supply curve by plotting (q,, p,—_1)-

How realistic is this model? The existence of a supply curve assumes
that producers can control output perfectly. This is not true in the agricultural
sector where weather is very important, but it may be a reasonable approxi-
mation. If the supply and demand curves move erratically, the model will be
upset. Changes in prices for other goods the supplier may produce, sudden
changes in demand (e.g., the sale of wheat by the United States to the U.S.S.R.
in 1972), and sudden changes in supply (e.g., crop blights) may cause this
to happen. If the suppliers have some understanding of price fluctuations,
they will not raise production levels much in spite of higher prices. However,
this does not wreck the model. In this case the supply curve will be nearly
independent of price near the equilibrium price, but the model will still
apply. It predicts small fluctuations in supply and a rapid approach to
stability. Plot this.

Ezekiel presented the material on U.S. potato production contained
in Table 1. He obtained it from the Bureau of Agricultural Economics.
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Table 1 Potato Production in the United States

10* 10¢ Farm  Deflated
Year acres Bushels/acre bushels price price
1921 360 90 325 114 121
1922 395 106 419 69 68
1923 338 108 366 92 93
1924 311 124 - 384 71 71
1925 281 106 - 296 166 162
1926 281 114 322 136 140
1927 318 116 370 108 113
1928 350 122 427 57 59
1929 302 110 332 132 142
1930 310 110 341 92 116
1931 347 111 384 46 68
1932 355 106 376 39 62
1933 341 100 342 82 114
1934 360 113 406 45 57
1935 355 109 386 60 74
1936 306 108 330 111 132

Discuss what should be used as “quantity” and what should be used as
“price” in a cobweb plot and construct the plot. Should the model be
modified because the yield per acre is not constant? What about the effect
of population growth during the 15 year period? What about the effect of the
Depression? Clearly there is a lot of noise (i.e., disturbances we can’t hope
to take into account in a simple model) in the data. Thus we should see if
the data fit the model better than a random set of data would. Can you
propose a method for doing this?

From the supply and demand curves near equilibrium it is easy to make
a prediction concerning stability. If the negative of the demand curve’s
slope exceeds the slope of the supply curve, there will be instability; if it is
less, stability. Convince yourself of this. Demand for some agricultural
products is rather inflexible. When production is sensitive to price, the model
predicts instability. The government can attempt to eliminate this by con-
trolling production or prices. The former causes the supply curve to become
vertical (or nearly so) above (and/or below) certain ranges of quantity. This
keeps the instability from growing further. (Draw a graph to convince your-
self.) What is the effect of price control?

For a further discussion of cobweb models see N. S. Buchanan (1939)
and, for a recent generalization, M. S. Mudahar and R. H. Day (1974).
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Phase Planes

The previous model dealt with the stability of a difference equation.
A similar procedure is used for differential equations. This requires the
notion of a phase plane, which is also used in Chapter 9. Suppose we are
dealing with the two equations

(17) X = f(x, y) y' = g(x, y)

At each point (x, y) in the x — y plane we can plot a vector proportional
to (x’, y'). This is called the direction field of (17). To graph a solution of (17)
we then start at an initial point and follow a path parallel to the direction
field. (Since the direction field varies from point to point, the path is usually
curved.) The speed is determined by the magnitude of the vector tangent to
the path at that point. If we start at a point with f = g = 0, we will not move
from it. Such points are called equilibrium points.

Since we have only crude information about f and g, our phase plane
diagrams cannot be this detailed. To answer stability questions it is often
sufficient to plot the two curves f = 0 and g = 0 and indicate roughly the
vectors (x', ') in the neighborhood of these curves. The intersections of the
curves are the equilibrium points of (17). The curve f = 0 divides space into
two regions such that x’ > 0 in one and x" < 0 in the other. If you determine
which region is which for f = 0, and likewise for g = 0, the rest will be easy.
The vectors cross f = 0 vertically, and the direction will be upward if and
only if g > 0. Similarly, they cross g = 0 horizontally, and the direction will
be rightward if and only if /' > 0. See Figure 7 on page 63 for an example. In
plotting f = 0 and g = 0, it is helpful to determine the slopes of the curves.
This can be done by implicit differentiation: For /' = 0,

dy o )ox
d /oy’

and similarly for g = 0. It is important to remember that the partial
derivatives for the slope of f = 0 are evaluated at values of x and y at which
x is at equilibrium; that is, x" = 0. (This is important in determining the
sign of Jf /0x in Problem 4a.) The partial derivatives also help decide which
region corresponds to f > 0 and which to f < O0: f > 0 to the right of
(or above) f = 0 if and only if df /0x > 0 (or df /0y > 0).

Small-Group Dynamics

You wish to set up a local committee to help elect a candidate to office.
What keeps a group together and working? Does more work improve a task-
oriented group or harm it? Very little mathematical modeling has been done
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in this area and, unfortunately, the following is rather crude and lacking in
practical advice.

We want to study the stability and comparative statics of a group
which has a required activity imposed from the outside (a task). The model
is taken from H. Simon (1952), who based it on a nonmathematical model
proposed by G. C. Homans (1950).

There are four basic functions of time:

I(t), the intensity of interaction among the group members.

F(z), the level of friendliness among the group members.

A(t), the amount of activity within the group.

E(t), the amount of activity imposed on the group by the external environment.

The variables can be treated as averages over all group members or as some
overall measure for the entire group. We regard I, F, and A4 as endogenous
variables and E as an exogenous variable which we generally treat as being
constant.

To make the concepts more concrete, let’s consider an example. The
imposed activity E is the laying in of firewood. The group may be engaged
in this for wages, or they may be friends preparing for winter. The various
activities 4 include locating wood sources, sawing logs, stacking logs, and
setting up a football pool. Note that some activities may not be directed
toward the externally imposed task. G. C. Homans (1950, p. 101) says, “By
our definition interaction takes place when the action of one man sets off the
action of another.” “ Action” here refers to activity, so that activity is required
for interaction, but not conversely—a person can work alone. The many
situations in our example that involve interaction include discussing where
to obtain wood, working opposite ends of a saw while cutting logs, passing
wood from one person to another in stacking, and conversing idly. Some of
the interaction is necessary, but a lot of it can be reduced considerably. The
same is true of activity, as any efficiency expert knows; however, this may
involve changes in habit patterns and so require more time.

There are three relations on which the model is based:

1. I(r) depends on A(r) and F(r) in such a way that it increases if either
A or F does. The adjustment is practically instantaneous.

2. F(t)depends on I(t). It tends to increase when it is too low for the present
level of interaction and to decrease if there is not enough interaction to
sustain its present level. This adjustment requires time, and the rate
of adjustment is greater when the discrepancy between present and
equilibrium levels is greater.
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3. A(t) depends on F(t) and E(r). It tends to increase when it is too low for
the present level of F or E and to decrease when it is too high. This
adjustment requires time, and the rate of adjustment is greater when the
discrepancy between present and equilibrium levels is greater.

Criticize the assumptions.
These assumptions can be turned into equations:

1 I(t) =r(A, F ﬁ >0 ﬁ >0
(18a) O =r4F.  Z2>0 22>0
0s Js
(18b) F'(t)=s(I, F) E> 0, ﬁ<0’
i , W W oy

The reasoning behind ds/0F < 0 and 0y/0A < 0 deserves an explanation.
The same idea applies to both cases. Let’s consider . If A, F, and E are at
some level, v = A’ will be determined. If we now increase 4, we will either
reduce the pressure for 4 to increase (if ¥ > 0) or increase the pressure for 4
to decrease (if < 0). In either case dy/0A4 < 0.

By substituting (18a) into (18b) we obtain

o dp _ ds|or
F(0)= (4. F). 5= 01/ﬂ>0
(19)
dp _ 05, ds|or
OF OF ' oI| OF

This equation says that a high level of 4 tends to cause F to increase. The
effect of a high level of F is ambiguous: It may tend to cause F to increase
or decrease. The statement that dep/0F > 0 can be interpreted as: “The
greater the friendliness; the faster it tends to increase (or the slower it tends
to decrease, if it is decreasing).” While this may be true at some points in
the A-F plane, it is unlikely to be true when F is large because of limits on
friendliness. We assume that 0@/0F < 0 everywhere. The curves ¥ =0
and ¢ = 0 are plotted in Figure 7. The slope of the curves is positive, since,
for example, on the curve ¥ =0, dF/dA = —(0Y/0A)/(OY/OF) > 0. The
slope of the = 0 curve is increasing, because we assume a saturation effect:
When 4 and F are both large and 4’ = 0, a fairly large increase in F is
required to balance a small increase in 4. In other words, the group tends
to resist increases in activity more when it is already quite active. Discuss
the curve ¢ = 0. Verify the general shape of the direction field shown in
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$<0

A

Figure 7 Dynamics in the activity—friendliness plane.

the figure. It can be seen that the upper equilibrium point is stable and that
the lower one is unstable.
We now consider the effect of changing E. We have
oy oy oy
Ay ~ —A — — AE.
1/ 74 A+8FAF+6EAE

Since Ay = 0 on the curve y = 0, it follows from (18c) that, when A4 = 0,
AE and AF have opposite signs. Thus the y = 0 curve moves downward
as E increases. Hence

The equilibrium levels of 4 and F are increasing functions of E.

If the = 0 curve moves sufficiently far up, it will no longer intersect the
¢ = Ocurve, and so there will be no equilibrium point. In this case the group
will not continue to exist. Consequently it is possible that'a group will
break up if externally imposed activity falls below a certain level.

PROBLEMS

1. Discuss modifications of the cobweb model when there is a time lag of
more than 1 year in production, for example, raising hogs. The prices for
hogs and corn (the principal feed for hogs) oscillate, and there is a fairly
good correlation when they are offset a bit. Explain.
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2. The demand for new graduates in various fields fluctuates. How should
your department adapt its graduate program to help stabilize the
situation ? This problem is purposely very vague in hopes of generating
a discussion based on reasonable models. Don’t forget that feasibility
is important. Engineering departments have gone through at least two
cycles.

3. Discuss the group interaction model when d¢/0F > 0 for small F.

4. Suppose that two species are in competition. Let the number of members
of the first species in the population be x and the number of the second be
y. Assume that the environment if fairly constant.

(a) Show that it is reasonable biologically to suppose that there exists
a curve y = r(x) of negative slope such that species 1 increases if
and only if (x, y) lies below the curve.

(b) State the corresponding assumption for species 2.

(c) Show that the equilibrium points are the intersection points of the
curves, the point (0, 0), the point (f(0), 0), and the corresponding
point for species 2.

(d) Determine the stability of the various possible equilibria.

5. You are called upon to advise an underdeveloped country on methods
for increasing per-capita income. This problem briefly considers two
difficulties you may encounter. It is an economics theory result that
per-capita income is greater when accumulated capital per capita is
greater. The idea is that, under suitable assumptions, since more capital
is available it is used to help improve production. Do you think this
applies to underdeveloped countries? What happens if capital is invested
abroad or foreign capital is brought in? Let’s assume that the economies
theory result still applies. By definition, the capital accumulated in a year
equals income (i.e., production) minus consumption.

(a) Fractional rates of growth are defined in the same way as net growth
rates in biology: x'(r)/x(t). We denote the fractional rate of growth
of x by x*. Let K stand for total capital and P for total population.
Show that per-capita income is increasing if and only if K* > P*.

(b) One could suppose that P* and K* depend on per-capita income.
Argue this point. Supposing it to be true, plot P* and K* as functions
of per-capita income and show that intersections of the curves
correspond to equilibria. How can you determine stability?

(¢) In each of the following cases, discuss the shape of the K* and P*
curves near the given income level and use (b) to explain why these
effects can keep per-capita income from increasing.
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(i) Risingexpectations: At a certain income level, savings decrease
because people try to mimic more affluent societies.

(i) Population explosion: At a certain income level, improved
sanitation and diet reduce the death rate, but the birth rate
takes much longer to fall because it is the result of custom.

(d) That’s the background for showing the ministers of the country
some of the problems they face and what is going on. Now, advise
them. '

See P. A. Neher (1971, Ch. 8) and J. C. G. Boot (1967, Ch. 11) for
further discussion.



CHAPTER 4

BASIC OPTIMIZATION

Determining what must be maximized (or minimized) is usually a major
problem in formulating an optimization model. For example, the theory of
the firm assumes that managers behave so as to maximize profit; but it
has been suggested in recent years that they maximize a utility function,
which includes size of staff and other items in addition to profit. Another
example is provided by time sharing algorithms for computers. (A time sharing
algorithm is an algorithm used by a computer to decide which of many
waiting jobs to run and how long to let it run before interrupting it tem-
porarily to run other jobs.) What should be minimized? Among the myriad
of possible functions are

max f(w,r)  and Y flw, 7),
where w = waiting time and » = running time.

Waiting time refers to total time elapsed between submission and completion
of a job. There are many possibilities for f,such as f = wand f = w/r.

The first section of this chapter deals with optimization problems, using
the result from elementary calculus that, except for boundary points and
points without derivatives, f' = 0 at the extrema of f. The second section
contains some models involving graphical optimization.

4.1. OPTIMIZATION BY DIFFERENTIATION

Maintaining Inventories

As a management consultant you are being asked for advice on production
and warehousing policies. Where should you begin? One problem is the

trade-off between storage space costs and setup costs for frequent small

66
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production line runs. In deciding how large an inventory of finished goods
to maintain, a firm concerns itself with such things as cost of storage, setup
expenses for a production run, discounts for bulk orders of raw materials,
and orders lost as a result of lack of inventory. Because of the random nature
of the time and size of orders, a probabilistic model is the most natural.
We use a deterministic one, since the results are substantially the same if a
firm receives many orders. For a fuller discussion of inventory problems, see
R. L. Ackoff and M. W. Sasieni (1968), from which this model is adapted. See
also the book by G. Hadley and T. M. Whitin (1963).

What should we optimize? We minimize the cost per unit time to the
firm, subject to the constraint that all orders be filled. The only variable
the manufacturer can control is the time between production runs. To begin
with, we assume that the only costs the manufacturer adjusts by changing the
production schedule are setup costs for production and storage costs for
finished goods.

It is reasonable to assume that, when the production line is operating,
it produces finished goods at a constant rate k per unit time. There is a cost ¢
to set up the line at the beginning of a production run. This consists of profits
lost by not using the production line for manufacturing at this time, various
fixed costs, and any additional material and salaries that may be required.
When the production line is not dedicated to the particular good we are
interested in, we assume it can be used profitably for other work. We assume
that the storage costs of the finished product are s per item per unit time,
independent of the quantity stored. (This is reasonable if warehouse space
can be used for other goods.) Finally, we approximate the discrete arrival of
orders by a continuous arrival at a constant rate r per unit time. Discuss these
assumptions and consider ways in which the model can be made more
realistic. Remember that it is essential that the parameters in the model be
determined if the model is to be of any use, and that this determination may
be quite expensive for a complex model.

Let T be the length of time between one production run and the next.
If ¢ is the length of a production run, kt = rT; that is, goods produced equal
goods sold during a cycle. Hence t = ¥T/k. If you graph inventory versus
time from O to T, it rises from O to ¢ with slope k — r and fallsfrom ¢ to T
with slope r. The area under the triangular curve is A = (k — r)tT/2 and is
measured in units of items x time. Convince yourself that the storage cost is
sA. Thus we want to minimize

c+sA c+sk=mT/2 ¢ stk —r)(rT/k)

1 - ¢ sk= 0t/
@ C="7 T T 2

Differentiating with respect to T and setting the derivative equal to zero,
we obtain ¢/T? = s(k — r)r/2k. From the form of (1) it is clear that C becomes
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infinite if T decreases to zero or increases to infinity, hence this extreme value
of C is a minimum. Thus the optimum values for T and ¢ are

2ck 2cr
T= |[—/——, t= [—
rstk —r) ks(k — r)
It is not obvious a priori that the optimal time varies as the square root of
the setup cost and inversely as the square root of the storage cost per unit
time.

We now consider storage costs for raw materials. Let’s assume that
there is only one raw material and that the precise amount needed is delivered
at the beginning of the run. Let s’ be the storage cost per unit time for enough
raw material to produce one item of output. Convince yourself that the cost
per unit time is

¢+ stk =mtT2+sS0T)2 _ ¢ N [sk —r) + sT](rT/k)
T T 2 '

Setting the derivative equal to zero, we obtain ¢/T?* = [s(k — r) + s'r Jr/2k.
Thus the optimum values of T, t, and C are

C:

T 2ck
SN stk — 1) + 5]
2cr
(2) t=

k[stk —r) + s'r]’

C:/k®w1w+wl

Since the model is only approximate and since we probably cannot
determine the independent variables very accurately, it is important to have
some idea of the cost incurred by making these errors. If T is replaced by
oT, it is easy to show that the value of C is (« + o~ ')/2 times the optimal
value. For example, a 50% underestimate of T (i.e., « = 0.5) increases C
by 259, while a 509, overestimate increases C by about only 8% —the
same amount as a 33 % underestimate would. We draw two conclusions from
this. First, an error in choosing T does not change costs greatly unless the
chosen value of T is quite far from the optimal value. Second, it is better
to err on the high side than on the low side. Since the storage costs are the
hardest to estimate and since T varies inversely with the storage costs [ this
follows from (2) and the fact that k > r], this suggests that underestimates of
storage costs are better than overestimates. What we have done in this
paragraph is an example of sensitivity analysis. Characterizing models as
fragile or robust is a very crude form of sensitivity analysis.
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We can use the results in (2) to determine how much warehouse space
our company requires. (How is this done?) If this differs from the amount of
space we now have, we should either get rid of excess space or acquire
additional space. This is fine in the long run, but what do we do in the short
run, that is, the period of time before we can change our warehouse space?
Since the cost of the warehouse is fixed in the short run, s and s’ should be
zero. (See the discussion of the theory of the firm in Section 3.2 for an
explanation of fixed and variable costs.) How can we determine the best short
run plan? As pointed out at the beginning of this paragraph, if we knew the
storage costs, we could use (2) to determine how much space is required. This
suggests that we assign fake costs to make storage space needed equal to
storage space available. The easiest way to do this is to replace s and s’
by so and s'c, where o is the factor that we have to scale costs by and s and s’
are long run costs. (You should be able to show that this simply has the effect
of multiplying the needed storage space computed from (2) by a factor of
g 12)

The situation with a bulk order of raw material is more complicated.
Suppose a bulk order shipment consists of enough raw material to produce
N finished items. For simplicity we assume that T is such that p = N/rT is an
integer; that is a raw material order lasts for p production cycles. (You may
wish to study the model when p is not an integer.) The amount of raw material
on hand is plotted in Figure 1 over p production cycles. The area under the
curve is N(pT — T + t)/2. Combining this with N = prT and T —t =
(k — r)T/k, we see that the storage cost per unit time is

S[N — (T — ty] _ (N (k — r)Tr
2 -2 %)
Combining this with (1) we obtain the total cost per unit time:

Tk — - ‘N
c rT( r)(s s)+s_

C=— .
T 2k 2
N _____________________ _\
;
|
. |
/// o
o o |
0 T 2T oo (=T »T

Figure 1 Raw material on hand during p production cycles of length T.
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If s < s'. the best strategy is to make T as large as possible, that is, p = 1.
When s > s', we obtain the optimum values

T 2ck
k=) —§)

3 . 2cr
3) TN ktk —F)(s — )

2k = r)is—5) §'N
C = f : +

This can be compared with the optimum nonbulk values given by (2)
after a correction term is subtracted from the optimum bulk cost due to lower
costs for raw materials. If the cost of materials is b lower per finished unit
when the manufacturer orders in bulk, the correction term will be rb. Note
that bulk ordering leads to longer productions runs, the ratio of times being

{ s'k
ek =n

We have not discussed the possibility of allowing the warehouse to run
out of finished goods and then back-ordering. This eliminates some storage
costs at the expense of possibly losing some customer good will, hence some
orders. Various approaches have been suggested. The following is adapted
from B. L. Schwartz (1966). Most firms can expect to gain and lose customers
at a fairly regular rate. At equilibrium the rate of loss and the rate of gain
must be equal. What happens to these rates if the fraction f of delayed orders
is increased ? Since there will be more disgruntled customers, the rate of loss
will increase. We assume that new customers are still gained at the same rate.
This probably won’t be true if f changes markedly, since bad reputations
spread; however, it seems reasonable if f changes only slightly. The simplest
model incorporating these ideas is

all — f)N + bfN = constant,

where the constant is the rate at which new customers are gained, N is the
number of customers, a is the probability of losing a customer whose order
is filled promptly, and b is the probability of losing a customer whose order
is delayed. Since r is proportional to N, it follows that r( f) is proportional to

1/[a(l — f) + bf ], and so

Fo

b a



OPTIMIZATION BY DIFFERENTIATION 7

for some constant r,. The storage costs must be reduced to reflect the fact
that less storage space and time are used when f # 0. You should be able
to show that s(k — r)t/2 is replaced by s(k — r)(1 — f)?t/2. This has the effect
of replacing s by s(1 — f)? in the formulas obtained above for the optimum
values of T, t, and C. Also, these values are now functions of f. When the
selling price is p, the profit per unit time is pr(f) — C(f). The optimum value
of f can be determined by maximizing this function. Even in the simplest
case this is quite messy. When the production line is so fast that we can
approximate (k — r)/k by 1, things are simplified a bit. Try it.

Geometry of Blood Vessels

The blood vessel system of higher animals is so extensive that evolution has
probably optimized its structure. How much of the structure can we explain
in this way? First, we need to know what is being minimized or maximized
by optimization. We can say that the cost to the organism is minimized, but
then we must say what we mean by “cost.” This depends on the specific
problem, so we’ll put it off for the time being. Let’s study the branching of
vessels. For simplicity we consider only the case in which a vessel splits
into two vessels, each of which carries equal amounts of blood. For the
general situation of unequal-sized branches, see R. Rosen (1967, Ch. 3),
from which this model is adapted.

Any reasonable model can be expected to lead to the conclusion that all
three vessels lie in a plane, since otherwise we could shorten the lengths of
all three simultaneously by making them planar—surely a saving for the
animal. Structural considerations may prohibit this, but it is a reasonably
accurate assumption, since sharp changes in direction are seldom required
by structural constraints. By symmetry, the two smaller branches should
have equal radii r' and flow rates f’, and make the same angle 6 with the
larger vessel. Let r and f = 2f” be the radius and flow rate of the larger vessel.
See Figure 2. The organism has a “cost” associated with maintaining vessels
and overcoming resistance in pumping blood. This cost per unit length is
some function C(r, f). Since we wish to minimize this, » and ' are determined
as functions of f by

aC(r, f) _0 and oc(r', f/2) _

0.
or or'

)

We also wish to choose 6 to minimize the cost associated with the three
vessels in the branch. If the vessels have lengths L, L', and L", we wish to
minimize

C=Cw f)IL+ C(r, /)L + C(r, f)L".
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Figure 2 Arterial blood flow. Flow rates, f and f”; vessel radii, r and r'; branching
angle, 0.

A slight change in L to L + AL results in a decrease in both L' and L” by
an amount equal to AL cos 6 plus a term on the order of (AL)?. Draw a
picture and convince yourself of this. Since C' =0 at a minimum, AC
must be on the order of (AL)? or smaller. Hence

(5) C(r, f) — 2C(+', f')cos 6 = 0

at an extreme point. This must be a minimum, since we can clearly increase
the cost by increasing L so that 8 approaches =. Since r and r’ are determined
by (4), this gives an expression for 6.

Let’s consider a specific form for C. The work needed to overcome
resistance in a rigid pipe with flow rate f and radius r is kf 2/r* per unit length,
where k depends on the nature of the fluid. Vessel maintenance may depend
on the space occupied by the vessel, the inner surface area of the vessel
(where most of the wear may occur), the volume of the cells making up the
vessel, or some combination of these. The first two give a cost per unit length
proportional to r and r?, respectively. The third depends on how the thickness
of the vessel wall varies with r. If it is proportional to r, the cost per unit length
is proportional to 2. If it is constant, the cost per unit length is proportional
to r. In order to include all these possibilities for vessel maintenance in
some simple fashion, we consider a contribution of the form Kr‘, where
1 < a < 2. The total cost per unit length is thus kf ?/r* + Kr. By (4) we
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have f2/r‘** =k, where k= aK/4k. Thus C(r, f) = Ar* and, since
(f1f) =4,

at4
(©6) <’1> —4.

Equation 5 yields

na
cos 0 = iy _ -t s

Since 2 > a > 1, it follows that 37° < 0 < 49°. As far as I know, this has not
been tested. However, it is known not to hold at the capillary level. If you
are interested in obtaining some data, the illustrations in F. H. Netter
(various dates) could be measured. I've been told that his drawings are
quite accurate.

By using (6) plus the known radii of the aorta and capillaries we can
determine the number of branchings between a capillary and the aorta in an
organism: If there are n branchings, by (6) the ratio of the aortic radius to the
capillary radius equals 4"“* % Rosen gives an approximate value of 10° x 4°
for this ratio in dogs. Hence n = 5(a + 4), which ranges from 25 to 30.
Since the number of capillaries equals 2", there are between 3 x 107 and 10°
capillaries. An empirical estimate cited by Rosen is 10°.

Fighting Forest Fires

Your state forestry service wants to reduce the financial and environmental
costs of forest fires. How can they do this? What is the best way to reduce the
cost of forest fires within the limits of present fire control methods? The
following is an adaptation of a model presented by G. M. Parks (1964) for
determining the size of an optimal fire fighting force. Another possibility
that needs serious consideration is increasing the effort spent on detection;
however, we ignore it here. “The best way” is interpreted to mean the least
costly way. This means we must assign costs for the burned area and the
injuries and deaths of fire fighters. The first cost is very difficult to assess;
outdoorsmen, lumbermen, and city dwellers are likely to assign quite
different costs. In California in 1963 “current practice [assigned] ... values
from $25 to upwards of $2,000 per acre.” What about the second cost?
Since more fire fighters mean quicker control of a fire, there is less chance
per fighter for injury; furthermore, fire fighters are assumed to receive
monetary compensation. Therefore we do not consider the cost of injuries
and deaths.

Let B(t) be the area burnt by time ¢, where time is measured from t = 0
at time of detection. We assume that the fire has stopped when B'(t) = 0.
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Let T, be the time the fire is first attacked and T, the time it is brought under
control. Thus T, is the least t > 0 such that B'(t) = 0. Let x be the size of the
fire fighting force (assumed constant from T, to T;). The costs for fighting
a particular fire are:

C,, the cost per acre of fire (burnt acreage plus cleanup expenses).
C,, the cost in support and salary per fire fighter per unit time.
C,, one-shot costs per fire fighter (such as transportation to and from the site).

C,, costs per unit time, while the fire is burning, for maintaining the organiza-
tion on an emergency basis, redirecting traffic, and so on.

(Note that we are implicitly assuming that all the C are constants.) The total
cost is

C = GB(T) + (xCy + C)(T; = T;) + xC,.

To minimize C as a function of x, we must determine B(t). We assume that
each fire fighter reduces the burning rate of the fire at a constant rate F,
that is, decreases B"(t) by E. Thus

(7a) B'(t) = b(t), for t < T,
(7b) B(t) = b(t) — E(t — T)x, for T <t<T,

where b(t) is to be determined. Parks simply assumes that b(t) is a linear

function of t. We can derive this from the crude assumption that the fire

is spreading circularly at a uniform rate: The perimeter is proportional to

b(t) and the rate of change of the perimeter is a constant. Thus b(t) = G + Ht.
Criticize the model.

To find T, we set B'(t) = 0 in (7b) and obtain
G + HT,
T.=T,+ —2.
¢ at Ex — H

Note that Ex > H is required if the fire is ever going to be stopped. We now
integrate (7) to obtain

2

B(T)) = B(0) + GT, + HZT"

(G + HT)?

B(T)) = B(T,) + 2(ETH—)
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For convenience let b, = b(T,) = G + HT, and z = x — H/E, the number of
fire fighters above the bare minimum. By combining the above results we
obtain

[(HC./E) + C, + (Cyba/2)]b,

(8) C=Cy+ Cyz +
Ez

where C, is a constant. Setting the derivative with respect to z equal to zero,
we obtain the optimal value:

©)

. C, +2C/b, + 2HC,/Eb, H
= b"\/ 2C.E tE

The values of C,, C,, and C, can be determined for a region; the values
of C, can be tabulated for various types of forests; the values of H and E
can be tabulated by type of forest and wind conditions; and b, can be deter-
mined on the spot. Then (9) can be applied. It is unlikely that this would
be done by the forest service; however, (9) could be used to make general
recommendations to forestry officials. Parks has done this. He obtained
numerical estimates and concluded that 102 of the 139 fires in the Plumas
National Forest in California in 1959 were undermanned. In particular, the
model predicts that the four fires that burned over 300 acres each would have
burned less than 100 acres each with proper manning.

There are problems with relying on (9), even if we believe that the model
is correct and are able to reach some agreement on estimates for the various
costs. It is still necessary to know b,, H, and E. Unfortunately b, tends to be
underestimated because that makes the lookout appear more alert, while
H and E are dependent on so many factors that good estimates in a particular
situation may be hard to obtain even if tables are prepared ahead of time.
How sensitive are (8) and (9) to such errors?

The graph of x versus C in Figure 3 shows that underestimating x*
by a large amount is more expensive than overestimating it. The critical
variables are H and E, since errors here can shift us into the untenable position
of fielding less than H/E fire fighters. We could improve the situation some-
what by tabulating H/E instead of H and E separately. (Of course we also
need either H or E as well, but this way we arespared the necessity of dividing
two uncertain quantities to obtain the critical quantity H/E.) What is H/E?
It is the number of fire fighters needed to keep a fire from spreading at a
faster rate, that is, enough fire fighters so that b(t) is a constant. Not only does
this sound hard to measure, it sounds impossible. Surely the number of
fire fighters must depend on the size of the fire. According to the model the
number of such fire fighters is independent of the size of the fire. Before we
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Cc

Figure 3 Firefighting cost as a function of manpower.

accept the model it would be a good idea to check this counterintuitive
prediction, since H/E plays such a crucial role in determining x*. As far as
I know, this hasn’t even been noted, much less explored.

PROBLEMS

1. Returning to the blood vessel model developed above, do you think
Rosen’s data on the number of capillaries is strong evidence for the cost
function C = Ar?? Why? Propose further tests for the theory that
evolutionary pressure has led to minimal total cost and that the cost per
unit length is C(r, f) = A%, with 1 < a < 2. How can a be estimated?

2. Supposeyou wish to get from one place to another intherain by traveling
in a straight line. How fast should you walk (or run) to stay as dry as
possible? The following model is due to B. L. Schwartz and M. A. B.
Deakin (1973).

(a) Let’s approximate a person by a rectangular prism (a box) with a
ratio of areas given by

front:side:top :: 1l:x:e

Assume that the rain’s velocity is (w, W, —1) and that the person’s
is (v, 0, 0), where the z coordinate is vertical upward. Show that
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the amount of rain hitting the person per unit time is proportional
to |w — v| + ¢, where ¢ = |W |5 + &, a constant.

(b) Show that, if @ > w, you should-run as fast as possible and that
otherwise you should run withv = w or asfastas possible, whichever
is slower. This has a simple interpretation in terms of keeping your
front and back dry. What is it?

(¢) Criticize the model. Can you improve it? How do the new and old
predictions compare?

Suppose you are an advisor to a congressperson who wishes to develop
legislation to regulate commercial fishing so that the fish populations
will be preserved. To advise him or her you need to become familiar
with the economic aspects of the problem. This material is adapted from
C. W. Clark (1973). Let N be the size of the fish population. For simplicity,
assume a selling price of p per fish, independent of the quantity sold.

(a) Argue that the harvest cost per fish ¢(N) is a decreasing function of
N and that, if there are no fishing regulations, we can expect the fish
population to be at the level N, where p = ¢(N ). Cost includes
salaries, fuel, income lost because capital is tied up in boats, and so
on.

(b) Suppose we assume a simple reproduction model: N’ = g(N).
Show that a reasonable shape for g is a concave arc passing through
N = 0 and N = N*, the maximum population that can maintain
itself when there is no fishing. Show that maximum sustained yield is
obtained at N,,, the solution of ¢g'(N,) = 0. What is the yield?
What does N* < N, say about the economic feasibility of fishing?
What about N* > N ,?

(c) Suppose the fish population is to be maintained at the most profit-
able level. Call this N,. Show that profits are given by

P(N) = g(N)[p — c(N)],

and that N, is the solution of P'(N,) = 0.

(d) What can you say about the relative sizes of N,, N*, N,,, and N, ?

(¢) Under what conditions is it economically best to drive the species
to extinction by fishing? Hint: Perhaps the left hand zero of g(N)
should be at a point to the right of zero, since a dispersed population
below a certain critical level may not be able to come together to
reproduce. If extinction is not economically feasible, is legislation
a good idea anyway? Explain. What about fishing in international
waters, for example, whaling?

(f) Can you improve the model? What if p depends on harvest size?
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(9) Apply the above ideas to buffalo hunting (previous century), deer
hunting (present day), tree farming, and anything else you’d care to.

Notes: A graphical approach to parts of the above problem may
be helpful. See Chapter 3 and Section 4.2. Fisheries have been studied
extensively. Among the journals devoted to the subject are Fishery
Bulletin and Transactions of the American Fisheriés Society. See also
C. W. Clark (1976).

In designing a multistage rocket, how would you decide on the number
and size of the various stages? By having multiple stages, unneeded fuel
containers can be discarded, thus reducing the amount of mass that must
be accelerated for the rest of the flight. Unfortunately there is a cost:
Additional motors are needed so that each stage will have an engine,
and this adds to the weight until the motor is discarded. Clearly some
compromise should provide the biggest payload (or longest flight) for
the money. For simplicity we assume that cost is proportional to weight.
Therefore we maximize the terminal velocity for a given initial mass and
a given payload mass. Again for simplicity let us neglect the effect of
gravity. (The crude assumptions we are making can be removed, but
then the optimization problem may require a computer.) We need the
physical fact that the mass m and the velocity v of a rocket with constant
exhaust velocity v, are related at any time by

v
m exp <—> = constant,

Ué’
when gravity and air resistance are neglected. The constant changes each
time the rocket drops a stage. (For those who wish to derive the result, it
is simply a conservation-of-momentum argument: m Av + v, Am = 0.)
To begin with, let’s find the optimal division between stages, given that
we are to use n stages and the payload counts as a stage. Let

M, be the mass of the entire rocket (including fuel) when the ith stage
begins to fire. ’

F; be the mass of the fuel in the ith stage.

C; be the mass of the fuel casing in the ith stage.

R; be the mass of the rocket motor and other support in the ith stage.

By assumption, M; and M, are given, F,, = C, = 0, and we can assume
that R, = 0 by absorbing it in the payload.

(a) Show that the terminal velocity is

M;
Ur = U, Z lOg (m)
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Using (a), show that, if M is such that for given values of M, ; and

M
M,;_ M,
log———=L >+lo <—’ )
g<Mj—1—Fj—1 & M;—F;

is a maximum and, if this holds for 2 <j <n — 1, the rocket
maximizes vy. Remark: This uses an important idea in maximiza-
tion: A solution that is locally a maximum is often globally a
maximum. In this instance, if the division of mass M;_; — M;,;
between stages j — 1 and j is the best possible for all j, the entire
rocket is the best possible.

We assume that C; oc F;and R; oc M;, with constants of proportion-
ality independent of i for 1 <i <n — 1. Discuss. Use this to
conclude that F; = aM; — bM,,, for some a and b and thus
express log [M;/(M; — F;)] in terms of M; and M, ;.

Using (c), reduce the expression in (b) to a function of the single
variable M ;. Show that it is a maximum when

M, M,
Mj—F; My —Fj,

Jj—1»

Conclude that vy is a maximum when M;/(M; — F)) is constant
for1 <j < n — 1 Interpret in terms of Av for each stage.

How can you determine the optimum value for n, the number of
stages? How does the reliability change as the number of stages
increases? What can you do about this and how does it affect the
model?

Can you propose a more realistic model which can be analyzed
easily?

What additional factors would you take into account if you were
actually attempting to design a multistage rocket?

A troubleshooter spends a lot of time flying in his private plane to
various industrial plants which he helps out. He wishes to spend the
least amount of time possible traveling. Where should he live? Of
course, you need data. What data do you need? You should set up a
model so that data collection is feasible. How would you change your
approach if he used commercial airlines?

What is the best strategy for a swimming fish to adopt if it wishes to
travel with the least expenditure of energy ? (This “ wish” is not conscious,
but rather a result of natural selection.) Since the motions involved in
swimming increase the drag on a fish to about three times its value when



80

BASIC OPTIMIZATION

the fish is gliding, it is to the fish’s advantage to keep swimming time
down. This leads to burst swimming (D. Weihs, 1973, 1974). Fish that
are heavier than water can alternate between swimming upward and
gliding downward. We study the simplest case of this discussed by
D. Weihs (1973).

We assume that the fish attempts to move with a constant velocity v.
(Other assumptions are possible, but this seems fairly reasonable,
and we can handle it.) Let D be the drag on the gliding fish at this velocity
and kD the drag on the swimming fish. Let ¥ be the net weight of the
fish in water, a the angle of downward glide, and f the angle of upward
swimming. Thus we’re assuming that the fish travels along a path which,
when viewed from the side, has a sawtooth appearance. We assume that
the energy used by the fish per unit time above and beyond that required
simply to stay alive is proportional to the force it exerts in moving.

(a) Criticize the assumptions.

(b) Show that Wsin o = D and that the swimming force is kD + W sin f.

(¢) Show that the ratio of energy in the burst mode to energy for
continuous horizontal swimming to go from a point A to another
point B is

ksina + sin
ksin(x + B)

(d) It has been found empirically than tan o = 0.2. What is the best
value for f? How much energy does the fish save? How important
is it that the fish estimate f accurately? (We should answer this
because it may be unrealistic to expect accurate estimates.)

(e) Criticize the model. )

(f) Suppose the fish wishes to swim from A to B in a given time.
Construct a model. Drag is roughly proportional to v2. The energy
per unit time (power) used to overcome drag in swimming is nearly
proportional to v3.

Two firms Y and Z are competing for a market. If Y spends y per unit
time on advertising and Z spends z, we could expect that Y’s share of the
market in the long run is a function of the total advertising attributable
to Y;thatis, f[y/(y + z)]for some function f.If the two firms are similar,
Z’s share of the market will be f[z/(y + z)].

(a) Criticize the above suggestion.

(b) Showthat,for0 < x <1, f(x) + f(1 —x)=1and f'(x) = f'(1 — x).

(c) Assuming the above, how should Y and Z act so as to maximize
profit—assuming there is neither tacit nor explicit collusion between



GRAPHICAL METHODS 81

the two firms. How reliable is the prediction? You can assume that
all costs and the function f are known.

This problem was adapted from R. G. Murdick (1970, Ch. 2).

8. What is the optimum number of years a company should keep trucks
in its fleet before buying new ones? This can lead to many complications
as the model becomes more and more realistic. Begin with a very simple
model in which the main factor is rising maintenance costs. You can
work up to as complicated a model as you feel the situation warrants.

4.2. GRAPHICAL METHODS

For the reasons given in Section 3.1, this section is limited to qualitative
problems with few variables. The idea is simple: We wish to maximize a

function f like “fitness” or “happiness,” subject to certain constraints.
~ The constraints and the curve f = constant are plotted, and the point where
f is maximized is read from the graph. When the problem can be stated in
clear, quantitative terms, more sophisticated methods such as Lagrange
multipliers and mathematical programming are used.

A Bartering Model

Suppose two people have two goods which they wish to use in bartering with
each other. What can we say about the situation? We assume there is some
satisfaction associated with various mixes of the goods, and each person
wishes his or her satisfaction to be as great as possible. For example, if I
have 25 inches of French bread and you have 20 ounces of wine and it is
lunch time, we will probably be able to work out a trade in which both of
us will be better off. (Don’t suggest simply “sharing”—that’s frowned upon
in economic models.) Can we say more about this? Let’s consider another
situation. Suppose I have 2 yards of one fabric and you have 2 yards of
another. We may not wish to do any trading unless we switch ownership
completely, because anything else would lead to rather small pieces of
fabric. Can a model explain both situations?

We begin with the concept of indifference curves. I may say that as far
as [ am concerned 10 inches of bread and 4 ounces of wine together are just
as good as 6 inches and 10 ounces. We say that I'm indifferent between
(10, 4) and (6, 10). The set of points that I consider to be indifferent to (10, 4)
form a set which is usually a curve. It is called an indifference curve. Several
of my indifference curves are sketched in Figure 4. Can you explain the
shape? A curve further toward the upper right contains points of greater
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satisfaction to me. (Why?) Thus I want our bartering to lead to a point on a
curve far toward the upper right.

Now let’s put your indifference curves and my indifference curves
together. I've done this in Figure 5 for bread and wine. Note carefully the
labeling of the axes: Altogether there are 25 inches of bread and 20 ounces
of wine, and any point in the rectangle describes some division of the bread
and wine between the two of us. Now suppose I agree to stay on one of my
indifference curves. How can you maximize your satisfaction? The answer
is simple: Choose a point where one of your indifference curves is tangent to
mine. Another way of viewing this is to say that, if our indifference curves are
not tangent at the point we have selected, there is another point where
neither of us is worse off and at least one of us is better off. Hence we should
stay on points of tangency. This is the bargaining path, which is shown dotted
in Figure 5. It starts on my indifference curve containing (25, 0) and yours
containing (0, 20), because neither of us will agree to be worse off after trading.
Where on the curve we end up depends on our bargaining abilities. (Various
people have attempted to be more specific.) Figure 5 is called an Edgeworth
box.

What about the yard goods case? Here the indifference curves have a
different shape, so that the points of tangency give minima instead of maxima.
Thus we do better at the boundary.

What if we are trading more than two goods? For three goods we can
still picture the situation: There are indifference surfaces, but the points of
tangency still form a curve. This is true for any number of goods. We can
put this result in a somewhat surprising form:

Suppose Bill and Mary are trading and I know their preferences. If
Bill tells me how much of one of the goods he has settled for, I can then
say, “Unless you have settled for the following amounts of the remaining
goods, you and Mary can arrange a trade that would be better for
both of you.”

This model has several drawbacks. First, to make it quantitative
requires a great amount of experimental work gathering data; however,
psychologists have collected data of this sort in past experiments. Second,
the. indifference curves may shift with time—I may be more interested in
wine after haggling with you for a while. Third, I may derive satisfaction
from how well or how poorly I feel you are doing. Can you think of other
objections? Do you think these ideas on bargaining would be useful in
bilateral trade negotiations between the United States and Japan? In arms
limitation talks between the United States and the U.S.S.R? Discuss your
reasons.
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Why do some animals have only a few quite distinct forms for different
situations (e.g., queen, drone, and worker forms among honeybees), while
others exhibit a whole range of variation (e.g., variation in the size of many
plants with the climate)?

Suppose a habitat consists of two distinct types of environments.
Examples are: oak trees versus maple trees (relevant for plant eating insects):
warm versus cool weeks (relevant for insects producing more than one
generation per year); and the nest versus the outdoors (relevant for some
social insects with castes like ants). Assume that the animal or plant spends
most of its life in only one of the two environments and that for develop-
mental or genetic reasons the organism can end up having one of several
phenotypes. We want a model that explains why some organisms have
markedly different phenotypes in different environments while others
do not. The following ideas are adapted from R. Levins (1968, Ch. 2). See
E. O. Wilson and W. H. Bossert (1971, pp. 73-77) for related material.

We begin with the idea of fitness. In vague terms, the fitness of an
individual is a measure w of its expected success. This could be measured
in terms of the extent to which an individual’s genes survive and spread in
future generations or, for social insects with a single queen, the survival
and reproduction of the nest. Thus fitness could be measured by the expected
number of descendants at some future time. Even this is rather vague,
because fitness is a very slippery concept to try to grasp precisely. We can
allow it to remain vague as long as we are aware that we are doing so, because
we only wish to make crude qualitative predictions. Since we can’t obtain
the data that would be required by a quantitative model anyway, it is point-
less to attempt to formulate such a model. The essential property we demand
is that the fitness down to the nth generation is the product of the fitnesses at
each generation.

Suppose the fitness of an individual in the first environment is W,, and
in the second W, . If the fraction of time spent in the first environment is p,
the fitness after n generations is

(10) WEWS - Pn = (WEW Py,

We wish to maximize (10), subject to the constraint that the fitnesses W, and
W, are actually possible. The shaded regions in Figure 6 indicate fitnesses
of biologically possible individuals. The regions are called fitness sets.
On the left, the environments are sufficiently similar so that an intermediate
individual 4 can do well in both. In contrast, the intermediate individual B on
the right does poorly because the environments are too dissimilar.
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Figure 6 Fitness sets. (a) Similar environments. (b) Dissimilar environments. In-

termediate individuals such as 4 and B occur only in the case of similar environments.

W,

To maximize (10) we simply plot curves on which WYW ;™7 is constant
and note that the optimum individual occurs at the point where such a curve
is tangent to the fitness set. The curve has a shape similar to that of the hyper-
bola xy = c.

As p varies, the curves on which (10) is constant vary in shape. When the
two environments are similar, the optimum varies smoothly with p: In
dissimilar environments, there may be a sudden jump from the specialist C
~ (in Figure 6b) to the specialist D as p increases, completely avoiding the poor
generalist B. Examples of both situations occur. You should be able to think
of many examples of the former, for example, variation in thickness of coat in
furbearing animals with climate. Here’s an example of the latter: Some species
of buttertlies mimic other species that are distasteful to predators. There is a
species in South America that mimics different species in different parts
of its range. An organism with the phenotype of a compromise mimic would
be poorly protected.

Let’s consider caste formation in ants. The first environment is the nest
defense milieu, and the second is the nest maintenance milieu. In Figure 7
is plotted a soldier (S), a worker (W), and two possible generalists. If defense
and maintenance were sufficiently different so that G is the best possible
generalist, there would be evolutionary pressure toward caste formation. If
G’ were possible, castes would be unlikely to form. If defense were rare,
evolution might lead to the castes G’ and W.

Note that we haven’t discussed the shape of the fitness curves in con-
nection with Figure 7. It’s rather tricky; in fact, this whole subject is a bit
tricky. You may want to work on it.

E. O. Wilson (1975, pp. 306-309). presents another approach to caste
formation which we' discuss briefly. It involves some' simple probability
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W,

Wy

Figure 7 Caste formation. Soldier, S; worker, IW; generalists, G and G'.

theory. Suppose we have a list of the possible castes and a list of the situations
(e.g., repel an attack, forage) that a colony must deal with. A colony cannot
fail too often and still survive. Various castes contribute more to success in a
particular situation than others do. Let P;; be the probability that caste i
will fail to deal with problem j. We assume that the castes contribute in-
dependently to success, so that P,;P,;... is the probability that problem j
will not be dealt with successfully by the colony. One way to limit failures is to
require that

(11) nPijSMj, for all j.
Clearly P;; depends on the number of members in caste i. The simplest
assumption is, again, independence:

(12) P;; = pifs

where #»; is the number of individuals in caste i. If ¢; is the cost of producing
and maintaining a member of caste i averaged over the individual’s life-
time, we can describe the colony’s problem as follows:

(13a) Minimize:) | ¢;n;,

(13b) Subject to: n; > 0

(13c) And: )’ n; log p;; < log M.
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[ The last expression comes from combining (11) and (12).] This is an example
of a problem in linear programming, a field in which a variety of textbooks
exist.

This model has several drawbacks. The major ones are probably the
(highly unrealistic?) assumptions of independence leading to (11) and (12).
Also, the constraints in (11) may not be an appropriate way to define not
failing too often. Some of the difficulties can perhaps be avoided by redefining
terms. Others require revisions that would destroy the linearity of (13c).
Can you suggest ways to improve the model?

Let’s illustrate the model by considering a simple case involving only
two possible castes. Introduce two axes which indicate the number of
members in each caste. Constraints (13b) limit us to the first quadrant. Each
of the constraints (13c) requires that we look above a line of slope
—log p;1/log pi, and a given intercept. Figure § illustrates a possible con-
figuration with four problems. Since c¢;n; + c,n, is constant on straight -
lines of slope — ¢, /c,, picking out the point in the shaded region that produces
a minimum is fairly easy to do graphically. You should be able to describe a
method. Note that it is possible to obtain a solution in which not all castes
actually exist; that is, n; = 0 for some i. This is as it should be.

While these models are still quite crude, there is hope that this approach
may shed light on why some species of social insects have more castes than
others and why the energy of a colony is divided between castes in the way

//\\\\< ;

/4

\¢

N\
AR !

Figure 8 A linear caste formation model. Inequalities (13b) and (13c) hold in the
shaded region.
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that it is. (The why of sociality in insects is an interesting question which is
beginning to be answered. See E. O. Wilson (1975, pp. 415-418) for a
discussion.)

PROBLEMS

1. Two college administrators are trying to decide on an admissions policy
so as to obtain the “best” possible students for their college. They each
have different ideas on how important various traits are in a good
student. Can you suggest a theoretical plan for helping them? A practical
one? What if three administrators are involved? Note: The time and
money required for extensive testing are not available; only the ad-
ministrators and their opinions are available.

2. Let’s consider a bread and wine problem different from the one in the
text.

(a) Suppose I am buying lunch, wine costs 10 cents per ounce, bread
costs 5 cents per inch, and I have $1 to spend. If I know my indif-
ference curves, how can I determine what to buy?

(b) Suppose the price of wine rises to 13 cents. What will happen to the
amount of wine I buy? The amount of bread ?

3. Howdo wages affect the amount of time a person works? An individual
wants both income and leisure time. Hence he or she is willing, up to a
point, to work longer when the hourly wage is higher. As the wage
becomes higher, however, an income saturation effect occurs and the
worker may wish to work somewhat less time as the wage rate increases,
thereby increasing both leisure time and income. A reverse effect may
occur if the wage is low, since a person often desires a certain level of
income and may more readily sacrifice leisure to attain it if wages are
raised slightly. Can we cut through this complexity to decide if, as an
employer, it is better for you financially to offer overtime or higher wages?

(a) Using the coordinates hours per day and dollars per day, plot
indifference curves for a worker. What is the shape of such a curve?
Hint: What does the slope mean?

(b) For a particular hourly wage rate a straight line through the origin
gives hours worked versus wages received. Why? Describe geo-
metrically how to measure the number of hours a worker would
choose to work if he or she were given the freedom to choose (e.g.,
a self-employed person such as a lawyer or a plumber.) As the
hourly rate varies, the optimum point varies. Describe and interpret
the locus.
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(c) Discuss the effect of overtime.

(d) Isis better from the employer’s viewpoint (i.e., maximum number of
hours per employee for a given total wage) to raise wages or to
raise overtime pay? Why?

(e) Instead of considering a single worker, carry out the above analysis
for the entire work force potentially available to the employer.

For further discussion of this topic see K. J. Cohen and R. M. Cyert
(1965, Ch. 5).

Suppose you are faced with the problem of how to adjust traffic signals
for rush hour traffic. What is the best way to do it? This problem is
adapted from D. C. Gazis and R. B. Potts (1965). We suppose that at
t = 0 there is no line at the signal in either direction. At the end of the
problem, try to decide how important and how realistic this assumption
is. Cars arrive at the signals at rates gy(t) from the north and gg(z) from
the east. The signal can handle cars at a rate k. Let Qu(t) and Qg(t) be
the integrals of gy and gg from O to .

(a) Show that T, the earliest possible time the intersection can be cleared,
is determined by the equation

ON(T) + Q(T) = kT.

(b) Let fxy(r) be the flow of the north cars through the intersection at
time t. Define Fy, fg, and Fg in the obvious fashion. What relation-
ships can you discover among the four functions just defined?
Interpret the area between the curves Qy and F in terms of delay
time.

(c) Show that the total delay time at the intersection is a minimum
if and only if both intersections are cleared simultaneously at time
T. Determine T.

(d) What is the best form for Fy ?-Suppose the rush hour traffic starts
to arrive earlier from the north so that gy(t) is large when ¢ is small
but gg(t) is small when t is small. Consider other situations, too.

(e) Discuss improvements and generalizations for the model. You
need not limit yourself to graphical methods. Among the problems
you could consider are flows from all four directions, lost time when
signals change, unequal rates of flow (the parameter k) in different
directions.

In industrial chemical processes, yield is frequently highly dependent on
temperature and pressure, but these are limited in range by technological
and economic considerations. The amount of impurities also depends
on temperature and pressure. Describe a graphical approach for
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obtaining maximum yield when one impurity cannot exceed a certain
value. Do the same for several impurities. This idea is discussed in
B. Noble (1971).

(a) Consider the following model of political behavior. There are three
voters, two issues, and two politicians. Suppose the positions taken
on the issues can be represented as points on a plane and that the
indifference curves ofeach voter are circles centered about the, to
him, ideal position. Show that the politician who declares his
positions last can ensure himself at least two of the three votes.

(b) Can you construct a more realistic model? What are its political
implications? How much faith do you have in the predictions?
Why? See R. D. McKelvey (1973) for further discussion.



CHAPTER 5

BASIC PROBABILITY

Most of the models in this book are deterministic. Stochastic models are
discussed here and in Chapter 10. Here we use only basic discrete proba-
bilistic concepts, but more sophisticated concepts, such as the central limit
theorem, are needed in Chapter 10. The Appendix contains a terse discussion
of the probabilistic concepts required. It can serve as a refresher or as a
reference for a more leisurely classroom discussion.

5.1. ANALYTICAL MODELS

Sex Preference and Sex Ratio

Some people have expressed concern about the possibility of a population
markedly altering its sex ratio (number of males divided by number of
females) because of preferences for children of a particular sex. This could
be a real problem if intrauterine sex determination is coupled with abortion
or if infanticide is practiced. To what extent can a population affect the sex
ratio purely by means of birth control, including abortion which is not
related to the sex of the fetus? The following discussion is based on L. A.
Goodman (1961).

Let’s ignore multiple births to make the analysis easier. They are
sufficiently rare that the effect on the model will be quite small.

We must say something about the chances that a healthy baby born
to a given couple will be a girl or a boy. This may vary from couple to couple.
One can give a reasonable biological argument that it does not depend on
the sex of the children already born to the couple. There are data indicating
that sex is slightly related to the age of the couple. Since this is not easily
incorporated in a model and since it has only a slight effect, we ignore it.

91
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The major problem is: How many children is a couple able to bear? This
is a thorny problem. We ignore it completely in the following discussion
and consider it briefly in Problem 1.

Our assumptions can be summarized as follows:

1. There exists a probability p; that a child born to the ith couple will be
male and a probability g; = 1 — p; that it will be female. The value
of p; is not a function of the sex of the other children of the couple and
cannot be adjusted by the couple.

2. Each birth leads to exactly one child.

3. A couple can have as many children as desired.

In view of assumption 3, a couple can have additional children if a child
should die any time after it is born. Hence we can ignore deaths in childhood
and interpret p; as being the probability that a child who is born and survives
through childhood is a male. After reading the following discussion, comment
on the realism of the assumptions and try to determine what effect they have
on the conclusions. In particular, Problem 1 asks for a discussion of a model
in which assumption 3 is replaced by an upper bound on the number of
children per couple. In technical terms, the model proposed treats sexes
of children born to a couple as Bernoulli trials.

We wish to study the value of g, the fraction of males irr the population.
Let F; be a random variable equal to the number of females born to the ith
couple, let M; be the number of males, and set N; = F; + M;. Then

XM Y EM)
YN Y ENY

where E denotes expectation. Approximating the expectation of the ratios
by the ratio of the expectations, as was done in (1), is quite accurate for large
populations. (If you have had a course in mathematical probability theory,
you might like to prove it.)

In view of assumption 1, the expected fraction of boys born to the ith
couple will be p;. Hence E(M;) = p;E(N;), and there is no way a couple can
change the expected fraction of boys born to it. From (1) we have

~ ZpiE(Ni)
¥ RN

It follows from (2) that the population can cause a change in u only by
introducing a correlation between p;, and E(N;). When there is no sex
preference, it is reasonable to assume that E(N;) and p; are uncorrelated.
In this case the right side of (2) equals the average of p; over all couples.

(1) n=E




ANALYTICAL MODELS 93

What values of u are possible? Since (2) is a weighted average of the
pi, the value of ¢t must lie between min p;and max p;. Because of assumption 3,
the population working as a whole can approach any value within these limits.
Also, the population working individually can approximate any A between
min p; and max p;: A couple continues to have children as long as the fraction
of males in the n children they already have does not differ from A by more
than n~ '3, In general, the closer some p; are to A, the closer we can expect u
to approximate A. The choice of n~!/3 is somewhat arbitrary. We want a
function that tends to encourage couples with p; close to A to have many
children. Since the fraction of children that are males tends to differ by
something on the order of n™!/? for random reasons, we want a function
that is large compared to n~!/? for large values of n. The function n~ /3
is such a function.

Using (2) we argued that min p; < ¢ < max p;. There is an error in this
argument: (1) is an approximation that is accurate only for large populations,
and so only the approximation to u lies between min p; and max p;. To see
that p need not lie within these limits, consider a population consisting of
a single couple using the rule, “Stop after one child if the first child is a boy,
otherwise have two children.” Set p, = p and 1 — p = g. The possible
sequences of children are M, FM, and FF, and their probabilities are p, gp,
and g2, respectively. Thus

t=1p + 3qp + 0g*> = p + 3pq > p.

When p = 3, this equals 0.625. Now suppose there are k couples all using
the same rule and all with p = 1. The expected sex ratiofork =1,2,3,4,5
is 0.625 (as just computed), 0.563, 0.541, 0.530, and 0.524, respectively. Thus
the approach to 1 is fairly slow.

The above discussion shows what can be achieved as values for p.
What will be achieved if each couple independently pursues a plan based on a
desire for children of a given sex? Many plans are possible. Three examples
are

1. A couple may continue to bear children until they have a child of the
desired sex.

2. They may continue bearing until they have a child who is not of the
desired sex.

3. Plan2maybemodified by the requirement that there beatleast one child
of the desired sex.

Plans may vary from couple to couple, complicating matters tremendously.
We assume that the entire population follows the same plan and that boys
are desired.
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If p is the probability of success (or failure) in repeated Bernoulli trials,
the expected waiting time until the first success (or failure) is

d
n(l—py~'p=p—-)0—-p'=-.
go dp 2 p
Hence E(N;) = 1/p; for plan 1 and E(N;) = 1/g; for plan 2. For plan 3 we
have either of the patterns boy(s)-girl or girl(s)-boy for order of birth of
children. The first involves the birth of a boy and so has probability p; and an
expected number of births 1 + 1/g;. The second case is similar. Thus

1 1
E(N) = p,»<1 + *> (1 + > b
ai pi)  Pidi

From this it is easy to compute approximations to u by using (2). For plan 1
we obtain the harmonic mean of the p;. Since the arithmetic mean exceeds
the harmonic mean, this p is less than random. This is due to the fact that
high p; is correlated with low E(N,). Similarly, plan 2 leads to a higher u
than random. What happens in plan 3 depends on the distribution of the p;.
Up to this point we have not needed any such information about the p;. This
is good, because they cannot be computed. See also page 217.

Making Simple Choices

What mental processes occur (possibly subconsciously) when you make a
simple decision, like choosing the longer of two lines? No one really knows,
and the models in this area are plagued by oversimplification; for example,
a process can be assumed to be identical from trial to trial, or a relationship
can be assumed to be linear, even though these assumptions are known to
be only rough approximations. The following model, while no exception,
illustrates some interesting ideas. It is adapted from R. J. Audley (1960).
Another problem is the existence of several equally good (or bad) models
for the same situation. See R. R. Bush and F. Mosteller (1959).

We wish to model an experimental situation in which a subject is
required to choose between two simple alternatives, for example, which of
two nearly equal lines is longer. The alternatives are called A and B, and the
correct choice is A. We assume that the subject makes a sequence of choices
implicitly (either consciously or subconsciously) and that these determine
the final choice. Specifically, we assume

1. There are parameters o and § such that during a small time interval of
length At implicit choice A occurs with probability o« At and implicit
choice B with probability 5 At. These events are independent.
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2. A final choice is made after a run of K identical implicit choices, and it
equals the implicit choice that was just chosen K successive times.

We consider only the two simplest cases of the model: K = 1, 2. It would be
more appropriate to treat K as a parameter, but this would lead to more
involved mathematics.

Assumption 1 implies that the next implicit choice is A with probability
p =of(e + p). Let g =1 — p. It follows that the probability of a string of
implicit choices consisting of a A’s and b B’s in some given order is

, , . aaﬁb
(3) Pr{aAsandes}:quZW—b~

In an interval of length At,
Pr {choice} = Pr {A or B}
= Pr {A} + Pr {B} — Pr {A and B}
= (¢ + B) At — af(A1)?, by assumption 1.

This describes what is called a Poisson process with parameter A = a + f.
The properties of such a process are well known. In particular, the mean
time between implicit responses is 1/4 and the probability of exactly n
implicit responses during a time interval of length ¢ is

(At)'e™ ™
n!

(4) P,(t) =

The Poisson process is discussed in the Appendix. It also appears briefly
in the radioactive decay example in Chapter 10.

We can use K, p, and 4 as the basic parameters instead of K, «, and f3,
because o = pA and f = (1 — p)A. All the probability distributions can be
parameterized by p and K if they are looked at as functions of T = At rather
than of t. Hence p and K determine the shape of distributions, and 4 deter-
mines the time scale.

When K = 1, the subject makes only one implicit choice, and this is his
final choice. The probability of a response by time ¢ is 1 — P(t), which is
Poisson by (4). Audley notes that this does not agree with experimental
results.

When K = 2, the subject alternates between A and B in his implicit
choices until he finally makes two identical implicit choices.

We begin by studying such strings of choices. Let P 4(n) be the probability
that there were exactly n implicit responses and the final choice was A, and let
P, =) P,(n)bethe probability that the final choice was A. The probability
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of an n-long string ending in B is (pg)" if n = 2m and q(pq)™, if n = 2m + 1.
(This allows for the case n = 0.) Hence, for k > 0, P (2k) = p*(pg)*™ !,
P42k + 1) = p(pg), and

1+g¢

1= pg’

Since P, can be determined from experimental data, we have a way of
estimating p.

To estimate 4, some information involving time is required. Since means
can usually be estimated fairly well from data, a mean time is a reasonable
choice. Let L be the time to final choice given that the choice is 4, and let
L be the time to final choice regardless of whether it is A or B. As usual, we
use notation like L to denote the mean of L, and E(L) to denote the expected
value of L. We have

(5) Py= pz; [(pa)" + q(pg)™] = p*

BLy = Z0PAD g,y - 2Pl
by - ZLPA0) + 7]

By using ) nx" = x/(1 — x)? it is an easy matter to evaluate these sums:

P’ + 3q — pg®)

2.4 = (1 — pg)?
and so
2 + 3q — pq?®
E -
(6a) (La) (1+ g1 — pgh
24 pq
(6b) E(L) = =i ol

An interesting consequence of (6a) is that » = E(L,)/E(Lg) decreases
from about 3 to about % as p increases from 0 to 1. To see this it suffices to
study

2+ 39 — pq? 2 q

f(p) = = + ,

I+q9d—-pg 1-pg 1+4¢q
sincer = f(p)/f(g). You should work out the details. Another way to describe
the behavior of r is

The mean time to final choice is longer for the less likely choice, but it
never exceeds the other mean time by more than about 259%,.



ANALYTICAL MODELS 97

We are now ready to compare the model with experimental results.
Audley notes that very few suitable data are available and. bases his major
test of the model on the work of V. A. C. Henmon (1911). We rely exclusively
on his work; see Audley’s paper for further discussion. In his experiments
Henmon displayed two vertical lines, one of which was slightly longer than
the other. Half of the time the subject was required to choose the longer line,
and half of the time, the shorter line. The subject was also asked to express
adegree of confidence in the choice. The lines were displayed until a judgment
was made. In a single series the subject was required to make 50 judgments.
From three subjects 1000 judgments each were taken, and 500 each were
taken from another seven subjects.

Unfortunately, only the data from the first three subjects is presented in
a fashion that makes it possible to plot the number of decisions against
time to decision (Henmon’s Table II), the curve that would provide the most
detailed test of the model. However, P,, L, L,, and Ly can be determined
for all subjects by using his Tables I and IV. These are presented in Table 1.

Table 1 Choice Model Parameters for 10 Subjects

Subject P, L L, Ly Lg/L, E(L)  E(Lp)
Bl 0.820 1021 992 1154 1.16 1009 1079
Br 0.774 609 610 603 0.98 601 635
H 0.832 775 770 797 1.03 765 822
A 0.686 303 305 300 0.98 300 311
B 0.778 535 536 530 0.98 528 558
C 0.689 642 652 621 0.95 635 658
D 0.798 1044 1043 1046 1.00 1030 1096
E 0.778 1095 1046 1268 1.21 1081 1144
F 0.696 583 606 531 0.87 577 598
G 0.742 909 899 938 1.04 898 941

Note: Times are given in milliseconds.

We have taken A to be right and B to be wrong. Note that the value of
Ly/L, for some of the subjects is less than 1, a contradiction to the theory.
Some of the ratios are so close to 1 that the deviation is not significant, but
the ratio for subject F is extremely low. Perhaps it can be explained by
assuming that the value of K varied from series to series. You are asked to
discuss this idea in the problems. After using P, and L to estimate p and A
using (5) and (6b), the values of E(L,) and E(Lg) were computed by (6a)
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-and its analog for E(Lg). Audley has fitted curves to the more detailed data
(Henmon’s Table II) for subjects Bl and Br. To do this he introduced a third
parameter: a short time lag during which the subject prepares to make
implicit decisions. It is then necessary to ignore the decisions made before
the lag, because they occur before the subject is “ready.” Without a time lag
the fit is poor, but with a lag of 040 seconds for Bl and 0.34 seconds for Br
the fit is good. I have not been able to obtain as good a fit for H as can be
obtained for Br and Bl Since there are so few data for each subject (four
numbers), I think that the poor fit of the model is a sign of serious deficiencies;
however, 'm not able to suggest a better model.

A related model has been proposed by Estes and Bower and extended
by W. Kintsch (1963) to include a Poisson process for implicit response times.
Assume there are five states: S, iA, iB,fA, and fB—starting, implicit A and B,
and final A and B. The subject makes a decision to move from one state to
another. The possibilities are

> iA - A
s 1
L iB - fB

Show that, if the probabilities of S — 1A, iA — fA, and iB — 1A are all equal,
this reduces to Audley’s model. Kintsch discusses primarily the case in which
the probabilities of iA — fA and iB — fB are equal.

One problem that neither of these models deals with is the possibility
of unconscious bias of the subject toward the right line or the left line. Another
is the possibility that it is harder to choose the smaller than the larger, or
vice versa. Either of these could lead to a mixing of models with different
parameter values. Furthermore, data from different sessions with the same
subject may have different parameter values. Any mixing like this could give
rise to problems in fitting the data. Henmon’s tabulations make it impossible
to check all this out; however, he does note that there is a slight difference
in reactions to the shorter line versus reactions to the longer.

PROBLEMS

1. Discuss the sex preference model when each couple can have no more
than C children.

2. In this problem you’ll consider ways of adapting Audley’s model to fit
Henmon’s data more accurately. If you become very involved in this,
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it would be a good idea to read Henmon’s paper. Henmon obtained the
following data for subjects Bl, Br, and H. He asked them to express a

degree of confidence in their choice ranging from a (perfectly confident)
to d (doubtful).

Confidence Subject Bl Subject Br Subject H

in

choice P, L, L p, L, Ly P, L, Lg

a 0966 753 557 0951 560 574 1 638 —
b 0.841 1045 987 0944 596 669 0972 722 699
c 0.653 1311 1205 0.836 635 606 0.853 789 777
d 0.480 1612 1499 0.615 624 596 0.563 850 814

—
Q
=

The simplest modifications of Audley’s model may be either to

choose a different fixed value for K or to allow p, A, or K to vary

while the other two are fixed. What do you think of this idea (before
we actually examine it against the data)?

(b) Argue that, if p, A, and K are all fixed, the accuracy of a decision
depends only weakly on the speed with which it is made. How does
this fit with the data? Hint: A decision corresponds to a mixture of
A’s and B’s followed by K identical symbols (either A or B).

(¢) Argue that P,/Pg is approximately (p/q)*~! and that L is an in-
creasing function of K and a decreasing function of p.

(d) Show that, if p and A are fixed and K is variable, longer decision
times are associated with greater accuracy. What if only A varies?
Only p? Which of these predictions seem reasonable in view of the
data? Why?

() Can you propose a specific model which can be tested against

Henmon’s data? If you could have helped Henmon design his

experiments, what would you have suggested he do differently

in the actual running of the experiment and in the compilation of the
data?

Develop the model of Kintsch, Estes, and Bower mentioned on page 98
with the equality assumption made by Kintsch. Compare the model with
the data given above and in the text. Compare it with Audley’s model
with K = 2. Which seems to be better ? Why ? Can you suggest additional
experiments that would be useful in testing the models?

Many colleges and universities are faced with a problem regarding
tenured positions. To attract a good, young faculty, the prospects for
tenure must be high, but to allow for adaptation, the percentage of
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tenured positions should not be too high. What is the best strategy ? The
following material is adapted from an article by J. G. Kemeny (1973).
For our purposes let us distinguish three positions:

1, assistant professor (first appointment).
2, assistant professor (second appointment).
t, tenure.

Positions 1 and 2 each normally last for 3 years, and position ¢ lasts
for an average of about 30 years. Since these times are multiples of 3 years,
wewilltake 3 years as the timeunit. Let p; denote the probability of going
from 1 to 2, p, the probability of going from 2 to t (given that the step
from 1 to 2 has been made), and g, the probability of leaving a tenured
position (death, retirement, move to another institution) during a
3 year interval.

(a) Show that the probability of achieving tenure is T = p,p,.
(b) Show that the fraction of faculty that has tenure in an equilibrium
(i.e., steady state) situation is

_ D1P2
g1 + p1) + pip,

Hint: Let x, y, and z be the number of faculty in positions 1, 2, and ¢,
respectively. Show that E(y) = p;E(x) and E(z) = (1 — q,)E(z)
+ p2 E(y).

(c) Conclude that, when 7 is fixed, p is a minimum when p, = 1.
Interpret this as a policy proposal.

(d) Kemeny estimates that g, is roughly 0.15. Tabulate p versus z
for p, = 1. How sensitive is the tabulation to variations in p,?
Comment on the proposal in (c) in light of this.

(e) Incorporate appointments to the tenure level from outside and
resignations from the assistant professor levels in the model
Hint: Look at flows of people as suggested in (b).

(f) Discuss the model. Is it realistic? Have important psychological
factors been neglected? What psychological effect is the proposal
in (c) likely to have on assistant professors? What would you re-
commend? Why?

P

In Section 3.2 the nuclear missile arms race was discussed qualitatively.
This problem and the next one deal with a simple quantitative model
discussed by T. L. Saaty (1968, pp. 22-25) and R. H. Kupperman and
H. A. Smith (1972). See also K. Tsipis (1975). Suppose a country has M
missiles which are being attacked by w warheads, each of which has a
probability p of destroying the missile it is attacking. Suppose further
that the behavior of the warheads is independent.
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(@) Show that, if the ith missile is attacked by w; warheads, ) w; = w
and the expected number of surviving missiles is

S=301-pm

(b) Show that the above expression is a minimum when the values of w;
are as nearly equal as possible. Interpret this in terms of strategy.
Conclude that

w +[w 7 w w,
s =l = prrn s = 2V = oo

- o oron(ipf2)

~ M(1 — p)"™,

where [x] is the largest integer not exceeding x and {x} = x — [x]
is the fractional part of x.

(¢) Why is the variance of the expected value S important? Can you
say anything useful about the value of the variance? With additional
assumptions?

In the following discussion, use the results of the previous problem.
To make the discussion uniform, assume that a retaliatory force of
S = 100 surviving misssiles is desired and that p = 0.5.

(@) Suppose there are two equal countries (so w = M). Determine
the minimum M required for stability.

(b) Suppose ABMs are installed to protect the defender’s missiles.
Why will this lead to a decreasein p? Plot M as a function of p < 0.5.
Discuss policy implications. Don’t forget to take into account the
limitations of the model. What if the attacker has ABMs that can
protect its cities? (Consider S.)

(c) Suppose both countries introduce MIRVs with ¢ warheads per
missile. Discuss modifications in the formula for S and the desired
value for S. It is fairly reasonable to assume that p is directly
proportional to the cube root of the strength of the warhead and
that this is proportional to the weight. It follows that p(t) ~ p/t'/3.
(Why?)

(d) Suppose there are three equal nuclear superpowers and each
wishes to have a retaliatory force survive a coordinated attack
by the other two powers. Discuss.

Have you ever noticed how children at a playground or people at a
party form groups of various sizes? What sort of patterns are present?
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This problem deals with the equilibrium size distribution of freely
forming groups and was adapted from J. S. Coleman and J. James
(1961). We assume that there is a collection of people who are free to join
in groups as they choose. Examples are pedestrians, children playing,
and shoppers. We wish to explain the size distribution of the groups. Five
sets of data are given in the accompanying table. The first column

I IT IT1 Iv \Y%

1 1486 316 306 305 276
2 694 141 132 144 229
3 195 44 47 50 61
4
5

37 5 10 5 12
10 4 2 2 3
6 1 0 0 1 0

indicates the size of the group, and the remaining five columns refer
to the five different groups observed by James. Data set I refers to
pedestrians, data set II to shoppers, data sets III and IV to children at

" playgrounds, and data set V to people on a beach. The entries in the ith

row are the number of groups of size i in each of the five samples.

(a) Let N be the total number of people present, G the total number of
groups, and G; the number of groups with exactly i members. Show
that G = ) G;and N = ) iG;.

(b) Suppose that in a very small time interval of length At single people
(i.e., groups of size 1) join groups with probability o« At per person,
that the group joined is chosen at random, and that people leave
groups and become single with probability § At per person. Assume
that people act independently of each other (in the probability
theory sense of “independent”). Show that the expected net flow
rate of groups from the collection of groups of size i + 1 to the
collection of groups of size i is f(i + 1)G;,+; — aG,(G;/G) because
groups of size i + 1 break up and groups of size i grow. Show that
this must be zero at equilibrium, that is, although flow occurs, the
net flow is zero.

(c) Let p; = G;/G. Interpret p; and show that ) p; = 1. Show that at
equilibrium p; = (p,a/B)' " *p,/i! Using this and p; = 1, conclude
that p; = A/i!(e* — 1), where A = p,a/B. (This is called a truncated
Poisson.) Note that only the ratio o/f is important, rather than the
actual values of « and . Would this be true if we were concerned
with a nonequilibrium situation? Why?

(d) We need a formula for A in terms of the data. Show that N/G =
A/(1 — e~%) and use this to fit the model to the five examples given
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above. How good is the fit? (If you are familiar with the chi-square
test, you may wish to use it.)

(e) Another way to fit the model is to estimate Ausing A = (i + 1)p; 4 /p;;
for example, A = 2p,/p,. Is this a better idea than that in (d)?
A worse idea? Why?

(f) Suggest further tests of the model besides the simple fitting of the
data that you have done. Criticize the model. Can you justify
proposing a model more complicated than the one developed here
on the basis of the data? Why?

(9) Develop an alternate model by replacing “the group joined is
chosen at random” in (b) with “the person associated with is
chosen at random.” Introduce g; = iG;/N and A = g, /. Show that
g=qA ' g =1—24 and G/N = (A — 1)/Alog (1 — A). Which
model provides a better fit to the data?

You may wish to look at J. E. Cohen (1971).

5.2. MONTE CARLO SIMULATION

When a probabilistic model cannot be analyzed analytically, Monte Carlo
simulation is often used. The basic idea is to construct a deterministic model
based on the probabilistic one by choosing particular values for the random
variables according to the assumed distributions for them. Many such models
are constructed, and statistical information is collected about the various
dependent variables. This information is used to estimate parameters of
the distributions of the dependent variables. If you don’t have access to a
computer, that’s not reason to skip this section.

For example, suppose a “fair” coin is tossed 100 times. How many
heads can we expect? The following is an algorithm for a Monte Carlo
simulation of this problem.

1. Input N, the number of trials. Carry out steps 2 thru 4 N times.

2. Set HEADS to 0. Carry out step 3 100 times.

3. Choose X such that Pr{X =0} = Pr{X = 1} = 1. Set HEADS to
HEADS + X.

4. Record the value of HEADS.

5. Analyze the data collected.

For this illustration, the analysis in step 5 will consist of determining the
mean and variance of the number HEADS.
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I ran the algorithm on a computer three times each for N = 10, 100,
and 1000. The values of the mean and variance were:

N Mean  Variance Mean  Variance Mean  Variance
10 512 - 148 49.1 14.5 49.6 38.2
100  49.7 26.2 49.6 21.5 49.0 214
1000 49.7 25.5 50.0 234 49.5 26.0

Note the greatér variability in the estimates for the mean and variance when
N is small. The theoretical values of the mean and variance are exactly 50
and 25.

How accurate are the estimates of the parameters of a distribution?
Answering this question and obtaining more accurate estimates without
an excessive number of trials are major problems in Monte Carlo simulation,
but we only touch on them here. Given ¢ and § greater than zero, we can
obtain an estimate S of the parameter S such that

Pr{|S—35|> 6} <e,

provided the number of trials N is sufficiently large. Determination of N
before simulation is usually very difficult; however, post hoc estimates can
be made as follows. Assume that, when several estimates of S are obtained
by simulation, they are drawn from a normal distribution with mean S.
(This is probably not true, but often it is not too unrealistic.) If m estimates S,
have been obtained, S = > S,/m is a estimate of S and the variance of the
estimate is given by

0_2 _ Z(S_ Si)z
mm — 1)

If we apply this to the coin tossing problem we obtain the following estimates,
the first S — o pair referring to the mean and the latter referring to the
variance. The value of m is 3.

Mean Variance

N S o S o

10 500 06 22.5 79

100 494 03 23.0 1.6

1000  49.7 0.2 250 0.8
True 50 25 :
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The estimate for the mean happens to be the most accurate when N = 10.
This is just chance; the best estimate we can give is 49.7. In addition to these
ideas for measuring the accuracy of estimates, there is a theoretical result
which can be used to obtain an idea of how many more trials we’ll need:
After N trials, the error in the estimate of a parameter is often roughly
proportional to 1/\/1:1.

How can we generate the random choice required in step 3 of the coin
tossing algorithm? Since a computer is (hopefully) a deterministic device,
we cannot actually generate random numbers. However, almost every
computer center has a subroutine which can produce a number between 0
and 1 each time it is called, and it does so in such a way that the entire sequence
appears to have been sampled from the interval [0, 1) using a uniform
distribution. If a computer is not available, a table of random digits can be
used: Simply start somewhere in the table, write a decimal point, and copy
after it the next few digits in the table. This gives a random number drawn
from the uniform distribution on [0, 1). A brief table of random digits appears
at the end of this chapter. Using uniformly distributed random variables,
one can generate random variables according to any distribution. For
example, if X is distributed uniformly on (0, 1), the largest integer in kX
is distributed uniformly on the set {0, 1,2, ...,k — 1}. In general, if F is a
distribution function, F ~ }(X) is a random variable with distribution function
F. Since a table of F ~! can be constructed ahead of time, it is a relatively easy
matter to choose random variables with the distribution function F. These
ideas are discussed more fully in Section A.6. Here I'll content myself with
two simple examples. The exponential distribution is given by Pr {T > t} =
e ™ for t > 0. Suppose k = 2. Then F(t)=1— ¢ 2 and so F (x) =
—11log (1 — x). We generate five random values of T by using three-digit
numbers from the table at the end of this chapter, starting with the first entry
in the table:

X (table entry) 0.554 0.218 0.826 0.340 0.244

T (exponential) 0.404 0.123 0.874 0.201 0.140

Let’s look at the uniform distribution on {0, 1, ..., k — 1}. In this case
0 if t<0,
F@t) =1 ([¢] + 1)/k if 0<t<k-1,
1 if t>k—1,

where [y] is the largest integer in y. Hence F ~'(x) = [kx], as mentioned
earlier. (There is a slight error in the definition of F~ ! at points x for which
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kx is an integer. Theoretically this is irrelevant, since these values occur
with zero probability. Practically, the formula is correct because the uniform
distribution comes from [0, 1) instead of [0, 1].)

A Doctor’s Waiting Room

You’ve probably experienced a long wait for a doctor. Why does this happen ?
This problem is simple enough that a fairly realistic model can be analyzed
theoretically using techniques of queuing theory. I plan to take advantage
of the simplicity of the problem to work through a Monte Carlo simulation
by hand, using the table of random numbers at the end of this chapter. On
a normal day, Dr. Smock has his receptionist schedule one patient every 10
minutes from 9:30 AM. to 11:50 A.M. and from 1:10 P.M. to 4:00 P.M., except
that two patients are scheduled for 9:30 AM. and no patients are scheduled
for 10:40 AM. or 2:40 p.m. Starting at 9:30 A.M. he works until all the morning
patients have been treated, takes a lunch break, and then works until all the
afternoon patients have been treated. Subject to the limitation that his lunch
break is always at least 45 minutes, he sees the first afternoon patient at
1:10 p.m. or as soon afterward as possible. One week Dr. Smock’s nurse was
asked to time the patients’ visits. She divided them into “short,” “medium,”
and “long,” according to the doctor’s directions, and collected the data
shown below.

Time Range Average Length Percentage of

Visit (minutes) (minutes) Total Visits
Short 3-7 5 38
Medium 7-15 11 47
Long 16-30 20 15

She also noted that the doctor spent 1 minute between patients and took 10
minute coffee breaks at 10:40 A.M. and 2:40 P.M., or as soon after these times
as there was a break between patients. The receptionist observed that about
109 of the appointment times were not filled because of late cancellations
and patients who failed to appear. Unfortunately, she did not notice if there
was any bias toward certain times of day. No information is available on late
arrivals, but the receptionist thought that patients usually arrived on time.
That’s the data we have to work with. Suppose we could have designed the
data collection ourselves. What would you have asked for?

Before setting up the model it is interesting to note that according to
the table Dr. Smock spends an average of 10 minutes with each patient he
sees. Allowing for the 1 minute between patients and the 109 unfilled
appointments, this works out to a full day for the doctor on the average.
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Now we need to model the waiting room somehow. Various possibilities
exist for modeling the amount of time a patient spends with the doctor. One of
the simplest is to limit all visits to 5, 11, or 20 minutes each. Suggest others.
I am going to use the following simulation and repeat it several times to
generate data for several typical days. Criticize it and suggest improvements.

1. For each of the patient arrival times during the day, choose a random
digit. If the digit equals zero, the patient doesn’t arrive.

2. For each patient that arrives, choose a two-digit random number. If the
number is at most 37, Dr. Smock sees the patient for 5 minutes. If the
number lies between 38 and 84 inclusive, he sees the patient for 11
minutes. Otherwise he sees the patient for 20 minutes.

3. Using the results of the two previous steps and information about
Dr. Smock’s behavior we can put the doctor’s day together.

I used the following method to model a day. On a sheet of paper for
the day I had one row for each patient slot and five columns labeled “time in,”
“empty,” “type,” “see Dr.” and “time out.” The “time in” column was
filled with the various times allowed for appointments, namely, 9:30,
9:30, 9:40, 9:50, ..., 4:00. I then filled in the next column by reading a
random digit from the table starting at the beginning of line 01 and using
step 1. As a result, the 11:20, 1:20, 2:50, and 3:00 slots were empty. I then
read the table two digits at a time to carry out step 2 for slots that were not
empty. I obtained the following sequence of visits (short, medium, long,
and—for empty): smsmmsmlsms-sml, lunch, m-lmssmsm--msmsss. As a
result, the first 9: 30 patient saw the doctor from 9:30 to 9:35, and the second
saw him from 9:36 to 9:47, giving the 9:40 patient a brief wait. Continuing
in this fashion to fill out the last columns, I found that the 10:50 patient
didn’t see the doctor until 11:07 because the doctor was running late and
didn’t have his coffee break until 10:56. As a result there were two patients
in the waiting room very briefly at 11:10. The 11:20 cancellation allowed
the doctor to catch up and even have a 3 minute break at 11:36. The afternoon
was slightly slower, and the occurrence of two cancellations right after coffee
break time allowed the break to run for 25 minutes.

To obtain some idea of how typical this was, I decided to model a
second day. I picked up in the table of random numbers at the point I had
left off at the end of the first day: the twenty-fourth entry on line 03. Although
there was only one morning cancellation, things were a bit slow because of
a large number of short visits. The afternoon was busier, with two patients
in the waiting room twice, once for a quarter of an hour when the 3:40
patient arrived.

ELINT3
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You may wish to model additional days and compare them with these
two. If you think the waiting room tends to be rather empty and that the
doctor would not like to have stretches during which he must wait for patients
to arrive, you might like to adjust things by changing the scheduling.
Scheduling two patients at times like 9:30 (already done), 9:40, 1:10, and
1:20 tends to build up a queue in the waiting room so that cancellations will
not leave Dr. Smock at loose ends. You may wish to let the doctor work
longer hours (an average of 30 minutes) to handle three extra patients, or
you may wish to drop some appointments to make up for the additional
ones, for example, 11:50, 3:50, and 4:00.

Sediment Volume

What happens when suspended particles settle? Do they attract each other?
Slide after contact? It turns out that these things affect the density of the
sediment. Thus we can obtain information about settling in an indirect
fashion by studying the sediment’s density. But how can such measurements
be interpreted ? We need a method for computing the density of the sediment
under various assumptions. That’s the purpose of this model.

We are interested in the fraction of volume occupied in a typical portion
of the sediment, and we avoid the surface of the sediment where the fraction
of volume occupied is not a well-defined concept. This model is adapted from
M. J. Vold (1959, 1959a). For simplicity we assume that the particles in
suspension are all spheres of the same size. Clearly the volume depends on
whether the particles attract each other, cohere on contact, slide on contact,
or repel each other. The last case can be eliminated, since we are assuming
that the suspension settles. Which of the other cases occur? If attraction or
sliding takes place, to what extent does it occur?

We cannot simulate the behavior of the entire suspension at once, but
we can simulate the particles sequentially. Thus we can imagine a sediment
into which we let particles settle one at a time. This may be a reasonable
assumption if the suspension is fairly dilute. Discuss. Another problem we
encounter is that in the real situation there are many more particles than
we can possibly hope to include in the model. Although the model will have
many fewer particles than a real life situation, it must have enough to avoid
large random fluctuations and to avoid “edge effects” due to the bottom
and sides of the container. After we propose the model, discuss whether
you think there are enough particles. Can the question be answered by
computation instead of on heuristic or philosophical grounds?

We treat the case of attraction and cohesion and leave sliding as a
problem. Since the nature of the attractive force isn’t specified, let’s assume
that it is zero when the distance between the centers of the particles exceeds
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Ar, r being the radius of a particle, and that it is infinite when the distance is

less than Ar and no other particle is closer to the settling particle. This is an

unrealistic assumption, but it makes the modeling much easier and A should

give some measure of the attractive force. Discuss the effects of this crude

assumption. When A = 2, the model reduces to the case of cohesion. Why?
The Monte Carlo simulation proceeds as follows.

1. Choose a size and shape of cylindrical container, the radius r of the
particles, and the number of particles. Repeat step 2 once for each particle.

2. Select a random point on the upper surface of the container and simulate
a particle settling from this point until it comes to rest against another
particle or on the bottom of the container. Record its location.

3. Gather the desired statistics.

The container is chosen to be cylindrical for simplicity. Since we are not
interested in overflow, the container is chosen to be arbitrarily deep. We
can easily set r = 1 and simply adjust the size of the container. Steps 2 and 3
require further explanation. The easiest way to keep track of a particle is
probably by the location of its center, say with three coordinates (x, y, z),
where x and y are in the horizontal plane and z increases upward. The point
(x9, ¥o) at which a particle is dropped should be chosen randomly (this is
the Monte Carlo part) by using uniform distributions on x and y. When a new
particle is dropped, it ends up at a position (x, y', z'), determined as follows.
For each previous particle with (x — x)* + (¥ — yo)* < (Ar)?, find z, such
that

(x = x0)* + (v = yo)* + (z = 20)* = ()?

and choose the particle at (x, y, z) that gives a maximum z,. Then (x, ', )
is the point on the line segment joining (x, y, z) and (xq, Yo, 2o) that is a
distance 2r from (x, y, z). If no particle is ever close enough, the new particle
will settle to the bottom. You should convince yourself that this is correct.

The statistics we gather in step 3 will be the fraction of volume occupied
by the particles. Since the upper surface of the sediment is not level, we take
a cross section of the sediment well below the surface. This requires some
numerical experimentation.

I chose particles of radius 1 in a container of such a shape that (x, y):
for the centers of the particles would be in a square of side 14. Thus the cross-
sectional area of the container is A = 16> — 4 + =, and the fraction of the
volume occupied by n spheres in a section of container of height h is
4nn/3Ah.

With 300 particles and A = 2,1 found that the volume fraction for h = 10,
15, 20, 25, 30, 40, and 50 was 0.163,0.151, 0.147,0.152, 0.150, 0.123, and 0.099,
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respectively. Hence it seemed reasonable to assume that h = 20 was well
below surface effects but still large enough so that the volume fraction would
not be much influenced by the flat bottom. I then made three runs each for
various values of A. Quite a while after these computations were done,
N. P. Herzberg suggested that the possibility of difficulties with the bottom
isindicated by the volume fractionfor h = 10 and that these could be avoided
by taking a slice between, say h = 10 and h = 25. Since the old program was
gone, I decided to leave things as they were.

A Volume Fraction o
2.00 0.154530 0.009813
2.25 0.131340 0.003850
2.50 0.107535 0.013117
2.75 0.095632 0.003937
3.00 0.075931 0.008904

A downward trend in the volume fraction is quite visible. [Vold’s
simulations (1959) led to volume fractions slightly smaller than mine, but
this may be due to the flat bottom.] She also determined the number of
spheres contacting a given sphere and found that the average was very nearly
2. What does this mean?

Experimental results give a volume fraction of about 0.125 for glass
spheres in nonpolar liquids and about 0.64 in polar liquids. How could this
data be interpreted in terms of the models discussed here? (See also Problem

1)

Stream Networks

Is there any regularity in stream networks? Some geomorphologists believe
that many of the features of stream networks are random. In particular, are
the branching patterns random? It would be nice to know, since if we found
that they were non-random we could look for an explanation (or at least the
geomorphologists could). What do we mean by “random” in this context?
We use one idea of random adapted from A. E. Scheidegger (1970, Sec. 5.33).

First we need some definitions. A drainage basin consists of a stream
(or river) network and the area it drains. A stream network is a stream together
with all the streams that flow into it above the point at which we are
considering the stream. A link is the portion of a stream between two junctions
or between a junction and a source. A stream network is almost always
made up of a set of links joined so that at each junction only two links flow
together to form a third. (The rare occasions when more than two streams
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Figure 1 Two extreme examples of stream networks.

meet simultaneously can be resolved, but we won’t go into that complication

here.) See Figure 1. The Strahler order of a stream link is defined as follows.

Links that start at a source are of order 1. If two links of orders 4 and B

flow into a third link of order C, then C equals A + 1if 4 = B, and C equals

the maximum of 4 and B otherwise. See Figure 1. A segment is a stretch

of river over which the order doesn’t change. Let n; be the number of segments.
of order i. Thus n, = 1 in Figure la and n, = 4 in Figure 1b. Horton’s law of
stream numbers is an empirical relationship which states that n;/n; , ; is nearly
independent of i. For streams in the United States, this approximate constant

(whatever that means) is about 3.5 according to Scheidegger. However,

the data of L. B. Leopold et al. (1964, p. 142) for the entire United States,

presented in Table 2, does not agree with this. If stream networks tend to be

fairly linear as in Figure la or rather bushy as in Figure 1b, this law is not

valid. (Compute n; and n;/n,, ; in these cases.) It has been suggested that the

result can be explained by assuming that stream networks are random.

We model this idea following Liao and A. E. Scheidegger (see A. E.

Scheidegger, 1970).

The only geometric property of a stream network we have introduced
is the pattern of connection among the links; lengths and curvatures have
been omitted. Given the number of sources, there is only a finite number of
different drainage networks. Those with four sources are shown in Figure
2. These patterns of connection are known mathematically as plane planted
binary trees (“trees” because of shape, “plane” because they are drawn on
a flat surface, “planted” because the link at which we have cut the network
is distinct from all others and can be used to plant the tree, and “binary”



112 BASIC PROBABILITY

Table 2 Number of Stream Links of Various Orders in the
United States.

Average length
Order Number (miles) ni/n; Example
10 1 1800 — Mississippi
9 8 777 8.0 Columbia
8 41 338 5.1 Gila
7 200 147 4.9 Allegheny
6 950 64 4.8
5 4200 28 4.4
4 18000 12 43
3 80000 5.3 44
2 350000 2.3 44
1 1570000 1 45

Source: L. B. Leopold, et al. (1964).

0001111 0011011

0100111 0101011

Figure 2 The 5 seven-node plane planted binary trees and their seven digit Lucasiew-
icz sequences.
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because of the bifurcation at each node as we move upstream). Since this is
the only type of tree we care about here, we call them simply ““trees.” It is not
hard to show that a tree with n sources has 2n — 1 nodes and 2n — 1 links
(including the link at which we have cut the network for study, that is, the
link furtherest downstream).

To study n;/n;, ; we want to average over all trees with n sources, or
at least over a reasonable number of randomly generated n-source trees;
that is, each of the trees with n sources is equally likely to be chosen. Since
Horton’s law is formulated for stream networks of fair size, we want n to be
fairly large. When n is about 100, there are about 10°® trees—far to many
to generate all of them. Thus we need a way to generate and store a random
tree in a digital computer. Fortunately this mathematical problem has a
fairly simple solution due to Lucasiewicz. We imagine traveling along the
tree so that each link is traversed exactly once upstream and exactly once
downstream. We start upstream on the link used to plant the tree, use the
following rules, and stop when we return downstream on the cut link.

1. Go upstream if possible.
If a choice is possible, go upstream on the right hand branch.

3. When a node that is not a source is encountered while going upstream on
a right hand branch, record a zero.

4. When a source is encountered, record a one.

This process is illustrated in Figure 2. It is possible to reconstruct the tree
from the string of zeroes and ones:

Draw the planted link.

If the next digit is a zero, draw a bifurcating node and proceed upstream
on the right hand branch.

3. If the next digit is a one, draw a source and proceed downstream until
an untraversed upstream link is found. Go up it.

DN

You should convince yourself that this algorithm does indeed work.
A string of zeroes and ones corresponds to a stream network with n
sources if and only if it possesses two properties:

1. The number of ones in each initial segment never exceeds the number
of zeroes.

2. The total number of ones equals 1, and the total number of zeroes equals
n—1
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The second requirement just says that there are n sources and n — 1 internal
nodes. The first requirement ensures that as we go downstream we never
return to the link at which we have cut the network before the last step.
Since properties 1 and 2 are necessary and sufficient and since all trees are
obtained exactly once in this way, it suffices to generate sequences satisfying
properties 1 and 2 randomly. A method for doing this is discussed in
Problem 2.

Given an internal representation of a tree, we need a way to find n;. This
can be done as follows. We list the nodes in the order first reached by traveling
around the tree as described above. Each node refers to the link immediately
downstream from it. Construct two sequences, LORDER and ORDER: the
first refers to the order associated with the left hand branch and the other
refers to the actual order. We proceed in order through the sequence L of
zeroes and ones which represent the tree. If L; = 0, do nothing if L, = 1:

o

Record | in ORDER; and LORDER; and set ORDERNOW to 1.

2. Find the nearest preceding LORDER; which is blank (i.e., 5 <1,7Jis a
maximum, and LORDER; is blank) and do the following for Kk =1 — 1,
1—2,...,7+ 1.

a. Record in each blank ORDERg the maximum of LORDERg and
ORDERNOW if LORDERg # ORDERNOW and record 1 + LORDERk if
LORDERg = ORDERNOW.

b. Set ORDERNOW equal to the value of ORDERy just recorded.

3. Set LORDER, equal to ORDERNOW.

Work your way through some examples and try to see why this method
works.

Note that in this Monte Carlo simulation the main problem is con-
structing algorithms for handling the pictorially simple concepts of tree
and order in a digital computer. We have one problem left: How do we
identify segments? This is fairly easy. When we are computing the order of
alink, it will be a new segment if it is a source, or if the orders of both branches
feeding in are equal; otherwise it will belong to a segment containing either
the left or right branch. It is useful to keep a sequence SEGMENT that notes
which links are the furtherest upstream link of some segment.

I generated random stream networks using the above ideas and found
a result similar to that obtained by Liao and Scheidegger: For fixed i,
the value of n;/n;_, increases slowly with n to about 4.0. When n;_, > 15,
the expected value of the ratio appears to exceed 3.8. Do you think this is
evidence in favor of the random stream network model or against it? Why?
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Can you suggest other tests? See A. E. Scheidegger (1970, Ch. 5) for further
discussion.

S. B. Barker et al. (1973) made some studies of the branching structure of
real trees. They counted all the branches on an apple tree and on a birch tree.
For the apple tree they found that n;/n;_; was about 4.35, and for the birch
tree it was about 4.00. Does this look random ?

It would be a good idea to try a different approach to the idea of what
a random network is, if we can think of one. One possibility is discussed
in the problems. M. J. Woldenberg (1969) discusses yet another approach to
understanding stream networks and criticizes the claim that ny/n;_; is
independent of i. His method is an adaptation of the geoeconomic marketing
model called central place theory. See S. Plattner (1975) for a discussion.

Trees and other graphs are useful tools for some types of modeling
problems. You may enjoy reading F. S. Roberts (1976, Ch. 3).

PROBLEMS

1. Construct a Monte Carlo simulation model for sediment volume when
the particles are allowed to slide downward in settling. Can you explain
the volume fraction for polar solvents by this model?

2. We want to choose sequences of zeroes and ones satisfying properties
1 and 2 in the stream network example.

(a) Show that, if a sequence satisfies property 2, exactly one “rotation”
of it will satisfy property 1. A rotation of d,, d,, ..., d,, is a sequence
di+i>424i5-+->Adu4i, Wwhere d; =d, with 1 <k <mandj—k a
multiple of m.

(b) Use (a) to construct an algorithm for rotating a sequence satisfying
property 2 to obtain one that satisfies property 1.

(¢) We now want an algorithm for randomly choosing k positions
from m in such a way that each of the possibilities is equally likely.
Find one.

(d) Combine the above to produce a complete algorithm for randomly
generating strings of zeroes and ones that represent trees.

3. A manufacturing plant is trying to decide whether to increase the
number of loading docks for trucks. Truck arrival at the docks is not
uniform during the working day.

(a) Describe how you would set up a Monte Carlo model to help
management decide how many loading docks to have. Remember
that it must be reasonable to collect the data. You should work
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the model out to the point where you could carry out the simulation
if data were supplied.

(b) Discuss in class what factors could lead to nonuniform arrival rates.
Choose a specific situation that leads to nonuniformity and hypoth-
esize some reasonable arrival rates. (Note that for the number of
docks to be about right, as it presumably is, the number of arrivals
per day should average somewhat less than the loading docks could
handle by working steadily. Why?) Choose a particular Monte
Carlo simulation method from (@), hypothesize reasonable data,
divide up the work, and do the simulation by hand. During the
next class period pool your results so as to answer management’s
question.

How many comets are there in the solar system? What is the rate of loss
of comets from the solar system? The following model deals with the
number of “long period” comets in the solar system and follows J. M:
Hammersley (1961). An interesting feature is that, although we usually
think of the laws of planetary motion as a classic example of a deter-
ministic system, Monte Carlo simulation is useful. This is because the
number of comets is large. We had a similar situation in the sedimentation
problem.

A long period comet is a comet that goes well beyond the orbit
of Jupiter, and by “comet” we mean a long period comet. If we measure
the energy E of an object orbiting the sun in such a way that it is zero
when resting at an infinite distance, by one of Kepler’s laws, the period T
of the orbit equals (— CE/m)~ %2, where m is the mass of the object and
the constant C depends only on the gravitational constant and the mass
of the sun. If E > 0, the object will escape from the solar system.

(a) What can cause E to change? The main influence is the gravitational
field of Jupiter. Discuss others. If we set z; = —CE/m, where E
is the energy after the ith pass by Jupiter’s orbit, Az; can be treated
as a random number with a distribution depending on Jupiter
and the sun but not on m. Approximate this by a normal distribution
with mean zero. How could you check this approximation? [See
R. H. Kerr (1961).]

(b) Show that, up toscaling, the lifetime of a“random” comet is given by

T-1

z 2732,
i=0
where z; >0 for 1 <i<T—1, zr <0, and Az; has a. normal

distribution with mean zero and variance one. What is the scale
factor?
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(c) Describe a Monte Carlo model for obtaining information about
the distribution of lifetimes of comets, when time and z, are
measured in whatever units were necessary for scaling.

(d) If most comets wander into the solar system from outside, as is
believed by some astronomers, what is a reasonable value for z,?
Should we neglect zg *'? in (b)? Why?

(e) How could we estimate the total number of comets in the solar
system, assuming losses and gains are equal and (d) holds?
Hammersley obtained an estimate of about 2 million comets.

(f) Suppose all comets were formed within the solar system when it
came into being. Discuss changes in (d) and (e).

5. We consider another way to approach randomness in stream networks.
The idea is that the topography is random. Imagine a portion of a
plane covered with squares. We think of the edge of each square as a
possible stream link. Water might flow from or through any given vertex
to an adjacent vertex. See Figure 3. This idea was suggested by a discus-
sion in L. B. Leopold et al. (1964, p. 419).

(@) Given a vertex v, choose an adjacent vertex at random and allow
the water to flow from v to w. Be careful. We can’t do this if we’ve
previously decided to let water flow from w to v. Bifurcating sources
and “lost” rivers must be avoided. See A and B in Figure 3. How
could you implement this on a computer? What about the pos-
sibility of water flowing in a closed loop such as C in Figure 3?
Can you handle this by allowing lakes or by somehow stopping
it by clever programing?

(a) b)

Figure 3 Choosing random stream networks on a grid. (a) Portion of grid. (b)
Randomly generated links on this portion of grid. Problems have arisen at 4, B, and C.
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Change the model in (a) so that each vertex is assigned an altitude
and water runs down to the lowest adjacent vertex. What problems
arise in implementation?

Discuss biasing the two models just suggested to allow for a general
overall slope to the land.

Since four edges meet at the vertex of a square, we can expect to
have some vertices where three streams join to form a fourth. This
can be avoided by using a hexagonal (honeycomb) pattern instead
of a square pattern.

Criticize the model.

Perhaps some students can actually implement a Monte Carlo
model. If this is going to be done, discuss the practical details
carefully beforehand. Among the things you will need to consider
are:

Which model(s) will be implemented ?

How should the model be stored ?

How big should the model be?

How can the order of a link be determined ?
How can the segments be identified ?
Exactly what data, if any, are needed ?

Don’t forget the problems mentioned in (a) and (b).

A Table of 3000 Random Digits

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

55421 88263 40244 60613 18750 09668 67045
21661 65304 89606 67132 56488 75977 93311
77254 57610 76372 92693 08168 45645 96331
03803 63025 94237 33227 51828 07254 96652
29005 68581 18068 71414 93529 03790 17147
90086 72725 85496 36015 19475 79306 88066
48786 42078 66302 79185 47917 31532 59264
01312 06015 96224 42768 22830 78005 17433
90897 96649 85718 42458 18222 68868 36204
11433 10412 53251 08366 26673 89379 27952
74500 34547 78695 98961 50370 12118 80601
01710 94533 38266 42999 85821 12617 98876
98325 93297 87417 79283 13082 73321 08108
91318 54562 90536 39274 26757 04007 76649
65640 33035 47348 50884 71729 31237 96000
33578 71492 89085 24821 58763 03745 50706



17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

38934
63994
56799
12726
34081
83547
62794
95447
26596
74519
76702
93398
03921
07876
17597
28348
57790
13233
35809
99902
12851
87584
21627
39124
83985
72642
86351
78675
13744
71582
80380
99964
05032
58991
07667
40078
30787
27095
47394
64478
20095
29785

90627
37135
35247
49439
69899
15593
95699
93642
38328
73834
12394
25450
70788
78832
12602
46747
22390
96412
47147
47164
76785
17122
33387
97154
65741
09689
00215
13948
07743
87153
39093
70393
42931
74921
26870
77005
46512
59999
01133
56998
81826
41130

93619
04933
78481
33920
92802
24422
55102
41265
75787
73701
98323
41967
45139
93503
71925
05225
75625
29753
66631
61113
25019
15362
94307
28543
00115
88779
97630
23670
55507
45222
97093
24149
69890
38536
48732
00604
89824
79940
87725
91421
77211
48891

12976
28191
70048
67668
81144
56988
57232
11687
79328
61159
11486
89708
50713
46088
63115
11003
05258
95187
87135
79916
79805
56795
34270
15167
66382
68543
62359
20818
62664
95055
68003
23608
80165
68391
42076
53344
81494
23254
45405
61692
42919
69755

74853
71590
75596
25313
52246
07032
04292
85266
64024
75618
65591
93328
83241
28554
51767
99959
14261
60401
39573
65611
01740
18723
22996
98577
02337
64174
24386
41693
04571
30583
00416
58032
13916
72232
86542
21916
04148
28226
91783
83308
56828
06426

PROBLEMS

36562
16916
96136
05208
20404
16541
24619
95769
81217
10719
66169
08532
46227
49913
13525
69238
27013
53309
98117
28481
68627
54025
79509
22030
01885
27344
52426
69965
78498
88348
76429
39520
71993
85406
33490
31700
74399
46871
60142
23590
53315
33279

119

52889
89009
09513
07753
66428
80267
00792
85657
14914
23249
61371
17663
81250
56826
65363
13750
10094
16058
12344
05621
82308
13867
97534
37310
26932
38379
87404
45507
05944
92666
04361
16090
25752
95680
49293
72849
03683
11524
24679
73162
23430
89180
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59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

BASIC PROBABILITY

06122
95826
33419
13127
17970
02440
01902
83708
43366
28400
10878
35304
74794
50612
90297
07048
70827
34161
13889
90726
54383
94345
72425
79981
83129
09583
52392
66641

50707
83455
47261
42437
44384
09677
33280
61287
45811
81384
67992
33948
04070
11495
95935
79736
68071
49740
95558
42834
76347
29276
54109
59796
35323
04316
87142
47752

70290
41687
13998
39921
95134
25867
69006
95269
45506
56051
50896
64811
13049
56502
31036
76495
70123
02489
55047
45339
29876
07885
47783
78249
59702
57908
65066
48858

74073
28490
42627
97912
01034
50480
57137
63918
02740
49615
20390
09205
78158
37454
83853
68263
09804
00271
99000
56711
19497
14461
67259
05050
12961
37926
58787
56250

82102
31137
70392
60053
51693
55276
75395
66823
12387
17959
28689
00181
40274
15523
91422
22727
84209
66229
21703
56299
84310
64927
68498
68335
22452
10256
76981
61530

40049
55658
75443
75764
83968
39445
58215
85887
35925
91881
02029
59797
18380
17100
14307
72509
64910
66429
34104
35935
96346
41423
69107
25702
71264
73089
91372

49514
19873
75939
04210
41619
86379
16067
47487
69605
07447
27049
53427
31390
29111
66632
52840
73477
53530
03878
45020
51867
09201
15027
25771
86662
79661
72138



CHAPTER 6

POTPOURRI

The models presented here use a variety of elementary methods that didn’t
fit conveniently into the earlier chapters.

Desert Lizards and Radiant Energy

Lizards in arid regions make use of radiant energy (direct sunlight, reflected
sunlight, and infrared radiation from the ground), conduction of heat
through contact with the ground and with rocks, and convection to adjust
their body temperature. Because of the high reflectivity of the sand (about
one-third of the sunlight is reflected) and the heat of the sand, one could
suppose that reflected sunlight and infrared radiation are nearly as important
as direct sunlight. This model, which is adapted from K. S. Norris (1967),
studies the question.

Since we wish to compare the relative amounts of energy hitting the
lizard, its actual shape is not likely to be very important. Since symmetry
usually simplifies computations, we assume that the lizard is a sphere of
radius r whose center is a distance h above the sand. We assume that the sun is
directly overhead and has an energy E per unit area per unit time. We consider
the ratio of reflected sunlight to direct sunlight.

The energy per unit time due to direct sunlight is nr2E.

To study the reflected light we take advantage of the symmetry by
setting up a polar coordinate system on the sand with its center directly
below the lizard. A side view is shown in Figure 1. The fraction of light
reflected from the sand at point P that reaches the lizard depends on the
distance p, the angle ¢, and the angular diameter of the lizard as seen from P.
As a first approximation, let’s suppose that the intensity of the reflected light
is independent of ¢. Then the fraction of light hitting the lizard will nearly

121
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Figure 1 Side view of a spherical lizard at high noon.

equal the fraction of the hemisphere of radius R centered at P that lies within
the lizard. This fraction is nearly

TCI‘Z ’,2

(1) RE - 2Ap? 1 k)

The total amount of sand surface between p and p + dp is 2mp dp. Since the
area directly under the lizard is shaded and since about one-third of the
incident light is reflected, it follows from the above discussion that the amount
of reflected light reaching the lizard from the sand up to a distance x away
1s nearly

A E nr?E x? + h?
2 ————2npdp = 1 :
@ f 2+ h)3 PP T g 08 <r2 n 112>
Dividing this by the direct energy we obtain

Reflected 1 o x2 + h?
Direct 6 2+ h?)

3)

As x becomes large, (3) approaches infinity. What is wrong?

One objection is that we have treated the desert as a flat, barren plain,
which is certainly not correct. Suppose that topography and brush begin to
interfere seriously with the reflected light at a distance between 5r and 500r.
If h is at most 2r, the value of (3) will be between 30 and 200 % for x between
Sr and 500r. This answer appears to be quite reasonable, and there is no need
to determine very accurately when brush and topography become important
unless we want very accurate estimates of (3).

A completely different objection is that the intensity of reflected sunlight
does indeed depend significantly on the angle of reflection. “Significantly”
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may be rather misleading here, since at a distance of about 500r we have
¢ = 0.2°and so no reflection at angles less than 0.2° is sufficient dependence
to limit reflected sunlight to a reasonable value. Let’s consider the general
situation. '

We can allow for dependence on the angle by introducing a function
f(¢) multiplying the integrand in (2). This function should vanish at ¢ = 0
and achieve a maximum of 1 at ¢ = 180°. I have been unable to find an
empirical estimate of f. One possible function is the sine. It has the right
general form and leads to an integral which can be easily evaluated:

= Erh |
4 —_2 == —_———
@ f 27 + 3 PP = Ty |

nEr*h
3(;,2 + h2)1/2 as x — 0.
Thus we have

Reflected < h
Direct ~ 3(r* + b)Y’

(5)

which is bounded above by 3. This result is of the same order of magnitude
as the result obtained previously. We could consider other forms for f and
other values for x. In the end we would probably find that for anything
reasonable the ratio of reflected to direct sunlight was at least 209, —a
significant amount of energy. Infrared radiation probably behaves in a similar
fashion, hence reflected sunlight and infrared radiation are important factors
in a lizard’s heat balance.

Attempts have been made to use these crude results to study what
happens as parameters vary, but this can be dangerous. To see this let’s
consider what happens when a lizard adjusts h by bending its legs. By dif-
ferentiating with respect to h it is easy to see that the right hand side of (3)
is a decreasing function of h and the right hand side of (5) is an increasing
function of h. Thus our model is not good enough to tell us whether the lizard
becomes warmer or cooler when it raises itself. Actually the lizard will
probably become cooler because of an important effect that has not been
mentioned: A thin layer of hot air is found on the surface of the sand. If you
wish another example of the difficulties that arise from not knowing f,
consider the following. Will a lizard in a bowl-shaped depression in the sand
be warmer or cooler than an identical lizard on the flat sand?
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Are Fair Election Procedures Possible?

In a mathematical model we normally use mathematics to study approxi-
mately the behavior of a real situation. In this example we consider a different
type of question: What can we deduce about a situation that satisfies certain
conditions? This is the axiomatic approach of pure mathematics: Make
certain assumptions and see where they lead. The problem is to choose
reasonable assumptions which lead to interesting conclusions. One of the
earliest and most successful examples of the axiomatic method in science is
Newtonian mechanics. This approach has also been used in sociology and
economics. A particularly successful example is utility theory. See R. D. Luce
and H. Raiffa (1958) for a discussion. J. F. Nash (1950) applied the theory to
show that with some additional axioms one can conclude that there is a
unique “fair” trade in two-person bargaining. J. G. Kemeny and J. L. Snell
(1962, Ch. 2) showed how certain axioms lead to a unique measure of the
distance between individual preferences. Here we study elections. Our goal
is to prove that there is no fair way to run an election between several
candidates. This is known as the Arrow impossibility theorem. This version
differs slightly from that of K. J. Arrow (1962, Ch. 8). I've selected this
particular example because it is easy to present, is somewhat surprising, and
conveys the flavor of the axiomatic method. For a discussion of these topics
see F. S. Roberts (1976, Chs. 7 and 8).

We need to say what we mean by a fair election procedure; but before
we can do that, we must say what an election is. Letters like x, y, and z denote
candidates, and letters like i and j denote voters. A ranking (also called an
ordering) is a relation o, read “is preferred to,” satisfying

1. For all x and y, exactly one of x © y, y © x, and x = y (read “x and y

are tied”) is true.

Forall x, x = x.

3. Forallx,y,and z,if x 2 yand y 2 z, then x 2 z with x = z if and only
ifx=yandy =z

N

We assume that each voter has ranked the candidates, and we use (x 2 y);
to denote the ranking given by voter i. An election procedure is a rule for
deducing a ranking, denoted simply x 2 y, from all the individual rankings.
Note that an election is not just a choice of the top candidate, but rather
a ranking of all the candidates. If the procedure is fair, we will obtain a
complete ranking from a procedure that gives the top candidate; for example,
to find the second ranking candidate we apply the procedure to find the top
candidate we apply the procedure to find the top candidate when the winner
1s removed. This can be formally justified on the basis of axiom 3 below.
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Rather than specify exactly what constitutes a fair election procedure,
I'll list some conditions (axioms) an election procedure must satisfy if it is
fair. You may wish to add others, but you are not allowed to remove any of
the following five. After listing them, I'll discuss them.

1. All conceivable rankings by the voters are actually possible.
If (x 2 y); for all i, then x = y with equality if and only if (x = y); for all i.

3. Ifintwo different elections each voter ranks x and y the same, then the
election outcomes between x and y are the same; that is, if for all i
(x 2 y); if and only if (x = y);, then x 2 y if and only if x = y. Here >
denotes the other election.

4. If there are two elections such that (x 2 y); implies (x = y); for all i,
and if also x 2 y, then x = y.

5. There is no i such that invariably x 2 y ifand only if (x 2 y);.

The first condition says that the election procedure must be able to deal with
all cases. The second axiom simply states that a unanimous desire of the
voters is respected by the election procedure. Axiom 3 says that how two
candidates rank relative to each other in the election depends only on how
the voters rank them relative to each other and not on how they rank relative
to other candidates. Thus inserting other candidates won’t change the
election ranking of x relative to y. Axiom 4 states that, if x does at least
as well compared to y in a later ranking by the voters as he did in the present
ranking, and if he beat y in the present election, he’ll beat y in the later election.
In other words, if your relative position improves in the eyes of all the voters,
it will improve in the election results. The final assumption says that there is
no dictator.

We can manipulate these axioms in a variety of ways to reach con-
clusions. In fact, it can be shown that axiom 3 follows from the rest. (You
might like to try to prove this.) The manipulations we are interested in are
those that lead to a proof of the following impossibility theorem.

THEOREM. No election procedure for more than two candidates satisfies
axioms 1 through 5. Hence a fair election procedure is impossible if there are
at least three candidates.

PROOF. We show that axioms 1 through 4 imply that there is a dictator.
Note that, if we have an election procedure for N candidates, we can obtain
one for N — 1 candidates by introducing a dummy Nth candidate which all
the voters are assumed to rank lowest. It is easy to show that, if assumptions 1
through 4 hold for the original procedure, they hold for the derived procedure.
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A set of voters V' will be called decisive for x against y if when all voters
in the set V agree on ranking x at least equal to y, then x 2 y regardless of
how the remaining voters rank x and y; furthermore, we require that in this
case x = yimplies that (x = y);foralliin V. Atleast one decisive set exists for
all x and y—all the voters are decisive by axioms 1 and 2. Note that by
axiom 4 we can check if a set is decisive just by looking at an election with
(x 2 y);foralliin V and (x < y); for all i not in V.

We show that for some x and y there is a single voter who is decisive.
Suppose that this is not true and let V' be the smallest decisive set. Then V/
has at least two voters in it, and so we can split it into two nonempty, disjoint
sets of voters V; and V,. Let z be another candidate and consider an election
in which

x2y2z); for iin V,
(6) (z2x2y; for iinl;,
(y 2z 2 x) for inotin V.

If x 2 z then V] is decisive for x and z, contradicting the minimality of V.
Thus z = x. Since V' is decisive for x and y, it follows from (6) that x 2 y. Thus
z D y. Hence V, is decisive for z and y, contradicting the minimality of V.
(One has to be careful to check out the cases where equality occurs. I won’t
bother because it clutters up the proof and I only want to give you the flavor
of this type of argument.) Thus V contains a single voter, say i.

We have shown that for the two candidates x and y, if (x 2 y);, then
x 2 y. Let z be a third candidate. Now suppose that (x 2 y 2 z);. Consider
the election when (y > z > x); for all j # i. By axiom 2, y > z, and by
decisiveness, x 2 y. Hence x > z. By axiom 3 we can ignore y and note that, if
(x 2 z);and (z = x);for all j # i, then x 2 z. Hence i is decisive for x and z.
Let w be a candidate distinct from x and z. By a parallel argument we can show
that i is decisive for w and z. This shows that i is decisive for every pair; that is,
i is a dictator.

This completes the proof. ]

How does this work out in practice? Suppose a contract administrator
sends contract proposals (candidates) to experts (voters) for ranking and then
determines a final ranking (election). Although he may not weigh the opinions
of the experts equally, we hope that his ranking procedure will be fair. The
theorem says that this is impossible, and the administrator may not actually
be aware of this fact. What axiom is he violating? It is unlikely to be either 2
or 5. Since 3 follows from the other axioms, he must be violating 1 or 4.
In other words, either the administrator cannot produce a ranking in all
cases (such situations could be handled by obtaining additional voters)
or the ranking of other proposals influences how he decides to rank proposals
x and y relative to each other.
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Impaired Carbon Dioxide Elimination

It is relatively easy to measure the concentrations (via partial pressures) of
various gases in the air exhaled and inhaled by a person. Thus this could lead
to a diagnostic test—if we know how to interpret the data. In 1922 Haldane
asserted that carbon dioxide (CO,) elimination by the lungs is generally
unchanged by a mismatch between blood flow and ventilation because
increased elimination in overventilated areas compensates for decreased
elimination in under ventilated areas. (We call this an imbalanced lung.)
Consequently impaired CO, elimination has been considered to be diag-
nostic of some sort of blockage in the body’s gas exchange system. J. W. Evans,
P. D. Wagner, and J. B. West (1974) reexamined the question and found that
Haldane was wrong: Unequal ventilation rates cause reduced CO, elimina-
tion. We develop a version of their model here.

Lungs function as follows. Air is drawn into the body, humidified, and
pulled into little sacs in the lungs called alveoli. Here capillaries exchange
CO, and oxygen (O,) with the air, which is then exhaled and new air drawn
in. If the blood flow around each alveolus were proportional to the volume of
air in the alveolus, we would have a balanced lung. We want to compare CO,
exchange in balanced and imbalanced lungs.

How much CO, is lost from the blood? At equilibrium the blood can
hold a certain amount C(P) of CO, per unit volume when the partial pressure,
of CO, in the air is P. As CO, leaves the blood, P increases and the con-
centration in the blood decreases toward C(P). For lack of better information,
we assume that equilibrium is reached. Unfortunately P also increases as
the blood absorbs oxygen, because P is proportional to the fraction of the air
that is CO,. It follows from the way carbohydrates and fats are used that
over the long term the amount of CO, eliminated is about 80 % of the amount
of O, taken in. If we assume that this is true for a single breath, we will have
a constraint for the entire lung. This does not seem to be enough to give a
manageable model; therefore we assume that this 80 % ratio holds for each
alveolus for each breath. As you can see we are making a lot of unwarranted
assumptions which may leave our conclusions on rather shaky ground.
However, if after all these simplifying assumptions balanced and imbalanced
lungs behave differently, it should be safe at least to conclude that Haldane
was wrong.

Let’s introduce some mathematical notation. We consider an individual
alveolus first. Let the subscript i denote inspired and e denote expired. Let
P(x) denote the partial pressure of x. If we measure partial pressure in units
so that atmospheric pressure is 1, then

(7) Y Px)=1 and Y P(x) =1
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The change in the amount of x is (with suitable units)

(8) ViP(x) — V. P.(x),

where V' denotes the volume of air. Applying this to the gases,
(%a) CO, lost = V, P(CO,) — V;P(CO,),

(9b) O, gained = V;P{(O,) — V.P(O,),

(9¢) 0 = V;P; (other) — V, P, (other),

where the last equation is based on the fact that CO, and O, are the only
gases exchanged in significant amounts. (Humidification occurs earlier.)
We must combine (7)and (9)withthe CO,/O, ratio of 0.8 to obtain informa-
tion about CO, exhaled, but in some simple form because we eventually
will have to apply the result to all the alveoli and we can’t measure individual
volumes. Clearly the total volume change is 209, of the O, uptake. The
CO, loss is 809, of the O, uptake, which is (V; — V,)/0.2 by the previous
sentence. By (9a),
4V; = Vo) = VoPCO,) — VP(CO,).

Dropping the CO, in the P and rearranging,

_ V4 +P)
i 4 + Pi >
and so by (9a),
4V(P, — P))
10 CO, lost = ——————=,
(10) 2108 4+ P,

The object of all this is to compare balanced lungs with lungs in which air
flow and blood flow are mismatched. Hence we need to supplement (10) with
an equation involving blood flow. Let C(P) be the concentration of CO, in
the blood when the partial pressure of CO, in the air is P and equilibrium
has been reached. Then for a quantity Q of blood passing by the alveolus
and starting with a CO, concentration C,

(11) CO, lost = Q[Cy, — C(P,)],

if (a) the CO, balance in the air and blood reaches equilibrium before
expiration and (b) the blood doesn’t move (so that the blood coming by the
alveolus at the start reaches the same CO, concentration as the blood coming
by at the end). We've already decided to assume (a), but (b) doesn’t look like
a very good assumption. We should probably replace (11) by some sort of
integral because blood is flowing by continuously. Since we can’t handle this,
we’ll use (11) as an approximation, with Q equal to the quantity of blood
flowing by in one breath.
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We can now equate (10) and (11), the two expressions for CO, lost. The
resulting equation can be solved for P,, which can be substituted in (10)
to obtain an expression for CO, lost which depends on V,, Q, P;, and C,.
The last two variables do not depend on the alveolus, and the first two enter
only as a ratio except for a factor of V, multiplying the entire expression. This
sounds like a good approach, since changes in the ratio Q/V, measure
imbalance in the lung, and the V, for the various alveoli add to a constant,
the total volume of air exhaled. Let’scarry out the plan. Let g(x) be the solution
to the equation

4g —P)

(12) 4+ P

= x[C, — Clg)],

where we think of x as Q/V, for applications. Letting the subscript a indicate
a particular alveolus, the total CO, lost equals

Za 4Vea(Pea - Pl) _ 4[Za V;ag(Qa/Vea) - Pi Za Vea]
4+ P, 4+ P; '

How does this change when total blood flow and total expired volume are
held fixed? This is the question we must answer. Since P; and ) V,, are
constants, it suffices to consider Z V,.9(Q./V.,). For convenience, let’s
measure volume so that ) V,, = 1, and let’s define the new variable x, =
0./V.,-In a balanced lung, x, is constant. Hence showing that a balanced lung
is more efficient at eliminating CO, is equivalent to showing that

(13) g(Z Veaxa> > Y Veag(x,),

where the x, are not all equal and the V,, are positive numbers summing to 1.
(You should convince yourself that this is what we need to do.)

Suppose a takes on only two values. Use Figure 2 to convince yourself
that (13) holdsif g” < 0. Once this is done, it is fairly easy to prove inductively
that g” < 0 implies (13). We turn our attention to g".

For the partial pressures associated with CO, in the lungs, C(P) is
nearly linear. Using this approximation, we can solve (12) for g(x). [If
solving (12) were impossible, we could use implicit differentiation to study
g" via(12).] Let K = 4/(4 + P;) and define A and Bby C(g) — C, = Ag — B.
Since C is an increasing function, 4 > 0. Equation (12) becomes

Kg — KP; = Bx — Agx,
and so

__ KP; + Bx
- K+ Ax
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(Voy x4 + VopXp, §(Vey %y + VepXy))

(Verx; + Vopp, Vo 806) + Vypg(xy))

X4 Xq

Figure 2 A graphical proof of (13) when « takes on two values.

Thus
g" = —2AK(B — AP)(K + Ax)73.

By the definition of 4 and B, B — AP; = Cy — C(P;), which is positive
since the blood gives up CO,. Thusg” < 0.

We’ve shown that imbalanced lungs have impaired CO, elimination,
but this is based on some rather crude assumptions. Should we believe the
result? First let’s ask another question: Should we continue to accept
Haldane’s statement ? Obviously not. In view of the present model it appears
unlikely that his statement is correct, because it asserts that an equality
holds—a very fragile prediction. However, inequalities are usually robust
predictions. This by no means proves that our conclusion will stand up under
improvement of the model, but it indicates that it is highly likely. I have
looked at what I consider the two worst assumptions—the validity of (11)
and the 80 9/ ratio for each alveolus—but I don’t see any reasonable way to
improve them. Do you have any ideas?

PROBLEMS

1. This problem is based on H. M. Cundy (1971) and J. Higgins (1971).
Suppose that you once owned a reel type tape recorder with a counter
that counts revolutions of the take-up reel. Now you’ve replaced it
with a recorder whose counter counts revolutions of the runoff reel.
All your information concerning locations of songs on your tapes is
now useless unless you can convert one counter value into the other.
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Develop a method for doing this. Show how to construct a table for a
given tape if you know the number of revolutions required to empty the
reel and also the number of revolutions required to half empty the reel.
(The half empty point is fairly easy to measure because the take-up
and runoff reels will appear identical.) Do not assume that the thickness
of the tape is known.

This problem was suggested by G. Levary (1956). A businessman is
overstocked on a slow moving item. He wishes to mark down the price
so that his overstock can be sold off to release money and space for other
merchandise. What should he do? For uniformity we’ll introduce the
following notation:

L, list price of slow item.

L*, proposed sale price.

S,  number of slow moving items sold per year.
N, number of normal stock turnovers per year.

p,  profit margin, that is, (net profits)/(total costs).

Consider the following questions and any others that come to mind.
How many slow items should be retained? How low can the sale price
be and still leave the merchant better off ? If this problem is easy for you,
here are some suggestions for complicating things. What if p can be
higher on slow moving items because most people don’t stock them?
What about the effect of random fluctuations in demand? A Poisson
model may provide a reasonable fit for the number of customers re-
questing a particular item during a time interval of some given length.

This problem is based on F. Metelli (1974). Certain mosaics of opaque
colors give rise to the impression of transparency. We limit ourselves
to shades of gray. With each shade one can associate a reflectance equal
to the fraction of incoming light that is reflected. The range from black
paper to white paper is about 4 to 809%;. The left hand side of Figure 3
shows a mosaic made from four pieces with reflectances o;. Under
appropriate conditions it will appear to be two rectangular sheets which
have been superimposed. The smaller sheet will appear to be semi-
transparent, transmitting a fraction f of the incoming light. One
necessary condition for apparent transparency is that the edge effects
match up—discontinuities or even angles at a supposed boundary
destroy the illusion of transparency. (Note that the central vertical line
in Figure 3 is unbent where it crosses the boundary of the inner rectangle.)
What conditions must the o;, i = 1, 2, 3, 4, satisfy? How can we deter-
mine o5 and f§ in terms of them? How would you test the model to see
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N

a, Qg g, 8 oy Ay

(11 ‘:‘4

Figure 3 The mosaic on the left can be interpreted as the superposition of a semi-
transparent sheet on a bicolored opaque sheet.

if the conditions are necessary? Sufficient? There are various inter-
pretations for f which in turn lead to various formulas for a, and o5.
Consider

oy = as + Poy,

o, = (1 — Pls + pay,

o = (1 = Bos + poy[1 + (1 — Py + (1 — B)ay + -]
Boy

1 — (1= Py

and any others that seem worth looking at. Which are correct?
Use it (or them) to answer the earlier questions.

= (1 — Bas +

4. Why do animals form herds? One obvious suggestion is protection
against predators. What advantages does herding give to animals
that always flee? Herding may reduce the chances of detection and
capture per prey animal in the herd, and being near the middle of the
herd may offer additional protection. Herding may also provide for
improved detection of predators while grazing. Let’s consider these
by comparing a herd animal with a solitary animal in an open environ-
ment such as the African veldt. These ideas are adapted from I. Vine
(1971) and H. R. Pulliam (1973). V. E. Brock and R. H. Riffenburgh
(1959) discuss schooling of fish.

(a) Let D be the distance at which a predator can be expected to detect
a circular herd of n individuals and let d be the distance for a solitary
animal. Argue that the chances of the herd being detected versus
an isolated individual being detected are given by D?/d? if the
animals involved are placed at random on the veldt. Of course
this doesn’t happen; instead, the predator roams in search of prey.
In this case can the relevant ratio be D/d? Explain?
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It is crucial to have an estimate for D/d. See Problem 1.5.6b. Show
that D/d oc n", with 0 < r < %, may be a reasonable assumption.
What can you say about »? What if predators detect prey by smell
instead of sight? ‘

Suppose that animals mill around randomly within the herd. When
is being in a herd safer than being isolated ?

In some herds, the animals push toward the center, with the result
that some animals always end up on the perimeter. If a predator
captures only animals that are on the perimeter, when is it safer
to be on the perimeter of a herd than to be isolated?

Criticize the following model and then develop it or an alternative
model. A predator must get within some critical distance of a prey
animal undetected in order to win the chase and make a kill;
otherwise, the prey will escape. By looking up at random a grazing
animal has some probability p of detecting the predator before it
reaches the critical distance. Since one member of a herd can alarm
the entire herd, a herd has a much better chance of escaping than
an isolated individual. What is the probability that a herd will
detect an approaching predator in time? There are some compli-
cations:

(i) Not every herd member acts as a sentinel at the same time.
(In some harems only the male performs sentinel duty, in
some mixed herds some peripheral animals act as sentinels, etc.)

(if) If the predator approaches a large herd from a side opposite
a sentinel, that sentinel won’t spot the predator in time to
alarm the herd.

Taking (e) into account, return to (c) and (d).

When herding is beneficial, what limits the size of herds? When is
herding not beneficial? Can you add anything else to the subject
of this problem?

The following is well known in traffic flow theory; see, for example,
W. D. Ashton (1966, p. 18). Consider cars traveling along a roadway in
one direction. Let k be the concentration of cars (e.g., the number of cars
per 100feet of roadway) and let g be the rate of flow (e.g., cars per minute).

(a)
(b)

(©)

Argue that g and k are related as shown in Figure 4.

Various implicit assumptions were needed in (a). State as many
important ones as you can think of explicitly and defend and/or
criticize them.

Figure 4 is called a fundamental diagram or a flow concentration
curve. Translate as many of the following as you can into traffic
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Figure 4 The fundamental diagram of traffic flow.

flow terms such as “speed on an empty roadway”: (1) the values of
K and Q such that (K, Q) is the highest point on the curve; (2) the
slope of the line tangent to the curve at (0, 0); (3) the slope of the line
tangent to the curve at (k, q); (4) the slope of the line connecting
(0, 0) and a point (k, g) on the curve. Hint: If you don’t know what
slopes measure, note that they have the same units as g/k.

(d) Does the above help organize and clarify traffic flow concepts for
you ? What questions does it raise that may lead to further investiga-
tions and deeper understanding? In other words, what use is the
fundamental diagram?

When you view an object using only one eye, you can detect a change in
the brightness of the object if the change exceeds a certain threshold.
(See Problem 2.1.6.) Normally you use both eyes. Suppose we fool
the brain by exposing the eyes to separate but apparently identical
scenes whose brightnesses can be varied independently. A study of the
thresholds in this situation may give information about binocular vision.
This is what T. E. Cohn and D. J. Lasley (1976) did. They placed subjects
in front of a device that exposed the eyes as described above. The subject
reported pairs of left and right intensity changes (E;, Eg) that resulted
in just noticeable changes in the apparently single object. Cohn and
Lasley plotted these points for various subjects and found that they lie
roughly on the ellipse E? + E% + KE; Ex = S?, where S depends on
the subject and K =~ 0.6. There is a fair amount of scatter in the data.
You will now consider various possible explanations for the data.

(a) Suppose that only the total intensity change matters. By “total” we
mean either |E; + Eg| or |EL| + |Eg|. Describe the graphs Cohn
and Lasley could expect to obtain.
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Suppose all that matters is that the change in at least one eye exceeds
the threshold. Describe the graphs.

Combine the ideas in (a) and (b): It suffices to have the change in
at least one eye (|E.| or |Eg|) or the change in both (|E; + Eg|)
exceed the threshold. Describe the graphs.

Cohn and Lasley proposed the following mechanism. The brain
notes the sum and difference of E; and Ex and combines them in
some fashion to obtain a single parameter which must exceed a
threshold. They suggest a weighted sum of squares: (E; + Eg)?
+ T(E;, — Eg)*>. The value T ~ % gives the ellipses mentioned
earlier.

Compare the graphs in (c) and (d). They fit the published data about
equally well. Where do we go from here? Can we decide between
the models in (c) and (d) somehow, or decide that both are wrong?
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CHAPTER 7

APPROACHES TO
DIFFERENTIAL
EQUATIONS

7.1. GENERAL DISCUSSION

Many phenomena can be described in a general way by saying that rates
of change of the endogenous variables depend on past and present values
of the variables. These situations lead to models involving differential and
difference equations. The population models discussed in Section 1.4 are
of this type: Equations (1) and (2) in Chapter 1 are differential equations,
and (3) in Chapter 1 is a differential difference equation.

Models in the physical sciences frequently include force, which involves
the second derivative of position with respect to time: F = d(m dx/dt)/dt,
where F is force, m is mass, and x is position. The basic equations of electro-
magnetic theory are formulated in terms of partial differential equations.
Thus the study of physical phenomena forces one to deal with differential
equations.

Economics and sociology also deal with differential equations from time
to time. See the marriage model in Problem 8.1.4. and the Keynesian model
in Section 9.2 for examples.

Because of the importance of differential equations, the next two chapters
are devoted to models involving ordinary differential equations. The rest
of this chapter discusses some of the philosophy of studying differential
equations and describes the topics covered and omitted in the next two
chapters.

139



140 APPROACHES TO DIFFERENTIAL EQUATIONS

7.2. LIMITATIONS OF ANALYTICAL SOLUTIONS

It is usually best to solve the equations of a model exactly if the exact solution
has a reasonable form. We call this an analytical solution of the model. If we
find an analytical solution, we can often easily obtain information about the
model that would otherwise be difficult or impossible to acquire.

The analytical approach has two severe limitations. The main one is
that it may not be possible to solve the equations analytically, since the
solutions of most equations cannot be found except numerically. Second,
even if an analytical solution exists, it will not yield the desired information
easily unless it is in a useful form. For example, it is not easy to see how sin x
behaves for large values of x by considering the Taylor series expansion

X3 XS

smx=x—?+m—--~
Nevertheless, analytical solutions are usually quite useful when they can
be obtained. Models in this category are discussed in Section 8.1.

7.3. ALTERNATIVE APPROACHES

Since the analytical approach is often impossible or impractical, approximate
methods are employed. These are roughly of two types: quantitative and
qualitative. We usually put borderline cases in the latter category. What do
we mean by these categories? Roughly speaking, “quantitative” refers to
numbers and “qualitative” refers to shape, for example, “ What is the value
of y(5)?” versus “Is y(t) periodic?” The following discussion should help
to clarify this.

If you are interested in quantitative results, a computer is practically
a necessity. The usual method for obtaining numerical information is to
approximate the differential equations by difference equations and solve the
latter. This sounds much easier than it is. We’d like a method that doesn’t
take a lot of computer time but gives a fairly accurate answer. We’d also
like to know how accurate the computer’s answer is. (It is important to
remember that the computer’s output is only an approximation. I know of
one researcher who insisted on abandoning a model because the solution
to his differential equation had small oscillations. They were present because
of the method that was used in the computer center’s differential equations
package, but he insisted that the computer had solved his equation and that
was that.) What we’d like and what we get may be two very different things.
Very few computer centers provide differential equations packages that give
error estimates, so you have to be a bit of a numerical analyst and try to
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obtain them yourself—if it can be done. We won’t be concerned with
numerical methods per se, but Section 8.2 contains some models for which
numerical methods are useful.

In preliminary studies, when the-data are very crude, or when the real
situation is complicated, semiquantitative or qualitative statements are
useful. Examples of such statements are

f(t)e” " approaches a limit as t — co.-

For sufficiently large ¢, x(t) > 0.

3. (x,y,z) eventually approaches arbitrarily closely each point in D as
t — o0.

4. f(t)1s bounded.

[ I

What are the advantages of such lack of precision over analytical and
quantitative results? Because of the lack of precision, the model often need
not be specified precisely. Thus we can often make robust statements about
entire classes of models. This is useful in preliminary studies and in situations
where the complexity precludes more accurate descriptions. Even if we have
a specific model, we may wish to study the effect of certain parameters on
the solution, for example, the effect of the amplitude and the length of the
string on the period of a perfect pendulum:

(1) 10" = —gsin 0, 0(0) = A4, 6'(0) = 0.

In this case we can eliminate [ and g by the change in variable t = T(l/g)'/?
and solve the resulting equation. The period turns out to be given by what is
known as an incomplete elliptic integral of the first kind:

2 2<2_l>1/2
g

Since elliptic integrals have been studied extensively, quite a bit of informa-
tion can be extracted from (2). Suppose we incorporate frictional effects
by adding a term to the right hand side of (1) which depends on 6'. The
analytical techniques collapse. If we know the precise form of the term that
is being added to (1), we can conduct a time consuming numerical investiga-
tion. For a qualitative approach, see Section 9.2.

While some applications of qualitative methods to physics and biology
are classic, the power of qualitative methods in modeling is just beginning
to be realized. R. Thom’s (1975) discussion of catastrophe theory has stirred
up considerable interest.

4
f (cos 8 — cos A)~ 12 d0.

0
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7.4. TOPICS NOT DISCUSSED

Partial differential equations arise when we study variations of a function
withregard to two or more parameters simultaneously. Exceptin the physical
sciences, it is difficult to build models of this level of complexity without their
becoming so complex that nothing can be done without a computer. Most
exceptions seem to be based on physical analogies. Two very important
partial differential equations are

ad*u 0%u

Wave motion: = a> 0.
ox? ot?

ad®u_ ou

5 a> 0.

Heat equation:

Equations like the first arise in the study of vibrating strings and membranes,
and of electromagnetic, sound, and water waves. Equations like the second
arise in the study of diffusion phenomena such as heat transfer, the spread of
epidemics, and the change in gene frequencies in a population. Because
sophisticated methods and/or extensive computer time are usually required
to deal with partial differential equations, we avoid them.

Suppose we can relate the present state of a system to the state of the
system at one or more previous times. The resulting equation is usually a
difference equation. For example, suppose that female unicorns live for
exactly 4 years and produce exactly one female offspring in their second
and third years. Let U(t) be the number of female unicorns at the end of year .
The number just born in yeart is U(t) — U(t — 1), and they die in yeart + 4
after bearing offspring in years t + 2 and t + 3. Thus

Ut)= Ut — 1) — [U(t — 4) — Ut — 5)] + [U(t — 2) — Ut — 3)]
+ [U(t—3) — Ut — 4)]

=Ut—-1)+Urt—2 —2U0@t—4)+ Ur —5)

This is an example of a linear constant coefficient difference equation.
‘Models containing difference equations are designed to produce this type
of equation because it is analytically tractable. Unfortunately they are often
unrealistic. Attempts to add realism generally result in intractable equations
which must be studied numerically. For these reasons as well as my own
preferences, I’ve omitted difference equation models. The analytical intract-
ability of difference equations is not wholly the result of neglect by mathe-
maticians. Simple difference equations can have stranger solutions than
simple differential equations, so that both analytical methods and qualitative
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methods are harder to develop. Although the differential equation N’ =
rN(l1 — N/K), where r and K are constants, has a very simple solution, the
corresponding difference equation

Nt + 1) = N(t) + rN(r)<1 - %)

is quite complicated. See R. M. May (1975). This richness of behavior may
be useful in modeling when lots of computer time is available. However,
it could prove embarassing—a model with too many possibilities is often
worse than a model with too few.

In modeling populations the way we did unicorns, it is usually quite
unrealistic to cut things up neatly into years. Attempts to avoid this often
lead to integrals as a way of averaging over a period of time. Thus differential
and difference equation models are closely related to integral equation
models, another advanced topic that is not discussed here.



CHAPTER 8

QUANTITATIVE
DIFFERENTIAL
EQUATIONS

8.1. ANALYTICAL METHODS

In this section we consider models that léad to differential equations that
have explicit solutions. With the partial exception of the ballistics model in
Section 8.2, the examples were chosen to illustrate a variety of models, not
to illustrate methods for solving differential equations.

Pollution of the Great Lakes

Industrialized nations are beginning to face the problems of water pollution.
Once pollution of a river is stopped, the river will clean itself fairly rapidly
if the pollution has not caused extreme damage. Lakes present a problem,
because a polluted lake contains a considerable amount of water which
must somehow be cleaned. The only presently feasible method is to rely on
natural processes. How long does this take? In particular, how long would
it take to clean up the Great Lakes?

Pollution affects a lake in many complex ways. Some compounds such
as DDT enter biological systems and move up the food chain. Since DDT
is very soluble in fat, it concentrates in the fatty tissue of higher predators and
is hard to remove from the biosphere. Some pollutants move rather freely
in and out of the food chain. The behavior of phosphorus lies somewhere
between these two extremes. (In one sense, phosphorus is not a pollutant,
since it occurs naturally; however, excessive amounts can trigger algae
blooms, and it is then considered a pollutant.) Still other pollutants, like oil

144
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spills, may be only slightly involved in the food chain. Extensive pollution can
cause irreversible damage and even “kill” a lake.

The main cleanup mechanism is the relatively straightforward natural
process of gradually replacing the water in the lake. In addition, other pro-
cesses such as sedimentation and decay may be important.

If we consider all these facets of the problem now, the discussion will
go on and on and the resulting model will probably be hopelessly complex.
Therefore we present the model first and discuss its validity later.

Figure 1 shows the Great Lakes. The numbers will be explained shortly.

The basic idea is to regard the flow in the Great Lakes as a standard
perfect mixing problem. We ignore biological action, sedimentation, and
so on, and assume that all the pollutants are simply dissolved in the water.
This model is adapted from R. H. Rainey (1967).

We make the following assumptions:

1. Rainfall and evaporation balance each other, and so the average rates
of inflow and outflow are equal.
2. These average rates do not vary much seasonally.

Figure 1 The Great Lakes. The figures indicate the number of years required to drain
the lakes if outflow is unchanged and inflow stops.
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These should be good approximations. In addition, we make the following
rather questionable assumptions:

3. When water enters the lake, perfect mixing occurs, so that the pollutants
are uniformly distributed.

4. Pollutants are not removed from the lake by decay, sedimentation, or
any other mechanism except outflow.

5. Pollutants flow freely out of the lake—they are not retained the way
DDT is.

By these assumptions, the net change in total pollutants during the time
interval At is

A(VP) = (P, — P)(r At) + o(Ab),

where V is the volume of the lake, P, is the pollution concentration in the
lake, P; is the pollution concentration in the inflow to the lake, r is the rate of
flow, and o(At) denotes a function of At such that o(At)/At goes to zero as
At goes to zero. Dividing this equation by At and letting At approach zero
we obtain the differential equation

(P; — Pyr
P=——
1) =
Since this is a first order linear equation, we easily solve it to obtain

(2 P(t) = e_t/I[Pl(O) + 17! J‘tPi(X)é’x/t dX],

where © = V/r. The numbers in Figure 1 are Rainey’s values of t for the
various lakes, measured in years. He does not give a value for Huron.

Using (2) and the data given in Figure 1 it is easy to determine the effect
of various pollution abatement schemes if the model is reasonable. We do
not include Lake Ontario in the discussion, because about 849/ of its
inflow comes from Erie, a source of pollution which can be controlled only
indirectly. [The modifications required in (1) and the resulting time estimates
are considered in Problem 1.]

The fastest possible cleanup will occur if all pollution inflow ceases.
This means that P; = 0. In this case (2) leads to the simple expression

P,0
3) t = 1 log, <§§—3>
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From this we can read off how long it would take to reduce pollution to a
given percentage of its present level. The following figures in years were
obtained in this fashion.

Lake 509 20% 10% S%
Erie 2 4 6 8
Michigan 21 50 71 92
Superior 131 304 435 566

Fortunately, the pollution in Superior is quite low at the present time.

We have built a very much simplified model. How much faith can we
put in the times we have just obtained? To answer this question we must
examine the validity of assumptions 3, 4, and 5.

We begin with the perfect mixing assumption. If a lake has only one
source and one outlet, water tends to move from the source to the outlet in a
pipeline fashion without mixing. Hence the cleanup time is shortened for the
main part of the lake. (However, slow moving portions have much longer
cleanup times.) This effect cannot push the times much below V/r =1,
because a cleanup requires the replacement of nearly all the water in the
lake. The value of t is rather large for Michigan and Superior

Conclusion: Our assumption of perfect mixing may be far off, but this
error is not likely to allow cleanup times much below t and will probably
lead to longer cleanup times for some semistagnant regions in the lake.

We discuss assumptions 4 and 5 in connection with two important
pollutants: DDT and phosphorus. Mercury behaves like DDT in many
ways, so the discussion applies to it as well.

Studies indicate that DDT and several other chlorinated hydrocarbons
take a long time to break down into harmless compounds. Sufficient con-
centrations of DDT can have bad effects on the health of many organisms
and even cause death. Unfortunately, DDT is almost impossible to remove
from the biosphere. It dissolves readily in body fat, and so an organism
retains most of the DDT in ingests. This causes the chemical to reach greater
concentrations in higher predators. These animals are rather large and so are
not likely to be swept out of the lake with the outflow unless they choose to
leave. When an organism dies, most of its body fat is consumed by other
organisms, so most of the DDT remains in the biosphere. As a result of all
this, we can expect DDT to stay in the biota of a lake for an extended period
of time. The main factor removing DDT from a lake may be its very slow
breakdown into less noxious compounds, but consumption of fish by birds
of prey and humans may be important.
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Mercury behaves somewhat like DDT; however, it is an element and so
does not decay. As a result, it is lost slowly due to sedimentation, outflow,
and the removal of fish by birds and humans.

Phosphorus behaves differently. Large amounts of it are present in
human wastes and in many fertilizers and detergents. The presence of exces-
sive quantities of this element can cause algae blooms. These are sudden
population explosions of algae as a result of which the lake may look like
pea soup. Then the algae die and settle to the bottom. As a result, much of
the phosphorus is removed in this fashion. Unfortunately, some of this
removal is only temporary, since decay processes return the phosphorus
to the lake water. The phosphate inflow to Lake Erie was about 75 tons daily
in 1967, but the outflow was only about 25 tons (K. Sperry, 1967). Thus
phosphorus was building up in the lake. The concentration may have been
increasing, or the lake may have been losing 50 tons of phosphate per day in
sediment. If the former is correct, cutting the inflow of phosphorus to 25
tons would only have led to an equilibrium situation. If the latter is correct,
the phosphates on the bottom may reenter the biosphere and aggravate
cleanup problems in the future.

Conclusion: For persistent pollutants like DDT the estimated cleanup
times may well be too low. For other pollutants it is not clear how assump-
tions 4 and 5 affect the cleanup times.

Summary: The time estimates we derived may be low for some pollutants
and high for others. The values of t given in Figure 1 probably provide
rough lower bounds for the cleanup times of persistent pollutants.

The Left Turn Squeeze

Have you ever found yourself in a car trapped near the curb with the rear
end of a bus moving slowly and ominously toward you as the bus turns to
the left? It can be a hair raising experience. How far to the right will the
bus move? This model is adapted from J. Baylis (1973).

The situation is shown in Figure 2. We assume that the wheels do not

slide sideways in turning. Since the rear axle is fixed, FR is tangent to the
path of R. The angle between FR and the direction of the roadway is called ¢,

the length of FR is I, the length of RT is h, the width of the bus is 2w, the turn-
ing angle of the front wheels is 6, and the speed of the bus is v. We must
specify where the speed of the bus is measured. (To see this note that, if
0 = 90° and the wheels don’t slide sideways, the bus will move in a circle
around R.) Let v be the speed of F. The values of ¢, 0, and v are functions of
time. Since we are interested only in the locus of U, we can take v to be any
function of time. We set v = 1.
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Figure 2  The bus turning left. Dotted line is path of R.

How can we describe the bus’s motion? We sketch the derivation of the
relevant equations, and you can fill in the details. By looking at the front end
of the bus, we see that in a time interval dt the turning displaces the point F
a distance

sin O(v dt) = sin 0 dt

perpendicular to FR and a distance cos 6 dt parallel to FR. Looked at
from the path of R, the displacement of F perpendicular to FR is | dp, and
the displacement parallel to FR depends on the path of R. Thus we have the
basic equation relating ¢, 0, and ¢:

4) ldp = sin 0 dt.
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We now turn our attention to the motion of U. Let us first compute the
leftward displacement of F:

x(t) = flsin 0 + o)dt

0

(We have used v = 1.) Using (4) and ¢ = 0 at t = 0, we obtain

C
(5) x(g) = | f smsm—g ?) 4

The displacement of U is now easily found: the rightward displacement of T
is (h + I) sin ¢ — x, and so the rightward displacement of U is

(6) f(@)=wcosp —w+ (h+ Dsin g — x.
Setting f'(¢) = 0, using (5), and multiplying by sin ¢, we obtain
(7) [(h +I)cos — wsin @] sin 0 — [sin (0 + @) = 0.

The general plan is to solve (7) for ¢, use (5) to compute x, and then
use (6) to compute the maximum displacement. To do this we need a relation-
ship between 6 and ¢. Usually it is easiest if something is constant. Clearly
@ cannot be constant, since the bus turns. Two possibilities are:

1. 0 is constant—the driver keeps the front wheels turned at a constant
angle relative to the bus.

2. 6+ ¢ = o, a constant—the driver keeps the front wheels aimed in a
constant direction relative to the roadway.

Possibility 1 is more realistic than possibility 2, but neither is perfectly
correct. We consider both, because by comparing the results we should be
able to obtain some idea of how accurate our conclusions are.

Suppose that 6§ is constant. Solving (7) and integrating (5) we obtain

w+ lcotf

(8a) cot ¢ =
h
(8b) L I[cos O — ‘cos 6 + (p)]’
sin 6

and the maximum displacement is

(8¢) f=1[w + Icot 0)> + h?]*? — (w + I cot 0).
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[The last equation is easily obtained by substituting (8b) into (6), expanding
cos (0 + ¢), and recalling that the maximum of A cos ¢ + Bsin ¢ is
(A% + B?)''?; so we don’t need (8a) for (8c).] Using (8) I obtained Table 1,

based on the estimates | = 16, h = 10, and w = 4. The last row will be
explained later.

Table 1 Maximum Displacement with () Constant.

0

20° 30° 40° 50° 60° 70°

¢ (degrees) 12° 18 23 30 37 46
[ (feet) 1.0 1.5 2.1 2.7 34 42
o (degrees) 26 39 52 65 79 93

Now let’s consider the case in which 6§ + ¢ = a, a constant. Substituting
0 = o — ¢ into (7) we have, after rearranging,

[(h 4+ ) sin o — wcos o] cos 2¢ — [(h + I) cos a + w sin o] sin 2¢
+ (h—D)sina + wcosa = 0.
Further rearranging gives
Csin 2¢ — 0) = D,
where
C=[(h+ D>+ w22,
D= (h —I)sin o + wcos a,
(h+ )sin o + wcos o
C ,
where —90° < § < 90°. Solving for ¢,

_1 (D _[E
(9a) ¢ =3 |arcsin | = ) + arcsin | = ) |

where C and D are as before and

ino =

E=(h+I)sina + w cos o
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Integrating (5),

(9b) x = I'sin o log [EE%]

Using (9) and (6) with [ = 16, h = 10, and w = 4, as in Table 1, we obtain
Table 2. The last row will be explained shortly.

How can we compare the two tables? After all, different things are
constant in the two cases. A rough average value of « can be computed for
Table 1 by noting that « varies between  and 6 + ¢ as ¢ varies between 0
and its optimum value. Thus we set & = 0 + ¢/2. Likewise for Table 2,
0 = o — @/2. Interpolating in Table 1 with the § of Table 2 used as 0, or

Table 2 Maximum Displacement with ( + ¢ Constant.

o4

20° 30° 40° 50° 60° 70°

¢ (degrees) 7 11 15 18 22 26
[ (feet) 0.8 1.1 1.5 1.9 23 2.7
0 (degrees) 16 24 33 41 49 57

doing the similar thing with the tables interchanged and using & instead of 0,
we see that the estimates of f are within about 209, of each other. This
suggests that a table of 8 (or &) versus the maximum f will be about the same
for almost any method of turning. How could you test this idea? Thus we
conclude that the rear end of a bus turning left moves about 13 feet to the
right, or more if the driver makes a sharp turn.

Long Chain Polymers

Our booming synthetic fabric industry relies on chemical reactions that
produce long chain organic polymers. Thus it is important to understand
the nature, speed, and end products of polymerization reactions. We study
one type of reaction here and another in Problem 3. The material is adapted
from C. Tanford (1961, Ch. 9).
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We need some background in chemistry. A simple reaction of the type
we wish to study is

0]
//
RCH—C

O + H—H(NH—RCH—CO),—R’

NH—C
AN
O —— H—(NH—RCH—CO),,;—R' + CO,,
where n > 0 and the radical R’ provides the mechanism for the reaction by
breaking open the anhydride ring. We write the reaction symbolically:

(10) A+M, —— M,,, + CO,.

The compound M,, is called a polymer of length n. For fixed temperature and
pressure, the rate of a chemical reaction like (10) depends on the probability
of a collision between an A molecule and an M,, molecule. This is proportional
to the product of their concentrations, which is written [A][M,]. Thus the
rate of reaction (10) is k,[A][M,,], where the rate constant k,, is practically the
same for all n because the reaction mechanism is the same. We assume
k, = k for all n. So much for background.

A typical process starts with a concentration a(0) of A and a concentra-
tion mg(0) of M, (which is simply R'H). How does the system evolve? To
begin with, since the concentration of R’ does not change, we have the con-
servation equation

(11) z mn([) = mO(O)’

n=0

where m,(t) is [M, ] at time t. From (10) we have

dmy

(12a) T —ka(t)mq(t),
(12b) d;;" = ka(t)[m,- () — my,(1)], n>1,
(12¢) 990 _ _rao) S myfo)

dt n=0

Combining (11) and (12c), we obtain

d
% = —kmg(O)a(t),
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which has the solution

(13a) a(t) = a(0)e™ ™, A = km(0).

We can simplify (12a) and (12b) by defining a variable y such that
(13b) dy = kal(t) dt, y=0att =0,

for (12a) and (12b) can then be rewritten as

d
(14) W) — oy
(14b) AO) _ ) — may)

dy
These equations are easily solved inductively to obtain

m(y) _e”’y"
me(0) n! ’

a Poisson distribution with parameter y. (Do it.) Thus the mean chain length
is y, and the variance of the length is also y. We now use (13) to determine y
as a function of ¢:

—/lt a(O) — At
(15) fk dt = mO(O)( — e,

How can we produce polymers of some desired length [? Setting y = [
we obtain

—log [1 — mo(0)//a(0)]
kmq(0) -

(16) t =

Since the Poisson distribution can be approximated by a normal distribution

when y is large, about 959, of the lengths lie between | — \/7 and [ + \ﬂ
Note that altering reaction conditions like temperature and pressure only
affects the time ¢ that we let the reaction run and has no effect on the distribu-
tion of final chain lengths.

Let’s examine briefly what happens if we relax the assumption that
k, = k. If k, is a decreasing function of n, the reaction proceeds more slowly
than expected as time goes on, because the polymers are becoming longer.
Also, the final distribution of chain lengths is more peaked than a Poisson
distribution, because the shorter chains increase in length faster than the
longer chains. You should be able to explain what happens when k, is an
increasing function of n.
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How can we use these results in chemical engineering? We can use
(16) to determine the optimum values for my(0) and a(0). To make the
reaction run as fast as possible, both my(0) and a(0)/m,(0) should be large.
Since there is an upper limit to the possible combined concentrations of A
and M,—only so much will fit in a given volume—we obtain an inequality:

(17) 0 < a(0) < f(me(0)).

where [’ < 0. (Why?) As already noted, the larger r = a(0)/m(0) is, the
faster the reaction proceeds. Since fast reactions save time, increasing r
increases the number of batches we can process. Unfortunately, when we
stop the reaction the concentration of A remaining will be

(18) o = mo(0)(r — I).

Thus, if we cannot reclaim the remaining A or if the reclamation expense
increases with quantity, a larger r will increase our expenses. By studying
the details of plant operation we can construct a cost function depending on
t,a,mo(0), and r, where t and o are given by (16) and (18). We can then minimize
this subject to (17). In this way it is possible to reduce costs considerably
over what they might be for a naive approach to plant design.

PROBLEMS

1. This problem relates to the pollution of Lake Ontario.

(a) Use the subscript e to refer to Erie, the subscript o to refer to
Ontario, and the subscript i to refer to non-Erie inflow to Ontario.
Show that (1) should be replaced by

P,r, Pr —vr,) Pr
P/ — e’ e 1 o e _ o 0'
© |4 + V V

o o o

(b) Using the fact that about five-sixths of the inflow of Ontario is the
outflow from Erie, deduce that

P(t)= e_'/T{PD(O) + % JI[SPQ(X) + Pi(x)]e*" dx}.
0

(c) Assuming that all pollution inflow to Erie and Ontario ceases
except for the uncontrollable flow from Erie to Ontario, compute the
50 and 59 cleanup times for Ontario. To do this, you will need to
know how the pollutionlevel of Erie compares with that of Ontario.
No data are available on this, but Erie seems to be more polluted.
Try various values for P,(0)/P (0).
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In the model we discussed the effect of various types of pollutant
behavior on cleanup times. If necessary, reconsider this for Ontario.

This problem deals with simple compartment models in physiology.
See D. S. Riggs (1963) for further discussion, especially his Sec. 6-14
which treats problems of fitting curves to such models.

(a)

(b)

Treat the blood as a compartment containing a substance being
removed by a physiological mechanism. What sort of equations
could describe the concentration of the substance as a function of
time ? We need simple models. How can they be tested ?

Let’s be specific and assume that the removal is being done by the
kidneys. In this case the rate of removal is usually proportional
to the amount of the substance passing through a kidney per unit
time. Construct a simple model based on concentrations.

The substance in (b) is a drug whose concentration should lie
between 2 and 5 milligrams per 100 cubic centimeters. If the drug
is taken internally, about 609, is quickly absorbed and most of
the remainder is lost. In about 8 hours the body of an average
person eliminates about 509, of the drug. A normal adult has
about 5 liters of blood. Design a dosage program for the drug.
Most drugs are taken orally and require time to be absorbed by
the blood. At the same time the drug is beingremoved by the kidneys.
Model the situation. Here is some data on drugs taken from J. V.
Swintosky (1956). The first drug is sulfapyridine, and the second is
sodium salicylate. An O indicates oral administration, and an I
indicates intravenous administration [to which (a) should apply].
The column headed “grams” gives the initial dosage, and the
other columns indicate the concentration in the blood at various
times after administration. How well does your model fit? Could
you explain any discrepancies?

Concentration (milligrams/cubic centimeters)

1 2 4 6 8 10 12 24

Administration Grams hour hours hours hours hours hours hours hours

40 2.3 2.7 3.6 3.0 — 2.0 — —
40 1.8 28 39 3.5 2.6 2.2 — —
1.8 38 34 2.6 2.1 — — — —
1.8 3.7 33 2.7 2.3 — — — —

— =0

10 5.0 — — 144 - — 15.7 12.5
10 394 — — 314 — - 24.2 16.2
20 56.7 — — 43.0 — — 352 26.6
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For a further discussion of drug kinetics see R. E. Notari (1971).

3.

()

General anesthetics are usually administered through the lungs.
What factors do you think are important in modeling anesthetic
concentration in the blood ? Outline a model. The rate of absorption
through the lungs may vary considerably from one substance to
another. An anesthetist monitors an anesthetized patient to decide
how to adjust the flow of anesthetic. Do you think the absorption
rate should be taken into account? Explain.

Another sort of polymerization reaction is called condensation. A
simple reaction of this sort is

M, +M, —— M,,,+ H,O.

Study [M,(t)]. Warning: Counting reactions is a bit tricky; don’t count
M, + M, and M, + M,. Also, beware of M, + M,, because [M,]*
counts each collision twice.

At what age are your friends going to be marrying most rapidly? 157 20?
257307 What factors cause people to marry? Sociologists and psycholo-
gists generally believe that peer group behavior plays a major role.
Can we model this? The following attempt is adapted from G. Hernes
(1972).

()

(d)

It is assumed that a person’s chances of marrying in some small
time interval Ar are proportional to At and to the fraction of people
in the person’s age group that are already married m(t). This is
based on the idea that there is overt and covert peer group pressure
to marry. Show that this leads to the differential equation

m = cm(l — m).

Solve the equation.

The model may be criticized for a variety of reasons; for example,
it assumes that all people feel the same pressure to marry regardless
of individual and age as long as the fraction of the peer group that
is married is the same. Discuss the model critically.

Suppose ¢ = ¢(t). How can this help the model? What is the solu-
tion to the differential equation? In terms of properties of c(t),
determine what fraction of people in your age class will eventually
marry.

Hernes finds that

log [c(t)] = ab' log k, b<l,
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gives a rather good fit, but a variety of other forms for ¢(t) may do
just as well. Can you suggest properties a good c¢(t) is likely to have?
We have ignored the problem caused by the fact that, since m(t)
was zero when your peer group was younger, the differential
equation predicts that it will remain zero. How can we get around
this? Remember that we are trying to provide a model that will
roughly fit the situation.

Discuss how to handle the fact that people are not identical. Can
this be incorporated in ¢(t) somehow ? (We could expect the average
value of ¢ to decrease with time as those who are more likely to
marry do so.) :

A. J. Coale (1971) found that, by making a linear transformation
of the age axis, x = at — b, and a scale transformation of the
proportion married axis, y = m/m(c0), a curve was obtained that
was closely fitted by

y = exp(—e )

How does this fit in with the previous discussion? (Coale used data
from a variety of countries; Hernes used data from a U.S. census.)
K. C. Land (1971) discusses a Poisson model for divorce.

How long does it take an object to fall from a great height? You may
need some or all of the following facts:

1.

The drag force on similarly shaped objects depends on the density
of the air p, the velocity of the object v, the speed of sound ¢, and a
characteristic dimension of the object d.

The velocity of sound ¢ depends on the pressure p and density p
of the air.

If h is the height above the ground, dp = —gp dh, where g is ac-
celeration due to gravity.

Pressure satisfies p oc pT, where T is temperature in degrees Kelvin.
The force of gravity is mg, where g oc =2 and r is the distance from
the object to the center of the earth. The radius of the earth is about
4000 miles.

Before plunging in blindly and trying to build a model that uses all

these facts, you had better consider just what it is you want to know.
The problem is rather vague: How great a height? How accurate an
answer? Of course you may decide you need all these facts and some
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additional ones besides. Whatever you decide, come up with a reasonable
method for obtaining an answer of some sort.

What is the best way for our company to run its advertising campaign ?
A variety of models has been developed to study the effects of advertising
on consumer behavior by people who do marketing research. The more
elaborate models often allow for more than one type of consumer
behavior, each type having at least two and sometimes several constants
to estimate. Obviously one can fit data better with complicated models,
but frequently one such complicated model is about as good as another.
This is a delicate, data-hungry approach. Here you should develop the
simplest model you can.

It has been observed that in our company’s markets consumer
purchases drop off roughly like exponential decay when advertising
stops. (This is often a fairly good approximation in real life.) It seems
reasonable to assume that new customers are attracted by advertising
at a rate that depends on the fraction of the potential market that does
not buy our product and on the level of our advertising.

(a) Construct a simple differential equation model based on these ideas.
Criticize it.

(b) Make some predictions that could be used as tests for your model.
(Remember the expense that may be involved.)

(¢) How should our company spend its advertising budget for the next
6 months—on an intensive 2 week campaign with little additional
advertising, or on a uniform advertising plan for the entire 6 months ?
You have to make and defend a recommendation as a part of your
job. Do you need additional data which the company can provide
for you? How much faith do you have in your suggestions?

(d) What should our total advertising budget be? How much should
we spend on market research? Why? (Remember, it’s your job
you’re discussing.)

M. L. Vidale and H. B. Wolfe (1957) discuss some of these problems.

J. S. Coleman (1964, Sec. 8.4) discusses a model of the effect of an
insecticide on .the death rate of insects. He makes the simplifying as-
sumptions:

1. Above a certain threshold an increase Ac in insecticide concentration
causes a fraction o Ac of those insects that would have survived the
old concentration to die.

2. Below the threshold the insecticide has no effect.
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3. For most insecticides we can expect an additive effect; that is, if the
parameters for two insecticides are o, and o, and if their fractions
in a mixture are p and 1 — p, the combination has the parameter
o = po; + (1 — p)a,; and the thresholds combine similarly.

He presented the following data (due to Finney) on the fraction of
houseflies killed using rotenone and pyrethrins in various proportions.
Here ¢ is the concentration in milligrams per cubic centimeter and
d is the fraction dying. Two series were run on the unmixed pesticides.

Rotenone Pyrethrins 1:5 Mixture  1:15 Mixture

c d d c d d c d c d

0.10 0.24 0.28 050 020 0.23 030 027 040 0.23
0.15 044 051 0.75 035 044 045 0.53 0.60 0.48
020 0.63 0.72 1.00 0.53 0.55 0.60 0.64 0.80 0.61
0.25 0.81 082 1.50 0.80 0.72 0.875 0.82 1.20 0.76
035 090 0.9 2.00 0.88 0.90 1.175 0.93 1.60 0.93

(a) Develop Coleman’s model and test it against the data.

(b) Assuming rotenone and pyrethrins act independently (which
Coleman’s model translates as “additively”), can you develop
other simple models with some reasonable notion of independence
that fit the data as well as Coleman’s model?

8.2. NUMERICAL METHODS

In this section we are not concerned with how the actual numerical solution
of a problem is carried out, but rather with models that lead to a need for
numerical solutions. A variety of numerical methods exists in the literature,
and most computing centers have at least one package for solving differential
equations numerically. If you wish or need to write your own package, a
simple numerical technique is given at the end of this chapter.

Towing a Water Skier

You may have noticed that a water skier tends to slow down when the boat
towing him turns. Two factors influence this: (1) For the same amount of
power, a turning boat travels slower than a boat moving on a straight course,
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and (2) the skier tends to follow a shorter path than the boat. Can we model
the situation?

Let’s look at the skier first. If he drops the tow rope, he will lose speed
very rapidly because of the drag of the water. Thus the skier always moves
practically along the line of the tow rope unless he can do something to
affect his direction of motion. He can exert some control through the position
in which he holds his skis in the water. To avoid this rather grave complica-
tion, we assume that the skier does the easiest thing and keeps his skis
pointed toward the boat. Thus we have created a skier whose rope is always
taut (because of the drag of the water) and who always moves in the direction
of the rope. Let the tow rope length be [, the coordinates of the rear of the
boat be [x(t), y(t)], and the coordinates of the skier be [r(¢), s(t)]. By con-
sidering the length of the rope and the direction of motion of the skier we
obtain two separate equations:

(19a) P=@r—x7+@6—y>%
s(t) _s—y
(19b) 0 =

We manipulate these two equations to obtain a set of two first order
equations for r(t) and s(t). By differentiating (19a) with respect to t, clearing
fractions in (19b), and rearranging each of them, we obtain two equations in
¥ and s":

(20) 2(r — x) + 2(s — y)s' = 2(0r — x)x" + 2(s — y)Y,
(s— ¥+ @ —x5s=0.
Solving for ' and s’ and using (19a), we obtain

;X = %)+ Y0 = x)(s = y)
¥o= 2 ,

LY =)+ X — X))
s 2 .

Before we can solve (21) we must model the motion of the boat. Knowing
the boat’s course is enough to let us determine the skier’s course: If we know
y as a function of x, multiplying (21) by dt/dx gives a set of two differential
equations which can be solved numerically for » and s as functions of x.
This gives us the path of the skier parametrically in terms of x. We now
determine his speed in terms of the boat’s speed v. The x component of the
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boat’s velocity is v/[1 + y'(x)*]*/* by basic calculus and geometry. Thus
the skier’s speed is

F(x)? + 5(x)2X(t) =/r'(x)* + S(x)?x(0) =v/r(x)* + 5x)/[1 + y'(x)?].

Hence the skier’s speed at any time equals the boat’s speed at that time
multiplied by some function of the paths of the skier and the boat. Alterna-
tively, we can solve (21) under the assumption that the boat’s speed always
equals 1. We will obtain the path of the skier and, by the argument just
given, a “speed” for the skier which is equal to the skier’s true speed divided
by the boat’s true speed. This enables us to treat the problem of the boat’s
speed as a completely separate issue. Since it is a complicated hydrodynamic
problem, we do not attempt to solve it. Consequently we obtain only a
partial solution to the problem we started out with; however, the full solution
will be easy to find if and when we obtain information on the speed of a
speedboat making a turn.

We could try all sorts of paths for a turn. The simplest to program is a
circular arc, and this is a reasonable path. By defining

t t

(22) x(t) = Bl cos (Bl) and y(t) = Bl cos <Bl>’
I obtained a circular course with radius equal to B rope lengths and a speed
of 1. I decided it would be interesting to note how far the angle of the rope
deviated from aline straight back from the boat. By substituting (22) into
(21) and integrating numerically I found that with B = 1, a very sharp turn,
the speed of the skier dropped markedly: After a 90° turn by the boat his
speed was 67 % of the boat’s and his angle with the line of the boat was 47°.
After a full 180° turn the figures were 459 and 63°. By the time the radius
of the turn was twice the tow rope length the situation had improved con-
siderably: The skier’s speed was still 86 9, of the boat’s speed after a 180°
turn, and his angle was only 30°. The changes were fastest at the start of the
turn; in fact, after 45° the skier’s speed had already dropped to 929, and his
angle was 23°. With a turn of radius four times the tow rope length the speed
change was negligible—still 969, of the boat’s speed after 180°. The tow
rope’s angle with the line of the boat was only 14°. The lesson is quite clear:
To keep up a water skier’s speed be sure the radius of your turn is at least
twice the tow rope length. A radius four or more times the tow rope length
results in almost no loss in the speed of the skier exceptfor a possible loss due
to the boat slowing in the turn. Alternatively, the skier can maintain his speed
by pointing his skis somewhat outward from the direction of the turn so that
he does not move in the direction of the rope. The analysis of this situation
appears complicated.
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We seem to have completed the problem. This was my reaction untii I
examined the data a bit more closely.

B=1 B=2 B=4

0 1) w @ w 1) w

0° 0° 1.00 0° 1.00 0° 1.00
15° 13° 0.97 12° 0.97 9° 0.98
30° 23° 0.91 19° 0.94 13° 0.97
45° 31° 0.85 23° 0.92 14° 0.97
60° 38° 0.78 26° 0.90 14° 0.96
75° 43° 0.72 27° 0.88 14° 0.96
90° 47° 0.67 28° 0.88 14° 0.96
105° 51° 0.62 29° 0.87 14° 0.96
120° 54° 0.58 29° 0.87 14° 0.96
135° 57° 0.54 30° 0.87 14° 0.96
150° 59° 0.51 30° 0.86 14° 0.96
165° 61° 0.48 30° 0.86 14° 0.96
180° 63° 0.45 30° 0.86 14° 0.96

It is reproduced here. The angle the boat has turned through is 6, the water
skier’s angle with the boat is ¢, and his speed divided by the boat’s is w.
(Incidentally, finding the formula for ¢ is a nontrivial problem. You should
do it.) Note that w appears to depend only on ¢. Let’s prove this for any
motion and compute the function w(p). For simplicity we move the co-
ordinate system so that at t = 0 the boat is at the origin and its direction of
motion is along the x axis. Hence we have att = 0,

—r
x=1y=0, x =1, y =0, Cos @ = —,

l
w? = A + ds*
-~ \dt dt)
By 21)¥ = r¥I? and s’ = rs/I>. Hence

, r*+rist o
e
and so w = cos ¢. Such a simple formula is unlikely to depend on more
than a simple geometric argument. Can you find one?
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A Ballistics Problem

During World War II, mathematicians were asked to construct tables for
gunners relating angle to range. Bombadiers required similar information.
How was this done? In this case the model is fairly straightforward, and
the emphasis is on the mathematics, in contrast to most other models we
have studied.

We wish to construct a model of the’motion of an object under the
influence of gravity and air resistance. This material is adapted from
T. v. Karmén and M. A. Biot (1940, pp. 139-143). We ignore the complica-
tions due to lifting forces and possible rotation of the object. Hence the
only forces involved are a downward force of mg and a drag force opposite
the direction of motion of mf (v), where m is the mass of the object, v = |v|
is the magnitude of its velocity, and g is the acceleration due to gravity. In an
x — y coordinate system with the positive y axis directed downward, we
can write this as a vector equation: v = (0, g) — [ f(v)/v]v. Over a fairly
large practical range, f (v) is nearly proportional to v2.

We let 0 be the angle between v and the x axis and resolve the acceleration
into components parallel and perpendicular to v. To do this we need to
know the value of v' in the two directions. Since

v = (v cos 6, v sin 0),
v = (cos 0, sin O)v' + (—wv sin 0, v cos 0)0',
the parallel component is simply v" and the perpendicular component is

vf'. Resolving the acceleration due to gravity into components parallel and
perpendicular to v and using the fact that drag acts parallel to v, we obtain

(23a) V' =gsin 6 — f(v),

(23b) ) v0" = g cos 0.

Multiplying (23a) by vg cos 0, dividing by (23b), and rearranging, we obtain
gd(cost)
a0 = YW,

an equation we cannot solve analytically unless f has some special form.
If we assume that f(v) = kv?, we obtain

k do
cos® 0’

where v, = v cos 0, the component of v in the x direction. Hence

g de/l)i = -

2
vy = 2k Jcos_3 0 do.
g
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Suppose that v = (v, 0) when 6 = 0. Carrying out the integration and
rearranging,

(24a) v, =r0), v, =r6)tan, V= "0) i
cos 6
where
kvg ( sin 6 1 +sin0\ ]2
0) = 1+ = '
240)  10) U{-+g<w§0+bgcwg>}

We now integrate these velocity equations to obtain the path of the object.
Let the origin be at 8 = 0. Using in succession the chain rule, v, = v cos 6,
and (23b), we have

dx v, wvcos®  v?

@ BT geosde g
Similarly,

3 2
(26) dy v, wvsinf v'tanf

do 0  gcosO g

Combining (24a) with (25) and (26) we obtain the coordinates parametrically
in terms of 0:

@) B@Lﬂ&]=[£

Since r(6) is given by (24b), the integrations in (27) can be carried out numeri-
cally. And alternative approach is to solve the original differential equations
directly by numerical methods. This is more sensitive to numerical errors,
because the original equations are linked second order equations while
(27) simply involves two disjoint integrals.

We can supplement (27) by obtaining time information. Using (24a) to
eliminate v in (23b), #(0)0' = g cos? 6. Thus

) . fo r(0)do

g cos?

r(0)? do r(0)? sin 0 dO
gcost 0’ J, gcos®O |

Since our time origin is at § = 0, we must integrate back from 0 in (27) and
(28) to obtain the intial position for a projectile fired upward.

PROBLEMS
1. Consider the left turn squeeze model in Section 8.1.

(a) Discuss in class how you could take steps toward answering the
question raised at the end of the model by using a computer:
How can we show that the results are not very sensitive to the form
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of 6(¢) for reasonable methods of turning? (Or perhaps, discover
that they are.) Be specific.

(b) Iftheclasshasaccesstoacomputer,implement the plan formulated
in (a).

In this problem the question is: How can we formulate a model that
does not require an excessive amount of computer time? Most galaxies
appear to be fairly flat disks with the stars moving about a common
center like a huge swarm of planets or asteroids. Nearly all the mass of
the galaxy is in the central region, because the stars there are much closer
together. Some astronomical photographs (A. Toomre and J. Toomre,
1973) show pairs of galaxies which appear to have collided, or at least
passed close to one another and caused large streamers of stars to be
pulled out. How could you test this idea using a mathematical model?
Recall Newton’s law of gravity is F = Gmm,/r?, directed along the line
between two bodies, and Newton’s basic law is F = ma. See A. Toomre
and J. Toomre (1972, 1973) afterward if you want to see how they did it.

This problem is adapted from M. S. Bartlett (1972). Can we construct a
simple model of the spread of epidemics? We take as our example
measles, a prevalent childhood disease before vaccinations became
available. The incubation time is § week. During this time a child seems
normal but is able to infect others. After this time the child is isolated
until recovery, at which point he or she is immune. Roughly speaking,
measles outbreaks have been more severe during alternate years.

(a) Construct a simple differential equation model allowing for three
categories: susceptible, infective, and isolated/recovered. Allow for
an influx of new susceptibles due to births. Assume an infective
makes contact with members of the population at random and
infects a contacted susceptible with probability p.

(b) Construct a simple difference equation model.

In what follows use the differential equation model, the difference
equation model, or both.

(c) Show that your model has some sort of cyclic behavior. If it doesn’t,
fix it, because measles outbreaks definitely tend to occur in a cyclic
pattern.

(d) Estimate the parameters in your model to fit the 3 week incubation
and 2 year cycle observations. Do the parameter values appear
realistic? '

(e) Measles outbreaks are seasonal (60 9 below average in summer and
609, above average in winter), but if you’ve constructed a model
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of the sort I expected, a slight change in the parameters in (d) will
cause the period to differ slightly from 2 years and so the peak will
drift from season to season. What can be done? Most children
make contact with more children during the school year than during
vacation. Use this to fix up the model by introducing a seasonal

variation in p. How much variation is required ? Does this amount

seem reasonable?
Can you allow for contact between school districts?
How much faith do you have in the model? What are its faults?

Can you suggest improvements? The following data from Bartlett’s
article may be useful.

Annual measles deaths in London (1647-1660)
1647 1648 1649 1650 1651 1652 1653

5 92 3 33 33 62 8

1654 1755 1656 1657 1658 1659 1660

52 11 153 15 80 6 74

Mean time between epidemics for some towns
in England and Wales (1940-1956)

Population Time between outbreaks
(thousands) (weeks)

1046 73
658 106
415 92
269 93
180 94
113 80
66 74
22 86
18 92
12 79
11 98
7 199

4 105
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4. Organisms have internal oscillations, like circadian rhythm, which have
natural periods, like 24 hours, and are sustained by the organism itself.
What mechanisms make such cycles possible? It seems natural to look
for an explanation in terms of chemical reactions. This model is adapted
from J. Maynard Smith (1968, pp. 108-115). One of the simplest bio-
chemical reactions that seems likely to offer an explanation is

1. A gene catalyzes messenger RNA (mRNA) production.

2. The mRNA leaves the nucleus and catalyzes the production of a
protein.

3. A portion of the protein enters the nucleus and combines reversibly
with the gene to form a product which does not produce mRNA.

Let M be the concentration of mRNA and P the concentration of protein.
For simplicity we assume that there are many cells in the organism,
that produce this protein, and so many copies of the relevant gene are
present. Let G be the fraction of genes that are active, that is, not com-
bined with the protein.

(a) The rate of the reaction
Gene + protein ——— inactive
is proportional to the product GP, and the rate of the reaction
Inactive ——— gene + protein

is proportional to 1 — G. Show that the value of G at equilibrium is
1
~1+aP

for some a > 0. (You may wish to look at Problem 9.2.8.)
(b) Proteins and mRNA both decay. Defend the equations

M b y
it 1+aP
P

& — eM — [P,
dt ¢ f

for some positive a, b, ¢, e, and f. Show that by suitably rescaling
M, P, and t we can rewrite them as
, 1
m =-—— — am,
1+p
(29) )
p'=m— pp,

for some positive a and S.
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(¢) It can be shown that (29) does not lead to sustained oscillations.
In fact, no simple chemical reactions do, see Problem 9.2.8 and
also J. S. Griffith (1968). One possible solution is to take into
account the fact that it takes time for molecules to travel between
the nuclei (where the genes are) and the sites where the protein is
synthesized. Incorporate this into (29).

(d) Do the equations developed in (c) have sustained oscillations?

Walt Disney studios once filmed a simulated chain reaction which took
place as follows. A large number of cocked mousetraps was placed on the
floor of a bare room. Each trap was specially built so that when it
was sprung it would throw two ping pong balls into the air. Flying
ping pong balls that landed on unsprung traps would spring the traps
and thereby set more balls flying. The reaction was started by tossing a
single ping pong ball into the room. How should the simulation be
designed so that the duration of the chain reaction will be reasonable—
the audience must be able to see it, but it shouldn’t last too long. The
following treatment is adapted from G. F. Carrier (1966, pp. 2-6).

There are three obvious ways to influence the duration of the simula-
tion: Change (1) the flight time of the balls, (2) the number of traps per
square foot, or (3) the size of the room (keeping the number of traps per
square foot the same by simultaneously changing the total number of
traps). We consider each of these separately.

It can be observed that the flight times of the balls for a given brand
of trap are nearly the same. We assume for simplicity that they’re
identical. After hitting a trap, very few balls are able to rebound enough
to hit another trap with enough force to spring it. Thus a ball that hits
a sprung trap or an unsprung trap becomes dead in most cases. We
assume that this always happens. A ball that hits the bare floor may or
may not rebound enough to be able to set off a trap; it depends on the
flooring material. At any rate, there is a probability p that a random ball
will land on a trap with enough force to spring it (if it is still cocked). The
value of p depends only on how far apart the traps are and on the nature
of the floor. (The latter is a fourth variable which we can adjust. You
should convince yourself that this would have the same effect as changing
the spacing of the traps.)

(a) Criticize the various assumptions we have made. What sorts of
errors do they introduce into our predictions?

(b) Argue that the duration of the simulation is nearly proportional
to the flight time of a ball. What advantages and disadvantages do
you see in trying to adjust the duration by adjusting the flight time?
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From now on, we use the flight time of a ball as the unit of time

measurement.

(c)

Let t be the length of time from the start of the simulation until b
balls are in the air together, where b is much less than the total
number of balls. Show that approximately (2p) = b, and so
t = log b/log 2p. Consider two rooms in which the number of
traps per square foot is the same, but one room is b times as large
as the other. Show that the difference in the length of the simula-
tions is about log b/log 2p. What advantages and disadvantages are
there to adjusting the length of the simulation in this way? To what
extent can you change the duration of the “middle” range—say
the time to go from 5 %, sprung traps to 90 9, sprung traps? Discuss
adjusting mousetrap density.

So far our discussion has dealt primarily with small r. Large ¢ is

harder. Intermediate t can be handled fairly easily. The rest of this
problem is devoted to it.

(d)

If there are N balls in flight at time » and U unsprung traps out of
a total of M, show that the probability of having exactly 2B balls
in flight at time n + 1, given that T of the traps are hit, is

=800

where (§) is the binomial coefficient “ U choose B”— the number of
ways to choose B objects from a set of U. Using the approximation
that, if N is small compared to M, no trap is hit by more than one
of the N balls, show that the probability that T traps will be hit is
approximately

aer) = (3 Jra =

Describe a Monte Carlo simulation for the mousetrap demonstra-
tion. What inaccuracies have been introduced by our approxima-
tions?

Both P and H can be approximated quite accurately by normal
distributions for large values of U and N. The means and variances
are

Mean Variance

For H pN Np(l — p)
For P UT/M UTM — T)/M?
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Let’s consider the middle range of the experiment when U and N
are both large. Show that, if N, is the average number of balls in
the air at time n, approximately,

2pN,U,

30 N, ,,=
( ) n+1 M

Since U,,, = U, — N,+/2, this can be solved recursively for
N, and U,, but we can’t see what’s going on very well just by
looking at (30). :

(9) Write f(n) for the fraction of unsprung traps at time n and show
that (30) becomes

(31) fi) = fin+1)=2p[f(n — 1) = f()]f(n)
We approximate (31) by a differential equation in hopes of obtaining
an easier problem. Replace f(n + 1) and f(n — 1) by their first
degree Taylor polynomials about n. Show that this leads to
f'(n) = 2pf'(n) f(n), and so f'(n) = 0, a poor approximation. This
means we need hlgher degree Taylor polynomials.

(h) Use quadratic Taylor polynomials to obtain the approximation

A ”(n)

f'(n) p[2f'(n) — f"(m)]f(n)

and so

(32) [pf () + 211" (n) = [2pf () — 1]f"(n)

(i) Can you describe the solution to (32)? You cannot obtain an
analytical solution, but (32) can be integrated once to obtain

f= 2f—§log(2pf+ 1) + C.

(/) Using (31), (32), or some other device, find a way to answer the
following questions. About how long does it take the simulation
to go from f(n) = 095 to f(n) = 0.1? How large would you make
p? Why?

THE HEUN METHOD

In case you have access t o a computer but not to a library routine for solving
differential equations, here is the Heun method for solving a system of first
order equations of the form

Vi = fl% Yis 0 ¥a) = filx, )
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To take a single step of size h, set

y* = hf(x, y(x)) + y(x),
y = hf(x + h, y*) + y*,

and
y(x 4+ h) = 3z[y(x) + ¥].

A check on the accuracyisprovided by y* — y(x + h), which can be expected
to be greater than the actual error. A better check is provided by using two
values of h, since the error in integrating from x = a to x = b is roughly
proportional to h%. Thus, by using values of h differing by a factor of 2,
we obtain two estimates for y, and their difference should be about three
times the error obtained by using the estimate based on the smaller step size.



CHAPTER

| LOCAL
STABILITY THEORY

If you wish a fuller discussion of the theoretical background than that
presented here, consult a textbook. Some introductory differential equations
textbooks contain a chapter or two on qualitative methods. F. Brauer and
J. A. Nohel (1969) treat the general theory and discuss some specific problems.

9.1. AUTONOMOUS SYSTEMS

Suppose we are dealing with a system in which time is the independent
variable. Absolute time may or may not appear. If absolute time appears, we
are dealing with a historical system. If absolute time is irrelevant, the system
is autonomous. Another way of looking at this is that the dependent variables
are functions only of differences in time.

Suppose someone gives you money each day starting with $1 today, $2
tomorrow, $3 the following day, and so on. Let the amount for day n be M(n).
Since you receive n dollars on the nth day, M(n) = n—a historical system.
However, M(n) = M(n — 1) + 1—an autonomous system. Thus the dis-
tinction between historical and autonomous systems is sometimes artificial.

Here we are concerned only with the stability of autonomous systems
and limit most of our discussion to systems with two first order equations
involving two endogenous variables. This makes our discussion simpler,
allows for two-dimensional diagrams, and still permits us to consider a
variety of interesting models. Most of the mathematical ideas can be general-
ized to systems of higher order equations with several endogenous variables.

173
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Suppose there is no time delay. Letthe endogenous variables be x = x(t)
and y = y(t). Since the equations are first order, we assume that they have
been solved for x" and )y in terms of x and y, giving

(1) x'=flx,y), Y =4gkxy)

where for the moment we do not say much about the functions f and g.
Time can be completely eliminated from (1) by dividing one equation by the
other to give

dy 9, y)
dx  f(x )

)

We can plot the solutions of the first order differential equation (2) in the xy
plane. This is called the phase plane. Furthermore, an arrow can be attached
to each curve indicating the direction of motion along the curve with time.
This picture contains all the information in (1), except the rate of motion
along the curves. (For n equations in n endogenous variables you can
imagine the curves as lying'in n-dimensional phase space.) The division of (1)
to give (2) cannot be carried out if f(x, y) = 0 for some values of x and y. If
g(x,y) #V, the curve is vertical. If g(x, y) is also zero (x, y) is called an
equilibrium point. A solution that starts at an equilibrium point can never
move, since x, = )" = 0 by (1). Such solutions are plotted simply as points.

By going from (1) to (2) we obtain a convenient way of representing
solutions graphically. Also, (2) is usually more analytically tractable than (1).
However, the loss of the time variable presents difficulties when we study
stability questions.

There are two types of qualitative questions we can ask about the paths
of solutions in the phase plane. If a solution starts near an equilibrium point,
will it move toward the equilibrium point or away from it and in what
manner? Questions of this type are dealt with in the subject area known
as stability in the small or local stability. The second type of question does not
assume that we start near an equilibrium point. It concerns what is known
as stability in the large or global stability, a more difficult mathematical
topic than local stability theory. I discuss this area briefly in Section 9.4.
Global behavior is more varied than local behavior. For two first order
equations the possibilities include divergence, convergence to an equilibrium
point, periodicity, and convergence to a limit cycle. A limit cycle is a periodic
solution such that a solution which starts nearby will approach it. (In the
phase plane, a periodic solution appears as a simple closed curve.) In higher
dimensions (i.e., three or more first order equations), global behavior is
much more varied and much less understood.
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9.2. DIFFERENTIAL EQUATIONS

Theoretical Background

The basic idea in local stability theory of differential equations is to approxi-
mate the system (1) by two linear first order differential equations near an
equilibrium point. Suppose that (x,, y,) is an equilibrium point; that is,

3) f(x0,¥0) = g(x0, Yo) = 0.

We want to approximate f and g near the point (x,, y,). Recall that for a
function of a single variable, say h(x), we can obtain a fairly good approxi-
mation near x, by using h(x,) + h'(x)(x — x,) instead of h(x). The same idea
can be used with functions of two variables: We can approximate f(x, y)
near (xo, yo) by

o (xo, Yo) of (xo5 Yo)

f(x0,¥0) + o (x — xo) + T v — yo)-

Here df (x4, yo)/0x denotes the partial derivative of f evaluated-at the point
(xg, Yo), that is,

lim f(xo + 1, yO) - f(an YO)

t—0 t
To avoid cumbersome notation we denote this partial derivative by f,.
The meanings of f, g., and g, should be obvious. Thus we have

@) u, R fiu + f,v,
U X gu + gy,

where u = x — xo, v =y — yo, and f,, f,, g, and g, denote the partial
derivatives of f and g evaluated at (x,, y,). If we assumethat the approximate
equalities in (4) are exact, the equations can easily be solved. The solution of
this homogeneous, linear system gives information about the local stability
of the solutions of (1). Since our object is not to derive mathematical results,
we merely state the following theorem which can be found in almost any
differential equations textbook that discusses local stability theory.

THEOREM. If (x4, yo) is an equilibrium point for the system (1), define
the real numbers b, ¢, and d by

p_Jtxta

2
c+di=b+ \/bz - (fxgy - gxfy)’

wherei = ./ —1.



176 LOCAL STABILITY. THEORY

If ¢ < 0,theequilibrium point is stable; that is, solutions starting nearby
move closer. If ¢ > 0, the equilibrium point is unstable; that is, solutions
starting nearby move further away. Furthermore, the distance from the
equilibrium point behaves roughly like Ke®. If ¢ = 0, additional tests will be
needed to determine the nature of the equilibrium point. Necessary and
sufficient conditions for ¢ < O are b < 0 and f.g, > g, f,.

If d # 0, the solutions near the equilibrium point spiral about it in a
roughly elliptical fashion with a period approximately equal to 2n/d. The
amplitude of the oscillation increases or decreases, depending on the sign of
c. If d = 0, there is no oscillation.

Typical phase plane diagrams are illustrated in Figure 1 where it is
assumed that (x,, y,) lies in the first quadrant.

vz
¥ &1

c<0,d=0 ¢c>0,d=0

N\ 7 __
) AN

c>0,d+0 c<0,d+0

Figure 1 Phase plane diagrams near equilibrium points.
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For those familiar with linear algebra, we note that ¢ is the maximum
of the real parts of the eigenvalues of the matrix ||df;/0xll, where x; = x,
X, =), fi = f,and f, = g. Stated in this way, the stability result is valid for
a system of n first order equations in n endogenous variables, but the nature
of the oscillations is more complicated.

When we made the assumption that (4) is exact, we constructed a model
of (1). Since the condition ¢ = 0 is fragile, it is reasonable to suppose that
we could not easily decide between stability and instability if ¢ = 0. This is
indeed the case. We do not study this situation here.

The condition d = 0 is equivalent to b* — (f.g, — g, f,) = 0 which
can be put into the form

(5) d=0 ifand only if (fe —9,) +4,9.=0

by a little algebra. In particular, no oscillation occurs if f,g, > 0. Since

d = 0 actually corresponds to an inequality, the case of oscillation versus
nonoscillation is not fragile.

Frictional Damping of a Pendulum

Friction slows a pendulum down. It also changes its period. Will you need
to allow for this change in designing a pendulum clock ? If so, how?

We want to study the motion of a pendulum in an attempt to understand
mathematically how frictional forces slow it down. These forces arise from
the motion of the pendulum in the air, water, or whatever medium it is
suspended in. In contrast to this, the motion of a frictionless pendulum is
periodic. Using different methods, we studied the period of a frictionless
pendulum in Section 2.2.

Consider a pendulum as shown in Figure 2. Since our primary interest
is in damping due to friction, we make several simplifying assumptions
whose removal is discussed briefly after the model is analyzed.

1. All the weight is concentrated as a point of mass m at the end of a piece
of wire of length I (If | is replaced by the distance from the pivot to the
center of mass, the following results will remain valid.)

2. The wire does not stretch or wrap around its pivot, and so the length [
is independent of the angle of the pendulum.

3. There is no wind, shaking, and so on, that can disturb the motion of
the pendulum.

Let the angle of the pendulum be 6 = 6(t), where 6 = 0 is the rest
position of the pendulum. The gravitational force acting on the pendulum
is mg. It is partially balanced by tension in the wire. The resultant is the force
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mg Figure 2 A pendulum.

—mg sin 0 acting on the pendulum along its direction of motion. The only
other force affecting the motion of the pendulum is the frictional force we
are examining. Empirical studies show that a function that depends only on
the velocity gives a good approximation to such forces. Since the velocity
of the pendulum depends on its angular velocity w, we assume that the
frictional force is of the form —r(w), where r is a differentiable function.
This is a retarding force, and so r(w) has the same sign as w. In particular,
(0) is both nonnegative and nonpositive, and therefore is zero. We postpone
further assumptions concerning the nature of r until they are needed.
Newton’s laws give

(6) mlf”" = —mg sin 0 — r(w).

We now show that our model predicts that friction causes the pendulum
to slow down. Since w = 6', we can rewrite (6) as

(7a) 0 =ow

r(w)

Im’
These equations are in the form (1), with x =6 and y = w. We set (7) equal
to zero to find the equilibrium points. From (7a) we have w = 0. Since
r(0) = 0, we deduce from (7b) that 0 is a multiple of 7. Because of the period-
icity of the sine function, we need only consider § = 0 and 6 = =. The latter
case corresponds to the pendulum being straight up. It is left as an exercise
to show that this equilibrium point is unstable.

(7b) o = — %sin -
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We have (wg, 0,) = (0, 0). The partial derivatives are
@) =0, ©), =1,
® —9 —r(0)
i .

Im

((U/)g = > (w)(u =

Since r(w) is an increasing function near @ = 0, it is reasonable to assume

that #'(0) > O (This really is an assumption; consider r(w) = »>.) In the
theorem we have '

—r'(0)
2lm

c+di=b+ Ibz—%

Since \/b? — g/l < |b|, ¢ < 0. It follows that the motion of a pendulum
is locally stable; that is, it dies out. We see that d is nonzero if b* < g/I,

which can be rewritten as '(0) < 2m\/a. Hence the pendulum oscillates

if ¥'(0) < 2m\/a and does not oscillate if #'(0) > 2m\/ﬁ In the latter case
the frictional forces are very large, and it is as if the pendulum were moving
in molasses.

How does the change in the period of the pendulum compare with the
damping? From the theorem, the pendulum will oscillate at about half its
initial amplitude after a time ¢, where e = 4. Hence t = log, (2)/|b|. This
requires about ¢/(2n/d) oscillations of the pendulum. Hence the pendulum
loses half its amplitude after about

log(2)d 0.11032d g
= =0.11032 [—5 -1
2n|b| [D] Ib*

oscillations. Call this number n. Squaring and rearranging, we obtain
g/lb*> ~ 82n? + 1 ~ 82n?*. The ratio of the period of the pendulum to the
period of a frictionless pendulum is

12\~ 112 b2 1
1 - ~ — = —.
(10) (1 g) R AT

Thus the period increases by about 0.6/n* percent, a very small change. This
prediction can be tested experimentally.

Since a pendulum takes quite a long time to slow down in air, n is large
in this case. It follows that the effect of friction on the period is quite small.
If this were not so, the period of a pendulum would depend on barometric
pressure and pendulum clocks would not keep accurate time.

b:

)
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Itis possible to replace (6) by the more general equation ml6” = f(6, w),
where we assume only that f,, and f; are both negative near zero as they are
in (8). Since f, = —mg is a good approximation, our conclusions are un-
changed.

Species Interaction and Population Size

Interaction between species lies at the heart of ecology. Some claim that these
interactions cause the nearly cyclic fluctuations observed in some popula-
tions. Others claim that other factors are responsible. What can a simple
mathematical model contribute to the debate?

Since our theorem allows only two endogenous variables, we assume
only two species are interacting. Let x be the number of organisms in the first
species and y the number of the second. There are three basic types of
interaction between species:

1. The first species preys on the second (either direct predation or as a
parasite).

2. Both species compete for more or less the same limited resources (e.g.,
plants competing for sunlight).

3. The two species live in a symbiotic relationship with each other (e.g.,
nitrogen fixing bacteria on the roots of peas and beans).

Predation is discussed below. Competition and symbiosis are treated
sketchily, and the details left as exercises.

The assumption of autonomy implies that the environment of the species
is constant except for factors whose change depends only on the number of
organisms of the two types. Because of the form of (1), no time lag can be used.
Since species require time to reproduce, the absence of a time lag may be a
serious deficiency. Furthermore, the past history of the population determines
the age mix and general physical condition of the present population. It is
an open question how serious a restriction avoiding the past is. If it is serious,
difference equations or mixed differential difference equations will be needed.
See R. M. May (1973) for a relevant discussion.

Let x be the number of predators and y the number of prey. It is
intuitively clearer to think in terms of the net growth rates of the two species:

! ’

(1nH Predator: x; = r(x, y), Prey: % = s(x, y).
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The equilibrium condition is then » = s = 0. A historically important special
case is the Volterra-Lotka equations:

(12) rx,y)=a+by, s(x,y)=c+dx

J. G. Kemeny and J. L. Snell (1962, Ch. 3) discuss this special model.

We deal with a more general model in which r and s are only vaguely
specified. To be able to say something about the stability of the system, we
must make some assumptions about r and s.

If the population size of species 1 does not affect the population growth
of species 2, then r, = 0. Similarly, if species 1 does not affect its own popula-
tion growth through crowding, resource exhaustion, and so on, we will have
r, = 0. Because the absence of an effect leads to zero for the partial derivative,
an indication of how the species affect one another gives us information about
the signs of the various partial derivatives. We may be able to make educated
guesses about their relative magnitudes as well. Actual data collection is very
difficult at best.

What effect does a change in predator population have on the net
growthrate of the prey ? Since predators consume prey, s, < 0. If the predator
population increases, there will be less food per predator, and so r, < 0.
Another way to decrease the number of prey per predator is to reduce the
the prey population, so we expect r, > 0. The sign of s, is harder to determine.
as the prey population increases in the absence of predation, the net growth
rate should decrease, because the species is now moving into less favorable
parts of the environment. However, if the prey increase while the predators
do not, there will be less predator pressure per individual of prey population,
which would lead to an increasing net growth rate. These two effects tend
to cancel out. Note that, if the predators are prey at a higher level in the food
chain, the argument just given for s, also applies to r,. We have reached the
following conclusions:

ry <0or =0, r, >0,

13
(13) s, <0, s, =~ 0.

We interpret s, ~ 0 to mean that we can neglect s, compared to the other
partial derivatives.

Suppose there is an equilibrium point (x,, y,) at which neither species
has vanished. From (11) we have r = s = 0. The question of the existence of
solutions to this equation is discussed later. It is easily seen that f, = xr,,
f, = xr,, and so on. From the theorem and (5) we have

b— Xry + Y8y
(14) 2
c+di=b+ Jb* — xp(res, — 1y5,).
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From (13) we see that b is negative and r,s, > r;s,. Thus we have local
stability. If the environment is rather homogeneous, the self-limiting effect
of species 2 will not come into play until the environment is nearly saturated.
In this case we have s, > 0, and instability is possible. Hence heterogeneity
of the environment increases stability. See R. M. May (1972) and M. L.
Rosenzweig (1971).

Do we have oscillation? From (5) we see that the answer is yes if and
only if

(15) (xr, — ys,)* + 4xyr,s, <O.

This holds if r, &~ 0. Roughly speaking, (15) says that the interspecies effects
on net birth rates are greater than the intraspecies effects. This certainly
appears to be true in some situations.

Unless we are willing to make a statement stronger than (13) we can’t
really say much more; however, this is quite a lot considering the vagueness
of (13).

We now turn our attention to the existence of equilibrium points (x,, o).
The arguments used to derive (13) did not use the assumption that we were
at equilibrium, so we drop the assumption that the partial derivatives in (13)
are evaluated at equilibrium. Another point is that, in deriving s, ~ 0, we
used the fact that the predator was severely limiting the prey; let’s relax this
by allowing s, < 0 at low predator densities. The following discussion is
entirely nongraphical. In simple cases such as this one, a graphical discussion
may be preferable. You are asked to provide this in Problem 2.

To begin with, there are the trivial equilibrium points associated with
x = 0 (no predators). We put them aside and look for equilibrium points
with predators. Hence x > 0 and y > 0.

Suppose that x predators can survive if there are enough prey and if the
number of predators does not exceed some critical value x,,. Since r, < 0,
we can solve r(x, y) = 0for a unique y(x). By implicit differentiation dy/dx =
—7/r,, which is positive by (13). If predators cannot live in the absence of
prey, we have y(x) > 0 for 0 < x < x,,. Substituting y(x) in s(x, y) we find

ds dy
x> e
which is negative because of (13).

Now we can show that a unique equilibrium exists under certain
conditions. We have just shown that s(x, y(x))is a strictly decreasing function
of x. Therefore an equilibrium point will exist if and only if s(x, y(x)) is
positive for small x and negative for large x. If such a point exists, it will be
unique because s(x, y(x)) is strictly decreasing. To say that s(x, y(x)) > 0
means that we must remove prey to keep the prey population from increasing
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beyond y(x). This is likely to be true for small x and false for large x, which
is just what we want. If the predator population is kept rather low (small
X,,) by exogenous forces such as hunting by humans, the prey may be able to
provide food for the predator and still increase. In that case we cannot
reach the portion of the curve y(x) where s(x, y(x)) < 0. Discuss this situation.

Let’s relate our conclusions to the real world.

The main result of our study is a model which proposes a mechanism
for maintaining stability in a world that is changing. If the environment
varies a lot in a time period comparable to that in which x and y move
significantly toward equilibrium, our results will be useless. However,
infrequent changes can be viewed as occasional displacements from
equilibrium; for example, a change in the environment actually shifts the
location of the equilibrium point by changing the functions r and s; an
infrequent epidemic changes the value of x or y but leaves the equilibrium
point unchanged. If these displacements are not too large, our use of local
stability theory shows that the system will tend to return to equilibrium. If
the system possesses global stability, even large displacements will be damped
out. See R. M. May (1973).

Most natural systems involve many predator and prey species. If we
introduce one variable for each species, much more than the vague conditions
in (13) will be needed to study stability. What can be done about this? If the
prey species are sufficiently alike, we can lump them together as if they were
one species. Likewise for the predators. In this way it may be possible to
apply our conclusions to a system involving more than two species. Since
the model would only make predictions about the size of the lumped species
population, the individual populations may fluctuate wildly.

How can we gather data to test the model? Except in the physical
sciences or in carefully controlled experiments, it is usually difficult to
estimate first derivatives and nearlyimpossible to estimate higher derivatives.
Therefore we should not try to verify (11) and (13) directly. To check the model
we need some predictions that can feasibly be tested. The model predicts
that the population sizes will exhibit damped oscillations with nearly constant
periods if they are disturbed from equilibrium. If (4) is treated as an equality
and solved, it can be shown that the relative maxima of u and v differ by a
constant phase. As a result, we predict that the predator and prey cycles will
be out of phase with one another by about the same amount from cycle to
cycle. Of course, random disturbances cause variations, so neither of these
predictions is perfect. We now have two predictions which it may be feasible
to check: nearly constant period and nearly constant phase shift.

In the last section of their article N. S. Goel et al. (1971) briefly discuss
some experiments that have been done to check the model. The predictions
are usually correct.
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It is difficult to test the model on natural populations. The most well-
known candidate is the system consisting of the Canadian lynx and the snow-
shoe hare. Since it undergoes wild fluctuations, a global result is needed.
However, the hare population fluctuates in the absence of lynx predators, so a
simple lynx-hare model is wrong. Furthermore, the relative phases of the
lynx and hare fluctuations seem wrong (Gilpin, 1973). A more promising
model may be some sort of three-way system involving hares, vegetation,
and (exogenously) the weather. For further discussion of this problem see
L. B. Keith (1963).

We constder competition and symbiosis briefly. An important factor in
the competition situation is the existence of an equilibrium point. This is
discussed in Problem 3.3.3. For competition all the partial derivatives are
negative. There will be stability if and only if r,s, > s,r,. Roughly speaking,
this says that each species inhibits its own expansion more than the competing
species does.

We now turn our attention to symbiosis. Assume that, if one species
somehow increases, it will help the other to increase too. This means that
r, and s, are positive. It follows from (5) that d = 0, and so there is no
oscillation. Suppose we increase species 1 by a small percentage. Ignoring
self-limitation, this is essentially the same as decreasing species 2 by the same
percentage. Thus we expect xr, = —yr,, unless species 1 tends to limit itself.
Self-limitation makes r, an even larger negative number, and so |xr,| > yr,
in this case. If a similar result holds for the second species, the equilibrium
will be stable, because stability is equivalent to r,s, > s,7,.

Keynesian Economics

J. M. Keynes’s revolutionary work, The General Theory of Employment,
Interest and Money, has had a profound effect on economic theory and
practice, the latter beginning with Roosevelt’s New Deal politics during the
U.S. Depression of the 1930s. Here we study a crude bare bones model
adapted from G. Gandolfo (1971).

Let’s begin with a list of variables that relate to the national economy:

C, desired level of consumption.

I, desired level of capital investment.

D, total demand for goods.

Y, national income.

L, desired amount of money to be held as cash on hand.
M, amount of money available.

R, cost of money (interest rate).
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I'm sure you can add to the list, but we have enough for the time being. You
may wish to come back later and add more.

Before discussing these variables, a word about measurement is worth-
while. Some of these quantities may be hard to measure, partly because they
are imprecisely defined and partly because it is not clear what units we should
use. Although lack of precision is a serious problem, we ignore it here
because we can construct a model without it and because attempting to
eliminate it would involve us in deep economic considerations. We want to
measure our variables in real terms, whatever this slippery phrase means.
Economists use constant dollars, that is, dollars deflated to some standard
year such as 1950. We avoid problems by assuming that our variables are
somehow measured in constant dollars (except for R which is a ratio of
constant dollars). Note that R is negative if the rate charged by moneylenders
is less than the rate of inflation. All this lack of precision is really a serious
problem. If it is not resolved, two people may mean different things by the
same terms and so the discussion of models will become hopelessly muddled.
This may be part of the problem at the present time. People are arguing over
whether or not the current (1974) combination of high unemployment and
inflation (called stagflation) shows that Keynesian models cannot be used.

Back to our model.

Capital investment over a period of time increases the efficiency of labor.
To avoid this thorny problem, we deal with a short term model, that is,
one in which the change in total capital investment is not significant.
Technological development creates a similar problem which we also avoid
by using a short term model.

Having said what we won’t try to do, let’s see what we can do. Our list
of variables is too long to handle easily, so we need to know which are
exogenous (independent), which are endogenous (dependent), and which
we can ignore. Unfortunately, to do this sort of thing directly can be very
difficult; it is often easier to sneak up on it through discussion.

At equilibrium we will have D = Y and L = M, that is, what we want is
what we have. Since we are concerned with disequilibrium, the quantities
D — Y and L. — M are important. Since excessive demand for money drives
up the interest rate and excessive demand for goods causes production to
increase, we assume that

R =+L—-M), r(0)>0 0)

rO 0,
Y =yD - 7Y), y'(0) > 0, 1(0) = 0.

(16)
This suggests that it would be nice if we could take R and Y as the basic

variables, influencing their own growth through (16). Can we relate L, M, D,
and Y to R and Y ? Of course, Y presents no problem: Y = Y.
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Since M is determined by the government, it is an exogenous variable.
We assume that it is constant for the purposes of studying stability; however,
it is interesting to ask how changes in M influence the equilibrium value of Y;
that is, what is the sign of Y}, = 0Y/0M at equilibrium? Back to this later.

What about L? It seems reasonable to assume that Ly < O and Ly > O,
since people want to hold less cash as interest rates rise and the country needs
more cash for transactions as national income rises. This is far from an
explicit functional relationship, but we’ll see how far we can go with it. This
approach worked fairly well in the previous model.

To study the partial derivatives of D, it is convenient to break it into
two parts: D = C + I. The value of Cy should be zero or negative, since
higher interest rates should, if anything, be an inducement to save. Can you
defend the assumption Cy > 0? What about Iy < 0 and I, > 07? It follows
that Dy > 0 and Dy < 0. -

In summary,
(17) Li <0, Dy <0, I <0, Cr <0,
Ly >0, Dy > 0, Iy =0, Cy > 0.
We now compute the partial derivatives of r and y at equilibrium:
rg = r'(0)Lg < 0, ry =+ (0)Ly > 0,
yr =Y'(0)Dg <0,  yy =)'(0)(Dy — 1).

The sign of yy cannot be determined from (17). The stability conditions in
the theorem are

(18)

rr+yy <0 and rrRYy > Yy Vgr-

A sufficient, but not necessary, condition for this to hold is yy < 0. In words,

If the sensitivity of total demand to changes in the national income is
less than unity, our Keynesian model is locally stable.

(In economics “sensitivity” is a term for a partial derivative; the sensitivity
of A to B is the amount 4 changes when B changes one unit.) When does the
proposition stated above apply? We must have Cy < 1 to ensure Dy < 1.
What does Cy > 1 mean?Itsays that, as income increases, desired consump-
tion increases even faster; an unlikely possibility except in underdeveloped
countries where it can cause severe problems. (See Problem 3.3.5.) We
can’t use this argument on C + I, because consumers and investors do not
consult each other. However, I may not be at all sensitive to Y—it’s Y’ that
we can expect I to depend upon, since changes in Y stimulate additional
investment (if Y increases) or liquidation (if Y decreases). As a first approxima-
tion, Iy = 0, and so the hypothesis of the proposition is satisfied.
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Now suppose that we have stability. How will the equilibrium move in
response to government adjustment of the money supply? At equilibrium,
L =M and D — Y = 0. Using the chain rule to differentiate these with
respect to M we obtain

LRRM + Ly YM = 1 and DRRM + (DY - l)YM = 0

Thus

Dy -1 D
(19) Ry = YA and Y, = — —Aﬁ,
where

A = (Dy — 1)Lg — DgLy.

Comparing (18) and (19), we see that the stability condition rgyy > ryyg
is equivalent to A > 0. Since we are assuming stability, A > 0. By (17) and
(19), Y3, > 0. If the hypothesis in the proposition is true, R, < 0. Govern-
ment often tries to influence national income by adjusting M, for example, by
making more money available when unemployment is high. (Making money
available is not simply a matter of running the printing presses—this only
leads to inflation with little change in the money supply as measured in real
dollars. In the United States the Federal Reserve Board changes the per-
centage of cash reserves that member banks must hold.) What effect does
this have? Since Y;, > 0, this should increase national income. Because of our
assumption that we are dealing with the short term, national income can
increase only by an increase in labor. Hence unemployment should decrease.
The size of the change depends on the change in M and the size of Y.
If Dy is small, we see from (19) that changing M may not be a very effective
way to fight large scale unemployment.

Governments try other methods of influencing the economy, which may
be more effective than controlling M. Can you change the model to allow
for government control of R? What about direct attempts to influence D
through deficit spending? Can you extend the model to allow for effects of
taxation? Taxation can influence C and I by redistributing Y and by
providing tax incentives for investment.

More Complicated Situations

B. Noble (1971, Ch. 6) presents two engineering applications: one in hydro-
dynamics and the other in chemical engineering. I have limited the material
in this section to two first order equations. T. V. K&rmé&n and M. A. Biot
(1940, pp. 249-255) use two second order equations to discuss the stability
of an airplane. L. S. Pontryagin (1962, pp. 213-220) uses three equations to
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discuss the stability of a stream engine governor. N. Rashevsky (1964,
Part IV) uses various numbers of equations to discuss endocrine systems.
He assumes the equations are linear. Instead, one can apply local stability
theory to equations of a fairly general form.

PROBLEMS

Problems 1 and 2 deal with the predator-prey model, but do not use local
stability theory.

1. Study the existence of equilibria in the predator-prey model graphically
by plotting the two curves x’ = 0 and y' = 0. Limit yourself to x > 0
and y > 0, and use (13) to help determine slopes.

2. The gypsy moth caterpillar causes considerable damage to trees.
Consider a predator-prey model in which the prey is the gypsy moth
and the predator is one of several parasitic wasps that attack gypsy moth
caterpillars. Since the wasp larvae feed on gypsy moth caterpillars,
killing the caterpillar also kills the wasp larvae. A spray program is
instituted for gypsy moth caterpillars, using a general purpose
insecticide. Suppose that the result is an increase in the death rate of
gypsy moths and wasps by an amount p independent of the number
present.

(a) Is this a reasonable approximation? Why?

(b) Using the results of the previous problem, predict the effect of the
moth control program on the equilibrium size of the wasp popula-
tion. Show that more data are needed to predict the effect on the
moth population.

(¢) Let xo, and y, be the solutions of the equations r(x, y) — p =0
and s(x, y) — p = 0. Compute dx,/dp and dy,/dp and show that
they have the same signs as s, —r, and r, — s,, respectively,
without using (b).

(d) Use (c) and (13) to verify the graphical conclusions derived in (b).

(e) Suppose that the wasps have little effect on the size of the gypsy
moth population. This is probably the case when the gypsy moth
population suddenly explodes. (Why?) Show that in this case
spraying will cause the gypsy moth population to decrease.

(f) Suppose that the gypsy moth is limited by the parasite rather than
by intraspecies competition. This is probably the case when the
gypsy moth population is fairly stable. (Why?) Show that in this
case spraying will cause the gypsy moth population to increase.
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This model has rather interesting implications for insecticide
usage policies. The following experience agrees with the prediction
in (f). In 1868 the cottony cushion scale insect was introduced into the
United States from Australia and began to attack citrus groves. The
ladybird beetle was introduced afterward as a predator to control the
pest. When the citrus industry later tried to use DDT to reduce the scale
population further, the number of pests actually increased (N. S. Goel
et al, 1971). ]

Because the gypsy moth population undergoes wild swings, I have
doubts about the accuracy of the above predictions. However, the
model does indicate some problems that must be considered in planning
a control program.

(99 The following data refer to percentages of true fish in catches
brought into the port of Fiume, Italy. The remainder of the catch
(sharks, rays, etc.) were primarily predators which feed on true
fish. Can you explain the data? Note that during World War 1,
which ended in 1917, the amount of fishinig was below peacetime
levels. The data come from M. Braun (1975) who obtained them
from the work.of U. d’Ancona. ,

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

889, 799 T8 19% 64% T3% 84% 84% 85 897

Develop the symbiosis model for species interaction.

The Keynesian model involves a variety of functions. Can you describe
some of the graphs associated with them? In particular, what does the
Y-R phase plane look like? You need to graph D = Y and L = M in
the Y-R plane.

(a) Suppose we replace (16) in the Keynesian economics model by the
more general equations Y’ = y(D, Y) and R’ = r(L, M). What can
you say about the form of y and r? Do our conclusions remain
valid?

(b) In the Keynesian model we could include sensitivity of investors
to changesin Y and R, thatis, I(Y, R, Y', R). Can you say anything
useful about such a model?

In this problem we consider the armaments of two antagonistic

countries or blocs. Suppose that (1) provides an adequate description

of the amount of armaments x and y of the two antagonists. Allow for
maintenance costs and the pressure for higher or lower armament levels
provided by the opponent’s arms level. Discuss the behavior of the
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model. Can you interpret negative values for x and y? You may have
to introduce a new definition for x and y in place of armament level.
Perhaps something like the level of aggressiveness would work. How
much faith do you have in the predictions you have made?

The linear form of this model was introduced by Richardson. He
showed that it provided a good fit to European data from 1909 to the
outbreak of World War 1. See L. F. Richardson (1960) or T. L. Saaty
(1968, pp. 46-48) for further discussion.

Apply the methods of this section to the group dynamics model of
Section 3.3.

If various chemicals are reacting in a closed system (i.e., nothing can
be removed or added), reactions often stop before any of the chemicals
are completely exhausted. Can this stable equilibrium be explained
simply in terms of the basic model for chemical reactions? [By “basic
model” I mean the mass action model developed below in (b).] Let the
various chemicals present be denoted by X;. Suppose that m; molecules
of X, plus m, molecules of X,, and so on, can react to produce n,
molecules of X; plus n, molecules of X,, and so on. We assume that
the reaction is reversible. This is written in the form

Z miX,- — Z n,»X,- .
In (a) through (c), we assume that this is the only reaction that is
occurring.
(a) Let C{t) be the concentration of chemical X; at time t. Show that
Ci(t) = C/0) + (n; — m)x(t),

where x(t) is some function independent of i. How can x(t) be
interpreted?

(b) Suppose that a reaction can occur only if m; molecules of X; all
collide with one another simultaneously. Conclude that the
forward reaction (—) proceeds at the rate

kf H Ci(t)mia

where k, is a constant called the rate constant for the forward
reaction. Let k, be the rate constant for the backward reaction.
Show that the equation for the reaction is

x(t) = ky ]_[ C{ty™ — ky ]_[ C(tm.
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(¢) Conclude that the chemicals are in equilibrium if and only if
(20) kf l_[ C,'(t)mi - kb l—l Ci(t)ni.

Often several reactions occur at once. We want to show that the
equilibrium points determined by (20) are locally stable. Only two
simultaneous reactions are considered because of the limitations im-
posed in this section; however, the approach and results hold for any
number of reactions. :

(d) Repeat the analysis in (a) through (c¢) assuming that the two
reactions are '
Zmixi — Znixis

Z piX; —— Z q: X

with rate constants k., k,, r;, and r,; introduce x(t) and y(t)
associated with these reactions so that

Ci(t) = C0) + (m; — m)x(t) + (q; — p)y(®),
x'(t) = ky H City™ — ky H Ci(t)"‘,

y(0) = r, T oy =, T] Clo™

(e) Denote the four products, including the rate constants, appearing
in the above formulas by n(m), n(n), n(p), and n(q), respectively.
Show that equilibrium occurs if and only if n(m) = n(n) and

n(p) = n(g).
(f) Write x' = f(x, y)and y' = g(x, y). Show that at equilibrium
=ty 3,

f)- — —(m) Z (m; — ny)(p; — ('Ii)’

Ci(t)
gx = —n(p) 3 B =9
g, = —7(p) Z (pic—_(;)h) .

(9) Showthat f, + g, is negative. Use the Cauchy—-Schwartzinequality
QCWHR ZH = L wWiz)?
to show that f.g, > f,gx > O.
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(h) Discuss the behavior of the reactions near equilibrium.

D. Shear (1967) establishes global stability under fairly general
conditions.

Apply the methods of this section to the graduate student model in
Problem 3.3.2.

In this problem you will study models for gonorrhea epidemics. For
more material on epidemics see N. T. J. Bailey (1976). Gonorrhea is
spread by sexual intercourse, takes 3 to 7 days to incubate, and can be
cured by the use of antibiotics. Furthermore, there is no evidence that
a person ever develops immunity.

(a) Let x be the fraction of men who are infected and let f be the
fraction of men who are promiscuous. Let X and F be the cor-
responding quantities for women. Discuss the model -

x'= —ax + b(f — x)X,
X' = —AX + B(F — X)x,

where a, b, A, and B are constants. Interpret the constants.

(b) What are the equilibrium points of this model? Which ones are
stable? Provide phase plane sketches. You should find that the
number (a/bf)(A/BF) is critical. When will there be a continual
epidemic?

(c) Interpret and discuss the effects of changes in the frequency of
promiscuous intercourse, the fraction of the population (of either
sex) that is promiscuous, and the speed of curing infections.

(d) What advice would you give to public health officials who wished
to stem a gonorrhea epidemic in an affluent country like the United
States? In a place like Hong Kong?

(e) Develop a model like the above for a population of male homo-
sexuals. Such a model may be applicable to diseases not linked
to sex, for examples, measles and typhoid. See Problem 8.1.3.

(f) Develop a less specific model; for example,

x' = g(x, X) and X' = G(x, X),

with minimal assumptions about g and G.

(99 Can you apply any of the above ideas to diseases that require
two hosts? An example is malaria which is transmitted by
mosquitoes.
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9.3. DIFFERENTIAL DIFFERENCE EQUATIONS

We now briefly consider equations involving both derivatives and time lags.
As in the previous section, we expand the equation(s) around an equilibrium
point to obtain a homogeneous linear approximation. These approximations
can be studied with Laplace transforms. We describe an alternative approach
which is equivalent to this but does not require a knowledge of Laplace
transforms. ,

For simplicity assume that there is only one equation in one endogenous
variable. Write Taylor’s theorem in the form

ey fe+o=3 &

n=0 n!

[ = ePf(),

where D stands for d/dt. We could use this, for example, to rewrite f'(t) =
bf(t — 1) — mf(t)as (D — be™® + m)f(t) = 0. In this way any homogeneous
linear differential difference equation can be replaced by an infinite order
differential equation L(D) f(t) = 0, where the function L is a polynomial in D
and e for various values of 7. If the equation was of finite order, the general
solution would be a linear combination of solutions of the form "¢, where r
is a root of L(r) = 0 of multiplicity greater than n. The stability of the
equation could then be determined by looking at the roots of L(r) = 0.
(Section 9.2 dealt with quadratic L, because eliminating v and v’ from (4)
leads to one second order differential equation.) This method also works
for the infinite order equation.

Since L(r) = 0 is a transcendental equation, studying its roots is often
very difficult. A computer may be essential. There are usually an infinite
number of roots, so it is fairly likely that at least one will have a positive real
part. Hence local instability is common.

I can’t resist the sideremark that (21) can also be used to derive numerical
integration and differentiation formulas. For examples see L. P. Ford (1955,
Ch. 8).

The Dynamics of Car Following

Traffic flow has become the subject of mathematical modeling in recent
years. Three authors who discuss it are W. D. Ashton (1966), F. A. Haight
(1963), and L. J. Pignataro (1973). Sometimes cars are considered individ-
ually, and systems of equations or probabilistic models are developed. At
other times traffic is treated as a fluid, and hydrodynamic techniques are
used. Among the topics considered in traffic flow are the motion of traffic
on the open road, bottlenecks, and effects of intersections.
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How do drivers in a line of cars behave? There is a limit to how fast
a driver can react, but too much delay in reacting causes collisions. Are the
delays in drivers’ reactions near the danger level? The model is adapted
from R. Herman et al. (1959) and R. E. Chandler et al. (1958), which use
the Laplace transform method. That approach is adapted for use as a student
project by E. A. Bender and L. P. Neuwirth (1973). Related material appears
in the first part of J. Almond (1965).

The driver of a car cannot directly control the speed of the vehicle.
Instead, he or she controls its acceleration. Thus we expect to derive a
formula for the acceleration as a function of the driver’s sensitivity and the
stimulus of the environment. Historically the model has been taken to be of
the form

(22) Acceleration = Sensitivity x Stimulus.

Since we have not defined what we mean by either “sensitivity” or “stimulus,”
the above formula has no content. Rather than attempt to give meaning to
the terms “sensitivity” and “stimulus,” we consider directly the physical
factors that enter into the driver’s reaction.

The driver’s reaction (acceleration) depends on what he or she senses
in the environment. The things that can be perceived most easily are the
car’s speed, its speed relative to other cars in the line, and the space between
the car and adjacent cars. As an approximation, we suppose that the only
relevant car is the one directly ahead of the driver. If x,, denotes the position
of the nth car, we can write

(23) Acceleration = f(x;, Xp—1 — X, Xp—1 — Xp).

In order to proceed it is necessary to say something about the nature of
f. Experimentation seems to indicate that the most important factor is the
relative velocity. To begin with we construct the simplest possible model
using this: Acceleration 1s directly proportional to the relative velocity.

Thereis a delay, cailed the reaction time, between a change in the environ-
ment and the driver’s response. It has been observed to be of the same order
of magnitude as the time it takes the vehicle to cover the distance between
it and the car ahead. Hence we expect the reaction time to be an important
variable. To check this we compare the resulting model with one lacking a
reaction time.

Let 7, be the reaction time of the nth driver. The above discussion leads
to the basic equation

24) Xt + 1) = Au[x,-1(8) — x,(0)],

where 4, is a constant measuring the strength of the nth driver’s response.
Chandler et al. (1958) conducted an experiment on the General Motors
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test track in which one driver followed another at what was considered to be a
minimum safe distance. Equation 24 gave a good fit for most of the drivers
when statistical methods were used to estimate A and t. These parameter
estimates are given in Table 1.

Table 1 Driver Reaction Parameters.

Driver T V A

Number (seconds) (sec™ 1) T4

1 1.4 0.74 1.04
2 1.0 0.44 0.44
3 L.5 0.34 0.51
4 1.5 0.32 0.48
5 1.7 0.38 0.65
6 1.1 0.17 0.19
7 22 0.32 0.70
8 2.0 0.23 0.46

Source: Chandler et al. (1958).

We can rewrite (24) in operator notation as

De™P
1+ T Uy = Up—15

n

where v = x' is the velocity of the car. Using the subscript 0 to denote the
lead car, we have

25) [1‘[ <1 4D etkDﬂvn = v,.
k=1 Z’k

We get our stability information from this equation.

To apply local stability theory we assume that vy(t) is given and that a
stable particular solution v,,(t) exists and has been determined. The existence
of such a solution is a global problem. Local stability theory can only tell us
whether a driver’s behavior stabilizes or becomes wilder when he deviates
slightly from v,,(t). The general solution of the linear equation (25) is the
particular solution plus the general solution of the homogeneous equation.

To study the homogeneous equation, we must find the roots r of

(26) H<1+”” >=0.
k=1 /q'k
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The following fact is proved by Herman et al. (1959).

The roots of ze* + C = 0 all have negative real parts if and only if
0 < C < /2. If in addition 0 < C < 1/e, the root with the largest real
part is real.

Setting z = 7,¥ and C = 1,4, transforms each factor of (26) to the form
ze® + C. This proves that the motion of the nth car is stable if and only if
T A < /2 = 1.57for 1 < k < n. For a long time interval, the root with the
largest real part contributes the dominant exponential term to the solution
of (24). Hence the oscillatory part is highly damped if 7,4, < 1/e = 0.368
for 1 < k < n. All the drivers in Table 1 satisfy the stability criterion, but
only one of them satisfies 7, 4, < 0.368.

From the preceding discussion, we see that a slight change in speed
propagates down the line of cars, traveling from one car to the next after
7, seconds. This can be viewed as a wave moving down the line of cars. From
this point of view we can ask another question related to stability: What
happens to the amplitude of this wave as it propagates down the line of
cars? Each car individually may be stable, but the wave may increase in
amplitude as it moves, thus leading to instability. A fluid dynamics model
predicts the formation of a shock wave of acceleration or deceleration which
either dies out or builds up to a maximum amplitude as it moves along the
line of cars. We do not deal with this here. For a discussion see any of the
books mentioned above. See also Problem 1 for a discussion of this stability
question.

Let us compare the results involving time delay with a model in which
reactions are instantaneous; that is, 7, = 0. Equation 26 reduces to

" r
1+~ =0
kUI ( )Lk)

The roots of this are » = — A,. Thus the model without time lags is always
stable and nonoscillatory. As the minimum 4, increases, the roots become
more negative. This increases stability, because the general solution is a
linear combination of terms like ¥"e ™ **. The situation in the time delay model
is just the reverse of this: Stability tends to decrease as A, increases. Time
delays are obviously important.

Equation (24)is a rather severe specialization of (23). Let us consider (23)
and see how much we have to specialize it to obtain reasonable results. We
assume there are only two carsand that the lead car has a constant velocity v,
For simplicity we drop the subscript 1.
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Because we have considered only stability of autonomous systems, we
must eliminate the explicit time dependence of the positions. Let us adopt
the convention that distance is measured from x,(0). Instead of the absolute
position x of the second car, we consider the separation between the two cars.
It is given by s = tv, — x. Equation (23) becomes

s"(t + 1) = f[=5(t) + vy, S(1), s(t)].

At the equilibrium separation s, we have s" = 0. Hence f(v,, 0, s,) = 0.
Suppose that this equation has a unique root. Expanding f about this point
and neglecting terms beyond the linear ones, we have

D*¢Pu = (f; — fi)Du + fiu,

where u = s — s, and the partial derivatives f;, f,, and f3 evaluated at
(vg, 0, s,). Hence we must look at the roots of

rle” = (f, — fur + f3.

This can be rewritten as

(27) eF = >

where
a=1(f — fi) /3=72f3, and z = 1r.

Since experiments indicate that the dominant effect is due to relative
velocity, it is reasonable to suppose that « is negative (not positive, since s
measures separation). If the velocities are held fixed and the separation is
increased, we can expect the driver to accelerate to close the gap. Hence,
S will be negative.

The study of this model cannot be completed, because we do not know
what the roots of (27) are. If we want to proceed further, we should first
try to study (27) analytically. If this fails, we can turn to numerical study
using a computer. In view of the data in Table 1, it is reasonable to carry out
such calculations with « near —1. Since the effect of § is probably less than
the effect of o, it is reasonable to take 5 to be nearer to zero than o.

Although (27) seems to be a general study of the problem, it has a severe
limitation: We assumed that f is differentiable. If a model builder is not
careful, he can easily let this sort of assumption slip by, since most functions
are in some sense “well behaved.” Our assumption that f is differentiable
near equilibrium implies that, except for sign, a driver responds in the same
manner to a small negative relative velocity as he does to a small positive
relative velocity. Actually, the acceleration and deceleration responses may



198 LOCAL STABILITY THEORY

be quite different because of the driver’s psychology, the design of the vehicle,
or both. This has been studied by G. F. Newell (1962).

If the main difference is in reaction time, the waves of acceleration and
deceleration will move down the line at different speeds. It seems reasonable
that deceleration will move faster. If the lead car first accelerates and then
decelerates to its original speed, the two waves will eventually cancel each
other out. However, if the deceleration occurs first, the acceleration wave will
lag further and further behind the deceleration wave. This may provide an
explanation for some of the mysterious slowdowns that occur on freeways.

PROBLEMS

1. We want to study the amplitude of a disturbance as it moves along a
line of cars. For simplicity we assume that the acceleration of the first
car is proportional to sin (wt). This is a mathematically convenient
assumption which provides nonzero acceleration with no net change in
velocity. It is not as restrictive as it appears at first,because we can expand
vo(t) in a Fourier series and, by linearity, add the solutions obtained for
each term separately.

(@) Use (25) and the fact that vy(t) — vo(0) is the real part of Ae'
to show that v,(t) — v4(0) is the real part of

n - o\ — 1
Aeiwt I—I <1 4 iwe > )
A

k=1

Hint: Induct on n.
(b) Suppose that all drivers are the same, so that 4, = A1 and 7, = 7 for
all k. Deduce that the amplitude of the disturbance decreases as n
increases if and only if
iweiwt

A

‘ 1+ > 1.

(¢) Show that the above holds for all w if and only if it holds as w — O,
and that this yields the condition At > 3.

(d) Discuss this result in connection with Table 1.

2. Experiments indicate that, when the separation of the vehicles varies
greatly, a more accurate model is provided by replacing 4, in (24) by
/[ x(t) — x,_1(t)], where u, is a constant. Discuss the local stability
of this model.

3. The following problems are phrased rather generally. Be as specific
as you must to obtain results about stability, but try to avoid unnecessary
assumptions.
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(@) Model the growth of a single population. Allow a time delay due
to the need to mature before being able to reproduce.

(b) Same as in (a), but this time allow a time delay due to identical life
spans for all members of the population. What about accidental
death?

(¢) Combine (a) and (b) if possible.

(d) Consider a herbivore model with a time delay built in to allow for
plant recovery and perhaps delay(s) associated with the herbivore
life cycle, as in (a) and (b).

4. Discuss the problem of controlling the temperature in a room as a
function of how long it takes the heating unit to respond to the thermo-
stat. For example, forced air heaters respond quickly, while steam
radiators take a fairly long time.

9.4. COMMENTS ON GLOBAL METHODS

As already remarked, I consider this topic very briefly. I hope that you will
get the flavor of the subject from this short discussion so that you will have
some idea of the sort of problems these tools can attack.

In the physical sciences, conservation laws play an important role.
A conservation law can be associated with some systems of differential
equations by introducing a quantity whose time derivative is zero. For
example, if x” = f(x), define
(x

/)2 x
5 ~[)f(u)du.

Then dE/dt = [x" — f(x)]x' = 0, and so E(t) is constant. In other words,
if the force acting on an object depends only on the position of the object,
we can define an energy E which is conserved.

Let f be a restoring force; that is, f(x) and x have opposite signs. Since

(28) Et) =

x'?

2

it follows from (28) that both of these are bounded by E and that E > 0.
Thus the speed | x'| is bounded. If the integrals

>0 and —ff(u)duZO,
0

J(: oof(u) du and fiof(u) du

are infinite, the position x is also bounded.
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The pendulum equation (6) has the form 6" = f(0) — h(w), where h
is a frictional force and f is a restoring force provided —n < 6 < x. The sign
of h(w) is the same as the sign of w. Consider E(t) defined by (28) with x = 6.
By the previous paragraph, we have E(t) > 0. However, E(t) is not constant,
since

E(t)=[0" — f()]o = —h(w)w <0,

with equality if and only if w = 0. Thus E(t) decreases toward 0 as t — co.
Mathematically we say that there is global stability. Physically we say that
energy loss due to friction causes the pendulum to slow down. F. Brauer
(1972) discusses the motion of a pendulum when time is allowed to enter the
differential equation explicitly.

The van der Pol equation,

(29) W@ — Dl +u=0 >0,

is one of the classic limit cycle problems. It arises in the study of sustained
nonlinear oscillations in vacuum tubes. You should verify that the only
equilibrium point is u = 0 and that it is unstable and oscillatory. If we
approximate sin § by 8 in the damped pendulum model in Section 9.2, it
will look very much like the van der Pol equation, but (6) will be replaced
by the term u(u? — 1)u’. Intuitively, if u? > 1, this term will act like a frictional
force and cause damping, while if u? < 1, it will act to increase |u'|. Con-
sequently u(t) approaches a limit cycle. Diagrams of the limit cycle for various
values of p are given by W. E. Boyce and R. C. DiPrima (1969, p. 418).

The Poincaré-Bendixson theorem can be used to prove the intuitive
result of the last paragraph. It can be stated as follows.

THEOREM. Ifthereis a bounded region D in the x-y plane such that any
solution to the system

x'=f(x,y) and )y =g(x,y)

that starts in the region remains in it, the region contains either a stable
equilibrium point or a limit cycle.

Warning: This theorem does not generalize to three dimensions.

To apply the theorem to (29),set x = u,y = ', f(x, y) = y,and g(x, y) =
—x — p(x? — 1)y. Determining a region D that satisfies the theorem is not
easy. You may wish to try it.

The study of global stability and limit cycles is more relevant in the
life and social sciences than the study of conserved quantities. Although limit
cycles are fairly common in models having nonlinear equations, they
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cannot occur if all the equations are linear. Hence, extreme caution should be
used in modeling an essentially nonlinear phenomenon by means of a linear
approximation. This is fine for studying local behavior, but it is a dangerous
practice if global results are desired.

For some biological applications of global methods see J. Cronin
(1977), R. H. May (1973) and T. Pavlidis (1973). For some economic applica-
tions see G. Gandolfo (1971, pp. 375-385, 421-465). Although mathematical
psychology seems to be a fertile field for.such methods, I am not aware of
any such applications.

PROBLEM

1. Wereturn to the predator—prey model in Section 9.2. See the discussion
there. We do not wish to assume all of (13). Which do you think are the
weakest assumptions? Set up some reasonable conditions to ensure
that for some point (x*, y*) on r(x, y) = 0 the region

D= {(x,»[0<x<x* and 0<y<y*

satisfies the Poincaré—Bendixson theorem. Draw conclusions from this.



CHAPTER 10

STOCHASTIC MODELS

You may wish to refer to the Appendix since it contains a summary of the
probabilistic concepts used in this chapter. Unlike most of the earlier
material, this discussion definitely requires a bit more background than 2
years of college mathematics. However, I couldn’t resist the temptation to
add these models, and I think they can be read with profit even if you don’t
fully understand the mathematics.

Radioactive Decay

The basic premise of the elementary theory of radioactive decay is that atoms
have no “memory”; that is, the probability that an atom will decay during
a given time interval depends only on the length of the interval and the
number of neutrons and protons in the atom. In some situations, such as a
chain reaction, an atom changes by absorbing a particle given off by another
atom. When this doesn’t happen, the decay of one atom does not affect the
surrounding atoms. We consider only this case. It follows that the average
rate of decay at time ¢ is proportional to N(t), the total number of undecayed
atoms remaining. When N(¢) is large, it is reasonable to expect that most
radioactive samples behave pretty much like the average. This leads to the

deterministic model N'(t) = —rN(t), where r is the rate of decay. The solution
to this equation is
(1) N() = Nge™".

This is fine as an approximation when the number of atoms is large, but
when N is small, the predictions of (1) are nonsense. For example, if Ny = 5,
when t = 2/r we have N(t) = 5/e? ~ 2. Two-thirds of an atom is nonsense.
Can we construct a model that doesn’t yield such nonsense?

Consider a single atom. Let T be a random variable equal to the length
of time we must wait for the atom to decay. The basic assumption that an

202
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atom has no memory means that, if we have waited x minutes and the atom
has not decayed, our estimate of how much longer we must wait is the same
as if we had just started to observe. In mathematical language this can be
written

Pr{T>t+x|T>x}=Pr{T >t}

If G = 1 — F, where F is the distribution function for T, we can rewrite this
as G(t + x)/G(x) = G(t). In other words, G(t + x) = G(x)G(¢t). It is well
known that this implies that G(¢) is e~ * for some A > 0. We prove this under
the assumption that F is differentiable at 0. The derivative of G(¢) is

60 = lim ZEX) =60 _ G600,

x—0 X
since G(t + x) = G(x)G(t) and G(0) =1 — F(0) = 1. With 1 = —G'(0), we
obtain the desired result. The distribution function F(t) = 1 — e~ * is called
the exponential distribution and is associated with “memoryless” situations.
The probability that an atom has not decayed by time t isjust 1 — F(t) =
G(t), which is (1) with N, = 1. This is not surprising. Since G(¢) is the prob-
ability that any given atom has not decayed by time t, N, G(t) is the expected
number of undecayed atoms at time t. Thus A is the decay rate, and (1) is just
the average path of the decay process.
How closely is the average path followed? Associate with the ith atom
a random variable Y; = Y{(t) which is 1 if the atom is undecayed at time ¢
and 0 otherwise. Then Pr {Y; = 1} = G(¢). The Y; are independent by our
assumption that the decay rate of an atom is independent of its surroundings.
Hence the random variable

Y=YV +Y, 4+ -+ T
has mean w and variance o2, where

5 p= g+ py + o= NoG(t) = Noe™ ™,
@ o = o2 4 ol 4= NoGO[1 — Glo)]

Since ¢ provides a measure of typical deviation from the mean, o/u gives
a measure of the typical percentage error involved in using (1). It is known as
the coefficient of variation. By (2),

1 — G(t)

O- —_—

u NoG(t)’
which is small provided N, G(t), the expected number of undecayed atoms
at time t, is large. A gram of matter contains more than 10*! atoms, so (1)
is usually a very good approximation.
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There are some cases in which the coefficient of variation ¢/u may be
significant. When a new radioactive isotope is produced in a particle
accelerator, the number of atoms may be relatively small. This causes
problems in estimating 4. In population biology, growth models like (1)
are used. The population size N, may sometimes be sufficiently small for
random fluctuations to be important.

Is it possible to obtain an exponential decay curve when we have a
mixture of atoms with different decay rates? The answer to this question is no.
Suppose we start out with a mixture of things that are decaying exponentially
at various rates A. If F(l) is the fraction of the original mixture with A < [,
the expected amount of the mixture undecayed at time ¢ is

) = je dF(),

which can be shown to have the form e = if and only if F(I) equalsOforl < k
and 1 for [ > k. You may wish to try it.

Optimal Facility Location

Suppose you are faced with the problem of finding the best locations for
certain facilities. To be specific and simple, consider fire stations in a large,
uniform city with rectangular blocks. How can you measure the relative
merit of a siting plan? How can you find the one that is best or close to best?
This model is adapted from R. C. Larson and K. A. Stevenson (1972).

Suppose t is the travel time between a station and a fire. We assume that,
as t increases, the situation deteriorates. Thus if siting plan A locates stations
so that every point can be reached at least as quickly as in siting plan B, then
A is at least as good as B. What happens if some points take longer to reach
under A and others take longer under B? Various possibilities exist; for
example, we could compare the average travel times or the average of the
square of the travel times. We assume there exists some function u(t) called
the utility, and that we want to maximize the average of u(t) over all points
in the city. [Utility theory is discussed in many books. I recommend R. D.
Luce and H. Raiffa (1958). For the two cases just mentioned we could take
u(t) = —t and u(r) = —>.] What do you think of this assumption? If you
don’t like it, can you suggest a useful alternative? Since we’re going to assume
u(t), think about the question of what u(t) should be.

By the assumption of uniformity of the city, ¢ is roughly a linear function
of travel distance s. (It is only roughly a function, because turning corners
may slow the trucks down.) Let’s write f(s) = —u(t). Then we wish to
minimize the average value of f.
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Let's assume that the city streets form a rectangular grid and set up
coordinate axes parallel to the streets. The travel distance between (x;, ;)
and (x,, y,) Is

Ix; — x2| + [y — yal.
Prove this.

Suppose that there are nstationsand that the city area is n4. The optimal
solution is to divide the city into n equal diamonds with a station at the center
of each. Of course, the geometry of the city may prevent this, in which case
the best siting won’t be as good as the ‘estimate we’re working out. If the
area of each of the diamonds is 4, the region of such a diamond is given by

D = {(x, y)ilxl + yl < /%}

and the average value of f is given by

VA2
) A fjf(lxu Iyl dxdy = A~ (s)ds ds.
D

0

Now suppose that the stations are distributed at random. Since we
should easily be able to do better than random, this gives us an upper bound
on what the average value of f is. If this is close to (3), we can conclude that
laborious attempts at optimization will be practically useless; but if it differs
considerably from (3), we can conclude that care needs to be taken in siting
the stations. We must compute the expected value of the average value of
f |

What is the probability that the distance between a random point in the
city and the nearest station is at most s? This is the same as the probability
that a station will lie in the diamond-shaped region of area « = 2s* sur-
rounding the point. If a station is placed at random, it will lie outside a
region of area o with probability 1 — a/nA, since the total area of the city is
nA. Thus the probability that no station will lie in the region is

o n
1 ——) xe 94

It follows that the probability that the closest station will lie at a distance
between s and s + ds is
d[1 — (1 —o/nA)"] dl — e *) J 4s

__ _—2s2/4
=~ s=e —ds,
ds ds A

since & = 2s*. We should average f(s) times the probability over the entire
area of the city. This leads to an integral. Unfortunately, the approximation
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we have just given is poor when o is a significant fraction of the total area of the
city. If f(s) does not grow exponentially with s, it will not matter because the
integrand will be small. The analog to (3) is approximately

4) A1 f:f(s)e* 25’144 s,

provided the integrand becomes insignificant when 2s? approaches the total
area of the city. This condition is satisfied for the f we consider, provided n
is greater than about 5. (You should check this out when we are studying
a particular f))

A partial check on our mathematics to date is provided by the fact that
(3) and (4) both have the value ¢ when f(s) = c.

Suppose we wish to minimize the average travel time. We set f(s) = vs,
where v is velocity. Actually, travel time grows slower than linearly with s
over much of the range of s for fire engines in New York City (P. Kolesar,
1975; P. Kolesar et al., 1975). Since the travel distances for random siting
tend to be longer than for the best siting, it follows that the ratio between
random siting and best siting travel averages will be less than what we
obtain.

From (3) we have

VAR V24
(5) A7 J dps? ds = N2
0 3
and from (4),
© 2 ® e A
(6) A1 J e~ 2 14ps? ds = UJ e M ds =y L,
0 0 \ 8

where the first equality is due to integration by parts and the second to the

formula
fw —rx2 dx = &
. e X = 4rl

The ratio of (5) to (6) is 3ﬁ/4 = 1.329; that is, a random siting is about
one-third worse than the best possible siting.

We can try other functions for f(s). By the discussion of the forest fire
model in Section 4.1, it seems reasonable to assume that f is a quadratic
function of time with nonnegative coefficients. Hence f(s) = as* + bs + ¢,
with a, b, ¢ > 0, gives an upper bound. We obtain from (3) and (4), re-
spectively,
aA+b 2A+c and a—4+b\/—

ad TA 4
4 3 2 8 ¢
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You should be able to fill in the details. The largest value of the ratio occurs
when b = ¢ = 0. Theratio then equals 2. Thuscarefulsiting is more significant
for a quadratic f than for a linear f.

The above results suggest that the siting of fire stations cannot be
improved very much over a quick commonsense siting. Since (3) provides
a lower bound on what can be achieved, any given siting can always be
checked against the ideal fairly easily.

Perhaps you have already raised the objection that for something like
fire fighting any improvement in siting is important. I agree, but remember
that we are using a model based on an idealized city, so our results are only
approximate. Hence the best siting for an idealized city is probably not the
best siting for a real city. We can expect the two to be close but, if two site
plans I and II are such that I is a bit better than II in the ideal city. It may
well be that ITis a bit better than I in the real city. You may wish to think about
this a bit more: How can the model be made more realistic? What data should
you collect to help decide where fire stations should be located in a real city?
How would you go about determining sites? How is this affected by the fact
that many fire stations already exist?

Distribution of Particle Sizes

If you observe the size distribution of particles in clay, material ground in a
mill, or pebbles on a beach, you will probably notice that the distributions
tend to have a similar shape. This suggests the existence of a common under-
lying principle. I would like to know what it is, so I'll make a proposal,
model it, and test the model against the data. A successful model won’t
prove my proposal, but at least it will make it seem more likely.

It seems reasonable to suppose that particle size has been determined
by a large number of small random events. Because of the central limit
theorem, it is natural to look for a normal distribution. Unfortunately, the
distribution or particle sizes tends to be skewed and so cannot be normal.
Two main distribution laws have been proposed:

log x
Log normal law: F(x) oc J e~ t—m?/202 4y
-

(7)

rxn

Rosin’slaw: 1 — F(x) oc e”

We discuss the log normal law here. The log normal distribution is
discussed by J. Aitchison and J.*A. C. Brown (1963) and applied by them to a
variety of economic problems. The derivation given below is similar to
B. Epstein’s (1947). A more recent discussion of the particle size problem,
with references to the literature, is given by G. V. Middleton (1970).
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People have tried to fit other curves to a variety of size data, for example,
the relative biomass of various species in a region, relative sizes of cities,
and sizes of words. (The Biomass is the weight of the organisms.) Since these
data are discrete, they are usually rearranged so that the items are in order of
size. We then seek a model that predicts the (relative) size of the nth item in
the list. See J. E. Cohen (1966), B. Mandelbrot (1965), and H. Simon (1955)
for examples.

The size distribution of particles is assumed to be the result of many
small changes which we will call (breakage) events. An example of an event is a
wave hitting the shore. Nothing may happen during the event, or several
particles may be broken and abraded. This is such a general framework that
we can say very little about it.

In probability theory the basic tools for handling a long sequence of
random events are limit theorems. We would like to use a limit theorem here
if possible. To apply such theorems it is necessary to know (1) that no single
event has a big effect, (2) that the events are more or less independent, and (3)
that the events combine in a simple fashion.

The first condition certainly seems reasonable when averaged over all
particles.

What about the second condition? Independence is closely related to
the idea that knowing the past history of a particle is of no help in predicting
what will happen to it. If the particles are made of two very different materials
like wood and glass, this is not likely to be true. If the material is all fairly
similar, this seems to be a fairly reasonable assumption. We assume that the
material is all fairly similar.

The third condition is rather vague. I don’t see any way to sharpen it
without saying more than should be stated. What we do now is try to describe
the erosion procedure and see where it leads us. Let N,(x) be the number
of particles of size at most x after the kth random breakage event. We haven’t
yet said what we mean by “size.” It could be volume, weight, a characteristic
linear dimension, and so on. Let’s postpone making a choice until it is
useful to do so.

In the example on page 202, we saw that, when we dealt with a large
number of particles, the number of undecayed particles was close to the aver-
age number. Although this sort of behavior is quite common, it is often hard
to prove that it is occurring in some particular case. It seems reasonable to
suppose that it holds in the present situation, but it does not seem easy to
prove; therefore we simply assume that it is true. Let the average number of
particles of size at most x be M, (x) = E(N,(x)). We study this as if it were
an exact distribution.

Let B,(y|x) be the average number of particles of size at most y that
we expect to obtain from a particle of size x during the kth breakage event. It
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follows from our independence assumption that B, does not depend on any
property of an individual particle except its present state. We assume that the

size of the particle contains all the information about the state of a random
particle relevant to breakage. Of course, this is not correct, since a long, thin
particle is more likely to break than a round particle of the same size. Hence
this is really an assumption that we can just look at the average behavior
of particles of a given size. It is easy to show that

0 -

® M) = | By ()

As it stands, (8) is too general for us to try to apply a limit theorem. The
following is the key assumption: The breakage event is independent of scale.
This means that B,(y|x) depends only on the ratio y/x. This is not always a
reasonable assumption. Many breakage events tend to favor the breakage of
larger particles. In crushing, smaller particles are protected because their
larger neighbors bear the brunt of the crushing. If particles are broken by
some sort of throwing action, a scale argument shows that the smaller
particles are less likely to break: The strength of a rock tends to vary with its
cross section. The energy expended on a rock varies either with the cross
section or with the weight, depending on the situation. If it varies with weight,
energy or strength increases with size, and so larger rocks are more likely
to break. These arguments indicate that our model may tend to overestimate
the number of large particles.

Setting B,(y|x) = Ci(y/x), we can rewrite (8) in the form

0 X

) M) = f mckG)M;_l(x) dx.

Let X, and Y, be random variables with distribution functions proportional
to M, and C,, respectively. If (9) is normalized by dividing both sides by
M (00), the result is the formula for the distribution function of the product
of two independent random variables. Hence X, = Y, X,_; which leads to

Xi= 1Y, - LY Xo.

Since the Y are independent and no single event has a large effect, it follows
from the central limit theorem that log X, tends to be normally distributed
for large k. Thus

Pr {X, < x} = Pr {log X, < log x}

log x
(10) ~ 1 J ¢ e_(t—lt)2/20'2 dt
0/2n J-w

The parameters u and o2 are the mean and variance of log X, not X.
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Now let’s return to the problem of what we mean by “size.” It doesn’t
matter whether we mean weight, a linear dimension, or a similar measure,
because all powers of a log normally distributed random variable are also
log normally distributed. Let’s prove this. Suppose that X is log normally
distributed with distribution function (7). Then

Pr{X" <y} =Pr{X <y}

log y/r
oC f e—(x—u)z/Za2 dx
— 00
logy
— (1 — 2 2
OCJ‘ e (t=rp)2/2(|r|o) dt,
- o0

where t = rx. We have shown that replacing X by X" changes (u, o) to
(ru, |r|o).

Statistics are often collected by passing particles through a sieve and
tabulating the percentage by weight that passes through sieves with various
mesh sizes. Our model describes particles of different sizes by number,
not be weight. We must find out how to connect these results. We show that
the distribution by weight is log normal if and only if the distribution by
number is.

To study this, we need a formula for the moments of the log normal
distribution A(x; y, o) which is defined by (10). We have

) Yy
J x'A'(x; u, 0)dx = J e" N (x; p, a) dx
0 0

Yy
2
= gt ro)r/2 f AN(x; u + ro?, o) dx,
0
since

(t—w? ro)* [t —(u+ra?)]?
T Mt T 20 ’
where t = log x. We can state the above result more compactly in the form
v
(11) f x"A(x; p, 0) dx = e 2A(y; u + ro?, o).
0

With y = o0 and r = 1, 2 the mean and variance of the log normal
distribution can be obtained from (11):

2
Mean = o = et /2,

Variance = f§ = a?(e”” — 1).
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We are now in a position to compare distribution by weight and distri-
bution by number. Suppose A(y; u, ) describes the distribution by number.
If the particles are all roughly the same shape, setting » = 3 in (11), we obtain
a function proportional to the distribution by weight. Hence, distribution
by weight is log normal with the distribution function A(x;u + 362, o).
Let «,, and f,, be the mean and the variance of this distribution. We can easily
express the mean o, of the distribution by number using «,, and §,,:

o = eu+r72/2

n

: B\ 3
=, (1 + 22

How does the model fit the real world? It fits some data remarkably
well and fails at other times. The data in Table 1 is taken from G. Herdan
(1953, p. 130) who in turn took it from an article by S. Bergin a Danish journal.
The percentage by weight of clay particles not exceeding a certain size
(measured in micrometers) was tabulated. The plot on log probability paper
should be a straight line. Using a least squares fit we obtain ¢ = —0.377
and ¢ = 1.47 when the logarithms in (7) are taken to the base e. The third
column in Table 1 shows that the fit is very good.

2 2 _3g2
e(u+3a Y+o /Ze 30

Table 1 Distribution of Clay Par-
ticle Sizes by Weight

Percent

Size < _—
(micrometers) True Fitted
0.106 10.0 10.2
0.147 14.9 14.7
0.25 24.6 24.6
0.38 36.4 344
0.65 48.3 48.5
0.96 57.5 59.0
1.41 67.6 68.8
2.15 77.5 78.1
3.25 87.3 85.5

Source: G. Herdan (1953, p. 130).



212 STOCHASTIC MODELS

Table 2 Distribution of Sand Grain

Sizes by Weight
Percent

Size < S
(millimeters) True Fitted
0.074 3.1 1.0
0.104 5.8 4.5
0.147 12.9 14.2
0.208 28.5 329
0.295 56.1 57.6
0.417 79.6 79.4
0.589 94.1 92.6
0.833 99.5 98.1

1.17 99.93 99.6

Source: G. H. Otto (1939).

The material in Table 2 was taken from G. H. Otto (1939), who obtained
it by studying a sand dune in Palm Springs, California. In thiscase y = —1.33
and ¢ = 0.551. The fit is not quite as good

If you are interested in more data, you might try the article by G. M.
Friedman (1958). I have not checked to see how well his data can be described
by a log normal distribution.

PROBLEMS

1. When steel tapes are used to measure distance, alignment can be a
problem. For example, suppose we use a 100 foot long steel tape to
measure the distance between two points about a 1 mile apart. Ii is
unlikely that we will be able to measure along a straight line connecting
the points; instead we will probably zigzag slightly. As a result, the
measured distance will exceed the actual distance. The following model
of the situation was adapted from B. Noble (1971, Sec. 13.6).

(a) Supposethat the error in aligning the kth usage of a tape of length
L is e, (Figure 1). Show that, if the distance between the two points
in question is about nL, the distance is overestimated by approxi-
mately



PROBLEMS 213

Figure 1 Errors in aligning a measuring tape.

(b) What reasonable assumptions can you make about the distribution
of e, to obtain information about the distribution of 6? Can you
apply the central limit theorem ?

The following problem was adapted from B. Noble (1971, Sec. 15.3).
Suppose you are asked to decide whether or not to install a traffic
signal at a pedestrian crosswalk. To arrive at an answer you need to
know how long a person can expect to wait before a gap in the traffic
provides enough time to cross. The only data you can expect to obtain
are physical information about the street and the rate of traffic flow
in cars per hour. How can this be used? For simplicity, we assume
that for most of the problem the traffic all moves in the same direction.

(@) It has been found experimentally that the process of car arrival
at a given point on a road can be approximated fairly well by a
memoryless (Poisson) process. Show that, if the average number of
cars passing the point per unit time is 4, the probability that no cars
will pass during a given interval of length t is p = e~ *.

(b) Show that the expected waiting time for a gap of size at least t
is roughly t/p. Is this estimate high or low? How accurate is it?

() Children walk at a rate of about 3.5 feet per second. If we wish the
expected waiting time for a child to be at most 1 minute, obtain
an estimate for the maximum permissible flow rate 4.,, in cars
per hour as a function of street width D. Noble gives

29,000(2.322 — log,;, D)
max = D

which has been adopted by the Joint Committee of the Institute
of Traffic Engineers and the International Association of Chiefs
of Police.

(d) How accurate is the estimate in (¢)? What if the assumption in (a) is
incorrect because of saturation of the roadway or because of the
presence of traffic signals up the road?

(e) Discuss the situation in which traffic is moving in both directions.
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How far apart can we expect the ends of a randomly thrown string to fall ?
J. L. Synge (1970) presents an interesting discussion of unsuccessful
attempts to model this situation. The following is adapted from L. E.
Clarke (1971) who wrote an article in response to Synge’s.

We assume that the string is made of n small stiff pieces of length I,
where the angle between adjacent pieces is a random variable depending
on [. Then we allow [ — 0. Let the location of one end of the string be
the origin and let the farther end of the kth segment be at the point

(5% )

Let P; = (X}, Y;) and give it a physical interpretation.

Xi)

1 i

IIM;;-
(IMa-

(a) Show that the expected value of the square of the distance between
the ends of the string equals

E(S?) =nl> + 2 ) E(X,X; + Y;Y)).

i<j
(b) Arguethat we can assume
E(Piy1|Pi, Piy,...) = E(Py 1| P)),
and also that
E(Pis,|Pi = (,0)) = (q1, 0),

for some g = ¢q(l) < 1. Show that it is reasonable to suppose that
4(0) = 1 and that m = —¢'(0) > 0 is a measure of flexibility. (You
should picture what is happening: We are considering shorter and
shorter lengths of string of some fixed thickness.) Is it reasonable
to assume that ¢'(0) exists as we have just tacitly done?

(¢c) Show that

E(P;y1|P;) = qP;.
(d) Show that, fori < j,
E(P;|P) = ¢'~'P,,
and that
E(X,X; + YY) = E@ X} + ¢/ '¥2) = g1
Combine this with (a) to obtain
21%q(q" — ng + n — 1)
(1—q?

E(S?) = ’n +
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Hint:

i Ny . d i
24q'7'=Ymn—ig and }Yig =g Ld)
i<j i<n dq
(e) Fix the value of r = nl, the length of the string, and let [ - 0. Show
that E(S?/r?) = g(mr), where

2e""+t—-1)

g(t) = 2

(f) Does the result appear reasonable? I recommend that the class
design and carry out an experiment to test the model. How difficult
is it to throw a string at random? Do you have problems with the
string tending to stick to itself ? With centrifugal force when the
string is thrown?

These sorts of models are closely related to random walks. The
result in (d) is applicable to the problem of determining the lengths of
long chain polymers. See C. Tanford (1961, Sec. 9).

(a) You are the manager of a delicatessen. Certain items that you stock
are highly perishable. The pastries you buy from the wholesale
bakery must be ordered 1 day ahead and can be kept only 1 day.
How should you determine the size of your order?

(b) Your competitor has less stringent standards than you, so he keeps
pastries for 2 days. What is his optimal ordering policy? If you both
have the same costs and wish to make the same profit, how will
your prices compare? Will they differ substantially? How is your
answer affected by the volume of business you and your competitor
do?

Note: you must make a variety of assumptions to do this problem.
Discuss them.

This problem is adapted from H. M. Finucan (1976). Sometimes we
must choose a variable x which is stochastically related to another
variable y. Penalties for y > y,and y < y, may be substantially different.
For example, suppose you wish to jump across a stream. Let x be the
amount of effort used, y the distance of your jump, and y, the width
of the stream. In a plant with automatic packaging, x may be the length
of time a chute filling a container is open, y the weight of the product
entering the container, and y, the minimum acceptable weight. Here we
model a situation that is different from these two. When steel beams are
made by continuous hot-rolling, they are cut twice. The first cut is a
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rough cut as the beam emerges from the rollers. The second is a precise
cut of the cool beam. The length y of the cooled rough cut beam is
approximately normally distributed with mean x and variance S2.
The machinery is calibrated in terms of x. S? is measurable and cannot
be changed except by changing the mill machinery and/or operating
procedures; therefore we consider it fixed and known. If the length of the
cool beam exceeds y,, it is cut to the length y, ; if the length is less than
Yo, it is rejected.

(@)

Define
8—22/2 ©
e(z) = and E(z) = j e(t) dt
/2n z
Show that

S

and that the average length of cold steel needed to produce one
beam is W(x) = x/P(x).
Conclude that the extreme values of W are given by the solutions to

yo __ E(@

P(x)=Pr{y >y} = E(yo _ x>,

ST e

where x = y, — Sz. Describe a procedure for computing the value
of x that minimizes W(x). Finucan cites y, = 30 feet and S = 2 feet
as a typical example. Show that the optimal value for x is 33 feet
11 inches. (Use a table of e(z) and E(z), or a table of E(z)/e(z) if
you have one.)

Suppose undersized beams can be cut to length u, and used.
Assume that y, — u, is much larger than S. Discuss a model. '
Can you suggest improvements in the model? Other applications?
Develop a model for the packaging example cited at the beginning
of the problem.



APPENDIX
SOME PROBABILISTIC
BACKGROUND

This appendix contains a hasty survey of the probability theory needed
in the text. It can be used as a review for those who have had some probability
theory. For those who have not had any, it can be used as an adjunct to
lectures on the subject.

A.1. THE NOTION OF PROBABILITY

If I toss a fair coin, what are the chances that it will come up heads? We
expect to see 509 heads in the long run and so write

Pr {heads} = 1.

This is read, “The probability of the event ‘the coin lands heads up after
this toss’ equals 3”; however, we shorten it to, “The probability of heads
equals 3.”

What happens when we don’t know the probability from a priori
considerations? For example, what is the probability that a newborn baby
will be a boy? We need to say very carefully what we mean. The fraction of
newborn children who have been males in recent years has been 0.514 in
the United States. Therefore we could say that the probability of a male
child is 0.514 if the expectant mother is American. However, if you told me
that she is a black American, I would recommend changing the probability
to 0.506, since this is the observed fraction when the mother is a black

217
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American. What’s going on? The population I'm looking at has changed
from all babies recently born to American women to all babies recently born
to black American women. Note that both these populations are drawn
from the past; asin all of science I'm assuming that the future will resemble the
past. Although these considerations are essential for applications, they should
not enter into the theoretical framework of probability theory to which we
now turn our attention. The problem of estimating probabilities, to which
I’'ve alluded above, comes up again in the last paragraph of Section A.S.

DEFINITION. Let & be a finite set and let Pr be a function from & to the
nonnegative real numbers such that

Y Prie} =1

eeé
(Note the braces instead of parentheses for the function.) We call & the
event set, the elements of & the simple events, and Pr {e} the probability
of the simple event e.

As an illustration, consider tossing a fair coin twice. The outcomes can be
denoted by the obvious notation HH, HT, TH, and TT. We can think of
these as simple events and write

¢ = {HH, HT, TH, TT}.

- Also, Pr {e} = % for each e € &. As another illustration, suppose that we
toss the coin until a head occurs or until we have completed two tosses. Then
the simple events can be denoted by 1, 2, and F—meaning a head at the first
toss, a head at the second toss, and a failure to obtain a head. These cor-
respond, respectively, to H, TH, and TT in the previous notation. We have -

& ={1,2 F}, Pr {1} =3, Pr {2} =Pr{F} =%

Note that the simple events in both examples are mutually exclusive and
exhaustive; that is, exactly one occurs. This is the case in all interpretations
of simple events.

If we had tossed a coin twice in the last example, we could think of
event 1 as being the occurrence of either of the two simple events, HHand HT.
We would write this as 1 = {HH, TT}. Thus we would write

Pr (HH, HT} = Pr {1} = §,
and read the left side as the probability of either HH or HT occurring. More

generally,

DEFINITION. For any subset S of & we define Pr {S} to be the sum of
Pr {e} over all e € S and refer to it as the probability that a simple event in
S will occur or, briefly, the probability that S will occur.
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We can estimate Pr {S} by sampling from & in such a way that each
elementary event e is chosen with probability Pr {e}. (For the examples
given above, our sampling can be accomplished by repeatedly tossing the
coin.) If N of the elementary events in such a sample of size N lie in S, then
Ng/N is an estimate for Pr {S}. This is the 1dea behind Monte Carlo simula-
tion. We'll find it convenient to use the abbreviation Pr {statement} for
Pr {S}, where S is the set of all e such that the statement is true if e € S occurs
and false if e¢ S occurs. For example, in the two tosses of a fair coin,
Pr {> 1 head} stands for the probability of the set {HT, TH, HH}.

We need two other concepts. After defining them, I'll discuss them briefly.

DEFINITION. The conditional probability of A given B is defined to be
Pr {4 n B}/Pr {B} and is denoted by Pr {4 |B}. The sets of events 4 and B
are called independent if

Pr {4 n B} = Pr {4} Pr {B}.

Conditional probability is interpreted as the probability that e € A given
that e € B. We can think of this as restricting our attention to B: If we estimate
probability by counting, as described earlier, we will estimate the probability
that an event in B lies in A by N, 5/Ng. Since this equals (N 4.5/N)/(N/N),
we see that the definition of conditional probability agrees with the notion
of restricting our attention to the events in B.

We can think of independence as follows. Knowing that e € B gives no
information about whether or not e € A4, since

Pr {4 n B}

(1) Pr{4|B} = — 5

= Pr {4},
by the definitions of conditional probability and independence. By symmetry,
the roles of A and B can be interchanged.

PROBLEMS

1. Provethat Pr{4uUB} = Pr {4} + Pr {B} — Pr{A4 n B}.

2. Two dice are thrown. All that matters is the sum of the two values.
Formulate this in a probabilistic framework.

3. We are looking at U.S. coins minted in the 1960s. Our interest is in
denomination, date, and mint. Discuss some things we could consider
and cast them all in the appropriate terminology, assuming that a simple
event corresponds to observing a single coin. To begin with, what is £?
Does it help to know the number of each type of coin that was minted ?
Why?
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A.2. RANDOM VARIABLES

We're frequently not interested in simple events but only some real-valued
function of them; for example, the number of heads in 100 tosses of a coin.
A natural choice for the set of simple events is the 21°° possible sequences
of heads and tails, but the function we wish to study takes on only 101
values—a considerable reduction from 2!°°. The value of such a function
depends on which simple event occurs, so it is a variable. Since it depends on
something that is random, it is a random variable. Thus we have

DEFINITION. A random variable is a real-valued function defined on &.

It is conventional to use capital letters for random variables. Instead of the
functional notation X(e), one frequently writes simply X and talks about the
value x of X. The function Pr {X < x} is called the (cumulative) distribution
function for X and is important in discussing continuous probabilities.
(See Section A.4.) By our convention regarding Pr {statement}, it equals the
sum of Pr {e} over all elementary events e with X(e) < x.

We are often interested in what values X is likely to take on; for example,
if we toss our coin 100 times and count the number of heads, how many do
we expect? How close to this estimate can we expect to be? We now introduce
two important concepts relating to these questions.

DEFINITION. The expectation or expected value of X is given by

E(X)= Y X(e) Pr {e},

eeé

and the variance of X is given by

0%(X) =) [X(e) — E(X)]* Pr {e}.
ecé
[Note that in the definition functional notation is used correctly; i.e., X
should not be replaced by X(e) at any of its occurrences. ]

Theexpectation is the average value of X. If we make lots of observations
and compute the average value of X, it will approximate E(X). The average
value of X over a series of observations is denoted by X. Since X is easily
determined, we have a good way to estimate E(X). Thus, if E(X) completely
determined Pr {X = e}, we’d have a method for estimating whatever we
wanted about X. We see examples of this later.

The variance is a measure of how much we can expect values of X to
deviate from E(X)—the average value of [ X(e) — E(X)]?; that is,

o*(X) = E(X — E(X)].
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(This suggests that we can approximate 6% by (X — X)?. This is true, but a
better estimate is given by this number times n/(n — 1). We won’t go into the
reason here.) The larger the value of 0%(X), the more spread out the values
of X tend to be. Stated another way, if the variance is small, then X is not
likely to deviatefar from E(X). The following theorem makes this precise. The
proof is left as a problem.

THEOREM. Chebyshev’s inequality. Whenever ¢ > 0,

02(X).

Pr{|X — EX)| > ¢ <=

In words, the probability that X differs from its expected value by more than
c does not exceed its variance divided by c?. Note that the theorem is useless
if ¢* < o*(X).

Some basic properties of expectation and variance are

EX)=) xPr{X = x},

E(aX + bY) = aE(X) + bE(Y), E(a) = aq,

) o*(X) = E(X?) — E(X)?,
o*(aX + b) = a’e*(X), o%*a) =0,
a3(X) = 0.

We prove the second and third. You do the others. We have
E(aX + bY) =) [aX(e) + bY(e)] Pr {e}

=a) X()Pr{e} +b) Y(e) Pr{e}

aE(X) + bE(Y)

and

E(a) Y aPri{e} =a

for the third

o*(X) = E(X — E(X)]?)
= E(X? — 2E(X)X + E(X))
= E(X?) — 2E(X)E(X) + E(X)?
= E(X?) — E(X).
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The notions of independence and conditionality can of course be carried
over to random variables. Thus we say that X and Yare independent if
Pr{X=xand Y=y} =Pr{X =x} Pr{Y =y},
for all x and y. In other words, the events X = x and Y = y must be inde-

pendent for all x and y. Hence knowing the value of X gives no information
about the value of Y, and vice versa. The conditional expectation is defined by

3) E(X|Y =) =Y xPr{X=x|Y =y

In other words, it is the average value of X on the set of events for which
Y(e) = y. Although this is a function of y, it is often abbreviated E(X|Y).
Note that E(E(X|Y)) is simply E(X), because E(E(X|Y)) is obtained by
multiplying (3) by Pr {Y = y} and summing over y, which by simple manipu-
lation reduces to E(X).

The importance of independence is reflected in the following theorem.

THEOREM. If X and Y are independent random variables,
E(XY) = E(X)E(Y),
4) (X + Y) = o*(X) + o*(Y),
E(X|Y) = E(X).

We prove these. We have
= X(e)Y(e) Pr {e}

=Y xyPr{X =xand Y =y}

= nyPr (X =x} Pr{Y =y}
= E(X)E(Y),
XX +Y)=E(X + Y)}) — (E(X + Y))2
E(X? + 2XY + Y2) — [E(X) + E(Y)]?
62(X) + 6X(Y) + 2E(XY) — 2E(X)E(Y)
o*(X) + o*(Y),

l|

and, by (1),
EX|Y)=) xPr{X =x|Y =y}

=Y xPr{X =x}

= E(X).
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PROBLEMS

1. Complete the proof of (2).
2. Prove Chebyshev’s inequality by showing that
0%(X) = c?Pr{|X — E(X)| = c}.

3. The notion of independence is extended to several sets by requiring
that for any subcollection 4, B, ..., C of the sets

Pr{AnBn---nC} =Pr{4} Pr{B}--- Pr{C}.

Describe independence for several random variables and show that, if
X4, ..., X, are independent,

%UX)zUEW%
A(zx) - o

What else can you say about the situation?

4. If X and Y are independent random variables with Pr {X = x} = f(x)
and Pr (Y = y} = g(y), show that

Pr{X+ Y=z =) f(x)g(z - x),
the sum ranging over all x for which f(x) # 0.

5. (a) Establish Bayes” formula:

Pr {4} Pr {B|A4}
Pr {B} '

Pr{4|B} =

(b) Suppose that a diagnostic test has been developed that detects
a particular disease 98 9 of the time when it is actually present and
incorrectly “detects” in 59, of the time when it is not present. If
19 of the population has the disease, show that the probability
an individual has the disease when the test says that he does is

(0.01)(0.98)
(0.01)(0.98) + (0.99)(0.05)

In other words, 86 9 of the detections are incorrect.

= 0.14.
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A.3. BERNOULLI TRIALS

Consider an experiment made up of a repeated number of independent
identical trials each having two outcomes; for example, coin tossing. These
are called Bernoulli trials. Since Bernoulli trials are important, I'll discuss
some of their basic properties.

We designate the outcomes of the trials by S and F for success and failure
and let p be the probability that trial i ends in success. A typical simple event
is a sequence containing some number s of successes and some number f of
failures in some order. Since the trials are independent, probabilities multiply,
and so pS(1 — p)’ is the probability of the simple event, given that exactly
s + f trials are performed.

Let S, be a random variable equal to the number of successes in the
first n trials. We want to study Pr {S, = k}. Let (), read “n choose k,” denote
the number of ways to choose k locations in an n long sequence. Then

n

(5) Pr{S, =k} = <k>pf‘(1 —prk

The numbers (}) are the well-studied binomial coefficients. Their values turn
out to be. :

n\ nn—-1)--mn-k+1)
1-2.-.k )

k

To study S, it is convenient to introduce random variables that reflect the
independence of the trials. Define random variables X; by X; = 1 if the ith
trial succeeds, and X; = O otherwise. Then, S, = X, + --- + X, and the X;
are independent. One easily computes E(X;) = p, and

o%(X;) = p(l — p* + (1 = p)(0 — p)* = p(1 — p).

By Problem A.2.3, E(S,) = np and ¢*(Sn) = np(1 — p).

How long must we wait for our first success? We have a problem here
because there may be no success in the first n trials. To overcome this, we
do computations with » fixed and then let n —» oo. The answer is the expected
value of a random variable that equals k if and only if the first success occurs
on trial k. Hence we obtain

Y kPr{S,,=0and X, =1} = Y k Pr{S,_, = 0} Pr (X, = 0}
=) kil — p)fp

d k
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where the sumsrange from k = 1to k = n. Evaluatingthe last sum and letting
n — oo, we find that the expected waiting time for the first success equals
1/p. Since the trials after the first success are independent of the trials leading
up to the first success, we see that the expected waiting time for the jth success

1s j/p.
PROBLEMS

1. Let W, bearandom variable equal tothe number of Bernoulli trials until
the first success.

(a) Show that Pr {W, = n} = ¢"~'p.
(b) What is 62(W})?

2. Let W, be a random variable equal to the number of Bernoulli trials
until the kth success.

(a) Show that

. n—1
Pr {W,=n} = n=kpk,
r {W, = n} <k B l)q p
(b)) What is o%(W,)? Hint: Look at X, + X, + --- + X, where the
X; are independent and have the same distribution as W;.

3. The circuitry in my hand calculator has a probability of failure equal to
p per hour of use, independent of how long I have used it. How long can
I expect the calculator to work .before it fails?

4. Insituations like that in the previous problem, circuits can be duplicated.
Then failure does not occur until both copies of the circuit have failed.
Let T be the time to failure.

(a) Show that
Pr {T = n} = Pr {max (X, Y) = n},

where X and Y are independent and identically distributed with
the same distribution as W,.

(b)) ShowthatPr {T = n} = ¢q*"~2(1 — g?),first by using (a) and second
by expressing T as W, for some Bernoulli trials.

A.4. INFINITE EVENT SETS

Very often we want to allow an infinite event space. In this case it may be
difficult to start out with elementary events. For example, consider the
situation in which all the real numbers in the interval between 0 and 1 are
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equally likely to be chosen. We cannot assign a nonzero probability to any
number, for we should then be obliged to assign the same probability to all
numbers in the interval, and then the sum of the probabilities would be
‘infinite. However, if each number has zero probability of being chosen, the
sum of the probabilities will be zero. The way out of this difficulty is to
ignore individual numbers and simply assign a probability to the event that
the number chosen lies between x and .

Thus we could start out with a definition of Pr as a function on the
subsets of & having certain properties like Pr {4} > 0, Pr{&}= 1, and
Pr {4 U B} = Pr {4} + Pr {B} — Pr {4 n B}. This cnproach leads to
complications. A simpler but limited approach is to work with random
variables and use Pr {X < x} as the basic concept. This will satisfy our needs.

DEFINITION. If F(x)is a real-valued monotonic function satisfying

lim F(x) =0 and lim F(x) =1,

X = -0 xX—=+x

we call F(x) the distribution function for the random variable X and write
Pr {X < x} = F(x). If f(x) = F'(x) exists, we call it the density function
for X.

Roughly speaking, f(x) dx is the probability that X lies between x and x + dx.
By a suggestive abuse of terminology f(x) dx is called the probability that
X =x.

Consider the example

0 for x <0,
F(x) = for x> 1,
X for 0<x<1.

It follows that X lies in the interval between O and 1, since
Pr{X <0} = F(0) =0,
and
PriX>1}=1-Pr{X<1}=1-F1)=0.
Furthermore, if0 < x <y < 1,
Prix<X<y}=FQy)— Fx)=y — x.

Thus the probability that X lies in the interval (x, y) equals the length of the
interval. We also have f(x) = 1. This is the uniform distribution on the
interval [0, 1] mentioned in the first paragraph of this section.
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Consider the example F(x) = b;fora; < x <a;,; andi=1,2,...,n,
where ay= —, a,.; =4+, bj=p;,+---+p;, and b, =1 If
G <x<y<ajyp,,thenPri{x <X <y} =0105>0is small,

Pri{a, -0 <X<a}=b—b_,=p:.

Letting 6 — 0, we see that, in some sense, Pr {X = a;} = p;. Thus the step
function F corresponds to a discrete distribution like those discussed in
Section A.2. )

Thus the present framework provides a generalization of the ideas
introduced in Section A.2; however, to carry out the generalization we shall
need some additional concepts, and the whole thing will appear rather
theoretical. The main idea to keep in mind is that ) is replaced by [ and
Pr {X = x} is replaced by f(x) dx.

The analogy between sums and integrals suggests that we define

E(X) = Jj ooxf(x) dx.

This has two drawbacks: First, we want to replace X by a function of X
to obtain a more general definition (this is easy), and second, f(x) may not
exist (this is more serious). To begin with, we write

©) B0 = | gty dx
Integrating by parts with u = g and dv = f dx we have
™ Eg(X) = g)F()| - f G (X)F(x) dx.

This looks like a good definition for expectation, since f does not appear.
Unfortunately the two terrns in (7) may both be infinite. To avoid this problem
we have

DEFINITION. The expectation of g(X) is given by

B0 = tim [ a0F0 — [ gtor x|

t—=+w

If f(x) exists, this reduces to (6).

Now there is a question of consistency that we should consider. Let
the random variable Y be defined by Y = g(X). We ought to have E(Y) =
E(g(X)). Is this the case? Suppose that g is monotonic increasing. We have

Pr{Y <y} =Pr{X <g '(y)} = Fg~'(y).
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Hence

u

E(Y) = lim l:uF(g_l(u)) - f

u—+ o0 -

Flg~'(y) dy}
by the definition. Setting t = g~ *(u) and x = g~ (y), we have

E(Y) = lim [g(t)F(t) - f_ g'(x)F(x) dX} = E(g(X)),

t—+ oo

which is what we had hoped for.
The variance of X is defined to be E((X — E(X)]?).
We need to be able to handle more than one random variable simul-

taneously. Thus we introduce a function F(x;, ..., x,) which is identified
with
(8) Pr{X; <xyand- - -and X, < x,}.

Then f = 0"F/0x, --- 0x,. We require that F — 1 as the x, > + o0, F —> 0
as the x; > —oo, and f > 0. The last condition can be phrased purely in
terms of F to allow for the case in which f does not exist. For example,
when n = 1, we require that F(x) — F(x*) > 0 whenever x > x*, and, when
n = 2, we require that

F(x,y) — F(x*,y) — F(x, y*) + F(x*, y*) > 0

whenever x > x* and y > y*. The n = 1 case corresponds to the statement
that the integral of f(¢) from x* to. x is nonnegative, and the n = 2 case cor-
responds to the statement that the integral of f(t, u) over the rectangle
[x*, x] x [y*, y] is nonnegative. This can be generalized.

From the joint distribution function F(x,,...,x,) we can compute
various marginal distribution functions, that is, probabilities like (8) in which
one or more of the X; have been deleted. For example, given F(x, y) as the
joint distribution function for X and Y, the distribution functions for X
and Y are lim,. ,, F(x, y) and lim,_, , , F(x, y), respectively. You should
be able to show that the density function for X is given by (X2 f(x, y) dy.

Of course, expectation is given by '
+

gx s o X)Xy, ooy X)) dxy - - - dx,,

E@(X,..., X,) = fj:f

which can be rephrased in terms of F by using n-fold integration by parts.
Conditional expectation and independence also parallel Section A.2. For
example,

EX|Y) = f X (%, ) dx,
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and we say that X and Y are independent if f(x, y) = g(x)h(y) for some
functions g and h. In this case we can choose g and h to be the density functions
for X and Y. There is the old problem of replacing density functions by
distribution functions. You may like to try doing this. (The idea for inde-
pendence is to compute the probability that (X, Y) lies within a rectangle.)

We prove the linearity property of expectation given by (2) and leave
it to you to show that (4) and the rest of (2) also generalize. For simplicity
assume f(x, y) exists. Then

E(aX + bY) = Jf(ax + by)f(x, y)dx dy

a fx[ff(x, ) dy:| dx + b Jy[ff(x, ) dx] dy

aE(X) + bE(Y).

Il

PROBLEMS

1. Give the proofs asked for in the text.

2. If X and Y are independent random variables with density functions
f and g, show that Z = X + Y has density function

hz) = j Fglz — x) dx.

3. Suppose that you are running a business in a service industry where
demand fluctuates. (Examples include freight hauling and telephone
repair.) Suppose that the wage rate is r dollars per hour and the overtime
rate is s. You contract with employees for a total of N hours at the wage
rate and fill any unsatisfied demand by paying overtime wages. Let X
be a random variable equal to the number of service hours demanded.

(a) If X has a density function f(x), show that your expected wage costs
are

rN + s Jw(x — N)f(x) dx.

N

(b)) Show that this is a minimum when N is chosen so that
Pr{X > N} =r/s

(). Deduce the result in (b) without assuming that X has a density
function.
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A.5. THE NORMAL DISTRIBUTICN

DEFINITION. The normal distribution with mean u and variance o2

is given by
_ 1 —(x —
J6d = 2no? cxp < 20? ’

where exp (z) = €.

You should verify the claims implicit in this definition; that is,

Jf(x) dx = 1, fxf(x) dx = p, J(x — Wf(x)dx = o2

You may need a table of integrals. For a normally distributed random
variable X, the standard deviation o provides a measure of deviation for u
that is more precise than Chebyshev’s inequality, namely,

2 (.,
9) Pr{|X —u| <co} = \/:fe—x 12 dx.
T Jo

You should prove this.

The importance of the normal distribution stems from the fact that
sums of random variables tend to be normally distributed. Consequently
experimental errors are often roughly normally distributed, because they
are the sum of many small effects. For biological traits such as size, the effects
of genes seem often to be roughly multiplicative, and so the logarithm of
size tends to be normally distributed within the adult population of a species.

These vague statements can be made mathematically precise. The result
is known as the central limit theorem or, more accurately, central limit
theorems, since there is more than one. We consider a simple one.

THEOREM. Suppose X, X,,... are independent random variables.
LetS,= X; + -+ + X,. Suppose that

max; i<y O'Z(X,-)

-0
a*(S,)

(10)

as n - . Define Z, = [S, — E(S,)]/0(S,) and let F, be the distribution
function for Z,,. Then for every z,

(11) lim F(z) —C12 g

1 z
imFi = [ e
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Since ¢%(S,) = ) 0*(X;) by (4), assumption (10) ensures that as n — oo
no single X; makes a significant contribution to the variance of Z,. Con-
clusion (11) essentially says that Z, tends to be normally distributed when n is
large.

The Bernoulli trials of Section A.3 provide a simple illustration of the
theorem. In this case the X; are independent, identically distributed random
variables. Thus ¢2(S,) = ne*(X;), and so (10) holds. We have

S,,—hp
Jnpqg

A refinement of this result can be used to obtain asymptotic information
about the binomial coefficients, because of (5).

Another important property of the normal distribution is that, if
Xy,..., X, are independent and normally distributed with means p; and
variances o7, then X, + --- + X, is also normally distributed [with mean
py + - + p,and variance o + --- + o7 by (2) and (4)]. It suffices to prove
this for n = 2, since the rest follows easily by induction. By Problem A.4.2
the density function for n = 2 is

Z, =

0= [ host - od

_ 1 f+°°ex I N e ) it
2no,0, J_ P 202 203 ’

Using the identity

AB + CD\* (BC — AD)
At + B)? + (Ct + D)* = (42 + C?
(At + B)* + (Ct + D = (4> + KHU¥+0> o

with A = 1/6,, B = —u,/o,,C = 1/0,,and D = (u, — x)/o,, we have

o0 = oo —(BC — 4D’ 2
T 2no,0, Pl 2424 C?) | AT+ CV

which turns out to be the density function for a normal distribution with
the correct mean and variance.

To change the subject, suppose that we wish to estimate some number
m. It may be the expected value of some random variable, and our estimation
procedure may be Monte Carlo simulation. It may be a physical constant
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and our estimation procedure may be experimental measurement. At any
rate, after n trials we obtain n estimates x; of m. It seems reasonable to take
X =) x/n as an estimate for m. How accurate can we expect it to be?
Suppose that the x; are obtained from independent observations where the
distribution function is F and the mean and variance are m and s?, re-
spectively. Let X; be independent random variables with distribution function

F. Then by (2) and (4),
A(Z5) 2
n n

By the central limit theorem, ) X/n is approximately normally distributed
with mean m and variance s*/n, and so by (9

Pr{lx—m|< \[ ER2 g
NGk

Thus we expect our error to decrease as the square root of the number of
trials. See the introductory part of Section 5.2 for further discussion.

PROBLEMS

1. Show that X is normally distributed with mean O variance 1 if and
only if (X + w)o is normally distributed with mean p and variance o2.

2. Suppose that X is normally distributed with mean p and variance o?.
Sketch the density function for X.

A.6. GENERATING RANDOM NUMBERS

In Section 5.2 I briefly discussed the generation of random numbers and
provided a table of 3000 random digits. I'll treat the subject further here.
There are two distinct approaches to automatically generating random
numbers. The first is physical: A device is used to produce “noise” which is
then translated into numbers. Examples include a noise tube and a pointer
which is spun. The second method, which is the topic of this section, is to
use a mathematical procedure to generate numbers which appear to be
random. Numbers created in this way are not truly random, because they
are produced in a repeatable manner. In fact, the numbers produced by such
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methods cycle—but the period of any decent method is so large as to present
no problem. The idea is to devise a function f that maps the integers
between 0 and M onto themselves and then, starting with x,, compute
f(x0) = x1, f(x;) = x,, .... Hopefully this will go through most of the
integers between 0 and M in some seemingly random fashion. One can then
use a function g to obtain random numbers of any desired sort. One objection
to this procedure is that, if I tell you a random number x,, then you can tell
me its successors. This can be avoided by using certain digits of x, to produce
the random number and using other digits of x, to compute x,, 4 ;.

Here is a method for producing random numbers between 0 and 999
on a hand calculator. [For a discussion of this and many other methods for
generating and testing random numbers, see D. Knuth (1969).] Choose any
eight-digit number ending in 1, 3, 7, or 9. (Leading digits may be zeroes.)
Define f(x) to be the rightmost five digits of x times 963 and use the leftmost
three digits of x (considering x to be an eight-digit number) as the random
number. This can be simplified by replacing x by x/10°:

1. Choose an eight-digit number x, of the form dd,d;.d,dsd¢d-dg,
where dg is 1, 3, 7, or 9.

2. Define r, to be the integer part of x, and define x,,, ; to be the fractional
part of x, multiplied by the number 963.

To illustrate, x, = 0.12347 leads to the sequence x; = 11890161, x, =
868.25043, x5 = 241.16409, and so on. The first four random numbers are
000 118 868 241.

In Section 5.2 it was pointed out that, if X is uniformly distributed on
[0,1],thenY = F~ 1(X) has the distribution function F. To see this note that,
since F is monotonic,

Pr{Y <y} = Pr{F(Y) < F(y)} = Pr {X < F(y)},

which equals F(y), since X is uniformly distributed on [0, 1].

Since F~! is not easily computed for the normal distribution, a table
or the central limit theorem should be used. To use the latter, simply generate
a sequence of random numbers and apply the theorem to them. For example,
if X,,..., X, are generated to be uniformly distributed on [0, 1],

n 12
X1+.4.+X"__ —
2 n

is approximately normally distributed with mean O and variance 1. A
convenient and almost certainly large enough value for n is 12. Here is a
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simple table based on F ! for the normal distribution. I recommend using it
when doing calculations by hand or on a hand calculator. It is used as follows.

0 1 2 3 4 5 6 7 8 9

0,1 0.00 002 005 008 010 0.3 015 018 020 023

2,3 025 028 031 033 036 039 041 044 047 050

4,5 052 055 058 061 064 067 070 074 0.77 0.81

6,7 084 088 092 095 099 104 108 1.13 1.18 123

89 128 134 141 148 156 164 18 19 21 23

Generate two random digits Y; and Y,. If Y; = Y, = 0, reject the pair and
try again. Find Y; in the leftmost column and Y, in the top row. Read off
the number X, changing its sign if Y; is odd. This is normally distributed
with mean O and variance 1. Hence (X + p)o is normally distributed with
mean p and variance g2.

A.7. LEAST SQUARES

The racing shell model in Section 2.1 predicts a relationship of the form
h(x) = Cx~'/° where x is the number of oarsmen and h(x) is the best possible
time in a race. Of course this is only approximate, since shell designs do not
quite fit the model we proposed. Furthermore, we can only estimate the
best possible times by using data which may be biased by such things
as nonideal team performance, currents, and winds. Thus we obtain for
various values of x (namely 1, 2, 4, and 8) estimates y for h(x). What value of C
gives the best fitting curve? How good is the exponent —3—what is the best
fitting curve of the form Cx™?

In general, we have a function h(x) depending on certain parameters
and we have estimates y; of h(x;). We wish to determine the best values for the
parameters. What should we do? To make any progress, we need to make
some additional assumptions. Let’s start with a simple situation and then
return to the racing shell problem.

In Section 2.2 we predicted that for a perfect pendulum in a fixed
gravitational field, the period is 1 = C(6) \/7 where 0 is angle of swing, [ is
length, and C is an unknown function. Let’s test this by constructing pendu-
lums of various lengths, starting them swinging at some fixed angle 6,, and



LEAST SQUARES 235

measuring the period. We can then plot t versus \ﬂ and see if we obtain a
straight line. Of course, there will be errors in measuring 7 and [, and in
setting the angle of swing equal to 0,. (The fact that the pendulum is not
perfect can probably be neglected. See Section 9.2.) From another point of
view, we are making errors in estimating 7(l) = C(GO)\/I, both by measuring
at the wrong point (f, and [ in error) and by measuring t incorrectly. This
suggests that after many repetitions with a given [ we might obtain estimates
7(l) which are normally distributed about the predicted value C(@O)\ﬂ. In

other words, 7 is normally distributed with mean C(GO)\ﬂ and unknown
variance ¢*(l). We make measurements for various I and thereby obtain pairs
(I;, 7;) where 7, is sampled from a normal distribution with mean C (Go)ﬁ ;and
variance 67 = a2(l)).

What is the best estimate for C(6,)? We can interpret “best” to mean
“estimate which maximizes the probability of being close to the observed
values.” Let ¢ > 0 be very small. The probability that a sampled value t
would be within ¢ of t; is

! fnj% exp <— (t — Cl C(gg)\/fi)z.> dt

V2o, 2
De. L )2
w2 g (= G COI
\,/ﬂoi 2O-i

If the observations are independent, we may multiply this probability for
various values of i to obtain the joint probability. If the o; are independent
of the parameter C(6,), this joint probability will be a maximum when

(1 — C(0) J1)?
3 20?

is a minimum. We can find C(6,) to minimize this by setting d ) /0C(6,)
equal to zero and solving for C(6,). This approach is stated in general form
in the following theorem.

THEOREM. Least squares. If Y; are independent, normally distributed
random variables with means h(x;) and variances ¢? independent of h, then
the probability of each Y; simultaheously being within ¢; of y; is maximized by
selecting the function h for which

1) 5 = b))

o2

!

IS a minimum.
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Usually the assumptions of the theorem cannot be verified (in fact,
they are usually incorrect), and the variances cannot be estimated. The
usual procedure is to apply the theorem anyway and assume that all the
variances are equal. Thus we minimize

(13) 2 i — Alx)?

in most cases. This is what would be done in the pendulum problem discussed
before the theorem. ‘

Let’s apply the theorem to the racing shell problem. Let Y; be the best
observed time for a shell with x; men. Of course, we cannot hope to verify
the hypotheses of the theorem or estimate ;. We make the usual assumption
that the theorem holds and the g; are equal: We assume that the Y, are
independent normally distributed random variables with means Cx; /°
and equal variances. We wish to minimize (13) where h(x;) = Cx; /® and y,
is an observed best time. By setting the partial derivative with respect to C

equal to zero we obtain
(14) X Cx P = y) = 0.

This is a linear equation in C, so it is easily solved when the values of x;
and y; are known. Instead of looking at x versus y as in (14), we can consider
log x versus log y as suggested in Section 2.1. Then y; in the theorem is the
logarithm of the time, x; is the logarithm of the number of men, and h(x;)
is log.C — x;/9. However, we have already set y; equal to the time and x;
equal to the number of men. We will keep this notation rather than the
notation of the theorem. Thus we wish to minimize

log x. 2
Z[logyi—KJr Og9x‘],

where K = log C. In this case we’ve assumed that log Y; is normally distri-
buted with mean log C — (log x;)/9 and variance independent of i. This is
inconsistent with our assumptions about Y; leading to (14). Setting the partial
derivative with respect to K equal to zero we obtain

log x;

0.
9

(15) Ylogy — K+

Equations (14) and (15) give different values for C (see the accompanying
table). Which is correct ? Probably neither one, since our assumptions about
Y; and log Y; are assuredly wrong; however, both give fairly good fits to the
data and the fits are about the same. Now suppose that we want to fit the
exponent as well, that is, find the best h(x) having the form Cx~". In this case,
the second method is preferable. This is not for any theoretical reason, but
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simply because it is much easier to find the values of C and r that minimize
(13) in this case. The equations for K = log C and r are

Y logy; — K +rlogx; =0,
(16) Y log yi log x; — K log x; + r (log x;)* = 0.
The following table compares values obtained by the various methods. The
data comes from Table 1 in Chapter 2. Since different races may be run under
different conditions, it was not clear how I should interpret “best time.”
Should I do separate fits for each of the four races? A fit to the average of the
best times of the four races? A fit to the overall best time? I fit the average
best time and the overall best time. Once C and r have been determined
using (14), (15), or (16), it is possible to compute h(x;). This I have also done. .
Note that the fit is fairly good, and the estimates for r via (16) support the
model’s prediction that r = .

Average Best Time Overall Best Time

(149 15  (16) (14 (15 (16)
C 7.44 7.35 7.29 7.31 7.21 7.21
r 3 ¥ 0.104 3 3 0.111
1 7.22 7.44 7.35 7.29 7.16 7.31 7.21 7.21
2 6.88 6.89 6.81 6.78 6.77 6.77 6.68 6.68
4 6.34 6.38 6.30.  6.31 6.13 6.27 6.18 6.18
8 5.84 591 5.83 5.88 - 573 5.80 5.72 5.72

A.8. THE POISSON AND EXPONENTIAL DISTRIBUTIONS

Two closely related distributions are the Poisson, a discrete distribution
given by Pr {X = k} = e~ *A¥/k! and the exponential, a continuous distri-
bution given by Pr {T <t} = 1 — ¢™*". They both have mean and variance
A = 1/v. Prove it. The exponential is associated with waiting times between
rare events, and the Poisson with the number of rare events in a given time
interval. The following examples illustrate this.

1. Suppose we distribute N4 items into N boxes. Let X be the number of
items in the ith box. If the items are distributed independently and each
box is equally likely to be chosen, Pr {X = k} —» e *A¥/k!as N — oo.
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2. Suppose that in a small time interval At an event has probability v At
of occurring, independent of what has happened in the past. The waiting
time T between two successive occurrences is exponentially distributed.

3. Closely related to this is failure of a product. If the probability of failure
in the time interval At is v At given that the product hasn’t failed up to
that time, the waiting time to failure is exponentially distributed.

4. Let’s return to example 2. Let X be the number of occurrences of the
event between t and ¢t + 7. Then X s Poisson distributed with 1 = v,
where v is the parameter of the exponential distribution in example 2.

These examples merit more discussion.
We can think of example 1 as a Bernoulli trial situation. If an item is
placed in the ith box, this is a success. We then have

NA
Pr {X = k} = < k >qu_kpk,

where p = 1/N. The claim in example 1 follows from

A A¥
<1\I]< )N"‘—»F and g% -’

as N — oo. Hence the Poisson is a limiting case of Bernoulli trials.

The exponential is obtained similarly as a limit. In example 2, T is
simply the waiting time to the first success. Consider a situation in which the
time between Bernoulli trials is At and the probability of success is v At = p.
The probability of a first success at time A[T/At] is g""/*7p. (The square
brackets here denote “largest integer not exceeding.”) For small v At this
is approximately ve *"At. Hence f(T) = ve™*T.

The relationship between the exponential and Poisson distributions
asserted in example 4 is easily proved : In each time interval Az, the probability
of success is p = v At, so after N time intervals the probability of k successes
is (¥)g" *p*. Setting At = t/N and letting N — oo, we obtain the desired
result.
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A GUIDE TO
MODEL
TOPICS

Models are grouped into major categories which are capitalized and grouped
by affinity. Italicized numbers refer to chapters and sections that discuss a
subject. Other numbers refer to problems dealing with the subject.

ASTRONOMY

colliding galaxies 8.1.2
number of comets 5.2.4

CHEMISTRY

chemical engineering 4.2.5
polymer formation §.1, 8.1.3
reaction stability 9.2.8
sediment volume 5.2, 5.2.1

EARTH SCIENCES

particle sizes 10

reflected energy in the desert 6
sediment volume 5.2, 5.2.1
stream networks 5.2, 5.2.5
waves 2.2.4
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PHYSICS

ballistics 8.2

falling from a height 2.1.7, 8.1.5
heat flow 2.2.3

motion of a pendulum 2.2,2.2.1, 9.2
radioactive decay 10

radioactivity and mousetraps 8.2.5
throwing strings 10.3

vibrating strings 2.2.2

water skiing &8.2

wave motion 2.2.4

ENGINEERING

chemical engineering 4.2.5, 81,8.1.3
particle sizes 10

rocket design 4.1.4

scale models 2.2,2.2.4

thermostatic control 9.3.4

TRAFFIC

car following 9.3, 9.3.1,9.3.2
elevators 1.5.1

flow 6.5

left turn squeezes §8.1, 8.1.1
signals 4.2.4,10.2

urban streets 1.5.5

PSYCHOLOGY AND PSYCHOPHYSICS

binocular brightness perception 6.6
perception of transparency 6.3

simple choices 5.1,5.1.2,5.1.3
Weber-Fechner and Stevens laws  2.1.6

HUMAN PHYSIOLOGY AND MEDICINE
drug excretion 8.1.2

epidemics 8.1.3,9.2.10
impaired CO, elimination 6
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sex ratios 5.7, 5.1.1
speed of racing shells 2.7,2.1.2, 2.1.3

BIOLOGY OF ORGANISMS

blood vessel design 4.1, 4.1.1
circadian rhythm 8.2.4

desert lizards and radiant energy 6
feeding Gulliver 2.1.5

how far can a bird fly? 1.5.3
insecticides 8.1.7,9.2.2

size effects 2.1,2.1.4,2.1.5,2.1.7
swimming by fish 4.1.6

BIOLOGY OF POPULATIONS

castes 4.2

herd formation 6.4

optimal phenotype 4.2

population dynamics (one species) 1.4, 1.5.8,9.3.3

population dynamics (two species) 1.5.2, 3.3.4, 9.2, 9.2.1-9.2.3,
9.3.3,94.1

species diversity 3.2, 3.2.6

APPLIED ECOLOGY

insecticide usage 9.2.2
Great Lakes pollution 8.7, 8.1.1
regulating fishing 4.1.3

POLITICAL SCIENCE

arms races 3.2,3.2.1-3.2.5,5.1.5,5.1.6,9.2.6
fair elections 6
winning votes 4.2.6

SOCIOLOGY

getting married 8.1.4

group dynamics 3.3, 3.3.3,9.2.7
group size 5.1.7

sex preference 5.1, 5.1.1
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ECONOMICS OF A FIRM

advertising 4.1.7,8.1.6

employees 1.5,1.5.4,3.2.8,4.2.3

facility location 10

inventories 4.1, 6.2,10.4

theory of prices and production 3.2, 3.2.7
transportation 4.1.8,5.2.3

OTHER ECONOMICS

bartering 4.2

cobweb models 3.3, 3.3.1
cost of packaging 2.1, 2.1.1
cutting beams 10.5

forest fires 4.1

Keynesian theory 9.2,9.2.5
optimum fish harvesting 4.1.3
optimum location 4.1.5, 10
underdevelopment 3.3.5

what tobuy 4.2.2

UNIVERSITIES

lecture hall design 1.5.6
student body quality 4.2.1
student body size 3.3.2,9.2.9

tenure 5.1.4
MISCELLANEOUS

a doctor’s waiting room 5.2

fighting forest fires 4.1

measuring lengths 10.1

positioning recording tapes 6.1
roasting turkeys 2.2.3

running in the rain  4.1.2

speed of racing shells 2.7,2.1.2,2.1.3
stringed instrument design 2.2.2
throwing strings 10.3



Advertising, 80, 159
Airplane, stability of, 187
Anatomy and physiology, biological
rhythms, 168
blood vessel optimization, 71
capillaries, number of, 73
comparative, blood flow, 31
body proportions, 26
falling, 34
food needed by Gulliver, 33
jumping, 27, 28
optimal phenotype, 84
drug excretion, 156
endocrine systems, 188
lung efficiency, 127
trees, random branching of, 115
see also Psychophysics
Arms race, 189
ICBMs and, 45, 56, 100, 101
Astronomy, 116, 166

Ballistics, 164

Bartering, 81

Bayes’ formula, 223

Beam, cutting of hot rolled, 215
deflection of, 27

Bernoulli trials, 224, 238

Binomial coefficients, 224

Bioeconomics, 77

Birds, migration of, 12

Blood, see Anatomy and physiology

Box, Edgeworth, 83

Breakage of particles, 208

Business, see Firms

Capillaries, number of, 73

Cartography, waves and water depth, 43
Castes, insect, 85

Central Limit Theorem, 209, 230, 233
Central Place Theory, 115

INDEX

Chain reaction, 169
Chebyshev’s inequality, 221
Chemical engineering, 89, 152, 157, 187
Chemical reactions, stability of, 169, 190
Choices, simple, 94, 98
Circadian rhythms, 168
Clocks, pendulum, 177
Cobweb model of supply and demand, 57
Colleges, see Universities
Comets, 116
Committee behavior, 60
Compartment model of drug excretion, 156
Competition, interspecific, 64, 184
Conservation of fish, 77
Conservation laws, 199
Cooking times, 42
Cost, marginal, 53
Countries, underdeveloped, 64
Curve fitting, 21, 26, 44, 211, 234
Curves, indifference, 83
supply and demand, 55
Cycles, biological, 168, 180, 184, 188, 201
limit, 174, 200

Decision making, simple, 94, 98
Demand curves, 55
Demography, 9, 14, 91
Density function, 226
Deserts, reflected sunlight in, 121, 122
Difference equations, richness of, 142
Differential equations, numerical method
for, 171
Direction field, 60
Distribution function, 220, 226
exponential, 203, 213, 237
log normal, 207
normal, 170, 209, 230, 233
Poisson, 95, 102, 154, 158, 237
Rosin’s law, 207
Doctor’s waiting room, 106
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Dosage, drug, 156
insecticide, 159

Drag force, 23, 34, 164

Drugs, 156

Dunes, sand, 211

Ecology, Great Lakes pollution, 144
species diversity and habitat size, 49
see also Population growth

Economics, Keynesian, 184, 189

Economy, national, 184, 189

Edgeworth box, 83

Elections, fair, 124

Elevators, 12

Employees, see Firms

Employers, see Firms

Engineering, chemical, 89, 152, 157, 187

Epidemics, 166, 192

Equilibrium point, 174

Equipment turnover, 81

Events, independent, 219
simple, 218

Expectation, 220, 227

Exponential distribution, 203, 213, 237

Facility location, optimum, 79, 204

Falling, 34, 158

Fire, forest, 73

Fire station location, 204

Firms, advertising, 80, 159
equipment turnover, 81
general theory, 52
inventory maintenance, 66, 131, 215
loading docks, 115
optimum location of, 79, 204
overstock sales, 131
package filling, 216
packaging costs, 19
production run length, 66
sales force size, 10
salesperson effectiveness, 11
wages, 57, 88

Fish, optimum swimming of, 79
schooling of, 132

Fishing, regulation of, 77
type of catch, 189

Fission, nuclear, 169
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Fitness sets, 84

Flow, blood, 31, 71
resistance to, 72
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Galaxies, colliding, 166
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Groups, dynamics of, 60
peer pressure and marriage, 157
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social, 87
Inventory maintenance, 66, 131, 215
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Laplace transforms, 193

Least squares, see Curve fitting
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Limit cycles, 174, 200

Linear algebra, 9, 37, 177

Linear approximation, bad effect of, 201
Linear programming, 87

Lizards, body temperature of, 121
Loading docks, 115

Location, optimum, 79, 204

Log normal distribution, 207
Lotka-Volterra equations, 181
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Macroeconomics, 64, 184, 189
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Marriage, 157
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Medicine, diagnosis, 127, 223
drug excretion, 156
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Missles, see Arms race; Ballistics; and
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mathematical, definition, 2
usefulness of, 1
need for, 14
predictions, fragile and robust, 4, 123,
130,152,177
see-also Sensitivity analysis
scale, 38, 43
variables, careful choice of, 3
types of, 2, 3
Modeling process, changing problem, 10
example, 8, 10
implicit assumptions, 1, 197
references, 12
theory of, 6
Money, government control of, 187
Monte Carlo simulation, 103
accuracy of estimates, 104, 231
Music, stringed instruments, 40

Normal approximation, 170, 209, 230
Normal distribution, 230
random generation of, 233
Nuclear reaction, 169
Numbers, random, 105, 118, 232

Packaging costs, 19
Particle size distribution, 207
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Pendulum, damping of, 40,177
period of damped, 179
period of perfect, 37
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disarmament, 56
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demography, 9, 14, 91
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Predation, 180, 188, 201
Probability, conditional, 219
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see also Psychophysics
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Queues, 106

Racing shells, 22, 236

Radioactive decay, 202

Random numbers, generation, 105, 232
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Reaction, chain, 169

Rhythms, biological, 168
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Rosin’s law, 207

Running in rain, 76

Salesperson effectiveness, 11
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Scale models, 38, 43
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Sensitivity analysis, 11, 68, 75, 80
Sex ratio, human, 91, 217
Signals, traffic, 89, 213
Simple events in probability, 218
Sociobiology, herd formation, 132
insect castes, 85
Sociology, group size distribution, 101
marriage rate, 157
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Species interaction, see Ecology; Population
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Monte Carlo simulation, 103
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Normal distribution, 230
random generation of, 233
Nuclear reaction, 169
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Stream networks, 110, 117

String, randomly thrown, 214

Structures, strength of, 38

Students, admission of, 64, 68
demand for graduating, 64

Sunlight, reflected in deserts, 121, 122

Supply and demand, S5, 57, 64

Symbiosis, 184, 189

Systems, autonomous, 173

Tape recorder reel revolution counters, 130

Taylor polynomials, 171, 193

Thermostats, 199

Time lags, 9, 57

Traffic flow, car following, 193
flow-concentration curve, 133
fundamental diagram, 133
left turn squeeze, 148
pedestrain crosswalks, 213
signals, 89
urban, 12

Trees, plane planted binary, 111
random branching of, 115

Unemployment, 187

Universities, admissions policy, 64, 88
demand for graduates, 64
faculty tenure, 99
lecture hall design, 13

Utility, mathematical theory of, 204

Van der Pol equation, 200
Variable, random, 220
Variables in models, 2, 3, 6
Variance, 220

Variation, coefficient of, 203
Vision, 131, 134
Volterra-Lotka equations, 181

Wages, 57, 88
Waiting room, 106
Water skiing, 160
Waves, water, 42

Young’s modulus, 39, 41
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