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PREFACE 

This book is designed to teach students how to apply mathematics by for­
mulating, analyzing, and criticizing models . It is intended as a first course 
in applied mathematics for use primarily at an upper division or beginning 
graduate level. Some course suggestions are given near the end of the preface .  

The first part of the book requires only elementary calculus and, in 
one chapter, basic probability theory. A brief introduction to probability 
is given in the Appendix. In Part II somewhat more sophisticated mathe­
matics is used. 

Although the level of mathematics required is not high, this is not an 
easy text : Setting up and manipulating models requires thought, effort, 
and usually discussion-purely mechanical approaches usually end in 
failure. Since I firmly believe in learning by doing, all the problems require 
that the student create and study models . Consequently, there are no trivial 
problems in the text and few very easy ones . Often problems have no single 
best answer, because different models can illuminate different facets of a 
problem. Discussion of homework in class by the students is an integral 
part of the learning process ; in fact, my classes have spent about half the 
time discussing homework. I have also encouraged (or insisted) that home­
work be done by students working in groups of three or four.  We have usually 
devoted one class period to a single model, both those worked out in the 
text and those given as problems. I have also required students to report 
on a model of their own choosing, the amount of originality required de­
pending on the level of the student. 

Except for Chapter 6, each section of the text deals with the application 
of a particular mathematical 'technique to a range of problems . This lets 
the students focus more on the modeling. My students and I have enjoyed 
the variety provided by frequent shifts from one scientific discipline to 
another . This structure also makes it possible for the teacher to rearrange 
and delete material as desired ; however, Chapter 1 and Section 2 . 1 should be 
studied first . Chapter 1 provides a conceptual and philosophical framework. 
The discussions and problems in Section 2 . 1 were selected to get students 
started in mathematical modeling. 

Most of the material in this book describes other people's models , 
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frequently arranged or modified to fit the framework of the text, but hope­
fully without doing violence to the original intentions of the model. I believe 
all the models deal with questions of real interest : There are no "fake" 
models created purely to illustrate a mathematical idea, and there are no 
models that have been so sanitized that they have lost contact with the com­
plexities of the real world . Since I've selected the models, they reflect my 
interests and knowledge. For this I make no apology - caveat emp tor. 

The models have been chosen to be brief and to keep scientific back­
ground at a minimum. While this makes for a more lively and accessible 
text, it may give the impression that modeling can be done without scien­
tific training and that modeling never leads to involved studies .  I thought 
seriously about counteracting this by adding a few chapters, each one de­
voted to a specific model. Unable to find a way to do this without sacrificing 
"learnning by doing," I abandoned the idea. 

Course suggestions. On an undergraduate level, the text can be used at 
a leisurely pace to fill an entire year. It may be necessary to teach some 
probability theory for Chapter 5, and you may wish to drop Chapter 1 0 . 
More variety can be obtained by using the text for part of a year and then 
spending some time on an in-depth study of some additional models­
with guest lecturers from the appropriate scientific disciplines if possible . 
Another alternative is to spend more time on simulation models after 
Section 5 . 2  if a computer is available for groups of students to develop their 
own in-depth models . 

A cknowledgments. Particular thanks are due to Norman Herzberg for 
his many suggestions on the entire manuscript. My students have been 
invaluable in pointing out discussions and problems that were too muddled 
or terse to understand. lowe thanks to a variety of people who have com­
mented on parts of the manuscript, suggested models , and explained ideas 
to me. 

I 'd appreciate hearing about any errors, difficulties encountered, sug­
gestions for additional material, or anything else that might improve future 
editions of this book. 

La Jolla, California 
August 1977 

EDWARD A. BENDER 
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CHAPTER 1 

WHAT IS MODELING 

1.1 M O D E LS A N D R EA LITY 

The theoretical and scientific study of a situation centers around a model, 
that is, something that mimics relevant features of the situation being studied. 
For example, a road map, a geological map, and a plant collection are all 
models that mimic different aspects of a portion of the earth's surface. 

The ultimate test of a model is how well it performs when it is applied 
to the problems it was designed to handle. (You cannot reasonably criticize 
a geological map if a major highway is not marked on it; however, this 
would be a serious deficiency in a road map.) When a model is used, it may 
lead to incorrect predictions. The model is often modified, frequently dis­
carded, and sometimes used anyway because it is better than nothing. This 
is the way science develops. 

Here we are concerned exclusively with mathematical models, that is, 
models that mimic reality by using the language of mathematics. Whenever 
we use " model" without a modifier, we mean " mathematical model." 
What makes mathematical models useful ? If we "speak in mathematics," 
then 

1. We must formulate our ideas precisely and so are less likely to let implicit 
assumptions slip by. 

2. We have a concise " language" which encourages manipulation. 
3. We have a large number of potentially useful theorems available. 
4. We have high speed computers available for carrying out calculations. 

There is a trade-off between items 3 and 4 :  Theory is useful for drawing 
general conclusions from simple models, and computers are useful for 
drawing specific conclusions from complicated models. Since the thought 
habits needed in formulating models are quite similar in the two cases, it 
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matters little what sort o f  models we use ; consequently, I have felt free to 
neglect computer based models purely for personal pedagogical reasons. 
There are some references to a computer in Section 5.2 where Monte Carlo 
simulation is discussed and, to a lesser extent, in Section 8.2 where numerical 
solutions to differential equations are discussed. 

Mathematics and physical science each had important effects on the 
development of the other. Mathematics is starting to play a greater role in 
the development of the life and social sciences, and these sciences are starting 
to influence the development of mathematics. This sort of interaction is 
extremely important if the proper mathematical tools are going to be 
developed for the various sciences. S .  Bochner ( 1 966) discusses the hand-in­
hand development of mathematics and physical science. Some people feel 
that there is something deeper going on than simply an interaction leading 
to the formulation of appropriate mathematical and physical concepts .  
E. P.  Wigner ( 1 960) discusses this. 

1.2. P R O P E RTI ES  O F  M O D EL S  

We begin with a definition based on  the previous discussion : A mathematical 
model is an abstract, simplified, mathematical construct related to a part of 
reality and created for a particular purpose. Since a dozen different people 
are likely to come up with a dozen different definitions, don't take this one 
too seriously ; rather, think of it as a crude starting point around which to 
build your own understanding of mathematical modeling. 

We now have a problem : To fully appreciate the general discussion 
in the next two sections you should look at some concrete examples like 
those in Sections 1 .4 and 1 . 5 ; however, you will need some abstract back­
ground to appreciate the examples fully. I suggest reading the remainder of 
the chapter through quickly and then coming back to this point and re­
reading more carefully. 

As far as a model is concerned, the world can be divided into three 
parts : 

1. Things whose effects are neglected. 
2. Things that affect the model but whose behavior the model IS not 

designed to study. 
3. Things the model is designed to study the behavior of. 

The model completely ignores item 1 .  The constants, functions, and so on, 
that appear in item 2 are external and are referred to as exogenous variables 
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(also called parameters, input, or independent variables) . The things the 
model seeks to explain are endogenous variables (also called output or 
dependent variables). The exogenous-endogenous terminology is used in 
some areas of modeling. The input-output terminology is used in areas 
of modeling where the model is viewed as a box into which we feed infor­
mation and obtain information from. The parameter-independent -dependent 
terminology is the standard mathematical usage. 

Suppose we are hired by a firm to determine what the level of production 
should be to maximize profits. We would construct a model that enables 
us to express profits (the dependent variable) in terms of the level of pro­
duction, the market situation, and whatever else we think is relevant (the 
independent variables). Next we would measure all the independent variables 
except the level of production and use the model to determine which value 
of the level of production gives the greatest profit. 

Now let's look at things from the point of view of an economist who 
is seeking to explain the amount of goods firms produce. A two-part model 
could be constructed : Firms seek to maximize profits, and profits can be 
determined as sketched in the previous paragraph. In this model profits 
become an internal variable (of no interest except for the machinations of 
the model), and level of production changes from an independent to a 
dependent variable. 

These three categories (neglected, input, and output) are important in 
modeling. If the wrong things are neglected, the model will be no good. If 
too much is taken into consideration, the resulting model will be hopelessly 
complex and probably require incredible amounts of data. Sometimes, in 
desparation a modeler neglects things not because he thinks they are un­
important, but because he cannot handle them and hopes that neglecting 
them will not invalidate the conclusions. A. Jensen ( 1 966) discusses the 
development of a model for safety-at-sea problems. The main difficulty in 
formulating the model was to determine what types of encounters between 
ships were dangerous, that is, to separate items 1 and 2. He found this to be 
hard even with the aid of nautical experts. (If you want to know the answer, 
you'll have to read the article.) 

Proper choice of dependent variables (i .e . ,  output) is essential ; we must 
seek to explain the things we can explain. Often this choice is relatively clear, 
as in the example involving tJ;1e economist who wished to explain the level of 
production of a firm. Sometimes we need to be careful ; for example, we could 
explain profits in terms of level of production, but not conversely as we 
might naively try to do, since we were asked to determine the best level of 
production. 

Since different models make different types of simplifying assumptions, 
there is usually no single best model for describing a situation. R. Levins 
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( 1 968,  p .  7 )  observed that " it i s  not possible t o  maximize simultaneously 
generality, realism, and precision." In the social sciences one is often content 
with a statement that something will increase ; precision has been sacrificed 
for realism and (hopefully) generality. Simulation models usually try for 
precision and realism but sacrifice generality. These three trade-offs should 
become clearer after you have studied some actual models. 

Definitions of the variables and their interrelations constitute the 
assumptions of the model. We then use the model to draw conclusions (i .e . ,  to 
make predictions). This is a deductive process : If the assumptions are true, 
the conclusions must also be true. Hence a false prediction implies that the 
model is wrong in some respect. Unfortunately things are usually not this 
clear-cut. We know our model is only an approximation, so we cannot 
expect perfect predictions. How can we judge a model in this case ? 

A conclusion derived from a crude model is not very believable, 
especially if other models make contrary predictions. A result is robust if it 
can be derived from a variety of different models of the same situation, or 
from a rather general model. A prediction that depends on very special 
assumptions for its validity isfragile. The cruder the model, the less believable 
its fragile predictions. 

You may notice that we have talked about conclusions, not explanations. 
Can a model provide explanations ? This is a somewhat philosophical 
question, and different people have different notions of what constitutes an 
explanation. Let us grant that, in some sense, models can provide explana­
tions . A decision about the validity of a model is usually based on the accuracy 
of its predictions. Unfortunately, two different models may make the same 
predictions but offer different explanations. How can this be ? 

We can think of the situation we are modeling as being a " black box " 
which outputs something for every input. (" Something " can be no output. )  
A model makes correct predictions if it outputs the model equivalent of the 
black box output whenever the model equivalent of the black box input is 
fed in. The mechanism is irrelevant when dealing with predictions, but the 
nature of the mechanism is the heart of an explanation. Although there is 
usually a situation in which two different models lead to different predictions, 
we may not be able to determine which prediction is correct. For example, 
a model of a politician can be constructed by assuming that his behavior 
is ( 1 )  motivated by concern for his fellow man or (2) motivated by a desire 
for public office. In many situations these two models lead to identical or 
very similar predictions. It may be difficult to make contradictory predictions 
that can be checked. Another example for those familiar with simple circuits is 
the mathematical equivalence between perfect springs and perfect LC circuits. 
Although the underlying mathematics is identical, no one would seriously 
suggest that Hooke's law for springs " explains " the circuit's behavior. 



P R O P E R T I E S  O F  M O D E LS 5 

We have been talking about an ideal modeler. When any of us ap­
proaches a problem, we do so in a limited, biased fashion. The more open­
minded, communicative, and creative we can be, the better our model is likely 
to be. The following poem illustrates the problems that can arise. 

The B l i nd M e n  and the E l ephant 

It was six men of Indostan 
To learning much inclined, 

Who went to see the Elephant 
(Though all of them were blind), 

That each by observation 
Might satisfy his mind. 

The First approached the Elephant, 
And happening to fall 

Against his broad and sturdy side, 
At once began to bawl : 

" God bless! but the Elephant 
Is very like a wall! " 

The Second, feeling of the tusk, 
Cried, " Ho! what have we here 

So very round and smooth and sharp ? 
To me 'tis mighty clear 

This wonder of an Elephant 
Is very like a spear! " 

The third approached the animal, 
And happening to take 

The squirming trunk within his hands, 
Thus boldly up and spake : 

" I  see," quoth he, " the Elephant 
Is very like a Snake! " 

The Fourth reached out an eager hand, 
And felt about the knee. 

" What most this wondrous beast is like 
Is mighty plain," quoth he ; 

" 'Tis clear enough the Elephant 
Is very like a tree! " 
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The Fifth who chanced to touch the ear, 
Said : " E'en the blindest man 

Can tell what this resembles most ; 
Deny the fact who can, 

This marvel of an Elephant 
Is very like a fan ! " 

The Sixth no sooner had begun 
About the beast to grope, 

Than, seizing on the s�inging tail 
That fell within his scope, 

" I  see," quoth he, " the Elephant 
Is very like a rope ! " 

And so these men of Indostan 
Disputed loud and long, 

Each in his own opinion 
Exceeding stiff and strong. 

Though each was partly in the right 
And all were in the wrong ! 

John Godfrey Saxe ( 1 8 1 6- 1 887) 
Reprinted in Engineering Concepts 
Curriculum Project ( 197 1 )  

1 .3 . B U I LD I NG A MOD EL 

Model building involves imagination and skill. Giving rules for doing it is 
like listing rules for being an artist ; at best this provides a framework around 
which to build skills and develop imagination. It may be impossible to teach 
imagination. It won't try, but I hope this book provides an opportunity for 
your skills and imagination to grow. With these warnings, I present an out­
line of the modeling process. 

1. Formulate the Problem. What is it that you wish to know ? The nature 
of the model you choose depends very much on what you want it to do. 

2. Outline the ModeL At this stage you must separate the various parts 
of the universe into unimportant, exogenous, and endogenous . The 
interrelations among the variables must also be specified . 
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3. Is It Useful? Now stand back and look at what you have . Can you 
obtain the needed data and then use it in the model to make the pre­
dictions you want ? If the answer is no, then you must reformulate the 
model (step 2) and perhaps even the problem (step 1 ) .  Note that "useful" 
does not mean reasonable or accurate ; they come in step 4. It means : 
{(the model fits the situation, will we be able to use it ? 

4. Test the Model. Use the model to make predictions that can be checked 
against data or common sense . It is not advisable to rely entirely on 
common sense, because it may well be wrong. Start out with easy pre­
dictions-don't waste time on involved calculations with a model that 
may be no good . If these predictions are bad and there are no mathe­
matical errors, return to step 2 or step 1 .  If these predictions are accept­
able, they should give you some feeling for the accuracy and range of 
applicability of the model . If they are less accurate than you anticipated, 
it is a good idea to try to understand why, since this may uncover im­
plicit or false assumptions .  

At  this point the model i s  ready to  be  used. Don't go  too  far ; i t  is 
dangerous to apply the model blindly to problems that differ greatly from 
those on which it was tested. Every application should be viewed as a test 
of the model. 

You may not be able to carry out step 2 immediately, because it is not 
clear what factors can be neglected. Furthermore, it may not be clear how 
accurately the exogenous variables need to be determined. A common 
practice is to begin with a crude model and rough data estimates in order 
to see which factors need to be considered in the model and how accurately 
the exogenous variables must be determined. 

Some models may require no data. If a model makes the same prediction 
regardless of the data, we are not getting something for nothing because this 
prediction is based on the assumptions of the model. To some extent, the 
distinction between data and assumptions is artificial. In an extreme case, 
a model may be so specialized that its data are all built into the assumptions. 

Sometimes step 4 may be practically impossible to carry out. For 
example, how can we test a model of nuclear war ? What do we do if we have 
two models of a nuclear war and they make different predictions ? This can 
easily happen in fields of study that lack the precisely formulated laws 
found in the physical sciences. At this point experience is essential-not 
experience in mathematics but experience in the field being modeled. Even 
if predictions can be tested, the testing may be expensive to carry out and 
may require training in a particular field of experimental science. Since the 
absence of experimental verification leaves the modeling process incomplete, 
I have given test results whenever I have been able to obtain them. 
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1 .4. A N  EXAM P l E  

We discuss models for the long term growth o f  a population i n  order to 
illustrate some of the ideas of the two previous sections. We want to predict 
how a population will grow numerically over a few generations. This is the 
problem (step 1 in Section 1 . 3) . 

Let the exogenous (independent) variables be the net reproduction 
rate r per individual, the time t, and the size of the population at t = 0. The 
net reproduction rate is the birth rate minus the death rate. In other words, 
it is the fractional rate of change of the population size : r = (dN/dt)/N. 
There is only one endogenous (dependent) variable, the size of the population 
at time t, which we denote by N(t). We also refer to r as the net growth rate. 

To obtain a simple model, we ignore time lag effects ; that is, we assume 
that only the present value of N and its derivatives are relevant in determining 
the future values of N. (This will lead to a differential equation.) If the fraction 
of the population that is of reproductive age varies with t, this can be a very 
poor assumption. Let's also assume that the net reproduction rate r is a 
constant. This gives us a rather crude model with the basic relationship 

1 dN 
( 1 )  -- = r. N dt 
The model would certainly be useful if it fits the real world (step 3). The 
solution of ( 1 )  is N(t) = N(O)ert. Unless r = 0, the population will eventually 
either die out (r negative) or grow to fill the universe (r positive). Reasonable 
behavior of the population size is a very fragile prediction of the model. 
This casts serious doubt on the validity of using a constant net reproduction 
rate for predicting long term growth. This approach to a model illustrates 
an important point : Study the behavior of your model in limiting cases (in 
this case as time gets very long, i .e . ,  as t ---+ 00). 

Our test of the model (step 4) for long term growth indicates that it 
must be rejected ; however, it may be useful for short term predictions . 
Unfortunately, we specifically asked for long term predictions. 

Clearly the growth rate of a population will depend on the size of the 
population because of such effects as exhaustion of the food supply. If the 
population becomes very large, we can expect the death rate to exceed the 
birth rate. Let's translate this into mathematics. We replace the net repro­
duction rate r in ( 1 )  by r(N) which is a strictly decreasing function of N for 
large N and becomes negative when N is very large. Thus 

(2) 
1 dN -- = r(N). N dt 
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We've now redone step 2. The model is less useful than the previous one, 
because obtaining the exact form of r(N) will be hard, perhaps even im­
possible. However, rough estimates can be obtained, so let's see what can 
be done with them. On to step 4. It can be shown that N(t) approaches No , 
the solution of r(N 0) = 0, as time passes. This is a robust prediction, since 
we made very few assumptions concerning the nature of the function r(N). 
Because the model was constructed to predict an upper limit for the size 
of a population, it is not surprising that it does so. 

The cycle of steps 4, 2, and 3 can be repeated, since the model described 
by (2) has many drawbacks. For one thing, the population can only move 
closer to No in the future. A real population often overshoots the steady 
state size No , and even steady state populations fluctuate slightly in size 
because of the somewhat random nature of births and deaths. One way to 
eliminate the first objection is to introduce time lags. For example, if the 
death rate m is not age dependent and the birth rate b changes from zero 
to a constant at age p, we could replace ( 1 )  by 

dN 
(3) dt = -mN(t) + bN(t - p). 

The parameter p is called a time lag. Of course, we could make m ,and b 
functions of N(t), N(t - p), or some weighted average of N on the interval 
[t - p, tJ . To allow for random fluctuations we must replace our deter­
ministic model by a random one. 

Another drawback is the assumption that it makes sense to talk about 
r(N). If the age or sex ratios in a population are changing, this may be non­
sense. To overcome this objection it is necessary to split the population 
into subpopulations based on age and sex. Demographic models are designed 
in this way : In a typical model time is broken up into discrete units such as 
5 year periods, men are ignored, and women are divided into age classes 
separated by a single time unit. For each age class there is no longer simply 
a net birth rate but a death rate mj and a birth rate bj for female children. The 
number of newborn girls at time t + 1 is N o(t + 1) = I bjNj(t), and the 
number of women in class i + 1 is Nj+ 1 (t + 1) = (1 - m;)N;(t), the number 
surviving from class i at time t. Linear algebra is a natural tool for handling 
this model. Demographers frequently assume that bj and mj are independent 
of N, because they are interested in relatively short term predictions. 

Seasonality may be important for short term models, since in many species 
births occur during a particular season and death rates are also d.ependent 
on the time of year. An explicit time dependence must be built into r(N) to 
allow for seasonal effects. In a long term model encompassing many years 
we could probably avoid this complication by averaging birth and death 
rates over an entire year. 
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I hope this discussion makes i t  clear that we  can't formulate an  adequate 
model unless we know ( 1 )  what we hope to obtain from the model and 
(2) how complicated a model we are willing to tolerate. The latter is practically 
the same as how much data we are willing to supply, since complexity and 
data demands usually grow simultaneously. 

1.5. ANOTH ER EXA M PLE 

The manager of a large commercial printing company asks your advice on 
how many salespeople to employ. Qualitatively, more salespeople will 
increase sales overhead, while fewer salespeople may mean losing potential 
customers. Thus there should be some optimum number. By " salespeople " 
I don't mean clerks, but people who travel, selling a company's products 
to other businesses ; however, these ideas could be applied to salesclerks, too. 
This problem has been adapted from A. A. Brown et al. ( 1956). The original 
paper goes into greater depth than the following discussion and is well worth 
reading. 

The problem as stated is unanswerable. What are the production limita­
tions of the company ? What are the goals of management ? Maximum profit ? 
Maximum " empire " with satisfactory profit ? Something else ? Unless these 
and similar questions are very clearly answered, recommendations may be 
quite inaccurate. A better approach would be to provide a description of the 
consequences of sales forces of various sizes. This would leave the final 
decision up to management, which is as it should be. To determine what 
effect a sales force will have, we must know what salespeople accomplish. 
Thus we can try to determine how salespeople spend their time and what 
results they obtain as a consequence of spending their time in that way. As 
long as salespeople need to be studied, we may as well ask : What is the best 
way (in terms of obtaining sales) for them to spend their time ? We can then 
advise management on ( 1 )  how to obtain the greatest return from their 
sales force, and (2) the impact various sizes of sales forces will have on sales. 
This tentatively completes step 1 .  

Notice that we have changed the original problem considerably. We 
were asked, " How many salespeople should be employed ? "  Instead, we 
are going to answer two other questions which we formulated at the end of 
the previous paragraph. Actually the questions need further refinement. 
For example, different salespeople have different abilities, and their territories 
are probably different. The question how salespeople should spend their 
time contains a trap, because it invites us to ignore these variations. Again, 
if we change the size of the sales force, we can change the total geographical 
area covered, the effort expended per customer, or both. Thus the question 
on the consequences of various sizes of sales forces also contains potential 
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traps. Clearly step 1 hasn't been completed ; however, the  best idea is probably 
to proceed and to realize that in studying a real situation we will eventually 
need to return to step 1 and formulate the questions more precisely in a way 
that depends greatly on the particular printing company being studied. 

The major factor that will affect how much time a salesperson spends 
on a customer is what the salesperson can hope to gain. Observations indicate 
that businesses normally place most of their printing orders with one 
company. Hence we can classify customers as " in hand " or " potential ." The 
former need to be held, and the latter need to be converted. In addition, we 
can classify customers according to how much money they have to spend. As 
an approximation we can assume (but it should be checked) that holding 
and conversion probabilities are independent of size. By running an experi­
ment with the salespeople, or possibly by examining records if we are lucky, 
we can obtain an idea of how conversion and holding probabilities vary 
with the amount of time per week devoted to a customer. From this we 
can decide how a salesperson should spend their time, because one additional 
hour per month should produce the same expected gain in revenue regardless 
of which customer it is spent with. (If you don't see this, don't worry, I 've 
omitted some details . Try rereading it after Chapter 4.) This completes 
steps 2 and 3 for the first part of the problem. We don't have the data to carry 
out step 4, but it should be relatively straightforward. 

The decision on how a salesperson should divide his time together with 
the data on holding and conversion probabilities and data on the sizes of 
orders various businesses place will determine gross revenue as a function 
of number of salespeople. (Think about why this is so . )  

The above outline indicates how we can attack the problem posed by 
management-remember : How many salespeople should we employ ? The 
answer will consist of 

1. A statement of how best to divide up a salesperson's time as a function 
of the number and type of customers being dealt with . 

2.  A table of expected gross income as a function of number of salespeople, 
assuming that the sales districts are divided up evenly. 

The model building will not be complete until we actually collect the data 
and make predictions. As soon as we do this, we'll find that the data permit 
only rough estimates for items 1 and 2. Thus we should give some estimate 
of the range of the numbers : If we have n salespeople, the gross sales will be 
expected to be between X and Y dollars. We could also try to anticipate a 
question management is likely to raise : 

We can't make salespeople divide their time just the way you recom­
mend. Besides, salespeople and customers are individuals . How sensitive 
are your recommendations to all this ? 
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This example illustrates the importance of formulating the problem. 
The problem as given was hard or impossible to solve. By breaking it down 
and changing the goal (a tabulation of number of salespeople versus expected 
sales rather than simply an optimal number of salespeople), it became more 
approachable. 

C. C. Lin and L. A. Segel ( 1 974, Ch. 1) discuss applied mathematics 
and present two further examples. You may enjoy reading their chapter 
to obtain a somewhat different viewpoint. The first two chapters of J. Crank 
( 1962) are also interesting reading. Chapters 2 and 3 of C. A. Lave and 
J. G. March ( 1975) present an interesting discussion of modeling. 

P R O B L E M S  

Some of the problems in this book lead you step by step through the develop­
ment of a model and thus resemble the mathematics problems you have seen 
in other courses ; however, many problems are closer to real life : They are 
vaguely stated, have multiple answers (models), or are open ended. I strongly 
recommend working in small groups on the problems to bring out various 
ideas and evaluate them critically. 

1 .  Suppose people enter the elevators in a skyscraper at random during 
the morning rush. The result will be several elevators stopping on each 
floor to discharge one or two passengers each. 

(a) Discuss schemes for improving the situation. 
(b) How could improvement be measured ? 
(c) How could you model the situation to decide what scheme to 

adopt ? 

2. In the text we discussed models for the growth of a single population. 
Discuss models for the growth of two interacting populations .  This 
problem has been phrased very vaguely, and before working on it at 
home decide on a more concrete situation (or situations) in class. 

3 .  How far can a migrating bird fly without food ? 

4. If all five employees can run all six machines in your shop, how should 
you decide whom to assign to which job ? 

5. Discuss the differences and similarities in models of urban vehicular 
traffic that you would construct to deal with the following problems. 
To what extent could one model be used to handle problems it wasn't 
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designed for ?  Consider each case separately. Don't try to set up detailed 
models, just discuss your general approach. 

(a) You are working for a citizens' committee which wants to convince 
the city council to ban private vehicles in the city because of 
pollution .  

(b) The city council has asked you as a traffic engineering expert to 
study the possibilities of speeding up traffic flow by changing 
traffic signal times, setting up one-way streets, and anything else 
you can think of that will help the traffic problem, not upset the 
voters, and not cost much to implement. 

(c) Since your recent efforts have won you a reputation, the city council 
has given you a contract to study the feasibility of banning private 
vehicles and taxis in most of the city as a means of reducing 
atmospheric and noise pollution, but in a fashion that won't 
interfere greatly with the mobility of the populace. Since this is a 
thorny problem with many conflicting goals-a political hornets' 
nest, the city fathers have told you to give them a straightforward 
recommendation so they can avoid the onus of decision making. 

6. Unless you have been extremely lucky, you have had a large class in a 
poorly designed lecture hall. 

(a) What are some criteria to be considered in designing a large 
lecture hall ? 

(b) One criterion is legibility of material written on the boards. 
Construct a model of legibility as a function of the distance your 
seat is from the board and the angle at which you look at the board. 
What will the curves of constant legibility look like on a floor plan ? 
How can you test this prediction ? Try it. Does this suggest shaping 
the back of the hall differently than is usually done ? How ? 

(c) Can mathematical modeling help with any other criteria besides 
the one mentioned in (b) ? Try to pick a criterion from among these 
possibilities and develop a model for it. 

You may wish to look at A. A. Bartlett ( 1 973) after working on this 
problem. 

7. A common technique when no models are available is to collect data, 
try to fit curves, and then treat the curves as if they were a model or even 
an explanation. Discuss.' Would you have faith in predictions made 
from such models ? Explain. Two commonly misused techniques are 
factor analysis and linear regression. For a delightful spoof of the former, 
see J. S. Armstrong ( 1967). 



1 4  WH AT I S  M O D E LI N G  

8 .  One of the simplest models o f  population growth i s  the logistic equation 
dN/dt = rN(1 - N /K). 
(a) Interpret r and K. Discuss the model. 
(b) Suppose you were given census data for a population (i.e . ,  a table 

of date versus population size). How could you test the fit of the 
logistic model to the data ? Remember that r and K are not given. 

(c) E. G. Leigh ( 197 1 ,  p. 1 24) quotes the following data from the U.S .  
Census Bureau on the growth of the U.S. population and from 
Gause on the growth of a population of the one-celled animal 
Paramecium aurelia. How well does the logistic model fit the data ? 

Year N x 10-6 Day N 

1 790 3 .93 1 2 
1 8 10  7.24 2 7 
1830 12 .87 3 25 
1 850 23 . 1 9  4 68 
1 8 70 39 .82 5 168 
1 890 62.95 6 1 38 
19 10  9 1 .97 7 1 90 
1930 122.78 10  122 
1950 1 50.70 1 1  280 
1970 208.0 12 260 

1 3  300 

(d) Can you suggest better models for the growth of the two populations 
given above ? " Better " is a vague word. It could mean simpler, 
fitting the data more accurately, having a firmer biological and 
sociological foundation, and so on. 

1 .6 . W HY STUDY MODELING? 

Why not always deal with the real world instead of studying models ? 
Modeling can avoid or reduce the need for costly, undesirable, or impossible 
experiments with the real world, as the following problems illustrate : 

1.  What is the most efficient way to divide the fuel between the stages of a 
multistage rocket ? 

2. What would be the effect of a very bad nuclear reactor accident ? 
3. How large a meteor was needed to produce Meteor Crater in Arizona ? 
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In trying to " explain " the world, modeling is essential. Scientific theories 
are models and are frequently mathematical models. Every scientist from 
the purest to the most applied must know how to use such models whether 
he calls them that or not. 

For anyone planning to use mathematical models, an understanding of 
how to go back and forth between the world we live in and the world of 
mathematics is essential. This is the crux of mathematical modeling and this 
is what I hope this course will help you learn to do. It is neither science nor 
mathematics, but rather how to put them together. Science and mathematics 
courses are essential (you need something to put together), and this is no 
substitute for them. 





PART 1 
ELEMENTARY METHODS 





CHA PTE R 2 

ARGUMENTS 
FROM S CALE 

In  this chapter we  consider arguments based on  proportionality. For example, 
if you make a scale model of an object with a scale of 1 :  [, surface area will 
have a scale of 1 :  [2 and the volume a scale of 1 :  [3 . Models using this sort of 
idea a:re discussed in the first section. The second section is based on the 
observation that physical laws remain the same if the units of measurement 
are changed. 

2 . 1. E F F ECTS O F  S IZE 

Cost of Packag i ng 

Consider a product like flour, detergent, or jam, which is packaged in 
containers of various sizes. You've probably noticed that larger packages 
of such products usually cost less per ounce. This is often attributed to 
savings in the cost of packaging and handling. Is this in fact the major cause 
or are there other important factors ?  We try to see where this idea leads by 
constructing a simple model. 

The cost of a product is the endogenous variable. We are interested in 
seeing how it varies with the exogenous variable, size. Cost clearly depends 
on competition and the scale of the business. We neglect these factors and 
concentrate on expenses due to materials and handling. Since we are 
neglecting some important factors (name some), the resulting predictions 
will be crude. In addition, there are various constants involved which we do 
not even pretend to evaluate. 

Let's begin by studying the wholesale cost, that is, the price the retailer 
pays for the product. This is a sum of several costs plus various profit mark­
ups by middlemen. Since profit markups are usually in terms of percentages, 

19 
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we can absorb them in constants later ; for example, a 30 % markup multiplies 
constants by 1 . 30. The main costs that enter the wholesale price are : 

1. Cost of producing the product, a. 
2 .  Cost of  packaging the product, b . 
3. Cost of shipping the product, c. 
4. Cost of the packaging material, d. 

We will consider each of these in turn. 
It is reasonable to assume that a is proportional to the amount of the 

good being produced. We write this as a oc w, which is read " a is proportional 
to the weight w." 

The costs of packaging depend on how long it takes to fill the package, 
how long it takes to close the package, and how long it takes to load the 
package into a box for shipping. The first time is probably nearly proportional 
to the volume (hence the weight), while the latter two times are probably 
about the same for all sizes of packages in a reasonable range. Thus 
b � fw + 9 for some positive constants f and g. (The symbol � means 
" approximately equal to.") 

Shipping charges may depend on both weight and volume. Since 
volume is proportional to weight for filled packages, we have c oc w. 

The cost of the packaging material is more complicated. It depends 
on the costs the package manufacturer must meet. Thus we must consider 
a, b, c, and d for the package manufacturer. We neglect d ; that is, we neglect 
the cost of the containers for the material from which the final packages are 
made. From the analysis we have just completed, the cost per package 
depends on the weight and volume of the package. If the range of packages 
we are considering is not too large, it is reasonable to assume that the 
packaging material is the same for all sizes of packages. Therefore the amount 
of material per package (hence the weight of a package) is proportional to 
the area of the surface to be covered. The volume per package is proportional 
to either the surface area or the volume of the package, depending on whether 
the packaging is shipped collapsed (like cardboard) or preformed (like glass). 
Therefore the expenses per package of the package supplier are hw + kS + m, 
for constants h ;:::: 0, k > 0, and m > 0, where S is the surface area. Except 
for a markup, this is the cost d to the packager. 

We now use a scale argument to reduce everything to one independent 
variable, weight. Let us assume that the various packages are roughly 
geometrically similar. The volume is nearly proportional to the cube of a 
linear dimension, and the surface area is nearly proportional to the square 
of a linear dimension : v oc [3 and S oc [2 . Hence S oc v2/3 . Since v oc w, 
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we have SOC W2/3. Thus the wholesale cost per ounce is 

( 1 )  
Cost 

w 
a + b + c + d 

_ 113 q 
------ = n + pW + -, 

w w 

for positive constants n, p, and q. From this we see that the cost per ounce 
decreases as the size of the package increases, in agreement with the observa­
tion made at the start of this discussion. 

Can we make any interesting predictions ? Given three different costs 
and weights, we could solve for n, p, and q in ( 1 )  and use the results to predict 
the prices for packages of other sizes. Because of the crudity of our model, 
it is unlikely that our equation will fit very well. We should not take the 
exact form of ( 1 )  too seriously. Another way to fit a curve, which allows for 
inaccuracies, is the method of least squares. For this to be a reasonable test 
of the model, we should have more data points than parameters. Since ( 1 )  
involves three constants, we  should have more than three values for the cost 
and weight of a single product. This is hard to obtain because of the limited 
number of different-sized packages in which a particular product is available. 
Therefore we need a different approach. 

(2) 

The cost per ounce decreases at a rate 

d(cost/w) p q f = - = -- + -dw 3
w4/3 w2' 

This is a decreasing function of w. Thus the increase in the rate of savings 
per ounce is less when the package is larger. We can also compute the rate 
of total savings : 

pW-1/3 
rw = --3- + qw - I 

It is also a decreasing function of w. 
The consumer is not likely to understand this. We can make a statement 

like (2) in simpler terms : 

In purchasing prepackaged products, doubling the size of the package 
purchased tends to result in greater savings per ounce when the packages 
are small than when they are large. 

You can prove this by taking the difference of ( 1 )  at w and 2w and verifying that 
it is a decreasing function of w. We have said " tends to " because the model is 
crude. 

These predictions seem to rely heavily on the exact form of ( 1 ) . Actually 
qualitative predictions like these are usually quite robust. It would be 
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desirable to derive them from a more general model if  we wished to pursue 
the model more seriously, but I don't know how to do this and I don't think 
that the problem is worth the effort. 

This discussion concerned wholesale prices. What about retail prices ? 
The retailer's costs depend on wholesale prices and handling and storage 
costs. As above, the latter two costs are of the form Hw + M. If the wholesaler 
sets his price at a fixed percentage above his costs, then we again obtain 
an equation of the form ( 1 ). The conclusions we reached above are therefore 
valid for retail prices too. 

In Problem 1 you are asked to study the model further and test it against 
actual data. 

Speed of Rac ing  Shells 

In the college sport of crew racing the best times vary from class to class .  Why ? 
Can we advise a coach how to adjust the shells so that he can pit his teams 
against each other on an equal basis in practice ? This model is adapted 
from T. A. McMahon's article ( 1 97 1 )  and deals with data for men only. 

Racing shells are boats propelled by oarsmen in sporting contests . 
They hold one, two, four, or eight oarsmen and are built to certain specifica­
tions. Figure 1 is a rough diagram of a racing shell. For an eight-man crew 
there is a lightweight category and a heavyweight category. Heavyweight 

r J 
(a) 

(b) 
F i g u re 1 (a) Top view. (b) Cross section of center. I = length; b = beam; A = 

cross-sectional area. 
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Ta ble 1 Times of Racing Crews in Four M eets 

Number of men II III IV 

8 5 . 87  5 . 92 5 . 82 5 . 73 
4 6 .33  6 .42 6 .48 6 . 1 3  
2 6 .87 6 .92 6 .95  6 .77 
1 7 . 1 6  7 .25 7 .28 7 . 1 7  

oarsmen average about 8 6  kilograms, and lightweight oarsmen about 
73 kilograms. This gives five classes. (There are others which we ignore 
because of a lack of data.) McMahon observed that there is a rather consistent 
difference between the best times of the various classes. Table 1 lists the 
information he presented on best times for 2000 meter races in four inter­
national competitions. The eight-man entry is the heavyweight time. 
McMahon also states that the time of an eight-man heavyweight crew is 
about 5 % better than the time of an eight-man lightweight crew. 

We want to explain all this. 
Rather than present the underlying assumptions of the model in one 

ad hoc package, we develop them as we proceed. 
A shell is propelled by the power of the oarsmen and retarded by the 

drag of the water. The balance of these two forces determines the speed of 
the shell, hence its time in the race. We assume 

1. The only drag force on the shell is due to skin friction and this force 
is proportional to Sv2 , where S is the wetted surface area and v is the 
velocity. 

The expression for the skin friction drag given in the assumption is obtained 
from hydrodynamics. The power P required to maintain velocity v is, by 
definition, equal to the drag force times the velocity. Hence P oc Sv3 , and so 
voc (p/S) 1 / 3 . 

We assume 

2 .  The oarsmen in the shell all have the same weight and the same constant 
power output for the entire course of the race. 

It follows that v is constant, except for the brief period when the shells are 
starting up. Hence the course time t is proportional to V- I , and so 

(3) toc -(S) 1 / 3 P 
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We now consider the time difference between the heavyweight and 
lightweight eight-man crews. We want to explain it and then see if we can 
find a way to redesign the shells so that the two classes wiII be more nearly 
equal. 

The subscripts H and L denote heavyweight and lightweight, respec­
tively. From (3) we obtain 

(4) 
tL 

= 
(SL)1 / 3(PH )1 / 3 . tH SH PL 

We must say something about power output and wetted surface area if we 
are going to explain the 5 % edge of the heavyweight team. Unfortunately 
power output information is not obtainable ; however, we know that the 
ratio of the weights of heavyweight and lightweight oarsmen is about 86  
kilograms/73 kilograms = 1 . 1 8 . Therefore we try to  relate power and weight. 

Sustained power output depends on such factors as lung volume 
(actually lung surface area, but this is proportional to volume because the 
lungs consist of small cells whose size is independent of the size of the person) 
and muscle volume. For similarly proportioned people, these are proportional 
to the total weight. Hence we can expect power output to be proportional 
to the weight w of an oarsman times the number of oarsmen . .  Since WH/WL = 1 . 1 8  and both shells have eight oarsmen, PH/PL = 1 . 1 8 . Combining 
this with (4), 

(5) 

If we make the rough assumption that SL = SH , then (5) comes close to the 
5 % observed difference. Actually the surface area for a loaded heavyweight 
shell is slightly greater than that for a lightweight shell. When this is taken into 
account, the 6 % edge in (5) decreases slightly. We haven't predicted the edge 
precisely, but we have explained why it is in the neighborhood of 5 % .  

How can the shells be  redesigned to  achieve equality ? For fixed power 
output we obtain t ex Sl / 3 from (3). To change the time we must change the 
wetted surface area of the loaded shell. Let the subscripts p and r denote the 
present and redesigned shells , respectively. Then 

�: = (%y. 
The lightweight crews will have times about equal to those of the heavy­
weight crews if t,/t p = 0.95. By the above equation, S,/S p = 0.86 .  In words, 
the wetted surface area of a loaded lightweight shell should be decreased 
by about 14 %, or we could slow the heavyweights down by an increase of 
wetted area of about 16 % ( 1/0 .86 = 1 . 1 6) .  
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We now compare the times of various-sized shells by expressing the 
endogenous variable, course time, in terms of the exogenous variable, team 
size. To do this we have to relate S and P to the size of the team. If assumption 
2 is extended to all oarsmen in all shells, the power will be proportional to 
the number of oarsmen n. Hence (3) reduces to 

(6) 
(S)1 / 3 

t ex  -

n 

We need some information about the relative sizes of the various shells 
so that we can compute S. The information in Table 2 was presented by 
McMahon as evidence for the assumption : 

3. The shells are geometrically similar, and their loaded weights are 
proportional to n. Furthermore, the submerged parts of the loaded shells 
are also geometrically similar. 

Ta b l e  2 Shell Design Parameters 

n b lib weightln 

8 1 8 .28 0 . 6 1 0  30 .0  14 .7  
4 1 1 .75 0 . 574 2 1 .0 1 8 . 1  
2 9 . 76 0 .356 27 .4  1 3 . 6  

7 .93 0 .293 27 .0 1 6 . 3  

Note : I = length; b = beam. 

The variation in the " lib " and " weightln " columns shows that this is a 
rather crude assumption, but it is about the best we can do, since a table of 
wetted surface areas is not available. 

The volume of water displaced by a shell is proportional to its total 
weight. This volume is also proportional to lA o By assumption 3, weight is 
proportional to the number of oarsmen n, and A ex [2 . Thus 

(7) n ex IA ex P.  

The values of  [ and n listed in  Table 2 do not satisfy n ex [3 . Therefore the 
similarity assumption is wrong. What can we do about it ? For the sake of 
continuity, we postpone discussing this problem. 

The total submerged surface area is proportional to I times the sub­
merged perimeter of cross section A in Figure 1. By assumption 3 ,  this 
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perimeter is proportional to A 1 /2 which is in turn proportional to I. Thus 
S ex:. [2 . From (7) we obtain S ex:. n2/ 3 , and so (6) becomes 

(8) 

This yields the prediction : 

Times are proportional to the number of oarsmen raised to the 
power - ! . 

We can test this prediction by graphing t versus n in some fashion. It is much 
easier to see if points are close to a straight line than it is to see if they are 
close to a curve. For this reason relationships like (8) are usually plotted on 
what is called log-log paper. It gives the effect of plotting log n against 
log t , which equals c - log n/9 if (8) is correct. If you do this, you will discover 
that the points come close to lying on a straight line of slope -! as predicted. 
For a least squares curve fit, see Section A.7, especially page 237. 

We are in an awkward situation : the prediction in (8) has been verified, 
but the intermediate result in (7) is wrong. One possible explanation for 
this is that the central portions of the shells (which displace most of the water, 
hence are the most important) obey the similarity assumptions better than 
the ends of the shells. I do not have the data to check this possibility. This 
central length A and the cross section enter into the calculations for volume 
and surface area. A reasonable rough approximation is that volume and 
surface area are proportional to A 3 and A 2 , respectively. The previous calcula­
tions can then be carried out with A replacing I. 

We can give a more robust argument that leads to (8). The volume of the 
submerged portion of the shell is proportional to the weight of the loaded 
shell by Archimedes' law. The weight is very nearly proportional to n . 
Hence the volume is very nearly proportional to n. Since the shells are all 
approximately the same shape, the surface area is nearly proportional to the 
i power of the volume. Hence S is nearly proportional to n2/ 3 . By (6), 
t ex:. (n2/ 3/n) 1 / 3 = n 1 /9 . The important point in this argument is that surface 
area tends to remain proportional to the i power of the volume, even when 
the shape varies somewhat from shell to shell . Thus we do not need the exact 
similarity assumption 3. 

S i ze Effects i n  A n i mals  

Why do animals have the proportions they do ? You may have noticed that 
larger animals tend to have stockier bodies and relatively heavier legs. For 
instance, a deer is not a scale model of an elephant even if we neglect 
superfluous things like the head and the pelt. Why is the largest bird much 
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smaller than a large mammal ? Why can fleas jump so high relative to their 
size ? (Is this the basis of flea circuses ?) 

Various people have applied proportionality arguments to biology. 
The books by N. Rashevsky ( 1960, pp. 251 �275) and J. Maynard Smith 
( 1968, pp. 6� 1 7) contain a variety of examples from which the following 
discussion was adapted. You may also wish to read J. B. S. Haldane ( 1928). 
K. Schmidt-Nielson's book ( 1 972) is worth reading, but only a small part 
of it deals with scaling problems. 

We want to study how the size of a quadruped affects its locomotion 
and the proportions of its body and limbs. The only locomotion question we 
consider is jumping. J. Maynard Smith ( 1 968, p. 1 2) has observed that the 
height to which a jumping mammal can leap seems to be nearly independent 
of its size. In particular, he notes that a jerboa (a mouselike rodent) and a 
kangaroo can jump about equally high. We want to obtain some idea of what 
this may mean. If you wish a fuller exposition of movement, see the books 
mentioned above. 

The structure of animals is quite complex, and so it is easy to build 
very involved models. Rather than becoming lost in a morass of complicated, 
uninterpretable results, we use very crude models. At a couple of critical 
points we'll unfortunately have to rely on some results from elasticity theory. 

We now study how the dimensions of the body (trunk) of an animal 
are related to its weight. As a crude approximation, we think of the trunk 
of the animal as a flexible beam supported at the ends by the legs. Flexible 
beams have been well studied in elasticity theory, so there are results ready 
for our use. If a beam of length I, vertical thickness t, and cross-sectional 
area A is subjected to a uniform load F while its end points are held fixed, 
a result from elasticity theory states that the maximum deflection 15 satisfies FI3 15 ex -z-. t A 
The force F is due mainly to the weight of the trunk, which is roughly pro­
portional to IA . Using this we see that 

15 13 
I ex tZ '  (9) 

where 15/1 is the relative sagging. It is reasonable to suppose that there exists 
some physically determined upper limit to 15/1 above which the animal's trunk 
will be cripplingly deformed. Some dog breeds (e.g., St. Bernard) may be 
at this limit. When I5jI is much below this limit, body material is being used 
unnecessarily for support. It is reasonable to suppose that such an inefficient 
use of body material is eliminated by evolution. Hence we treat I5jI as a 
constant. From (9) we obtain 
( 1 0) t ex 1 3 /z ; 
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that is ,  larger animals have relatively thicker trunks. Rashevsky ( 1960, 
vol. 2, p. 263) has plotted log t against log I and found fair agreement with 
( 1 0). The mass m of the trunk is roughly proportional to IA . Since most 
animals have roughly similar cross sections, A ex t2 . Thus m ex It2 and so 
m ex 14 by ( 10). Combining these observations gives 

( 1 1 )  
t - ex mI /8 1 

Interpret these results . 
How does limb size vary with body weight ? Our model here is even 

cruder than the previous one. The leg bones must be strong enough to with­
stand the bending strain put on them when the animal moves. From elasticity 
theory, the ability of a bone to withstand a force is proportional to its cross 
sectional area Ab • Force equals mass times acceleration. For slow moving 
animals, acceleration is mostly due to gravity. For fast moving animals, 
accelerations are still about equal because they depend on the rate of muscle 
contraction, which has about the same maximum value in all species. Thus 
the force applied is proportional to the mass m of the animal, and so Ab ex m. 
If d is the diameter of the leg bone, d2 ex Ab and so d ex mI ll . Note that, if 
everything remained in proportion for animals of different sizes, we would 
have d ex ml /3 . Hence our model predicts that bone diameter increases 
faster than proportionally ;  that is, the legs of larger animals are relatively 
thicker than the legs of smaller animals .  

How does the height an animal can jump depend on its size ? To jump 
a height h an animal of mass m must do an amount of work proportional to 
mho This work is accomplished by the muscles as the legs move from a 
crouched position at the start to a stretched position just before leaving the 
ground. The work that can be done by a muscle is proportional to its volume 
Vm . Thus mh is proportional to Vm , and so 

( 12) h ex  Vm . 
m 

If we make the plausible assumption that Vm is proportional to m, the 
total mass of the animal, we obtain h = constant from ( 12). However, it 
also seems plausible to assume that the cross sectional area of the muscle 
is proportional to Ab , the cross sectional area of the leg bones. Since Ab ex m, 
it follows from ( 12) that A, the length of the muscle, is proportional to h. 
Since A increases with size, this leads to the conclusion that h increases with 
size. Which approach is wrong and why ? Actually, neither is correct. Rather 
than make " plausible assumptions " in a naive fashion, we need to look at 
the situation structurally : What is it that determines the size of leg muscles ? 
If the muscles are too strong, they will cause the leg bones or joints to break. 
A plausible but somewhat technical bioengineering argument leads to the 
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conclusion that, if bone breakage is the major consideration, Vrn ex Ab . 
Thus ( 12) becomes 

( 1 3 )  h ex  
Ab

. m 
If we accept our earlier conclusion that Ab ex m, we obtain h = constant. 
This conclusion was based on the idea that the importance of leg bone cross 
section derived from supporting the animal ; however, we see from ( 1 3) that 
for jumping mammals the importance of leg bone cross section may derive 
from the height the animal wishes to jump. 

It would be interesting to study a table of h, Ab , Vrn , and m for jumping 
mammals. I have been unable to locate such data. In fact, not many data 
are available to test our size effect models. Of course, one can always measure 
photographs or actual animals. Perhaps you'd like to do it. Besides the 
graphical data given by Rashevsky mentioned earlier, T. A. McMahon 
( 1973) presents further graphical data, and D. D. Davis ( 1962) notes that in 
domestic cats and lions structures associated with locomotion satisfy mass 
relationships of the form w ex m', where r 2: 1, while structures associated 
with metabolism have r < 1 .  W. R. Stahl and J. Y. Gummerson ( 1967) 
analyzed five species of primates (tamarins, squirrel monkeys, vervet 
monkeys, macaques, and baboons). Among their results are the following 
95 % confidence estimates for r in x ex mr. 

x 

Trunk height 
Chest circumference 
Thoracic width 
Midshaft humerus diameter 

r 

0.26-0.29 
0.35-0. 38  
0.27-0.3 5  
0.39-0.45 

It was not clear to me what " trunk height " meant. The first two measurements 
fit the I and t results in ( 1 1 )  quite well, but the thoracic width does not fit the 
t ex m3/8 prediction. The humerus diameter measurement leads to a value 
of r in Ab ex m' considerably less than the predicted value of 1 .  

P R O B L E M S  

1 .  This problem relates t o  the model of the cost of packaging, The conclusion 
drawn from ( 1 )  that costs per ounce for larger packages are less holds 
for the data given at the end of this problem, but this is a relatively crude 
result. Equation (2) cannot be checked, because we cannot compute 
derivatives, only differences. Moreover, the rule on doubling the size of a 
package cannot usually be checked, since manufacturers tend to package 
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products in odd sizes. We want a more flexible form of the doubling rule, 
and so we shall derive a finite difference analog of (2). 

(a) Let Wi < Wz < W3 be the weights of various-sized packages of a 
packaged product and C i '  Cz , and C3 the costs per ounce of the 
packaged product. Derive the following result. 

Why is this analogous to the statement that r is a decreasing function 
of w ?  

(b) The following data was collected at random in a supermarket in 
1972. Test the result given in (a) .  The samples in each group 
came from the same store at the same time and were of the same 
brand. The packages within a group appeared similar except for 
the 1 2  and 32 ounce ketchup bottles. The former was labeled " wide 
mouth " and the latter was labeled "jug." It may be relevant that the 
5 and 10 pound bags of flour were on a shelf marked " new low 
price." The data in each table is taken from a single brand. 

Ketchup 

Ounces $ 

1 2  0.29 
1 4  0.26 
20 0 .36 
32 0 .57 

Tomato Sauce 

Ounces $ 

8 0. 1 5  
1 5  0.25 
29 0.45 

Powdered Milk 

Quarts $ 

3 0.49 
8 1 .09 

14  1 . 59 
20 2. 1 9  

Flour 

Pounds $ 

2 0.27 
5 0 .39 

10 0 .85 

Detergent Powder 

Pounds Ounces $ 

3 1 0.8 1  
5 4 1 .29 

10  1 1  2 .52 
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(c) To test the model further it would be desirable to make additional 
predictions that could be checked against the data. Can you make 
a testable prediction analogous to the statement that rw is a 
decreasing function of w ?  Can you obtain any other qualitative 
predictions from the model, which can be tested with the data ? 

2. Can you think of any data that it would be reasonable to try to obtain 
and which would allow you to improve the model of the speed of racing 
shells ? 

3 .  T. A. McMahon has suggested that, if the lightweight eight-man shell 
were a scale model of the heavyweight eight-man shell when loaded 
[i.e. , if the dimensions had the ratio 1 ; ( 1 . 1 8) 1 / 3] ,  the 5 % edge would 
be eliminated. Do you agree with this ? Why ? (Recall that we needed 
a ratio of redesigned to present surface areas of 0.86.) 

4. Smaller mammals and birds have faster heart rates than larger ones. 
If we assume that evolution has determined the best rate for each, why 
isn't there one single best rate ? Is there a model that leads to a correct 
rule relating heart rates ? A warm-blooded animal uses large quantities 
of energy in order to maintain body temperature, because of heat loss 
through its body surfaces. Since cold-blooded animals require very little 
energy when they are resting, the major energy drain on a resting warm­
blooded animal seems to be maintenance of body temperature. Let's 
explore a model based on this idea. 

The amount of energy available is roughly proportional to blood 
flow through the lungs-the source of oxygen. Assuming the least 
amount of blood needed is circulated, the amount of available energy 
will equal the amount used. 

(a) Set up a model relating body weight to basal (resting) blood flow 
through the heart. Use the data below to check your model. 

(b) There are many animals for which pulse rate data is available but 
not blood flow data. Set up a model that relates body weight to 
basal pulse rate. What sort of assumptions do you need to make 
about hearts ? How could they be checked ? Use the data below to 
check your model. 

(c) Discuss the discrepencies that arise in testing your models in 
(a) and (b). 
After working on the model you may wish to read M. Kleiber 

( 1 96 1 ,  Ch. 1 0, especially pp. 1 99�209). It would be good if someone did 
this and reported on it. 
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Data on Mammals (Altman and Dittmer, 1 964, pp.  234-235) 

Weight Pulse 
Mammal (kilograms) (beats per minute) 

Shrew 0.003-0.004 782 
Bat 0.006 588  
Mouse 0.0 1 7  500 
Hamster 0. 103  347 
Kitten 0. 1 1 7  300 
Rat 0.252 352 
Guinea pig 0.437 269 
Rabbit 1 . 34 25 1  
Opussum 2.2-3.2 1 87 
Seal 20-25 1 00 
Goat 33  8 1  
Sheep 50 70-80 
Swine 100 60-80 
Horse 380-450 34-55 
Cattle 500 46-53 
Elephant 2,000-3,000 25-50 

Note : Rates may not be basal. 

Data on Humans (Spector, 1 956, p. 279) 

Age 5 1 0  16  25 33 
Weight (kilograms) 1 8  3 1  66 68 70 
Pulse (beats per minute) 96 90 60 65 68 
Blood flow through heart 23 33  52  5 1  43 

(deciliters per minute) 

Data on Some Mammals (Spector, 1956,  p. 279) 

Weight (kilograms) 
Blood flow through heart 

(deciliters per minute) 

Rabbit 

4. 1  
5 . 3  

Goat 

24 
3 1  

Dog 

1 6 
22 

Dog 

12  
12  

47 
72 
72 
40 

60 
70 
80 
46 

Dog 

6.4 
1 1  
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Data on Small Birds (Altman and Dittmer, 1964, p. 235) 

Bird Weight Pulse 
(grams) (beats per minute) 

Hummingbird 4 6 1 5  
Wren 1 1  450 
Canary 16  5 14  
Sparrow 28 350 
Dove 1 30 1 3 5  

Data on Large Birds (Altman and Dittmer, 1964, p .  235) 

Bird Weight Pulse 
(grams) (beats per minute) 

Gull 388 40 1  
Chicken 1 ,980 3 1 2  
Vulture 8,3 10  1 99 
Turkey 8,750 93 
Ostrich 80,000 65 

Note : Rates may not be basal. 

5. In Gulliver's Travels, the Lilliputians decided to feed Gulliver 1 728 
times as much food as a Lilliputian ate .  They reasoned that, since 
Gulliver was 12 times their height, his volume was 123 

= 1 728 times the 
volume of a Lilliputian and so he required 1 728 times the amount of 
food of one of them ate. Why was their reasoning wrong ? What is the 
correct answer ? 

6. When you hear something, how does the apparent intensity vary with 
the actual intensity ? What about brightness, weight, and so on ? In the 
nineteenth century Weber formulated a law stating that the just notice­
able difference (jnd) in signal intensity is proportional to the intensity of 
the signal. The constant of proportionality k varies from 0.003 for pitch 
to 0.2 for salinity. Fechner took Weber's law and assumed that all jnd's 
were psychologically equal for a given type of stimulus. This led to the 
Weber-Fechner law relating psychological intensity S, measured in 
jnd's, to physical intensity F :  S = g(F). 

(a) Show that Weber's law states that, if S l and S2 differ by 1 jnd, 
log F 1 and log F 2 differ by some constant k. Derive the Weber­
Fechner law : If S l and S2 differ by an integral number N of jnd's, 
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log F 1 and log F 2 differ by kN. Conclude that g(F) = k log F + c. 
Sound loudness and star brightness are both measured in logarithms 
of energy (decibels and magnitude). Why is this done ? 

(b) Conclude from the Weber-Fechner law that, if FdF2 = F3/F4 ' 
then Sl "'" S2 = S3 - S4 ; that is, the apparent intensities as 
measured by a person seem to differ by the same amount. This 
result is usually fairly accurate for intermediate values of intensity 
but is often inaccurate at extremes .  However, Weber's law is usually 
fairly accurate over the entire range. How can this be ? (Find the 
hidden assumption in Fechner's derivation.) 

(c) Stevens discovered that equal ratios of physical intensity correspond 
to equal ratios of psychological intensity ; that is, 

F 1 F 3 if and only if 
S 1 S 3 

F2 F4 S2 S4 
Let Sj = log Sj and h = log Fj • Suppose 12 = 11 + (j and 14 = 
13 + (j. Letting (j --+ 0, show that ds/dl is a constant. Describe the 
function S = g(F) in Stevens' law. 

(d) How can Weber's law and Stevens' law both be nearly true ? 

Various psychology texts discuss the subject of this problem, 
for exaIIlple, E. Fantino and G. S .  Reynolds ( 1 975, pp. 220-226). 
For a more extended discussion see S. S. Stevens ( 1974, Ch. 1 ). 
A. Rapoport ( 1 976) discusses this problem and other topics in 
mathematical psychology. 

7. Atmospheric drag is roughly proportional to Sv2 , where S is surface 
area and v is speed, for many common objects (e.g . ,  moving cars and 
falling bodies). 

(a) If v is the terminal velocity of a falling object, show that for similarly 
proportioned objects v ex m1 /3 . 

(b) Show that on collision with the ground the kinetic energy per unit 
area that must be converted into some other form of energy is 
proportional to m. 

(c) Discuss the effect of falling on animals of various sizes. Remember 
that larger animals have larger bones. 

2 . 2 .  D I M E N S I O N A L  A N A LYSIS  

Dimensional analysis i s  a tool o f  the physical sciences. I t  i s  based on  the 
observation that physical quantities have dimensions associated with them 
and that physical laws remain unaltered when the fundamental units for 
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measuring the dimensions are changed. For example, the area of a rectangle 
is the base times the height regardless of whether we measure in feet or 
meters as long as the units of area are (feet)l or (meters?, respectively. 

Dimensional analysis alone will not give the exact form of a function, 
but it can lead to a significant reduction in the number of variables. As a 
result, it may be much easier to prepare tables of a function experimentally. 
A related usage of dimensional analysis is the design of scale models : It 
helps you face the problem of how to scale the physical parameters of the 
system so that predictions can be made for the real problem by analyzing 
the behavior of the scale model. 

The examples presented here are adapted from L. I .  Sedov ( 1 959). The 
first book on the subject was written by P. W. Bridgman ( 1 9 3 1 ). J. F. Douglas 
( 1969) gives a recent, standard, elementary introduction to the subject. If 
you would like to read a text containing problems with solutions, see H. L. 
Langhaar ( 195 1) .  S .  J. Kline ( 1965) presents a critical introduction to 
dimensional analysis and related topics. 

Theoretical Background 

The basic physical dimensions are usually mass, length and time. We denote 
them by M, L, and T. Since we can measure velocity in feet per second, it 
has the dimension of length/time. We express this by saying that the 
dimension of velocity is L/T. By Newton's law, force equals d(mv)jdt, where m 
is mass, v velocity, and t time. Hence it has the dimension of mv/t, which is 
M(L/T)/T = MLT- 1 . 

If all the terms in an equation have the same dimension, we say that 
the equation is dimensionally homogeneous. By our definition of the dimension 
of force, we have made Newton's law dimensionally homogeneous. 

Consider Newton's law of gravitation : 

( 14) F = GmlmZ rl ' 
where G is a universal constant, m1 and ml are the masses of two bodies, 
and r is the distance between them. We have just determined that the di­
mension of the left hand side is MLT- 1 . The dimension of mlmZ/rl is 
M2 L - 2 . The two sides of the equation apparently have different dimensions . 
Actually, the value of the constant G depends on the units of measurement 
and so is also given a dimension. To make the law of gravitation dimen­
sionally homogeneous, the dimension of G must be 

MLT- 1  
_�� = M- 1L3T - z M1L z . 
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By assigning dimensions to variables and constants in this way, we 
can make all the laws of physics dimensionally homogeneous. This is not as 
surprising as it may sound. Almost everyone is aware to some extent that 
it is not correct to compare things that have different dimensions. 

The basic theorem of dimensional analysis is the Buckingham pi 
theorem. It can be stated as follows. 

THEOREM. An equation is dimensionally homogeneous if and only if 
it can be put in the form 

f(nb n2 , . . .  ) = 0, 

where f is some function and n1 , n2 , . . .  are dimensionless products (and 
quotients) of the variables and constants appearing in the original equation. 
Not all dimensionless products need to be included in the list nb n2 , . . . •  Only 
a set from which all others can be formed by multiplication and division is 
needed. 

It can be shown that the number of products in the list n l > n2 , . • .  need 
not exceed the number of variables and physical constants in the original 
equation. 

As an example of the theorem we return to the law of gravitation ( 1 ). 
Consider a product of the form 

n = Gamt m� rdr, 

where the exponents a, b, c, d, and e are arbitrary. The dimension of this 
product is 

(M - 1 L 3 T - 2)aMb MCLd(ML T - 2)e = Mb + c + e - aL3a + d + eT - 2(a + e) 

From this we see that n is dimensionless if and only if 

b + c + e - a = 0, 3a + d + e = 0, a + e = 0. 

We can choose a and b arbitrarily. Then c = 2a - b, d = - 2a , and e = - a. 
Since (a, b) = a(l , 0) + b(O, 1 ), all dimensionless products can be obtained 
from the two cases (a, b) = ( 1 , 0) and (a, b) = (0, 1 ). These give 

Gm� 
n 1 = -2� '  r F  

Buckingham's theorem tells us that any homogeneous equation involving 
only the values of G, mb m2 , r, and F can be put in the form f(n l >  n2) = 0. 
For example, the law of gravitation is of this form, since it can be written as 
n 1 n2 - 1 = 0. Note that we had to include G, even though it is a universal 
constant. Everything that can enter into the function must be included. 
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Two comments should be made about the mechanics of doing di­
mensional analysis. First, it is not always evident what should be included 
in the list of relevant physical variables and constants. The only sure guide is 
good intuition. Second, if you have had some linear algebra, you should 
recognize the procedure we went through to obtain n 1 and nz : We found 
a basis for the two-dimensional subspace of R 5 that makes the exponents of 
M, L, and T in n equal to zero. Such a basis was given by (a, b, c, d, e) = 
( 1 , 0, 2, - 2, - 1 )  and (a, b , c, d, e) = (0, 1 ,  - 1 , 0, 0). This procedure works 
in general : Find the exponents of M, L, and T in terms of the exponents of the 
exponents of the variables and constants appearing in n ;  then find a basis 
for the null space of these exponents. Each basis vector determines one of the 
dimensionless products ni mentioned in the Buckingham pi theorem. 

By formalizing the above idea we can obtain a proof of the Buckingham 
pi theorem. Here is a sketch for those who are familiar with linear algebra. 
Let Xb XZ , . . .  , Xk be the physical quantities we are studying. Define 

f(X�'X22 . . .  Xfk) = (a 1 , az , . . .  , ak) ' 

This sets up a natural one-to-one correspondence between products of 
powers of X i  and the elements of Rk. We can replace each X i  by its dimensions 
and define another map d like f but this time into R". (Usually n = 3 for 
M, L, T.) Consider df - 1 . It is a linear transformation from Rk to R". Let 
b I > . . .  , bj be a basis for the null space and extend it to a basis bb . . .  , bk 
for Rk. Define ni = f - l (b ;). We can express Xi as products of powers of the 
ni , since the bi form a basis for Rk. Hence any physical law expressed in 
terms of Xi can be expressed in terms of the ni . For every m > j there is a 
change in the units of measurement which changes nm but leaves the other ni 
unchanged. Since the laws of physics are assumed to be independent of the 
units of measurement, the law we are considering must be independent of 
nm . Thus it depends only on nb . . .  , nj , and these are all dimensionless since 
b 1 , . . .  , bj lie in th<;)illi,U space of df - 1 . 

The Per iod of  a Perfect Pend u l u m  

Legend has it that Galileo's interest in motion began when he observed a 
hanging lamp in the Pisa cathedral swinging back and forth. This is an 
example of a pendulum. How fast does a pendulum swing? How does the 
period of the swing vary with the length ? The weight ? The angle of swing ? 

We consider a pendulum in which all the mass is concentrated at a 
distance I from a perfect pivot and there are no frictional forces. From 
observation or theory it can be determined that the motion of a frictionless 
pendulum is periodic with some period t .  Since we want to derive a formula 
for t, it is our (only) endogenous variable. 
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What quantities should enter into such a formula ? In other words, 
what are our exogenous variables ? The length I of the pendulum, the mass m 
of the pendulum, the acceleration g due to gravity, and the maximum angle 8 
the pendulum makes with the vertical appear to form a complete list. (Since 
gravity is involved, you may wonder why G and the radius of the earth are 
not on the list. The only effect of gravity is to provide a force equal to mg 
acting on the pendulum. Both m and g are on our list.) 

We now show that all dimensionless products can be formed from 

gtZ 
n 1  = -1- '  

The procedure is the same as the one we just used for the law of gravitation. 
We know the dimensions of I and t. The acceleration g has dimension LT- z . 
Since-an angle is measured by the ratio of arc length to radius, the angle 8 is 
dimensionless .  Thus the product n = maltCldee has dimension Ma Lb + dTc - Zb. 
This vanishes if and only if a = 0, b + d = 0, and c - 2b = O. It follows that 
we can choose b and e arbitrarily and that a = 0, c = 2b, and d = - b.  
We obtain n1 from (b ,  e) = ( 1 , 0) and nz from (b, e) = (0, 1 ). Note that m 
does not appear, because no other quantity has M in its dimension. 

Since the period of a pendulum is a physical law, Buckingham's theorem 
applies. Solving !(n 1 ,  nz) = 0 for n1 gives n1 = h(n2 ) for some function h. 
Therefore 

( 1 5) Period = t = k( 8) -If, 
where kZ = h .  The exact form of  the function k(8) must be  determined by  other 
means. It turns out to be an elliptic integral and is very nearly equal to 2n 
when 8 is small. 

Sca le  M ode ls  of Structu res 

Suppose you are an engineer and wish to study how a structure you've 
designed will hold up. Since theoretical analysis of a complicated structure 
is likely to be impossible, it is convenient to study a scale model. How 
should you design the model and how should the observations you make 
on it be translated into predictions about the real structure ? We answer 
these questions here. 

Unless they are greatly deformed, most structures can be reasonably 
approximated by assuming that they are built of materials that are elastic and 
isotropic. (These are technical terms.) The important physical consequence of 
this assumption is that, except for specifying shapes and forces, we need only 
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two parameters to determine the changes in shape (called deformations) . One is 
Poisson's ratio (J which is dimensionless . (It is the ratio of the percentage 
changes in the dimensions of a bar perpendicular and parallel to a compres­
sive force.) The other is Young's modulus E. (It is the ratio of the compressive 
force p·er unit area to the percentage change in the parallel dimension.) 
The dimension of Young's modulus is ML - I T - 2 • The important thing is 
not how (J and E are defined, but rather the fact that as far as deformations 
are concerned they are the only relevant inherent properties of the material(s). 

What are the relevant variables and physical constants ? The endogenous 
variables are the deformations [y of the structure. Our structure has some 
characteristic length I by which we can relate all lengths of the scale model 
to those of the real structure. The specific gravity (weight per unit volume) 'Y 
may also be important. Weight per unit volume is density times acceleration 
due to gravity and so has dimension ML - 2 T - 2

. E and (J have already been 
mentioned. Finally there are the forces F which are loading the structure 
at various points. 

Our list of relevant quantities is (J, 'Y, E, F, I, and [y o  Actually, all of these 
except I should be subscripted to indicate that there may be several different 
materials and a variety of forces. All dimensionless products can be formed 
from the products 

( 1 6) 

and 15k/I. Each I5k/1 is determined by (Ji ' 'Y i ,  Ei , F i ,  and I .  It follows from 
Buckingham's theorem that I5dl is a function of the various products in ( 1 6). 
Therefore 

If the quantities in ( 1 6) are the same for the scale model and the real 
structure, all deformations will be scaled according to the scaling of I. 

We must therefore keep (Ji the same for the materials in the scale model and 
the real structure. The easiest way to do this is to use the same materials in 
both cases. Then all the Ei and 'Yi will be the same for the real structure and 
the scale model. From the third relation in ( 1 6) it follows that the two values 
of I must be the same, so the model is the same as the real structure. 

How can we get around this ? It is the density of a material that is 
constant ; the specific gravity 'Y varies with the graVitational field. If we could 
adjust 'Y by changing the gravitational field, this would adjust l . How can 
we change the gravitational field ? Since acceleration due to gravity is like 
any other acceleration, we can effectively increase " gravity " by using a 
centrifuge. This technique is actually used. Suppose the ratio of the scale 
model I to the real I is 1 : r. By the third expression in ( 16), the centrifuge must 
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produce an acceleration r times that due to gravity. By the last expression, 
the model forces should be r - 2 times the real forces. As a check of what we 
have been doing, let's look at a force F due to weight. It equals mg and so is 
proportional to 1'[3 . This changes by a factor of rr - 3 = r - 2 as desired. 

There is another approach to building scale models. The specific 
gravity of the materials is important only because it determines forces on the 
structure due to gravity. If we expand the list Fj to include these forces as well, 
we can neglect the specific gravities, hence the third type of ratio in ( 1 6). The 
fourth ratio tells us that forces must be proportional to [2 ; however, if the 
gravitational field is unchanged (no centrifuge), the gravitational forces will 
vary as [ 3 . (Why ?) To compensate for this the scale model of the structure 
can be loaded at various points with weights equal to the difference between 
these two quantities. This may make it necessary to measure forces at many 
points, but it eliminates the centrifuge. Without dimensional analysis these 
ideas for building scale models would have been hard to discover. 

P R O B LE M S  

1 .  This problem relates to the pendulum model. We want t o  include 
frictional effects. 

(a) Suppose that the frictional force is due primarily to air and is 
proportional to v2 with a constant of proportionality K. The value 
of K depends on the shape of the pendulum. Let r be the time 
required for the pendulum to reach half its initial amplitude e. 
Argue physically that v is determined by m, [, g, K, e, and the elapsed 
time. Show that 

(b) Deduce a similar result if the frictional force is proportional to v. 
(c) Using the results of (a) and (b), describe an experiment for deciding 

which (if either) of the assumptions about the dependence of the 
frictional force on v is correct. Hint : Consider a pendulum with a 
hollow weight which can be filled. 

2. Why do stringed musical instruments have strings of different lengths 
and thicknesses ? The fundamental frequencies of vibrations of strings 
of similar material depend primarily on length [, mass per unit length f..l, 
and tension (force) F on the string. 
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(a) Derive the formula for the fundamental frequency w for similar 
materials : 

ftJit w oc -I-·  
(b) In terms of the above result, explain the structure of a nylon string, 

six-string guitar. There are several structural constraints imposed 
on the instrument. Design and playing considerations dictate that 
the strings must be of the same length and cannot have either too 
large or too small a diameter, and impose upper and lower limits 
on the tensions in the strings. The frequency of the low string is 
only one-fourth the frequency of the high string. There is of course 
no need to explain these facts. The following properties of the 
guitar should be explained. When playing the guitar, different notes 
are obtained by using the fingers to shorten the length of various 
strings. Tuning is accomplished by adjusting the tension on the 
strings. The strings vary in thickness and in the material of which 
they are made. Roughly speaking there are three thicknesses 
( Tl < T2 < T3) and two materials nylon (N) and steel-wrapped 
nylon (S). The strings, from highest frequency to lowest frequency, 
are N Tb N T2 , N T3 , STb S T2 , and S T3 • 

(c) If you are familiar with the structure of another stringed instrument, 
interpret it as much as possible using the ideas in (a) and (b). 

(d) One of my students (R. T. Oberndorf) collected data to check the 
formula in (a). He used guitar strings with an arrangement for 
changing the tension and the length. He found that for a given 
string wi was constant to within the accuracy of his measurements 
when F was held fixed. The same was true for w/JF with I held 
fixed. However, when he used various strings but fixed l and F, 

he found that wh was not constant. The largest deviations 
occurred with the thinnest strings and the highest tension, w being 
higher than predicted. Suggest some possible explanations. 

(e) Let's take the material of the string into account. We assume that the 
material is elastic and isotropic. Thus we need only consider 
Poisson's ratio (J and Young's modulus E. See the scale models 
of structures model in this section for a brief discussion of (J and E. 
Show that 

w = K(Ee (J) ftJit 
F ' I ·  

Use Oberndorf's result to show that K depends only on (J for 
guitar strings. 
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3 .  How long should you roast a turkey ? Cookbooks usually give directions 
in the form : " Set the oven to To degrees and allow n minutes per pound 
for cooking." For turkey, which can range in weight from about 7 pounds 
to about 30 pounds, a range of roasting times may be given. In this case, 
one cookbook recommends cooking for 1 5  to 25 minutes per pound, 
the longer time to be used for smaller birds. We study this in a problem 
adapted from S. J. Kline ( 1 965) .  

(a) A piece of meat is cooked when its minimum internal temperature 
reaches a certain value dependent on the type of meat and the 
desired doneness. Let the cooking time t be the endogenous variable. 
Present an argument to show that the exogenous variables are the 
difference in temperature � Tm between the raw meat and the oven, 
the difference in temperature � T:: between the cooked meat and the 
oven, some characteristic dimension l of the meat, and some measure 
K of the ability of the meat to conduct heat. 

(b) The usual measure of ability to conduct heat is thermal conductivity 
which is the amount of energy crossing a unit cross-sectional area 
per second divided by the temperature gradient perpendicular to 
the area. Hence K is measured in 

energy/(area x time) 
degrees/length 

The dimension of energy is M L 2 T -
2 . Temperature is measured in 

energy per unit volume. Determine the dependence of cooking time 
on the weight for similar pieces of meat for which � Tm and � T:: are 
the same. 

(c) Discuss the accuracy of the cookbook rule. Comment on the rule 
for turkeys . 

4. Waves seem to roll in at a beach in a regular fashion, but their speed 
seems to vary from place to place and, perhaps, from time to time. Why ? 
Does something similar happen out at sea as well ? We discuss wave 
motion in a perfect fluid ; that is, a fluid with no viscosity or compression. 
Let the endogenous variable be the velocity v of a wave. 

(a) Argue that the exogenous variables are acceleration g due to gravity, 
the density p of the liquid, the length A of the wave, the height h 
of the wave, and the depth d of the liquid. 

(b) When the height of a wave is small compared to its length, it is known 
that we can approximate the equations of motion by equations 
that do not contain h. Conclude that we can ignore h in this case. 



(c) Show that 

v = JIgf(�). 
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(d) Show that v is nearly proportional to JIg when d is large compared 
with A. Thus wave speed at sea varies with the wavelength. 

(e) Suppose we want to build a scale model to study the effect waves 
on the open ocean have on boats: How should everything be scaled ? 
Hint : If all linear dimensions are scaled by a factor of r, what 
happens to the time it takes a wave to travel the length of the boat. 
You may also wish to refer back to the model dealing with scale 
models of structures .  

(f) When d is small compared with A, the bottom interferes with the 
wave, so that A is practically irrelevant. Show that v is nearly 
proportional to Jdg in this case. The British government has used 
this result to obtain depth surveys in certain remote coastal areas. 
Two pictures were taken of the same region at slightly different 
times so that wave speed could be measured (R. Carson, 1 96 1 ,  
p. 1 09). 



C H A PT E R 3 

G RA P H I CA L  M ET H O D S 

3.1 .  U S I N G  G RA P H S  I N  M O D E LI N G  

Graphs can be very useful in modeling if you are aware of their uses and 
limitations. Since many people expect either too much or too little from them, 
we discuss their uses and limitations before going into specific models. 

People can take in an entire picture rather quickly and then deduce 
consequences by using their geometric intuition. It follows that graphs 
should be useful in conveying information. Those wonderful analog com­
puters people carry in their skulls can rapidly locate certain patterns in 
visually presented data. One of the easiest to spot is a straight line. For this 
reason a variety of forms of graph paper (rectangular, polar, log-log, normal 
probability, etc.) are marketed so that plotted data will appear linear if the 
anticipated relationship exists. 

Graphs are most useful in conveying qualitative relationships or 
approximate data which involve only a few variables. A graphical approach 
to a problem is most likely to be useful when not much information is 
available or when it is given in a rather imprecise form. Analytical methods 
are usually more appropriate when more precise information is available. 
In complex simulation models, graphs are frequently used to illustrate the 
qualitative behavior of several time varying endogenous variables simul­
taneously. This helps one obtain a qualitative feel for the behavior of a 
complicated simulation model. 

So far we have talked about graphs primarily as a way of presenting 
data. Now let's consider some major roles graphs play in model formulation. 

Since our imagination is limited to three dimensions, graphical repre­
sentations of the interrelations of more than three variables are not directly 
useful. However, it is often possible to graph a function with most variables 
held fixed and then determine how the graph will change when one of 
the fixed variables is changed . This is the heart of the geometric approach to 

4 4  
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comparative statics which is discussed in Section 3.2 . The differential calculus 
approach parallels the geometric arguments and provides a firm foundation 
for making statements when any number of variables is  involved. The basic 
problem of comparative statics can be stated as follows : How does the 
equilibrium point of a system move when certain exogenous variables are 
changed ? For example, how will the output of a firm be affected by a higher 
tax rate ? 

Graphical methods are also useful in studying stability questions. The 
analytical treatment of local and global stability theory is not easy. Therefore 
it is desirable to use graphical methods whenever possible to suggest and 
perhaps prove results . Section 3 .3  touches on this approach. For a treatment 
of the problems of stability theory from an analytical viewpoint see Chapter 9. 

As a glance at the figures in this chapter shows, the intersections of 
curves are of major importance in comparative statics. This is because they 
determine the equilibrium points. A subtler observation is that s lopes of 
curves play a central role in stability questions. The slope of a curve is a rate, 
and rates play a crucial role in stability theory. 

Finally, graphical arguments are useful in optimization problems­
especially if the model is not quantitative. Since this straddles Chapters 3 
and 4, I've decided to put it in Section 4.2. 

3. 2. C O M PARATIVE STATI C S  

T h e  N uc lear  M issi le  A r m s  Race 

The United States and the U.S .S .R .  both feel that they require a certain 
minimum number of intercontinental ballistic missiles (ICBMs) to avoid 
" nuclear blackmail ." The idea is to ensure that enough missiles will survive 
a sneak attack so that " unacceptable damage " can be inflicted on the attacker. 
Given this philosophy, it is claimed by some and denied by others that the 
introduction of antiballistic missiles (ABMs) and/or multiple warheads on 
each missile (MIRVs) will cause both nations to increase their stock of 
missiles. Is this true ? What about making missiles less vulnerable to attack 
by hardening silos or building missile firing submarines ? The wrong answers 
to these questions could have drastic consequences. Who is right ? 

Obviously we cannot hope to settle the debate. However, a simple 
graphical model can shed some light on the problems involved and hopefully 
help lead to more intelligent debate. The following discussion is adapted from 
T. L. Saaty ( 1 968, pp. 22-25). 

We deal with two countries which we call country 1 and country 2. 
Let x and y be the number of missiles possessed by countries 1 and 2, 
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respectively. We treat x and y as  real numbers. Of  course they are actually 
integers ; but since they are large, the relative errors introduced by treating 
them as real numbers will be small ; for example, the percentage difference 
between 500 and 500. 5 is quite small. For the time being we assume that all 
missiles are the same and are equally protected. From the above discussion 
it follows that there exist continuous, increasing functions f and g such that 
country 1 feels safe if and only if x · > fey), and country 2 feels safe if and only 
if y > g(x). These functions are plotted in Figure 1 .  The shaded region is the 
area in which armaments are stable, since both countries feel they have 
sufficient weapons to prevent a' sneak attack . We consider questions such as : 
Does such a region actually exist ? What effect do such things as ABMs, 
MIRVs, and so on, have on the point A = (xm , Ym) ? 

First we show that the solid curves in Figure 1 are qualitatively correct. 
Let's look at things from the point of view of country 1. A certain number of 
missiles X o is needed to inflict what is considered unacceptable damage on 
country 2. When country 2 has no missiles, country 1 requires X o . 

We show that for any r > 0 the curve x = fey) crosses the line y = rx. 
It suffices to show that there is a function x(r) such that, whenever x ;;::: x(r) 

Ym 

Acceptab l e  
to 

cou ntry 2 

Acceptab l e  

to 
co u ntry 1 

F i g u re 1, Country 1 introduces ABMs. A = initial status (shaded area stable) ; B = 

country I protects its missiles; C = country I protects its cities. Axes show number of 
missiles . 
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and y = rx, country 1 believes that it has enough missiles so that the number 
surviving a sneak attack by country 2 will be able to inflict unacceptable 
damage on country 2. In other words, country 1 wants to be practically 
certain of at least Xo of its missiles surviving a sneak attack by country 2. 
Suppose that y = rx. To destroy the most missiles, country 2 should aim 
about r missiles at each of country 1 's missiles. Since a warhead may fail to 
reach and destroy its target, there is some probability, p(r) > 0, that a given 
missile belonging to country i will survive a sneak attack. Thus country 1 
can expect xp(r) missiles to survive. For large enough x = xCr), this will 
exceed Xo by an amount large enough to allow for uncertainties. This 
completes the proof that the curves intersect . Thus the curve x = f(y) 
starts at (xo , 0) and curves upward with a slope increasing to 00 . By a sym­
metry argument, y = g(x) has the form shown, with a slope decreasing to 0. 
Two such curves meet at exactly one point which we call (xm , Ym), the mini­
mum stable values for x and y. 

This analysis applies to all the situations discussed below, so there is 
always a unique minimum stable point. We want to know how its position 
compares with (xm ' Ym). 

Suppose the missiles of country 1 are made less vulnerable to sneak 
attack by the use of hardened silos, ABM protection, or some other means. 
This increases p(r), the probability that any given missile belonging to 
country 1 will survive a sneak attack . Hence the curve f(y) moves to the 
left with the point Xo fixed. The shape of the curve is altered somewhat in the 
process. The new curve is shown dashed in Figure 1 .  We can see that both 
countries require fewer missi les for stability. 

Suppose that country 1 protects its cities by some device such as ABMs. 
Country 2 now requires more than Yo missiles to inflict unacceptable 
destruction on country 1 .  Thus the curve g(x) moves upward as shown by the 
x - x - x curve in Figure 1. Both countries require more missiles for 
stability. 

What happens if multiple warheads are installed ? This situation is 
more complicated than the previous two. Suppose country 1 replaces the 
single warheads on each of its missiles with N warheads. It will then require 
that fewer of its missiles survive a sneak attack. (The number required is 
about xo/N.) Thus x = fey) moves to the left as in Figure 2. Country 2 will 
be faced with N times as many warheads in a sneak attack, so from its point 
of view the scale of the x axis has changed by about a factor of N, as shown 
in Figure 2. It appears that country 2 will require more missiles, and country 1 
will require fewer ; however, this depends on the detailed shape of the curves. 
Therefore probabilistic models should be used instead of, or in conjunction 
with, graphical ones. This would require us to make more precise assumptions 
regarding the capabilities of the missiles, so we do not go into it here. 
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F i g u re 2 Country 1 introduces MIRVs . Axes show number of missiles .  

It seems unreasonable to assume that country 2 will not also develop 
and deploy multiple warheads if country 1 does. Therefore we should 
analyze the situation in which both countries deploy multiple warheads. 
There are two conflicting effects : 

1 .  Since the axes measure missiles, the points [j(0), 0] and [0, g(O)] will 
move toward the origin, tending to decrease (xm , Ym). 

2. f(y) becomes more horizontal and g(x) becomes more vertical, tending 
to increase (xm , Ym). 

We cannot decide without further information which effect will dominate. 
T. L. Saaty ( 1968, p. 24) presents an analytical model which leads to the 
conclusion that both countries will require many more missiles. 

In the above discussion, we assumed that all missiles were the same. This 
is unrealistic. If we drop this assumption, each country will change its strategy 
by aiming different numbers of missiles at the various enemy missiles . Of 
these, some targeting makes the expected surviving firepower a minimum. 
This targeting gives the curves for Figure 1, and the analysis proceeds as 
before. 
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You may be interested in the article by K. Tsipis ( 1975a) which contains 
a discussion of the technology behind ultra accurate MIRVs. 

Biogeography : D ivers ity of S pec i es on I s l and s  

The diversity o f  species varies considerably from place to place, even when 
the habitats appear to be the same. Conservationists have argued that the 
size of a region is important for diversity, and so they often favor a few large 
wilderness areas rather than many tiny ones. The subject is far from under­
stood. We study one corner of it briefly. 

The world is broken into patches of differing habitats. Often a habitat 
a species finds acceptable is surrounded by a large expanse of unacceptable 
territory. Examples are alpine meadows, farm woodlots, lakes, game 
preserves, and islands. The following discussion is confined to islands ; 
however, most of the ideas and results apply to other types of isolated habitats. 
The material is adapted from R. H. MacArthur and E. O. Wilson ( 1967, 
Ch. 3) which treats the subject in much greater depth. 

Studies have indicated that the size of an island is an important factor 
in determining the number of species the island is likely to contain. Also, 
islands closer to the mainland tend to contain a greater variety of species 
than more isolated islands. It seems reasonable that the effects of migration 
of species and extinction of species (on islands) can account for this. We 
develop this idea and briefly consider some of its consequences .  

A species can become established on an island only by migrating to it  
and prospering there. An organism migrates by flying, being carried, drifting 
on currents, and so on. Since a population on an island is relatively small, 
it can die out because of random variations in the environment. As a result 
we expect the list of specie-s present on an island to change much faster than 
the list of species present on the mainland. 

This is somewhat vague. Does a flock of migrating birds that stops on the 
i sland for a day or a season become established and then die out ? Even if a 
species " intends " to stay on the island, we are still faced with the problem 
of what we mean by " become established "�if the island is too small to 
support a large population, the species will always be on the verge of 
extinction. When is a species established in this case ? Since we are dealing 
with a fairly crude model, we can afford to ignore these problems. A more 
refined model would have to come to grips with them. 

If we completely understood all the aspects of the situation (e.g. , the 
biological, geographical, and meteorological), we could determine the 
probability of a particular species composition being present on the island 
at a given future time. These would be tremendously complex calculations 
involving vast quantities of data, and this approach would be hopeless. 
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Let's combine practically all the endogenous variables into one measure : 
the total number of species present on the island. It seems reasonable to 
suppose that this should vary around some average number of species in a 
steady state situation. We discuss this average. For a discussion of transient 
behavior see R. H. MacArthur and E. O. Wilson ( 1 967, Ch. 3) or E. O. Wilson 
and W. H. Bossert ( 197 1 ,  Ch. 4). 

When the number of species present on the island is in equilibrium, 
migration and extinction cancel out numerically ; that is, the rate of migration 
of new species to the island equals the rate of extinction of species already on 
the island. These rates depend in a complicated way on the species present, 
the season, and many other factors. If we regard a year as a short period of 
time, seasonality will present no problem. In this sort of crude averaging over 
many species, which species are actually present probably doesn't matter 
much. Therefore it makes sense to talk about rates in a crude way independent 
of which species are actually present on the island. 

In Figure 3 are plotted the number of species N on the island versus 
the migration and extinction rates. The two smaller graphs illustrate the 
effect of distance from the mainland and the effect of island size. We discuss 
the reasons for the shapes and positions of the curves. 

Let's consider the extinction rate curves. When more species are present 
on the island, the chances that at least one species will become extinct in a 
given time are greater. Hence the extinction rate curves have a positive slope. 
Since extinction rates depend only on the island and the species present, the 
extinction curve is not affected by the distance from the mainland. However, 
we can expect that a species is more likely to die out on a small island because 
the lack of space keeps the population lower. Thus the extinction rate curves 
shift upward as the islands become smaller. 

Why do the migration rate curves have a negative slope ? The migration 
rate relates to species not present on the island. The greater the diversity on 
the island, the smaller the pool of potential migrating species on the mainland. 
Hence the chances of migration decrease as the number of species on the 
island increases. Migration rates depend on the distance of the island from the 
mainland and on the size of the island. The rates decrease with distance, 
because any given organism is less likely to reach the island. The rates increase 
with island size because ( 1 )  an organism has a larger land area as a target 
and (2) an organism is more likely to be able to establish itself on a larger 
island. 

It follows from Figure 3 that the number of species present increases 
with island size and decreases with distance from the mainland. This is not 
so surprising, since we practically put these results in as initial assumptions. 

We can say something about species turnover by looking at the graphs 
a bit more. Note that the equilibrium extinction rate (which equals the 
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F i g u re 3 Migration .and extinction curves for islands . (a) Typical curves .  (b) Effect of 
distance . ( c) Effect of size . 

equilibrium migration rate) is greater for near islands than for far islands. 
Hence the species composition for two islands of equal size should change 
more rapidly on the island closer to shore. If the effect of island size on 
migration rate is not too great, we can similarly conclude that the species 
composition changes faster on small islands than on large islands. Since 
small islands have fewer species at equilibrium than large islands, this effect 
should be quite noticeable. 

There is some data supporting the conclusions that species turnover is 
relatively and absolutely more rapid on smaller islands. R .  H.  MacArthur 
and E. o. Wilson ( 1967, pp. 52-54) discuss the results of two botanical 
surveys of some small islands off the Florida Keys. The first survey ( 1904) 
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was conducted quickly and so  may be  incomplete. Since the 1 9 1 6  survey 
was quite complete, the species present in 1 904 and absent in 1 9 1 6  give some 
measure of the turnover rate. Unfortunately the data involve only six islands, 
two of which are very small . .  

R .  H. MacArthur and E. O .  Wilson ( 1967, pp. 55-60) also report on 
some results of R. Patrick. She suspended glass slides in a spring in 
Pennsylvania and counted the number of diatoms of various species that 
were present. The glass slides can be thought of as islands. Four experiments 
were done two times each : A glass slide with an area of either 12 or 25 square 
millimeters was placed in the water for either 1 or 2 weeks. The slides sub­
merged for 1 week had more species present than those submerged for 2 
weeks. We can explain this apparent contradiction by observing that as a 
barren area becomes more populated the interaction between species may 
cause extinction. This was not allowed for in our model. Clearly care must 
be taken in modeling islands that are far from equilibrium. Because of this, 
we do not consider the 1 week data further. We can check out two predictions 
using the 2 week data : 

1 .  Larger area implies more species : The smaller slides had 24 and 2 1  
species, and the larger had 29  and 28 .  

2 .  Smaller area implies a higher migration rate : The migration rate may be 
reflected somewhat in the differences in the species composition of the 
slides. (Why ?) Seven species appeared on one but not both of the smaller 
slides. For the larger slides the number was one. 

Theory of the Firm 

You are the manager of a firm which produces, among many other items, 
" zowies. "  How can you decide on a level of production ? The price of the 
main raw material for your zowies is going to increase. Perhaps you can 
pass some of the cost on to your customers. How much ? Can you pass on 
enough to make it worthwhile to continue manufacturing zowies ? Quantita­
tive results are hard to obtain because data collection is extremely difficult ; 
however, we can obtain a qualitative picture of the situation fairly easily. 

In the usual theory of the firm it is assumed that the manager of the firm 
has complete information, that his decisions are carried out, and that he 
acts so as to maximize the profits of the firm. There is an ongoing debate 
about the usefulness of these assumptions, but we don't want to get into that 
here. If you are interested in the subject see R. M. Cyert and 1. G. March 
( 1963, pp. 5- 16) for a discussion of both sides of the question. In addition 
to the above assumptions, we generally assume (as is often done in economic 
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theory) that the functions with which we are dealing are well behaved ; that 
is, they are continuous and usually differentiable. 

The theory of the firm is discussed in most textbooks on mathematical 
economics . There also exist books devoted exclusively to the topic, such as 
K. J. Cohen and R. M. Cyert ( 1965). Consult such sources if you wish to see 
the ideas in this example developed further. 

For simplicity we assume that the firm produces only one product, 
so that we can speak unambiguously of the level of production. It is measured 
in units per time period, where a time period can be a day, a month, or any 
other convenient interval. We want to find a way to determine the level of 
production, so that we can discuss the influence of changing costs and prices 
on the production level. 

Suppose the production of the firm is at some equilibrium level. Since 
profits are being maximized, the additional cost that would be incurred in 
raising production slightly is equal to the additional gross income that 
would be obtained by marketing these additional units of the product. You 
should convince yourself that this is simply a restatement of the calculus 
theorem that the function 

Total gross income - Total cost 

has maxima and minima where its derivative vanishes. 
The additional cost required to produce one additional unit is called 

the marginal cost, and the additional income is called the marginal income. 
In general, both marginal cost and marginal income are functions of the 
level of production. We have shown that marginal cost equals marginal 
income at equilibrium. This equality could imply that the profit is a minimum 
instead of a maximum. How can we distinguish one from the other ? If we 
move away from the equilibrium, profits must decrease. Thus the marginal 
cost curve must lie above the marginal income curve for higher production 
levels and below it for lower production levels. This is shown in Figure 4 
where the horizontal axis is the quantity produced per unit time. This is the 
basic result with which we work . 

Although marginal cost and marginal income may seem to be straight­
forward concepts, they can be a bit fuzzy. During a short period of time 
(the short term), wages and the cost of raw materials are fixed costs, because 
they have been contracted for ;  consequently, they do not enter into marginal 
calculations. From a slightly longer point of view, they are both variable 
costs and so enter into the marginal costs. Equipment depreciation is a fixed 
cost ; but maintenance, fuel, and replacement costs enter into the marginal 
calculations. Since our marginal curves vary with how long a view we take, 
the optimum level of output may depend on the length of time we want to 
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Max i m u m  

F i g u re 4 Marginal cost and income curves .  Axes show quantity produced per unit 
time and dollars per unit time . 

consider. In the following discussion we make the vague assumption that 
the manager is concerned with the firm's profits over a reasonably long time 
interval. As long as we don't try to make any detailed applications, we can 
afford to be vague. 

What effect will taxation have on production ? If the firm is required to 
pay a lump sum tax independent of production (e.g. , a property tax), the 
marginal curves will not be affected . Hence the production level will be 
unchanged. If the firm is required to pay a tax that depends on the level of 
production (e.g . ,  an income tax or a value-added tax), the result will depend 
on whether or not the tax is passed on to the consumer. If it is not passed on, 
the marginal cost curve will rise. We have shown that the marginal cost curve 
intersects the marginal income curve from below at a maximum. It follows 
that the new intersection will be to the left of the old one. Therefore the 
production level will decrease. What will happen if the tax is passed on to the 
consumer ? In this case both marginal curves will move upward by an amount 
equal to the tax per unit of production, and the production level will be 
unchanged. 

The above result on taxation can be generalized considerably, and we 
can state another result on the income side : 

The optimum level of production moves in the opposite direction from 
the marginal cost and moves in the same direction as the marginal 
income. 
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Convince yourself that this is true by giving a graphical argument. Suppose 
the price of raw materials increases. This raises the marginal cost, so the 
production level tends to decrease. Decreased production may cause 
consumers to drive up the cost (per unit) of the product, thereby increasing 
the producer's marginal income. Consequently the level of production will 
rise. Since the product now costs more, the amount purchased by consumers 
will probably be less. Thus the increase in cost wiII not be quite enough to 
push production back to its original level. We discuss this in terms of supply 
and demand curves .  

In industries where the number of firms is large, it is reasonable to 
suppose that the price per unit of product does not depend on the amount 
any single firm produces. In this case the marginal income curve is horizontal. 
The marginal cost curve is then the supply curve for the firm's product, since 
at a price p the firm produces the quantity Q at which the marginal cost equals 
p. Since the marginal income curve is horizontal, our earlier discussion 
shows that the supply curve must have a positive slope to ensure stability. 
This agrees with the intuitive notion that higher selling prices lead to greater 
production. 

The demand curve is the amount of the product that will be purchased at 
a given price. Usually demand falls as price increases. Figure 5 shows typical 
supply and de.rnand curves. At equilibrium, the quantity purchased must 
equal the quantity sold. Hence the intersection of the supply and demand 
curves gives the equilibrium values of price and quantity. 

Price 

Su p p l y  

c u rv e  

L-__________________________________ Q 
F i g u re 5 Supply and demand curves .  Increased marginal costs shift supply curve 
upward to dashed position. 
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From Figure 5 we can see how much of  the increased marginal costs 
will be passed on to the consumer. The dashed curve shows the supply 
curve (marginal cost curve) after the marginal costs have increased. The 
flatter the demand curve, the greater the fraction of the increase the producer 
must absorb. What does a flat demand curve mean ? It indicates that 
consumer buying patterns are very sensitive to price. Thus, if consumer 
buying patterns are insensitive to price, you can pass most of your increased 
expenses on to the consumer. 

What about the theory of a firm that produces several products ? It is 
better to study such a situation using tools from calculus .  However, our 
graphical analysis indicates the sort of results we can expect to find in this 
case. 

P R O B L E M S  

Problems 1 t o  5 deal with the arms race model. 

1 .  Suppose that both countries install N warheads in each missile and that 
the new warheads are as effective as the old ones. Show that both countries 
will require more warheads. 

2. Suppose a country is able to retarget missiles in flight so as to aim for 
missiles that previous warheads have failed to destroy. Discuss the effect. 

3 .  Various criteria have been used to evaluate proposed changes in  missile 
systems. Try to evaluate the changes discussed in the text and the 
problems on the basis of (a) economics (cost) and (b) amount of radio­
activity released in the event of a war. 

4. There are aspects of the armaments race that become important only 
when a country is not as heavily armed as the United States and the 
U.S .S .R .  When a country is just developing a nuclear strike force, it 
may be able to inflict heavy damage with a first strike but may be in­
capable of a retaliatory strike. 

(a) Develop a model and use it to explain " preventive war." Can you 
apply the model to the People's Republic of China ? 

(b) Can you model the early years of the missile race ? 

This is a rather unclear area, so class discussion may lead to a variety 
of ideas. You may wish to consult M. D. Intriligator ( 1 973) . 

5 .  The United States and the U.S .S .R .  signed an arms limitation agreement 
in May 1 972. The number of offensive missiles allowed each country is 
limited, with a trade-off formula for land-based versus submarine-
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based missiles. There is no limitation on the use of multiple warheads or 
on improving missile technology. Each country is limited to two ABM 
sites of 100 missiles each. One site is for protection of the capital city 
and the other for protection of an ICBM site. 

(a) Discuss this agreement in light of the models presented here. 
Include any relevant later agreements in the discussion. Politics 
is more complicated than our simple model, so you will have to 
weigh various factors that might affect the model's validity. 

(b) How can the model be improved to help in answering (a) ? 

6. Will a group of small islands have more or fewer species per island than 
an isolated small island ? Assume that all the islands are about the 
same distance from the mainland and the same size. 

7. Discuss what happens in the model dealing with the theory of the firm 
if the marginal cost curve does not intersect the marginal income curve. 

8 .  In the short term, ordinary wages are a fixed cost and overtime wages 
are a marginal cost. 

(a) Explain the previous statement. 
(b) Show that the marginal cost curve has a discontinuity at the level 

of production corresponding to full usage of labor without overtime. 
(c) What effect will this have on the results developed in the model of 

production by a firm ? 

3 . 3 .  STA B I LITY QU ESTI O N S  

Cobweb M odels  in Economics 

We consider the dynamics of supply and demand when there is a fairly 
constant time lag in production as, for example, in agriculture. It has been 
observed that there are fairly regular price fluctuations in such situations. 
This situation was studied by economists in the 1920s and 1930s. The problem 
contrasts sharply with the theory of the firm in Section 3 .2 ,  where we ignored 
time. The following discussion is adapted from M. Ezekiel ( 1937/8). 

When a commodity is marketed, the selling price is determined by the 
demand curve. This price is one of the factors producers use in determining 
how to alter production. In a " pure " situation, they produce the amount on 
the supply curve that corresponds to the present price. (Supply and demand 
curves are discussed more fully in the theory of the firm model in Section 3 .2. 
There we were interested in the intersection point of the curves.) Thus (see 
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Price 

p, 

Su p p l y  
curve 

�----------��------�----------- Q  q2 q, 

F i g u re 6 The cobweb model. 

Figure 6), if the amount of potatoes produced in year 1 is q I ' the price per 
bushel will be P I '  As a result , farmers will decide to produce the amount 
qz in year 2, the market will set a price pz per bushel for this crop, and so on. 
Because of the picture, this idea is referred to as the cobweb theorem. In 
practice one does not know the supply and demand curves, but the above 
model predicts that the demand curve can be obtained by plotting (qn ' Pn) and 
the supply curve by plotting (qn ' Pn - I ) ' 

How realistic is this model ? The existence of a supply curve assumes 
that producers can control output perfectly. This is not true in the agricultural 
sector where weather is very important, but it may be a reasonable approxi­
mation. If the supply and demand curves move erratically, the model will be 
upset. Changes in prices for other goods the supplier may produce, sudden 
changes in demand (e.g., the sale of wheat by the United States to the U.S .S .R .  
in 1972), and sudden changes in supply (e.g. , crop blights) may cause this 
to happen. If the suppliers have some understanding of price fluctuations, 
they will not raise production levels much in spite of higher prices. However, 
this does not wreck the model. In this case the supply curve will be nearly 
independent of price near the equilibrium price, but the model will still 
apply. It predicts small fluctuations in supply and a rapid approach to 
stability. Plot this. 

Ezekiel presented the material on U.S. potato production contained 
in Table 1 .  He obtained it from the Bureau of Agricultural Economics . 
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Ta b l e  1 Potato Production in the United States 

1 04 1 06 Farm Deflated 
Year acres Bushels/acre bushels price price 

1 92 1  360 90 325 1 1 4 1 2 1  
1 922 395 1 06 4 1 9  69 68 
1 923 338  1 08 366 92 93 
1 924 3 1 1 1 24 384 71  7 1  
1 925 28 1 1 06 296 1 66 1 62 
1 926 28 1 1 1 4 322 1 36 1 40 
1 927 3 1 8  1 1 6 370 1 08 1 1 3  
1 928 350 1 22 427 57  59 
1 929 302 1 1 0 332 1 32 1 42 
1 930 3 1 0  1 1 0 341  92 1 1 6 
1 9 3 1  347 1 1 1  384 46 68 
1 932 355 1 06 376 39 62 
1 933  34 1  1 00 342 82 1 1 4 
1 934 360 1 1 3 406 45 57 
1 935  355  1 09 386 60 74 
1 936 306 1 08 330 I I I  1 32 

Discuss what should be used as " quantity " and what should be used as 
" price " in a cobweb plot and construct the plot. Should the model be 
modified because the yield per acre is not constant ? What about the effect 
of population growth during the 1 5  year period ? What about the effect of the 
Depression ? Clearly there is a lot of noise (i.e . ,  disturbances we can't hope 
to take into account in a simple model) in the data. Thus we should see if 
the data fit the model better than a random set of data would. Can you 
propose a method for doing this ? 

From the supply and demand curves near equilibrium it is easy to make 
a prediction concerning stability. If the negative of the demand curve's 
slope exceeds the slope of the supply curve, there will be instability ; if it is 
less, stability. Convince yourself of this. Demand for some agricultural 
products is rather inflexible. When production is sensitive to price, the model 
predicts instability. The government can attempt to eliminate this by con­
trolling production or prices. The former causes the supply curve to become 
vertical (or nearly so) above (and/or below) certain ranges of quantity. This 
keeps the instability from growing further. (Draw a graph to convince your­
self. )  What is the effect of price control ? 

For a further discussion of cobweb models see N. S. Buchanan ( 1 939) 
and, for a recent generalization, M. S .  Mudahar and R. H. Day ( 1974). 
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P h ase Planes 

The previous model dealt with the stability of a difference equation. 
A similar procedure is used for differential equations. This requires the 
notion of a phase plane, which is also used in Chapter 9 .  Suppose we are 
dealing with the two equations 

( 1 7) x' = I(x, y), y' = g(x , y). 

At each point (x, y) in the x - y plane we can plot a vector proportional 
to (x' ,  y'). This is called the direction field of ( 1 7). To graph a solution of ( 1 7) 
we then start at an initial point and follow a path parallel to the direction 
field. (Since the direction field varies from point to point, the path is usually 
curved.) The speed is determined by the magnitude of the vector tangent to 
the path at that point. If we start at a point with I = g = 0, we will not move 
from it. Such points are called equilibrium points. 

Since we have only crude information about I and g, our phase plane 
diagrams cannot be this detailed. To answer stability questions it is often 
sufficient to plot the two curves I = 0 and g = 0 and indicate roughly the 
vectors (x', y') in the neighborhood of these curves. The intersections of the 
curves are the equilibrium points of ( 1 7). The curve I = 0 divides space into 
two regions such that x' > 0 in one and x' < 0 in the other. If you determine 
which region is which for I = 0, and likewise for g = 0, the rest will be easy. 
The vectors cross I = 0 vertically, and the direction will be upward if and 
only if g > O. Similarly, they cross g = 0 horizontally, and the direction will 
be rightward if and only if I > o. See Figure 7 on page 63 for an example. In 
plotting I = 0 and g = 0, it is helpful to determine the slopes of the curves. 
This can be done by implicit differentiation : For I = 0, 

dy allax 

dx - allay ' 

and similarly for g = O. It is important to remember that the partia l 
derivatives for the slope of I = 0 are evaluated at values of x and y at which 
x is at equilibrium ; that is, x ' = O. (This is important in determining the 
sign of 01 lax in Problem 4a .)  The partial derivatives also help decide which 
region corresponds to I > 0 and which to I < 0 :  I > 0 to the right of 
(or above) I = 0 if and only if 01 lax > 0 (or allay > 0). 

S ma l l - G ro u p  Dyna m i cs 

You wish to set up a local committee to help elect a candidate to office. 
What keeps a group together and working ? Does more work improve a task­
oriented group or harm it ? Very little mathematical modeling has been done 
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in this area and, unfortunately, the folIowing is rather crude and lacking in 
practical advice. 

We want to study the stability and comparative statics of a group 
which has a required activity imposed from the outside (a task). The model 
is taken from H. Simon ( 1 952), who based it on a nonmathematical model 
proposed by G. C. Homans ( 1 950). 

There are four basic functions of time : 

I(t), the intensity of in teraction among the group members . 
F(t), the level of fi"iendliness among the group members . 
A (t), the amount of activity within the group. 

E(t), the amount of activity imposed on the group by the external environment .  

The variables can be treated as averages over alI group members or as some 
overalI measure for the entire group. We regard I, F, and A as endogenous 
variables and E as an exogenous variable which we generalIy treat as being 
constant. 

To make the concepts more concrete, let's consider an example. The 
imposed activity E is the laying in of firewood. The group may be engaged 
in this for wages , or they may be friends preparing for winter. The various 
activities A include locating wood sources, sawing logs, stacking logs, and 
setting up a football pool. Note that some activities may not be directed 
toward the externally imposed task. G. C. Homans ( 1950, p .  10 1 )  says, " By 
our definition interaction takes place when the action of one man sets off the 
action of another." " Action " here refers to activity, so that activity is required 
for interaction, but not conversely-a person can work alone. The many 
situations in our example that involve interaction include discussing where 
to obtain wood, working opposite ends of a saw while cutting logs, passing 
wood from one person to another in stacking, and conversing idly. Some of 
the interaction is necessary, but a lot of it can be reduced considerably. The 
same is true of activity, as any efficiency expert knows ; however, this may 
involve changes in habit patterns and so require more time. 

There are three relations on which the model is based : 

1 .  I(t)  depends on A (t) and F(t) in such a way that it increases if either 
A or F does. The adjustment is practicalIy instantaneous. 

2. F(t) depends on l(t) . It tends to increase when it is too low for the present 
level of interaction and to decrease if there is not enough interaction to 
sustain its present level. This adjustment requires time, and the rate 
of adjustment is greater when the discrepancy between present and 
equilibrium levels is greater. 
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3.  A(t) depends on F(t) and E(t) . It tends to increase when i t  is too low for 
the present level of F or E and to decrease when it is too high. This 
adjustment requires time, and the rate of adjustment is greater when the 
discrepancy between present and equilibrium levels is greater. 

Criticize the assumptions. 
These assumptions can be turned into equations : 

( 1 8a) J(t) = r(A , F), 
ur 
;;- > 0, cA 

ur -�- > 0, 
cF 

us us 
( 1 8b) F(t) = s(I, F) 

uJ 
> 0, 

uF 
< 0, 

( 1 8c) A'(t) = Ij;(A , F :  E) 
ulj; 

uA 
< O

. 

ulj; 

uF
> 0, 

ulj; 

uE 
> O. 

The reasoning behind us/uF < 0 and ulj; /uA < 0 deserves an explanation. 
The same idea applies to both cases. Let's consider Ij;.  If A, F, and E are at 
some level , Ij; = A' will be determined. If we now increase A, we will either 
reduce the pressure for A to increase (if Ij; > 0) or increase the pressure for A 
to decrease (if Ij; < 0). In either case ulj;/uA < O. 

( 1 9) 

By substituting (1 8a) into ( 1 8b) we obtain 

ucp us! ur 
F(t) = cp(A , F), 

uA = uJ uA 
> 0 

This equation says that a high level of A tends to cause F to increase. The 
effect of a high level of F is ambiguous : It may tend to cause F to increase 
or decrease. The statement that ucp/uF > 0 can be interpreted as : " The 
greater the friendliness; the faster it tends to increase (or the slower it tends 
to decrease, if it is decreasing). " While this may be true at some points in 
the A -F plane, it is unlikely to be true when F is large because of limits on 
friendliness. We assume that ucp/uF < 0 everywhere. The curves Ij; = 0 
and cp = 0 are plotted in Figure 7. The slope of the curves is positive, since, 
for example, on the curve Ij; = 0, dF/dA = - (olj;/oA)/(olj;juF) > O. The 
slope of the Ij; = 0 curve is increasing, because we assume a saturation effect : 
When A and F are both large and A '  = O. a fairly large increase in F is 
required to balance a small increase in A. In other words, the group tends 
to resist increases in activity more when it is already quite active. Discuss 
the curve cp = O. Verify the general shape of the direction field shown in 



F 

1/1 > 0 
"' < 0 
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�----------------------------------- A 
F i g u re 7 Dynamics in the activity�friendliness plane. 

the figure. It can be seen that the upper equil ibrium point is stable and that 
the lower one is unstable. 

We now consider the effect of changing E. We have 

!11f � :� !1A + �� !1F + �� !1E. 

Since !11f = ° on the curve If = 0, it follows from ( 1 8c) that, when !1A = 0, 
!1E and !1F have opposite signs. Thus the If = ° curve moves downward 
as E increases. Hence 

The equilibrium levels of A and F are increasing functions of E. 
If the If = ° curve moves sufficiently far up, it will no longer intersect the 
cp = ° curve, and so there will be no equilibrium point. In this case the group 
will not continue to exist. Consequently it is possible that · a group will 
break up if externally imposed activity falls below a certain level. 

P R O B LE M S  

1 .  Discuss modifications of the cobweb model when there i s  a time lag of 
more than 1 year in production, for example, raising hogs. The prices for 
hogs and corn (the principal feed for hogs) oscillate, and there is a fairly 
good correlation when they are offset a bit. Explain. 
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2 .  The demand for new graduates in  various fields fluctuates. How should 
your department adapt its graduate program to help stabilize the 
situation ? This problem is purposely very vague in hopes of generating 
a discussion based on reasonable models. Don't forget that feasibility 
is important. Engineering departments have gone through at least two 
cycles . 

3 .  Discuss the group interaction model when Gcp/uF > 0 for small F. 

4.  Suppose that two species are in competition. Let the number of members 
of the first species in the population be x and the number of the second be 
y. Assume that the environment if fairly constant. 

(a) Show that it is reasonable biologically to suppose that there exists 
a curve y = rex) of negative slope such that species 1 increases if 
and only if (x, y) lies below the curve. 

(b )  State the corresponding assumption for species 2 .  
(e) Show that the equilibrium points are the intersection points of the 

curves, the point (0, 0), the point (f(0), 0), and the corresponding 
point for species 2. 

(d ) Determine the stability of the various possible equilibria. 

5 .  You are called upon to advise an underdeveloped country on methods 
for increasing per-capita income. This problem briefly considers two 
difficulties you may encounter. It is an economics theory result that 
per-capita income is greater when accumulated capital per capita is 
greater. The idea is that, under suitable assumptions, since more capital 
is available it is used to help improve production. Do you think this 
applies to underdeveloped countries ? What happens if capital is invested 
abroad or foreign capital is brought in ? Let's assume that the econ

·
omies 

theory result still applies. By definition, the capital accumulated in a year 
equals income (i.e . ,  production) minus consumption. 

(a) Fractional rates of growth are defined in the same way as net growth 
rates in biology : x'(t)/x(t). We denote the fractional rate of growth 
of x by x* .  Let K stand for total capital and P for total population. 
Show that per-capita income is increasing if and only if K* > P*. 

(b) One could suppose that p* and K* depend on per-capita income. 
Argue this point. Supposing it to be true, plot P* and K* as functions 
of per-capita income and show that intersections of the curves 
correspond to equilibria. How can you determine stability ? 

(e) In each of the following cases, discuss the shape of the K* and P* 
curves near the given income level and use (b) to explain why these 
effects can keep per-capita income from increasing. 
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(i) Rising expectations : At a certain income level , savings decrease 
because people try to mimic more affluent societies. 

( i i )  Population explosion : At a certain income level, improved 
sanitation and diet reduce the death rate, but the birth rate 
takes much longer to fall because it is the result of custom. 

(d ) That's the background for showing the ministers of the country 
some of the problems they face and what is going on. Now, advise 
them. 

See P.  A. Neher ( 1 97 1 ,  Ch. 8) and J. C. G. Boot ( 1 967, Ch. 1 1 ) for 
further discussion. 



C H A P T E R 4 

BAS I C  O PT I M I ZAT I O N 

Determining what must be maximized (or minimized) is usually a major 
problem in formulating an optimization model. For example, the theory of 
the firm assum�s that managers behave so as to maximize profit ; but it 
has been suggested in recent years that they maximize a utility junction, 
which includes size of staff and other items in addition to profit. Another 
example is provided by time sharing algorithms for computers. (A time sharing 
algorithm is an algorithm used by a computer to decide which of many 
waiting jobs to run and how long to let it run before interrupting it tem­
porarily to run other jobs.) What should be minimized ? Among the myriad 
of possible functions are 

max jew, r) and L jew, r), 
where w = waiting time and r = running time. 

Waiting time refers to total time elapsed between submission and completion 
of a job. There are many possibilities for j, such as j = w and j = wlr. 

The first section of this chapter deals with optimization problems, using 
the result from elementary calculus that, except for boundary points and 
points without derivatives, l' = 0 at the extrema of f. The second section 
contains some models involving graphical optimization. 

4. 1 . O PTI M IZATI O N  BY D I F F E R E NTIATI O N  

M a i nta i n i ng I nventor ies 

As a management consultant you are being asked for advice on production 
and warehousing policies. Where should you begin ? One problem is the 
trade-off between storage space costs and setup costs for frequent small 

66 
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production line runs. In deciding how large an inventory of finished goods 
to maintain, a firm concerns itself with such things as cost of storage, setup 
expenses for a production run, discounts for bulk orders of raw materials, 
and orders lost as a result of lack of inventory. Because of the random nature 
of the time and size of orders, a probabilistic model is the most natural. 
We use a deterministic one, since the results are substantially the same if a 
firm receives many orders . For a fuller discussion of inventory problems, see 
R. L. Ackoff and M. W. Sasieni ( 1968), from which this model is adapted. See 
also the book by G. Hadley and T. M. Whit in ( 1 963) . 

What should we optimize ? We minimize the cost per unit time to the 
firm, subject to the constraint that all orders be filled. The only variable 
the manufacturer can control is the time between production runs. To begin 
with, we assume that the only costs the manufacturer adjusts by changing the 
production schedule are setup costs for production and storage costs for 
finished goods. 

It is reasonable to assume that, when the production line is operating, 
it produces finished goods at a constant rate k per unit time. There is a cost c 
to set up the line at the beginning of a production run. This consists of profits 
lost by not using the production line for manufacturing at this time, various 
fixed costs, and any additional material and salaries that may be required. 
When the production line is not dedicated to the particular good we are 
interested in, we assume it can be used profitably for other work. We assume 
that the storage costs of the finished product are s per item per unit time, 
independent of the quantity stored. (This is reasonable if warehouse space 
can be used for other goods.) Finally, we approximate the discrete arrival of 
orders by a continuous arrival at a constant rate r per unit time. Discuss these 
assumptions and consider ways in which the model can be made more 
realistic. Remember that it is essential that the parameters in the model be 
determined if the model is to be of any use, and that this determination may 
be quite expensive for a complex model. 

Let T be the length of time between one production run and the next. 
If t is the length of a production run, kt = rT ; that is, goods produced equal 
goods sold during a cycle. Hence t = rT/k. If you graph inventory versus 
time from 0 to T, it rises from 0 to t with slope k - r and falls from t to T 
with slope r. The area under the triangular curve is A = (k - r)tT /2 and is 
measured in units of items x time. Convince yourself that the storage cost is 
sA . Thus we want to minimize 

( 1 )  c _ _ c _+_s_A _ c + s(k - r) tT/2 _ � 
+ 
s(k - r) (rT/k) - T - T - T --'---=-2-..c-'.· 

Differentiating with respect to T and setting the derivative equal to zero, 
we obtain c/T2 = s(k - r)r/2k. From the form of ( 1 )  it is clear that C becomes 
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infinite i f  l' decreases t o  zero o r  increases t o  infinity, hence this extreme value 
of C is a minimum. Thus the optimum values for T and t are 

1' =  
2ek 2er 

rs(k - r) ' t =  ks(k - r) ' 

It is not obvious a priori that the optimal time varies as the square root of 
the setup cost and inversely a� the square root of the storage cost per unit 
time. 

We now consider storage costs for raw materials. Let's assume that 
there is only one raw material and that the precise amount needed is delivered 
at the beginning of the run. Let s' be the storage cost per unit time for enough 
raw material to produce one item of output. Convince yourself that the cost 
per unit time is 

e + s(k - r)tT /2 + s'(rT)t/2 e [s(k - r) + s'rJ (1'1' /k) 
C = 

T 
=

T
+ 

2 
. 

Setting the derivative equal to zero, we obtain e/T2 = [s(k - 1') + s'rJr/2k. 
Thus the optimum values of T, t , and C are 

2ek 
1' =  r [s(k - 1') + s'rJ ' 

(2) t = 
2er 

k[s(k - r) + s'r J ' 

C =  
2er[s(k - r) + s'rJ 

k 

Since the model is only approximate and since we probably cannot 
determine the independent variables very accurately, it is important to have 
some idea of the cost incurred by making these errors. If T is replaced by 
exT, it is easy to show that the value of C is (ex + ex - 1 )/2 times the optimal 
value. For example, a 50 % underestimate of T (i.e . ,  ex = 0.5) increases C 
by 25 % ,  while a 50 % overestimate increases C by about only 8 %-the 
same amount as a 33 % underestimate would. We draw two conclusions from 
this. First , an error in choosing T does not change costs greatly unless the 
chosen value of T is quite far from the optimal value. Second, it is better 
to err on the high side than on the low side. Since the storage costs are the 
hardest to estimate and since T varies inversely with the storage costs [this 
follows from (2) and the fact that k > I' J, this suggests that underestimates of 
storage costs are better than overestimates. What we have done in this 
paragraph is an example of sensitivity analysis. Characterizing models as 
fragile or robust is a very crude form of sensitivity analysis. 
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We can use the results in (2) to determine how much warehouse space 
our company requires. (How is this done ?) If this differs from the amount of 
space we now have, we should either get rid of excess space or acquire 
additional space. This is fine in the long run, but what do we do in the short 
run, that is, the period of time before we can change our warehouse space ? 
Since the cost of the warehouse is fixed in the short run, s and s' should be 
zero. (See the discussion of the theory of the firm in Section 3 .2 for an 
explanation of fixed and variable costs . )  How can we determine the best short 
run plan ? As pointed out at the beginning of this paragraph, if we knew the 
storage costs, we could use (2) to determine how much space is required. This 
suggests that we assign fake costs to make storage space needed equal to 
storage space available. The easiest way to do this is to replace s and s' 
by S(J and s' (J, where (J is the factor that we have to �cale costs by and s and s' 
are long run costs. (You should be able to show that this simply has the effect 
of multiplying the needed storage space computed from (2) by a factor of 
(J - 1/2 .) 

The situation with a bulk order of raw material is more complicated. 
Suppose a bulk order shipment consists of enough raw material to produce 
N finished items. For simplicity we assume that T is such that p = N /rT is an 
integer ; that is a raw material order lasts for p production cycles. (You may 
wish to study the model when p is not an integer. ) The amount of raw material 
on hand is plotted in Figure l over p production cycles. The area under the 
curve is N(pT - T + t)/2. Combining this with N = prT and T - t = 
(k - r)T/k, we see that the storage cost per unit time is 

s' [N - (T - t)rJ 
= 

,(N _ (k - r)Tr) . 2 s 2 2k 
Combining this with ( 1 )  we obtain the total cost per unit time : 

c rT(k - r) (s - s') s'N 
C 

= T + 2k + 2 '  

N - - - - - - - - - - - - - -� - - - - - - � 

o T 2 T  (p - 1 ) T  p T  

F i g u re 1 Raw material on hand during p production cycles of length T. 
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If  s :-:::; � ' ,  the best strategy is to make T as large as  possible, that is , p = l .  
When s > s', we obtain the optimum values 

T =  

(3) t =  

c =  

2ck 
r(k - r) (s - s') ' 

2cr 
k(k - r) (s - s') ' 
2cr(k - r) (s - s') s'N 

k + 2 '  
This can be compared with the optimum nonbulk values given by (2) 

after a correction term is subtracted from the optimum bulk cost due to lower 
costs for raw materials. If the cost of materials is b lower per finished unit 
when the manufacturer orders in bulk, the correction term will be rb. Note 
that bulk ordering leads to longer productions runs, the ratio of times being 

1 s'k 
+ (s - s')(k - r) 

We have not discussed the possibility of allowing the warehouse to run 
out of finished goods and then back-ordering. This eliminates some storage 
costs at the expense of possibly losing some customer good will, hence some 
orders. Various approaches have been suggested . The following is adapted 
from B. L. Schwartz ( 1 966). Most firms can expect to gain and lose customers 
at a fairly regular rate. At equilibrium the rate of loss and the rate of gain 
must be equal. What happens to these rates if the fraction f of delayed orders . 
is increased ? Since there will be more disgruntled customers, the rate of loss 
will increase. We assume that new customers are still gained at the same rate . 
This probably won't be true if f changes markedly, since bad reputations 
spread ; however, it seems reasonable if f changes only slightly. The simplest 
model incorporating these ideas is 

a(1 - f)N + bfN = constant, 
where the constant is the rate at which new customers are gained, N is the 
number of customers, a is the probability of losing a customer whose order 
is filled promptly, and b is the probability of losing a customer whose order 
is delayed. Since r is proportional to N, it follows that r(j ) is proportional to 
1 /[a( 1 - f) + bfJ , and so 

ro r(j) = 1 + f(b - a)la ' 
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for some constant '-0 . The storage costs must be reduced to reflect the fact 
that less storage space and time are used when f i= O. You should be able 
to show that s(k - r)t/2 is replaced by s(k - 1') ( 1 - f)2 t/2. This has the effect 
of replacing s by s(1 - f)2 in the formulas obtained above for the optimum 
values of T, t, and C. Also, these values are now functions of f. When the 
selling price is p, the profit per unit time is pr(f) - C(f). The optimum value 
of f can be determined by maximizing this function. Even in the simplest 
case this is quite messy. When the production line is so fast that we can 
approximate (k - r)/k by 1 ,  things are simplified a bit. Try it . 

G eometry of  B lood Vesse ls  

The blood vessel system of higher animals is so extensive that evolution has 
probably optimized its structure. How much of the structure can we explain 
in this way ? First, we need to know what is being minimized or maximized 
by optimization. We can say that the cost to the organism is minimized, but 
then we must say what we mean by " cost ." This depends on the specific 
problem, so we'll put it off for the time being. Let's study the branching of 
vessels . For simplicity we consider only the case in which a vessel splits 
into two vessels, each of which carries equal amounts of blood. For the 
general situation of unequal-sized branches, see R. Rosen ( 1 967, Ch. 3), 
from which this model is adapted. 

Any reasonable model can be expected to lead to the conclusion that all 
three vessels lie in a plane, since otherwise we could shorten the lengths of 
all three simultaneously by making them planar-surely a saving for the 
animal. Structural considerations may prohibit this, but it is a reasonably 
accurate assumption, since sharp changes in direction are seldom required 
by structural constraints. By symmetry, the two smaller branches should 
have equal radii 1" and flow rates I', and make the same angle e with the 
larger vessel. Let r and f = 2I' be the radius and flow rate of the larger vessel. 
See Figure 2. The organism has a " cost " associated with maintaining vessels 
and overcoming resistance in pumping blood. This cost per unit length is 
some function C(r, f). Since we wish to minimize this, I' and r' are determined 
as functions of f by 

(4) 
oC(r, f) 

= 0 or and 
oC(r', fl2) 

= 0 or' . 

We also wish to choose e to minimize the cost associated with the three 
vessels in the branch. If the vessels have lengths L, L', and LI/ , we wish to 
minimize 

C = C(r, f)L + C(r', I' )L' + C(r', I ')LI/ . 
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- - - - -f 

F i g u re 2 Arterial blood flow. Flow rates, f and !, ; vessel radii, r and r' ; branching 
angle, O. 

A slight change in L to L + I'1L results in a decrease in both L' and L" by 
an amount equal to I'1L cos 8 plus a term on the order of (I'1L)2 . Draw a 
picture and convince yourself of this. Since C' = 0 at a minimum, I'1C 
must be on the order of (I'1L)2 or smaller. Hence 

(5) C(r, f) - 2C(r' , j') cos 8 = 0 

at an extreme point. This must be a minimum, since we can clearly increase 
the cost by increasing L so that 8 approaches n. Since r and r' are determined 
by (4), this gives an expression for 8. 

Let's consider a specific form for C. The work needed to overcome 
resistance in a rigid pipe with flow rate f and radius r is kf 2 jr4 per unit length, 
where k depends on the nature of the fluid . Vessel maintenance may depend 
on the space occupied by the vesseL the inner surface area of the vessel 
(where most of the wear may occur), the volume of the cells making up the 
vessel, or some combination of these. The first two give a cost per unit length 
proportional to r and r2 , respectively. The third depends on how the thickness 
of the vessel wall varies with r. If it is proportional to r, the cost per unit length 
is proportional to r2 . If it is constant, the cost per unit length is proportional 
to r .  In order to include all these possibilities for vessel maintenance in 
some simple fashion, we consider a contribution of the form Kra, where 
1 :-:;; a :-:;; 2. The total cost per unit length is thus kf 2jr4 + Kra. By (4) we 
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have f2lra + 4 = K , where K = aKl4k. Thus C(r, f) = Ara and, Slllce 

(il I' )2 = 4, 

(6) 

Equation 5 yields 

(�)a + 4 = , 4. 
r 

cos e = 
(rlr, )a 

= 2(a - 4)/ (a + 4) 2 . 
Since 2 2': a 2': 1 ,  it follows that 37° .:::; e .:::; 49° . As far as I know, this has not 
been tested. However, it is known not to hold at the capillary level. If you 
are interested in obtaining some data, the illustrations in F. H. Netter 
(various dates) could be measured . I've been told that his drawings are 
quite accurate. 

By using (6) plus the known radii of the aorta and capillaries we can 
determine the number of branchings between a capillary and the aorta in an 
organism : If there are n branchings, by (6) the ratio of the aortic radius to the 
capillary radius equals 4"/(a + 4) . Rosen gives an approximate value of 103 � 4 5 
for this ratio in dogs. Hence n � 5(a + 4), which ranges from 25 to 30. 
Since the number of capillaries equals 2", there are between 3 x 107 and 109 
capillaries. An empirical estimate cited by Rosen is 109 . 

F ight ing  Forest F i res 

Your state forestry service wants to reduce the financial and environmental 
costs of forest fires. How can they do this ? What is the best way to reduce the 
cost of forest fires within the limits of present fire control methods ? The 
following is an adaptation of a model presented by G. M. Parks ( 1 964) for 
determining the size of an optimal fire fighting force. Another possibility 
that needs serious consideration is increasing the effort spent on detection ; 
however, we ignore it here. " The best way " is interpreted to mean the least 
costly way. This means we must assign costs for the burned area and the 
injuries and deaths of fire fighters. The first cost is very difficult to assess ; 
outdoorsmen, lumbermen, and city dwellers are likely to assign quite 
different costs. In California in 1 963 " current practice [assigned] . . .  values 
from $25 to upwards of $2,000 per acre." What about the second cost ? 
Since more fire fighters mean quicker control of a fire, there is less chance 
per fighter for injury ; furthermore, fire fighters are assumed to receive 
monetary compensation. Therefore we do not consider the cost of injuries 
and deaths. 

Let B(t) be the area burnt by time t, where time is measured from t = 0 
at time of detection. We assume that the fire has stopped when B'(t) = O. 
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Let T" b e  the time the fire is first attacked and I;, the time it i s  brought under 
control. Thus 'Fe is the least t > 0 such that B'(t) = O. Let x be the size of the 
fire fighting force (assumed constant from I;, to 'Fe). The costs for fighting 
a particular fire are : 

Cb , the cost per acre of fire (burnt acreage plus cleanup expenses). 

C x '  the cost in support and salary per fire fighter per unit time. 

Cs ,  one-shot costs per fire fighter (such as transportation to and from the site). 
Cp costs per unit time, while the fire is burning, for maintaining the organiza­
tion on an emergency basis, redirecting traffic, and so on. 

(Note that we are implicitly assuming that all the C are constants.) The total 
cost is 

To minimize C as a function of x, we must determine B(t). We assume that 
each fire fighter reduces the burning rate of the fire at a constant rate E, 
that is, decreases B"(t) by E. Thus 

(7a) B'(t) = b(t), for t < I;, , 
(7b) B'(t) = bet) - E(t - T,,)x, for T" s t S 'Fe ,  

where bet) is to be determined. Parks simply assumes that bet) is a linear 
function of t . We can derive this from the crude assumption that the fire 
is spreading circularly at a uniform rate : The perimeter is proportional to 
bet) and the rate of change of the perimeter is a constant. Thus bet) = G + Ht. 

Criticize the model. 

To find 'Fe we set B'(t) = 0 in (7b) and obtain 

T = T G + HI;, 
c a + 

Ex - H 
Note that Ex > H is required if the fire is ever going to be stopped. We now 
integrate (7) to obtain 

HT2 B(T,,) = B(O) + GT" + T 
(G + HTa)2 B(I;,) = B(I;,) + 
2(Ex _ H) 
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For convenience let ba = b(T;,) = G + HTa and z = x - HIE, the number of 
fire fighters above the bare minimum. By combining the above results we 
obtain 

(8) C - C C [(HCx/E) + Ct + (Cb bj2)]ba 
- 0 + s Z + , 

Ez 

where Co is a constant. Setting the derivative with respect to z equal to zero, 
we obtain the optimal value : 

(9) Cb + 2Ctlba + 2HCx/Eb" H 
2CsE 

+ 
E ·  

The values of cx , C" and Ct can be determined for a region ; the values 
of Cb can be tabulated for various types of forests ; the values of H and E 
can be tabulated by type of forest and wind conditions ; and ba can be deter­
mined on the spot. Then (9) can be applied. It is unlikely that this would 
be done by the forest service ; however, (9) could be used to make general 
recommendations to forestry officials. Parks has done this. He obtained 
numerical estimates and concluded that 102 of the 1 39 fires in the Plumas 
National Forest in California in 1959 were undermanned. In particular, the 
model predicts that the four fires that burned over 300 acres each would have 
burned less than 100 acres each with proper manning. 

There are problems with relying on (9), even if we believe that the model 
is correct and are able to reach some agreement on estimates for the various 
costs. It is still necessary to know ba , H, and E. Unfortunately ba tends to be 
underestimated because that makes the lookout appear more alert, while 
H and E are dependent on so many factors that good estimates in a particular 
situation may be hard to obtain even if tables are prepared ahead of time. 
How sensitive are (8) and (9) to such errors ? 

The graph of x versus C in Figure 3 shows that underestimating x * 
by a large amount is more expensive than overestimating it. The critical 
variables are H and E, since errors here can shift us into the untenable position 
of fielding less than HIE fire fighters . We could improve the situation some­
what by tabulating HIE instead of H and E separately. (Of course we also 
need either H or E as well, but this way we are spared the necessity of dividing 
two uncertain quantities to obtain the critical quantity HIE.) What is HIE ? 
It is the number of fire fighters needed to keep a fire from spreading at a 
faster rate, that is, enough fire fighters so that b(t) is a constant. Not only does 
this sound hard to measure, it sounds impossible. Surely the number of 
fire fighters must depend on the size of the fire. According to the model the 
number of such fire fighters is independent of the size of the fire. Before we 
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c 

�----------�H�/E�--------------------� X 

F i g u re 3 Firefighting cost as a function of manpower. 

accept the model it would be a good idea to check this counterintuitive 
prediction, since H/E plays such a crucial role in determining x* . As far as 
I know, this hasn't even been noted, much less explored. 

P R O B LE M S 

1 .  Returning to the blood vessel model developed above, do you think 
Rosen's data on the number of capillaries is strong evidence for the cost 
function C = Ar2 ? Why ? Propose further tests for the theory that 
evolutionary pressure has led to minimal total cost and that the cost per 
unit length is C(r, f) = Ara, with 1 ::; a ::; 2. How can a be estimated ? 

2. Suppose you wish to get from one place to another in the rain by traveling 
in a straight line. How fast should you walk (or run) to stay as dry as 
possible ? The following model is due to B. L. Schwartz and M. A. B. 
Deakin ( 1973) . 

(a) Let's approximate a person by a rectangular prism (a box) with a 
ratio of areas given by 

front : side : top 1 : IJ : 8 

Assume that the rain's velocity is (w, W, - 1 )  and that the person's 
is (v, 0, 0), where the z coordinate is vertical upward. Show that 
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the amount of rain hitting the person per unit time is proportional 
to I w  - v i  + cp, where cp = I W I IJ  + £, a constant. 

(b) Show that, if cp > w, you should· run as fast as possible and that 
otherwise you should run with v = w or as fast as possible, whichever 
is slower. This has a simple interpretation in terms of keeping your 
front and back dry. What is it ? 

(e) Criticize the model. Can you improve it ? How do the new and old 
predictions compare ? 

3 .  Suppose you are an advisor to a congressperson who wishes to develop 
legislation to regulate commercial fishing so that the fish populations 
will be preserved. To advise him or her you need to become familiar 
with the economic aspects of the problem. This material is adapted from 
C. W. Clark ( 1973). Let N be the size of the fish population. For simplicity, 
assume a selling price of p per fish, independent of the quantity sold. 

(a) Argue that the harvest cost per fish e(N) is a decreasing function of 
N and that, if there are no fishing regulations, we can expect the fish 
population to be at the level N f ' where p = e(N f). Cost includes 
salaries, fuel, income lost because capital is tied up in boats, and so 
on. 

(b) Suppose we assume a simple reproduction model : N' = g(N). 
Show that a reasonable shape for g is a concave arc passing through 
N = 0 and N = N*, the maximum population that can maintain 
itself when there is no fishing. Show that maximum sustained yield is 
obtained at N n "  the solution of g'(Nm) = O. What is the yield ? 
What does N* ::; N f say about the economic feasibility of fishing? 
What about N* ;:::: N f ? 

(e) Suppose the fish population is to be maintained at the most profit­
able level. Call this N p ' Show that profits are given by 

P(N) = g(N) [p - e(N)] , 

and that N p is the solution of P'(N p) = O. 
(d) What can you say about the relative sizes of N f ' N*,  N m '  and N p ? 
(e) Under what conditions is it economically best to drive the species 

to extinction by fishing ? Hint : Perhaps the left hand zero of g(N) 
should be at a point to the right of zero, since a dispersed population 
below a certain critical level may not be able to come together to 
reproduce. If extinction is not economically feasible, is legislation 
a good idea anyway ? Explain. What about fishing in international 
waters, for example, whaling ? 

(f) Can you improve the model ? What if p depends on harvest size ? 
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(g) Apply the above ideas to buffalo hunting (previous century), deer 
hunting (present day), tree farming, and anything else you'd care to. 

Notes : A graphical approach to parts of the above problem may 
be helpful. See Chapter 3 and Section 4.2. Fisheries have been studied 
extensively. Among the journals devoted to the subject are Fishery 
Bulletin and Transactions of the American Fisheries Society. See also 
C. W. Clark ( 1 976). 

4. In designing a multistage rocket, how would you decide on the number 
and size of the various stages ? By having multiple stages, unneeded fuel 
containers can be discarded, thus reducing the amount of mass that must 
be accelerated for the rest of the flight. Unfortunately there is a cost : 
Additional motors are needed so that each stage will have an engine, 
and this adds to the weight until the motor is discarded. Clearly some 
compromise should provide the biggest payload (or longest flight) for 
the money. For simplicity we assume that cost is proportional to weight. 
Therefore we maximize the terminal velocity for a given initial mass and 
a given payload mass. Again for simplicity let us neglect the effect of 
gravity. (The crude assumptions we are making can be removed, but 
then the optimization problem may require a computer. )  We need the 
physical fact that the mass m and the velocity v of a rocket with constant 
exhaust velocity Ve are related at any time by 

m exp (�) = constant, 
�e 

when gravity and air resistance are neglected. The constant changes each 
time the rocket drops a stage. (For those who wish to derive the result, it 
is simply a conservation-of-momentum argument : m flv + Ve flm = 0.) 
To begin with, let's find the optimal division between stages, given that 
we are to use n stages and the payload counts as a stage. Let 

Mi be the mass of the entire rocket (including fuel) when the ith stage 
begins to fire. 

F i be the mass of the fuel in the ith stage. 
Ci be the mass of the fuel casing in the ith stage. 
Ri be the mass of the rocket motor and other support in the ith stage. 

By assumption, M 1 and M n are given, F n = Cn = 0, and we can assume 
that Rn = 0 by absorbing it in the payload. 

(a) Show that the terminal velocity is 
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(b) Using (a), show that, if Mj is such that for given values of Mj+ 1 and 
Mj- b 

log ( Mj- 1 ) + log ( Mj ) Mj- 1 - Fj- 1 Mj - Fj 
is a maximum and, if this holds for 2 :::; j :::; n - 1 ,  the rocket 
maximizes V y . Remark : This uses an important idea in maximiza­
tion : A solution that is locally a maximum is often globally a 
maximum. In this instance, if the division of mass Mj- 1  - Mj+ 1 
between stages j - 1 and j is the best possible for all j, the entire 
rocket is the best possible. 

(c) We assume that Ci ex Fi and Ri ex Mi , with constants of proportion­
ality independent of i for 1 :::; i :::; n - 1. Discuss. Use this to 
conclude that Fi = aMi - bMi + 1 for some a and b and thus 
express log [M;/(Mi - Fi)] in terms of Mi and Mi+ 1 • (d) Using (c), reduce the expression in (b) to a function of the single 
variable Mj . Show that it is a maximum when 

Mj Mj- 1 
Mj - Fj Mj- 1 - Fj- 1  

Conclude that V y is a maximum when Mi(Mj - F) is constant 
for 1 :::; j :::; n - 1. Interpret in terms of �v for each stage. 

(e) How can you determine the optimum value for n, the number of 
stages ? How does the reliability change as the number of stages 
increases ? What can you do about this and how does it affect the 
model ? 

(f) Can you propose a more realistic model which can be analyzed 
easily ? 

(g) What additional factors would you take into account if you were 
actually attempting to design a multistage rocket ? 

5 .  A troubleshooter spends a lot of time flying in his  private plane to 
various industrial plants which he helps out. He wishes to spend the 
least amount of time possible traveling. Where should he live ? Of 
course, you need data. What data do you need ? You should set up a 
model so that data collection is feasible. How would you change your 
approach if he used commercial airlines ? 

6. What is the best strategy for a swimming fish to adopt if it wishes to 
travel with the least expenditure of energy ? (This " wish " is not conscious, 
but rather a result of natural selection.) Since the motions involved in 
swimming increase the drag on a fish to about three times its value when 
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the fish is gliding, i t  i s  t o  the fish's advantage to  keep swimming time 
down. This leads to burst swimming (D. Weihs, 1 973, 1974). Fish that 
are heavier than water can alternate between swimming upward and 
gliding downward. We study the simplest case of this discussed by 
D. Weihs ( 1973). 

We assume that the fish attempts to move with a constant velocity v. 
(Other assumptions are possible, but this seems fairly reasonable, 
and we can handle it.) Let D be the drag on the gliding fish at this velocity 
and kD the drag on the swimming fish. Let W be the net weight of the 
fish in water, IX the angle of downward glide, and f3 the angle of upward 
swimming. Thus we're assuming that the fish travels along a path which, 
when viewed from the side, has a sawtooth appearance. We assume that 
the energy used by the fish per unit time above and beyond that required 
simply to stay alive is proportional to the force it exerts in moving. 

(a) Criticize the assumptions. 
(b) Show that W sin IX = D and that the swimming force is kD + W sin f3. 
(c) Show that the ratio of energy in the burst mode to energy for 

continuous horizontal swimming to go from a point A to another 
point B is 

k sin IX + sin f3 

k sin (IX + f3) 
. 

(d ) It has been found empirically than tan IX � 0.2. What is the best 
value for f3 ? How much energy does the fish save ? How important 
is it that the fish estimate f3 accurately ? (We should answer this 
because it may be unrealistic to expect accurate estimates. )  

(e) Criticize the model. 
(f) Suppose the fish wishes to swim from A to B in a given time. 

Construct a model. Drag is roughly proportional to v2 . The energy 
per unit time (power) used to overcome drag in swimming is nearly 
proportional to v3 • 

7 . Two firms Y and Z are competing for a market. If Y spends y per unit 
time on advertising and Z spends z, we could expect that Y's share of the 
market in the long run is a function of the total advertising attributable 
to Y ;  that is, f [y/(y + z)] for some function f. If the two firms are similar, 
Z's share of the market will be f [z/(y + z)] . 

(a) Criticize the above suggestion. 
(b) Show that, for 0 .::; x .::; 1 , f(x) + f( 1 - x) = 1 and f'(x) = 1'(1 - x). 
(c) Assuming the above, how should Y and Z act so as to maximize 

profit -assuming there is neither tacit nor explicit collusion between 
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the two firms. How reliable is the prediction ? You can assume that 
all costs and the function f are known. 

This problem was adapted from R. G. Murdick ( 1 970, Ch. 2). 
8. What is the optimum number of years a company should keep trucks 

in its fleet before buying new ones ? This can lead to many complications 
as the model becomes more and more realistic. Begin with a very simple 
model in which the main factor is rising maintenance costs. You can 
work up to as complicated a model as you feel the situation warrants. 

4 . 2 .  G RA P H I CA L  M ETH O D S  

For the reasons given i n  Section 3 . 1 ,  this section i s  limited t o  qualitative 
problems with few variables. The idea is simple : We wish to maximize a 
function f like " fitness " or " happiness," subject to certain constraints. 
The constraints and the curve f = constant are plotted, and the point where 
f is maximized is read from the graph. When the problem can be stated in 
clear, quantitative terms, more sophisticated methods such as Lagrange 
multipliers and mathematical programming are used. 

A B a rter ing  M od e l  

Suppose two people have two goods which they wish to  use i n  bartering with 
each other. What can we say about the situation ? We assume there is some 
satisfaction associated with various mixes of the goods, and each person 
wishes his or her satisfaction to be as great as possible. For example, if I 
have 25 inches of French bread and you have 20 ounces of wine and it is 
lunch time, we will probably be able to work out a trade in which both of 
us will be better off. (Don't suggest simply " sharing " -that's frowned upon 
in economic models . ) Can we say more about this ? Let's consider another 
situation. Suppose I have 2 yards of one fabric and you have 2 yards of 
another. We may not wish to do any trading unless we switch ownership 
completely, because anything else would lead to rather small pieces of 
fabric. Can a model explain both situations ?  

We begin with the concept of indifference curves. I may say that as far 
as I am concerned 10 inches of bread and 4 ounces of wine together are just 
as good as 6 inches and 10 ounces. We say that I'm indifferent between 
( 1 0, 4) and (6 , 10) . The set of points that I consider to be indifferent to ( 1 0, 4) 
form a set which is usually a curve. It is called an indifference curve. Several 
of my indifference curves are sketched in Figure 4. Can you explain the 
shape ? A curve further toward the upper right contains points of greater 
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satisfaction to me. (Why ?) Thus I want our bartering to lead to a point on a 
curve far toward the upper right. 

Now let's put your indifference curves and my indifference curves 
together. I've done this in Figure 5 for bread and wine. Note carefully the 
labeling of the axes : Altogether there are 25 inches of bread and 20 ounces 
of wine, and any point in the rectangle describes some division of the bread 
and wine between the two of us. Now suppose I agree to stay on one of my 
indifference curves .  How can you maximize your satisfaction ? The answer 
is simple : Choose a point where one of your indifference curves is tangent to 
mine. Another way of viewing this is to say that, if our indifference curves are 
not tangent at the point we have selected, there is another point where 
neither of us is worse off and at least one of us is better off. Hence we should 
stay on points of tangency. This is the bargaining path, which is shown dotted 
in Figure 5. It starts on my indifference curve containing (25, 0) and yours 
containing (0, 20), because neither of us will agree to be worse off after trading. 
Where on the curve we end up depends on our bargaining abilities. (Various 
people have attempted to be more specific.) Figure 5 is called an Edgeworth 
box. 

What about the yard goods case ? Here the indifference curves have a 
different shape, so that the points of tangency give minima instead of maxima. 
Thus we do better at the boundary. 

What if we are trading more than two goods ? For three goods we can 
still picture the situation : There are indifference surfaces, but the points of 
tangency still form a curve. This is true for any number of goods. We can 
put this result in a somewhat surprising form : 

Suppose Bill and Mary are trading and I know their preferences. If 
Bill tells me how much of one of the goods he has settled for, I can then 
say, " Unless you have settled for the following amounts of the remaining 
goods, you and Mary can arrange a trade that would be better for 
both of you." 

This model has several drawbacks. First, to make it quantitative 
requires a great amount of experimental work gathering data ; however, 
psychologists have collected data of this sort in past experiments. Second, 
the indifference curves may shift with time-I may be more interested in 
wine after haggling with you for a while. Third, I may derive satisfaction 
from how well or how poorly I feel you are doing. Can you think of other 
objections ?  Do you think these ideas on bargaining would be useful in 
bilateral trade negotiations between the United States and Japan ? In arms 
limitation talks between the United States and the U.S .S.R ? Discuss your 
reasons. 
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C h a n g i ng Envi ron ments a n d  O pt i m a l  Phenotype 

Why do some animals have only a few quite distinct forms for different 
situations (e.g., queen, drone, and worker forms among honeybees), while 
others exhibit a whole range of variation (e.g., variation in the size of many 
plants with the climate) ? 

Suppose a habitat consists of two distinct types of environments. 
Examples are : oak trees versus maple trees (relevant for plant eating insects) : 
warm versus cool weeks (relevant for insects producing more than one 
generation per year) ; and the nest versus the outdoors (relevant for some 
social insects with castes like ants). Assume that the animal or plant spends 
most of its life in only one of the two environments and that for develop­
mental or genetic reasons the organism can end up having one of several 
phenotypes. We want a model that explains why some organisms have 
markedly different phenotypes in different environments while others 
do not. The following ideas are adapted from R. Levins ( 1 968, Ch. 2). See 
E. O.  Wilson and W. H. Bossert ( 1 97 1 , pp. 73-77) for related material. 

We begin with the idea of fitness. In vague terms, the fitness of an 
individual is a measure w of its expected success. This could be measured 
in terms of the extent to which an individual's genes survive and spread in 
future generations or, for social insects with a single queen, the survival 
and reproduction of the nest. Thus fitness could be measured by the expected 
number of descendants at some future time. Even this is rather vague, 
because fitness is a very slippery concept to try to grasp precisely. We can 
allow it to remain vague as long as we are aware that we are doing so, because 
we only wish to make crude qualitative predictions. Since we can't obtain 
the data that would be required by a quantitative model anyway, it is point­
less to attempt to formulate such a model. The essential property we demand 
is that the fitness down to the nth generation is the product of the fitnesses at 
each generation. 

Suppose the fitness of an individual in the first environment is W1 , and 
in the second Wz . If the fraction of time spent in the first environment is p, 
the fitness after n generations is 

( 10) 

We wish to maximize ( 10), subject to the constraint that the fitnesses W1 and 
W2 are actually possible. The shaded regions in Figure 6 indicate fitnesses 
of biologically possible individuals. The regions are called fitness sets. 
On the left, the environments are sufficiently similar so that an intermediate 
individual A can do well in both. In contrast, the intermediate individual B on 
the right does poorly because the environments are too dissimilar. 
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Cu rves with 

wf Wi -P 
constant 

(b) 
F i g u re 6 Fitness sets. (a) Similar environments . (b) Dissimilar environments . In­
termediate individuals such as A and B occur only in the case of similar environments . 

To maximize ( 10) we simply plot curves on which Wf W� - P  is constant 
and note that the optimum individual occurs at the point where such a curve 
is tangent to the fitness set. The curve has a shape similar to that of the hyper­
bola xy = c. 

As p varies, the curves on which ( 10) is constant vary in shape. When the 
two environments are similar, the optimum varies smoothly with p. In 
dissimilar environments, there may be a sudden jump from the specialist C 
(in Figure 6b) to the specialist D as p increases, completely avoiding the poor 
generalist B. Examples of both situations occur. You should be able to think 
of many examples of the former, for example, variation in thickness of coat in 
furbearing animals with climate. Here's an example of the latter : Some species 
of butterflies mimic other species that are distasteful to predators. There is a 
species in South America that mimics different species in different parts 
of its range. An organism with the phenotype of a compromise mimic would 
be poorly protected. 

Let's consider caste formation in ants. The first environment is the nest 
defense milieu, and the second is the nest maintenance milieu. In Figure 7 
is plotted a soldier (S), a worker (W), and two possible generalists. If defense 
and maintenance were sufficiently different so that G is the best possible 
generalist, there would be evolutionary pressure toward caste formation. If 
G' were possible, castes would be unlikely to form. If defense were rare, 
evolution might lead to the castes G' and W 

Note that we haven't discussed the shape of the fitness curves in con­
nection with Figure 7. It's rather tricky ; in fact, this whole subject is a bit 
tricky. You may want to work on it. 

E. O. Wilson ( 1 975, pp. 306-309) presents another approach to caste 
formation which we discuss briefly. It involves some simple probability 
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theory. Suppose we have a list of the possible castes and a list of the situations 
(e.g., repel an attack, forage) that a colony must deal with. A colony cannot 
fail too often and still survive. Various castes contribute more to success in a 
particular situation than others do. Let Pij be the probability that caste i 
will fail to deal with problem j. We assume that the castes contribute in­
dependently to success, so that P1 jP2j ' "  is the probability that problem j 
will not be dealt with successfully by the colony. One way to limit failures is to 
require that 

( 1 1 )  for all j. 

Clearly Pj) depends on the number of members in caste i . The simplest 
assumption is, again, independence : 

( 12) Pi) = pi] , 

where nj is the number of individuals in caste i. If Cj is the cost of producing 
and maintaining a member of caste i averaged over the individual's life­
time, we can describe the colony's problem as follows : 

( 1 3a) 

( 1 3b) 

( 1 3c) 

Subject to : nj  :2: 0 
And : I nj log Pij � log M) . 
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[The last expression comes from combining ( 1 1 )  and ( 12).J This is an example 
of a problem in linear programming, a field in which a variety of textbooks 
exist. 

This model has several drawbacks. The major ones are probably the 
(highly unrealistic ?) assumptions of independence leading to ( 1 1 )  and ( 1 2) . 
Also, the constraints in ( 1 1 )  may not be an appropriate way to define not 
failing too often. Some of the difficulties can perhaps be avoided by redefining 
terms. Others require revisions that would destroy the linearity of ( 1 3c). 
Can you suggest ways to improve the model ? 

Let's illustrate the model by considering a simple case involving only 
two possible castes. Introduce two axes which indicate the number of 
members in each caste. Constraints ( 1 3b) limit us to the first quadrant. Each 
of the constraints ( 1 3c) requires that we look above a line of slope 
- log pidlog PiZ and a given intercept. Figure 8 illustrates a possible con­
figuration with four problems. Since C l n l + cz nz is constant on straight 
lines of slope - c i/cz , picking out the point in the shaded region that produces 
a minimum is fairly easy to do graphically. You should be able to describe a 
method. Note that it is possible to obtain a solution in which not all castes 
actually exist ; that is, n i = 0 for some i . This is as it should be. 

While these models are still quite crude, there is hope that this approach 
may shed light on why some species of social insects have more castes than 
others and why the energy of a colony is divided between castes in the way 

F i g u re 8 A linear caste formation model . Inequalities ( l 3b) and ( l 3c) hold in the 
shaded region. 
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that i t  i s .  (The why of sociality in insects is an interesting question which is 
beginning to be answered. See E. O. Wilson ( 1975 ,  pp. 41 5-4 1 8) for a 
discussion.) 

P R O B LE M S 

1 .  Two college administrators are trying t o  decide on an admissions policy 
so as to obtain the " best " possible students for their college. They each 
have different ideas on how important various traits are in a good 
student. Can you suggest a theoretical plan for helping them ? A practical 
one ? What if three administrators are involved ? Nate : The time and 
money required for extensive testing are not available ; only the ad­
ministrators and their opinions are available. 

2 . Let's consider a bread and wine problem different from the one in the 
text. 

(a) Suppose I am buying lunch, wine costs 1 0  cents per ounce, bread 
costs 5 cents per inch, and I have $1 to spend. If I know my indif­
ference curves, how can I determine what to buy ? 

(b) Suppose the price of wine rises to 13 cents . What will happen to the 
amount of wine I buy ? The amount of bread ? 

3 .  How do wages affect the amount of  time a person works ? An individual 
wants both income and leisure time. Hence he or she is willing, up to a 
point, to work longer when the hourly wage is higher. As the wage 
becomes higher, however, an income saturation effect occurs and the 
worker may wish to work somewhat less time as the wage rate increases, 
thereby increasing both leisure time and income. A reverse effect may 
occur if the wage is low, since a person often desires a certain level of 
income and may more readily sacrifice leisure to attain it if wages are 
raised slightly. Can we cut through this complexity to decide if, as an 
employer, it is better for you financially to offer overtime or higher wages ? 

(a) Using the coordinates hours per day and dollars per day, plot 
indifference curves for a worker. What is the shape of such a curve ? 
Hint : What does the slope mean ? 

(b) For a particular hourly wage rate a straight line through the origin 
gives hours worked versus wages received. Why ? Describe geo­
metrically how to measure the number of hours a worker would 
choose to work if he or she were given the freedom to choose (e.g. , 
a self-employed person such as a lawyer or a plumber. )  As the 
hourly rate varies, the optimum point varies. Describe and interpret 
the locus. 



(c) Discuss the effect of overtime. 
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(d ) Is is better from the employer's viewpoint (i .e . ,  maximum number of 
hours per employee for a given total wage) to raise wages or to 
raise overtime pay ? Why ? 

(e) Instead of considering a single worker, carry out the above analysis 
for the entire work force potentially available to the employer. 

For further discussion of this topic see K. J. Cohen and R. M. Cyert 
( 1965 ,  Ch. 5) . 

4. Suppose you are faced with the problem of how to adjust traffic signals 
for rush hour traffic. What is the best way to do it ? This problem is 
adapted from D. C. Gazis and R. B. Potts ( 1 965) .  We suppose that at 
t = 0 there is no line at the signal in either direction. At the end of the 
problem, try to decide how important and how realistic this assumption 
is. Cars arrive at the signals at rates qN(t) from the north and qE(t) from 
the east. The signal can handle cars at a rate k. Let QN(t) and QE(t) be 
the integrals of qN and qE from 0 to t. 

(a) Show that T, the earliest possible time the intersection can be cleared, 
is determined by the equation 

QN(T) + QE(T) = kT 
(b) Let fN(t) be the flow of the north cars through the intersection at 

time t.  Define F N ,  fE , and FE in the obvious fashion. What relation­
ships can you discover among the four functions just defined ? 
Interpret the area between the curves QN and F N in terms of delay 
time. 

(c) Show that the total delay time at the intersection is a minimum 
if and only if both intersections are cleared simultaneously at time 
T Determine T 

(d) What is the best form for F N ? Suppose the rush hour traffic starts 
to arrive earlier from the north so that qN(t) is  large when t is small 
but qE(t) is  small when t is small. Consider other situations, too. 

(e) Discuss improvements and generalizations for the model. You 
need not limit yourself to graphical methods. Among the problems 
you could consider are flows from all four directions, lost time when 
signals change, unequal rates of flow (the parameter k) in different 
directions. 

5. In industrial chemical processes, yield is frequently highly dependent on 
temperature and pressure, but these are limited in range by technological 
and economic considerations. The amount of impurities also depends 
on temperature and pressure. Describe a graphical approach for 
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obtaining maximum yield when one impurity cannot exceed a certain 
value. Do the same for several impurities. This idea is discussed in 
B. Noble ( 1 97 1 ). 

6. (a) Consider the following model of political behavior. There are three 
voters, two issues, and two politicians. Suppose the positions taken 
on the issues can be represented as points on a plane and that the 
indifference curves of each voter are circles centered about the, to 
him, ideal position. Show that the politician who declares his 
positions last can ensure himself at least two of the three votes. 

(b) Can you construct a more realistic model ? What are its political 
implications ? How much faith do you have in the predictions ? 
Why ? See R. D. McKelvey ( 1 973) for further discussion. 



C H A P T E R  

B AS I C  P R O B A B I L I TY 

Most of the models in this book are deterministic. Stochastic models are 
discussed here and in Chapter 10 .  Here we use only basic discrete proba­
bilistic concepts, but more sophisticated concepts, such as the central limit 
theorem, are needed in Chapter 1 0. The Appendix contains a terse discussion 
of the probabilistic concepts required. It can serve as a refresher or as a 
reference for a more leisurely classroom discussion. 

5 . 1 . A N A LYTI CAL M O D E LS 

Sex P reference a n d  Sex R at i o  

Some people have expressed concern about the possibility o f  a population 
markedly altering its sex ratio (number of males divided by number of 
females) because of preferences for children of a particular sex. This could 
be a real problem if intrauterine sex determination is coupled with abortion 
or if infanticide is practiced. To what extent can a population affect the sex 
ratio purely by means of birth control, including abortion which is not 
related to the sex of the fetus ?  The following discussion is based on L. A. 
Goodman ( 1 96 1 ). 

Let's ignore multiple births to make the analysis easier. They are 
sufficiently rare that the effect on the model will be quite small. 

We must say something about the chances that a healthy baby born 
to a given couple will be a girl or a boy. This may vary from couple to couple. 
One can give a reasonable biological argument that it does not depend on 
the sex of the children already born to the couple. There are data indicating 
that sex is slightly related to the age of the couple. Since this is not easily 
incorporated in a model and since it has only a slight effect, we ignore it. 

91 
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The major problem is : How many children is a couple able to bear ? This 
is a thorny problem. We ignore it completely in the following discussion 
and consider it briefly in Problem 1 .  

Our assumptions can be summarized as follows : 

1 .  There exists a probability Pi that a child born to the ith couple will be 
male and a probability qi = 1 - Pi that it will be female. The value 
of Pi is not a function of the sex of the other children of the couple and 
cannot be adjusted by the couple. 

2. Each birth leads to exactly one child. 
3. A couple can have as many children as desired. 

In view of assumption 3, a couple can have additional children if a child 
should die any time after it is born. Hence we can ignore deaths in childhood 
and interpret Pi as being the probability that a child who is born and survives 
through childhood is a male. After reading the following discussion, comment 
on the realism of the assumptions and try to determine what effect they have 
on the conclusions. In particular, Problem 1 asks for a discussion of a model 
in which assumption 3 is replaced by an upper bound on the number of 
children per couple. In technical terms, the model proposed treats sexes 
of children born to a couple as Bernoulli trials. 

We wish to study the value of fl, the fraction of males in the population. 
Let Fi be a random variable equal to the number of females born to the ith 
couple, let Mi be the number of males, and set Ni = Fi + Mi . Then 

( 1 )  

where E denotes expectation. Approximating the expectation o f  the ratios 
by the ratio of the expectations, as was done in ( 1 ), is quite accurate for large 
populations. (If you have had a course in mathematical probability theory, 
you might like to prove it.) 

In view of assumption 1, the expected fraction of boys born to the ith 
couple will be Pi . Hence E(M;) = Pi E(Ni), and there is no way a couple can 
change the expected fraction of boys born to it. From ( 1 )  we have 

(2) L Pi E(Ni) 
fl � L E(Ni) 

It follows from (2) that the population can cause a change in fl only by 
introducing a correlation between Pi and E(NJ When there is no sex 
preference, it is reasonable to assume that E(Ni) and Pi are uncorrelated. 
In this case the right side of (2) equals the average of Pi over all couples. 
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What values of /1 are possible ? Since (2) is a weighted average of the 
Pi ,  the value of /1 must lie between min Pi and max Pi . Because of assumption 3 ,  
the population working as a whole can approach any value within these limits. 
Also, the population working individually can approximate any A between 
min Pi and max Pi : A couple continues to have children as long as the fraction 
of males in the n children they already have does not differ from A by more 
than n - 1 / 3 . In general, the closer some Pi are to A, the closer we can expect /1 
to approximate A. The choice of n- 1 / 3 is somewhat arbitrary. We want a 
function that tends to encourage couples with Pi close to A to have many 
children. Since the fraction of children that are males tends to differ by 
something on the order of n - 1 /2 for random reasons, we want a function 
that is large compared to n - 1 /2 for large values of n . The function n - 1 / 3 
is such a function. 

Using (2) we argued that min Pi ::::; /1 ::::; max Pi - There is an error in this 
argument : ( 1 )  is an approximation that is accurate only for large populations, 
and so only the approximation to /1 lies between min P i and max Pi . To see 
that /1 need not lie within these limits, consider a population consisting of 
a single couple using the rule, " Stop after one child if the first child is a boy, 
otherwise have two children." Set P 1 = P and 1 - P = q. The possible 
sequences of children are M, FM, and FF, and their probabilities are P, qp, 
and q2 , respectively. Thus 

/1 = 1p + !qp + Oq2 = P + !pq > p. 
When P = t this equals 0.625. Now suppose there are k couples all using 
the same rule and all with P = ! . The expected sex ratio for k = 1 , 2, 3, 4, 5 
is 0.625 (as just computed), 0 .563, 0 .54 1 ,  0 .530, and 0. 524, respectively. Thus 
the approach to ! is fairly slow. 

The above discussion shows what can be achieved as values for /1. 
What will be achieved if each couple independently pursues a plan based on a 
desire for children of a given sex ? Many plans are possible. Three examples 
are 

1 .  A couple may continue to bear children until they have a child of the 
desired sex. 

2. They may continue bearing until they have a child who is not of the 
desired sex. 

3 .  Plan 2 may be  modified by  the requirement that there be  a t  least one child 
of the desired sex. 

Plans may vary from couple to couple, complicating matters tremendously. 
We assume that the entire population follows the same plan and that boys 
are desired. 
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If P is the probability of success (or failure) in repeated Bernoulli trials, 
the expected waiting time until the first success (or failure) is 

d 1 I n( 1  - py- Ip = P - I ( 1  - P)" = - .  

n � O  dp P 
Hence E(NJ = l /Pi for plan 1 and E(NJ = l /q i for plan 2. For plan 3 we 
have either of the patterns boy(s)-girl or gir1(s)-boy for order of birth of 
children. The first involves the birth of a boy and so has probability Pi and an 
expected number of births 1 + l/q i ' The second case is similar. Thus 

E(NJ = Pi( l + �) + q i( l + �) = _
1
_ - 1 q i Pi Pi q i 

From this it is easy to compute approximations to Jl by using (2). For plan 1 
we obtain the harmonic mean of the Pi ' Since the arithmetic mean exceeds 
the harmonic mean, this /-1 is less than random. This is due to the fact that 
high Pi is correlated with low E(NJ Similarly, plan 2 leads to a higher Jl 
than random. What happens in plan 3 depends on the distribution of the Pi ' 
Up to this point we have not needed imy such information about the Pi ' This 
is good, because they cannot be computed. See also page 21 7 .  

M a k i n g  S i m p l e  C h o i ces 

What mental processes occur (possibly subconsciously) when you make a 
simple decision, like choosing the longer of two lines ? No one really knows, 
and the models in this area are plagued by oversimplification ; for example, 
a process can be assumed to be identical from trial to trial, or a relationship 
can be assumed to be linear, even though these assumptions are known to 
be only rough approximations. The following model, while no exception, 
illustrates some interesting ideas. It is adapted from R. J. Audley ( 1960). 
Another problem is the existence of several equally good (or bad) models 
for the same situation. See R. R. Bush and F. Mosteller ( 1959) . 

We wish to model an experimental situation in which a subject is 
required to choose between two simple alternatives, for example, which of 
two nearly equal lines is  longer. The alternatives are called A and B, and the 
correct choice is A. We assume that the subject makes a sequence of choices 
implicitly (either consciously or subconsciously) and that these determine 
the final choice. Specifically, we assume 

L There are parameters lJ. and f3 such that during a small time interval of 
length L'1t implicit choice A occurs with probability lJ. L'1t and implicit 
choice B with probability f3 L'1t. These events are independent. 
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2.  A final choice is made after a run of K identical implicit choices, and i t  
equals the implicit choice that was just chosen K successive times .  

We consider only the two simplest cases of the model : K = 1 , 2. It would be 
more appropriate to treat K as a parameter, but this would lead to more 
involved mathematics. 

Assumption 1 implies that the next implicit choice is A with probability 
p = a/(a + 13). Let q = 1 - p. It follows that the probability of a string of 
implicit choices consisting of a A's and b B's in some given order is 

(3) 

In an interval of length !1t, 
Pr {choice} = Pr {A or B} 

= Pr {A} + Pr {B} - Pr {A and B} 
= (a + 13) !1t - af3(!1t)2 , by assumption 1 .  

This describes what is called a Poisson process with parameter Il = a + 13. 
The properties of such a process are well known. In particular, the mean 
time between implicit responses is 1/1l and the probability of exactly n 
implicit responses during a time interval of length t is 

(4) 
(Ilt)ne - At 

Pn(t) = , n .  
The Poisson process is discussed in the Appendix. It also appears briefly 
in the radioactive decay example in Chapter 10. 

We can use K, p, and Il as the basic parameters instead of K, a, and 13, 
because a = pll and 13 = ( 1 - p)ll. All the probability distributions can be 
parameterized by p and K if they are looked at as functions of r = Ilt rather 
than of t . Hence p and K determine the shape of distributions, and Il deter­
mines the time scale. 

When K = 1, the subject makes only one implicit choice. and this is his 
final choice. The probability of a response by time t is 1 - P oCt), which is 
Poisson by (4). Audley notes that this does not agree with experimental 
results . 

When K = 2, the subject alternates between A and B in his implicit 
choices until he finally makes two identical implicit choices. 

We begin by studying such strings of choices. Let P A (n) be the probability 
that there were exactly n implicit responses and the final choice was A, and let 
P A = I P A (n) be the probability that the final choice was A. The probability 
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of an n-Iong string ending in B is (pq)m if n = 2m and q(pqt, if n = 2m + 1 .  
(This allows for the case n = 0.) Hence, for k > 0, P A(2k) = p2(pq)k - l , 
P A(2k + 1 ) = p(pq)k, and 

1 + q (5) P A = p2 I [(pqr + q(pq)mJ = p2 -- . m 1 - pq 
Since PA ean be determined from experimental data, we have a way of 
estimating p. 

To estimate A, some information involving time is required. Since means 
can usually be estimated fairly well from data, a mean time is a reasonable 
choice. Let LA be the time to final choice given that the choice is A, and let 
L be the time to final choice regardless of whether it is A or B. As usual, we 
use notation like [ to denote the mean of L, and E (L) to denote the expected 
value of L. We have 

By using I nxn = x/(1 - x?, it is an easy matter to evaluate these sums : 

" p2 (2 + 3q _ pq2) 
L., nP A(n) = ( 1 - pq)2 

and so 

(6a) 

(6b) 

2 + 3q _ pq2 E(LA) = ( 1 + q) ( 1 - pq),1 
2 + pq 

E(L) = · 1 ) 1 '  ( - pq A 

An interesting consequence of (6a) is that r = E(LA)/E(LB) decreases 
from about i to about � as p increases from ° to 1 .  To see this it suffices to 
study 

2 + 3q - pq2 2 q f(p) = = -- + --( 1 + q) ( 1 - pq) 1 - pq 1 + q ' 
since r = f(p)/ f(q). You should work out the details .  Another way to describe 
the behavior of r is 

The mean time to final choice is longer for the less likely choice, but it 
never exceeds the other mean time by more than about 25 % .  
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We are now ready to compare the model with experimental results . 
AudJey notes that very few suitable data are available and bases his major 
test of the model on the work of Y. A. C. Henmon ( 1 9 1 1 ) .  We rely exclusively 
on his work ; see Audley's paper for further disc.ussion. In his experiments 
Henmon displayed two vertical lines, one of which was slightly longer than 
the other. Half of the time the subject was required to choose the longer line, 
and half of the time, the shorter line. The subject was also asked to express 
a degree of confidence in the choice. The lines were displayed until a judgment 
was made. In a single series the subject was required to make 50 judgments. 
From three subjects 1000 judgments each were taken, and 500 each were 
taken from another seven subjects. 

Unfortunately, only the data from the first three subjects is presented in 
a fashion that makes it possible to plot the number of decisions against 
time to decision (Henmon's Table II), the curve that would provide the most 
detailed test of the model. However, P A ,  L, LA , and LB can be determined 
for all subjects by using his Tables I and IV. These are presented in Table 1 .  

Ta b l e  1 Choice Model Parameters for 1 0  Subj ects 

Subject PA I LA IB IB/IA E(LA) E(LB) 

BI 0 . 820 1 02 1  992 1 1 54 1 . 1 6  1 009 1 079 
Br 0 .774 609 6 1 0  603 0 .98  60 1 635 
H 0 .832 775 770 797 1 .03 765 822 
A 0 .686 303 305 300 0 .98  300 3 1 1  
B 0.778 535 536 530 0 .98 528 558 
C 0 .689 642 652 62 1 0 .95  635 658 
D 0 .798 1 044 1 043 1 046 1 .00 1 030 1 096 
E 0 .778 1 095 1 046 1 268 1 .2 1  1 0 8 1  1 1 44 
F 0 .696 583 606 53 1 0 . 87  577 598 
G 0 .742 909 899 938 1 .04 898 941 

Note : Times are given in milliseconds .  

We have taken A to be right and B to be wrong. Note that the value of 
LBILA for some of the subjects is less than 1 ,  a contradiction to the theory. 
Some of the ratios are so close to 1 that the deviation is not significant, but 
the ratio for subject F is extremely low. Perhaps it can be explained by 
assuming that the value of K varied from series to series . You are asked to 
discuss this idea in the problems. After using P A and L to estimate p and A 
using (5) and (6b), the values of E(LA) and E(LB) were computed by (6a) 
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and its analog for E(LB)' Audley has fitted curves to the more detailed data 
(Henmon's Table II) for subjects B1 and Br. To do this he introduced a third 
parameter : a short time lag during which the subject prepares to make 
implicit decisions .  It is then necessary to ignore the decisions made before 
the lag, because they occur before the subject is " ready." Without a time lag 
the fit is poor, but with a lag of 0.40 seconds for BI and 0.34 seconds for Br 
the fit is good. I have not been able to obtain as good a fit for H as can be 
obtained for Br and Bl. Since there are so few data for each subject (four 
numbers), I think that the poor fit of the model is a sign of serious deficiencies ; 
however, I'm not able to suggest a better model. 

A related model has been proposed by Estes and Bower and extended 
by W. Kintsch ( 1963) to include a Poisson process for implicit response times. 
Assume there are five states : S, iA, iB, fA, and fB-starting, implicit A and B, 
and final A and B. The subject makes a decision to move from one state to 
another. The possibilities are 

r iA - ->fA  

S tt 

L iB ----> fB 

Show that, if the probabilities of S ----> iA, iA ----> fA, and iB ----> iA are all equal, 
this reduces to Audley's model. Kintsch discusses primarily the case in which 
the probabilities of iA ----> fA and iB ----> fB are equal. 

One problem that neither of these models deals with is the possibility 
of unconscious bias of the subject toward the right line or the left line. Another 
is the possibility that it is harder to choose the smaller than the larger, or 
vice versa. Either of these could lead to a mixing of models with different 
parameter values .  Furthermore, data from different sessions with the same 
subject may have different parameter values. Any mixing like this could give 
rise to problems in fitting the data. Henmon's tabulations make it impossible 
to check all this out ; however, he does note that there is a slight difference 
in reactions to the shorter line versus reactions to the longer. 

P R O B L E M S  

1 .  Discuss the sex preference model when each couple can have n o  more 
than C children. 

2. In this problem you'll consider ways of adapting Audley's model to fit 
Henmon's data more accurately. If you become very involved in this, 
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it would be a good idea to read Henmon's paper . Henmon obtained the 
following data for subjects Bl, Br, and H. He asked them to express a 
degree of confidence in their choice ranging from a (perfectly confident) 
to d (doubtful) . 

. 

Confidence 
in 
choice 

a 
b 
c 
d 

Subject Bl 

0.966 
0 .841 
0 .653 
0.480 

753 
1045 
1 3 1 1 
1 6 12  

Subject Br Subject H 

557 0.95 1  560 574 1 
987 0.944 596 669 0.972 

1205 0.836 635 606 0 .853 
1499 0.6 1 5  624 596 0 .563 

638 
722 
789 
850 

699 
777 
8 14  

(a) The simplest modifications o f  Audley's model may be  either to 
choose a different fixed value for K or to allow p, A, or K to vary 
while the other two are fixed. What do you think of this idea (before 
we actually examine it against the data) ? 

(b) Argue that, if p, A, and K are all fixed, the accuracy of a decision 
depends only weakly on the speed with which it is made. How does 
this fit with the data ? Hint : A decision corresponds to a mixture of 
A's and B's followed by K identical symbols (either A or B). 

(c) Argue that PA/PB is approximately (P/ql- l and that L is an in­
creasing function of K and a decreasing function of p. 

(d ) Show that, if p and A are fixed and K is variable, longer decision 
times are associated with greater accuracy. What if only A varies ? 
Only p ?  Which of these predictions seem reasonable in view of the 
data ? Why ? 

(e) Can you propose a specific model which can be tested against 
Henmon's data ? If you could have helped Henmon design his 
experiments, what would you have suggested he do differently 
in the actual running of the eKperiment and in the compilation of the 
data ? 

3 .  Develop the model o f  Kintsch, Estes, and Bower mentioned on  page 98  
with the equality assumption made by  Kintsch. Compare the model with 
the data given above and in the text. Compare it with Audley's model 
with K = 2. Which seems to be better ? Why ? Can you suggest additional 
experiments that would be useful in testing the models ? 

4. Many colleges and universities are faced with a problem regarding 
tenured positions. To attract a good, young faculty, the prospects for 
tenure must be high, but to allow for adaptation, the percentage of 
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tenured positions should not be too high. What is the best strategy ? The 
following material is adapted from an article by 1. G. Kemeny ( 1973) . 

For our purposes let us distinguish three positions : 

1 ,  assistant professor (first appointment). 
2, assistant professor (second appointment). 
t, tenure. 

Positions 1 and 2 each normally last for 3 years, and position t lasts 
for an average of about 30 years. Since these times are multiples of 3 years, 

�e will take 3 years as the time unit. Let P i denote the probability of going 
from 1 to 2, pz the probability of going from 2 to t (given that the step 
from 1 to 2 has been made), and qr the probability of leaving a tenured 
position (death, retirement, move to another institution) during a 
3 year interval. 

(a) Show that the probability of achieving tenure is l' = P iPZ ' 
(b) Show that the fraction of faculty that has tenure in an equilibrium 

(i .e . ,  steady state) situation is 

p = 
P iPZ . ql1 + Pi ) + PiPZ 

Hint : Let x, y, and z be the number of faculty in positions 1 , 2, and t, 
respectively. Show that E(y) = P iE(X) and E(z) = (1 - qr)E(z) 
+ pz E(y). 

(c) Conclude that, when l' is fixed, p is a minimum when Pi = 1 . 
Interpret this as a policy proposal. 

(d) Kemeny estimates that qr is roughly 0. 1 5 . Tabulate p versus l' 
for P i = 1 .  How sensitive is the tabulation to variations in P i ? 
Comment on the proposal in (c) in light of this. 

(e) Incorporate appointments to the tenure level from outside and 
resignations from the assistant professor levels in the model. 
Hint : Look at flows of people as suggested in (b). 

(f) Discuss the model. Is it realistic ? Have important psychological 
factors been neglected ? What psychological effect is the proposal 
in (c) likely to have on assistant professors ? What would you re­
commend ? Why ? 

5 . In Section 3 .2 the nuclear missile arms race was discussed qualitatively. 
This problem and the next one deal with a simple quantitative model 
discussed by T. L. Saaty ( 1 968, pp. 22-25) and R. H.  Kupperman and 
H. A. Smith ( 1 972). See also K. Tsipis ( 1975). Suppose a country has M 
missiles which are being attacked by w warheads, each of which has a 
probability P of destroying the missile it is attacking. Suppose further 
that the behavior of the warheads is independent. 
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(a) Show that, if the ith missile is attacked by Wi warheads, I Wi = W 

and the expected number of surviving missiles is 

(b) Show that the above expression is a minimum when the values of Wi 

are as nearly equal as possible. Interpret this in terms of strategy. 
Conclude that 

S = M{;} ( l - p) 1 + [WIMl + M(l - {;}) ( 1 _ p)[wIMl 

= M(l - P)[WIM{l - p{;}) 

:::::: M(1 - priM, 

where [x] is the largest integer not exceeding x and {x} = x - [x] 
is the fractional part of x. 

(c) Why is the variance of the expected value S important ? Can you 
say anything useful about the value of the variance ? With additional 
assumptions ? 

6 . In the following discussion, use the results of the previous problem. 
To make the discussion uniform, assume that a retaliatory force of 
S = 100 surviving misssiles is desired and that p = 0 .5 . 
(a) Suppose there are two equal countries ( so W = M).  Determine 

the minimum M required for stability. 
(b) Suppose ABMs are installed to protect the defender's missiles. 

Why will this lead to a decrease in p ? Plot M as a function of p S 0.5 . 
Discuss policy implications. Don't forget to take into account the 
limitations of the model. What if the attacker has ABMs that can 
protect its cities ? (Consider S.) 

(c) Suppose both countries introduce MIRVs with t warheads per 
missile. Discuss modifications in the formula for S and the desired 
value for S. It is fairly reasonable to assume that p is directly 
proportional to the cube root of the strength of the warhead and 
that this is proportional to the weight. It follows that p(t) :::::: p/t

l / 3 . 
(Why ?) 

(d) Suppose there are three equal nuclear superpowers and each 
wishes to have a retaliatory force survive a coordinated attack 
by the other two powers. Discuss. 

7 . Have you ever noticed how children at a playground or people at a 
party form groups of various sizes ? What sort of patterns are present ? 
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This problem deals with the equilibrium size distribution of freely 
forming groups and was adapted from J. S. Coleman and J. James 
( 196 1 ) . We assume that there is a collection of people who are free to join 
in groups as they choose. Examples are pedestrians, children playing, 
and shoppers. We wish to explain the size distribution of the groups. Five 
sets of data are given in the accompanying table. The first column 

I I I  I I I  IV V 

1 1486 3 1 6  306 .305 276 
2 694 1 4 1  1 32 1 44 229 
3 195 44 47 50 6 1 
4 37 5 10 5 12 
5 10 4 2 2 3 
6 1 0 0 1 0 

indicates the size of the group, and the remaining five columns refer 
to the five different groups observed by James. Data set I refers to 
pedestrians, data set II to shoppers, data sets III and IV to children at 
playgrounds, and data set V to people on a beach. The entries in the ith 
row are the number of groups of size i in each of the five samples . 

(a ) Let N be the total number of people present, G the total number of 
groups, and Gi the number of groups with exactly i members. Show 
that G = I Gi and N = I iGi ·  

(b) Suppose that in a very small time interval of length M single people 
(i.e., groups of size 1) join groups with probability a L'lt per person, 
that the group joined is chosen at random, and that people leave 
groups and become single with probability fJ M per person. Assume 
that people act independently of each other (in the probability 
theory sense of " independent "). Show that the expected net flow 
rate of groups from the collection of groups of size i + 1 to the 
collection of groups of size i is fJ(i + l )Gi + 1 - aGI (GJG) because 
groups of size i + 1 break up and groups of size i grow. Show that 
this must be zero at equilibrium, that is, although flow occurs, the 
net flow is zero. 

(c) Let Pi = GJG. Interpret Pi and show that I Pi = 1 . Show that at 
equilibrium Pi = (p I aj fJ)i - I P di ! Using this and Pi = 1 , conclude 
that Pi = Aiji ! (eA - 1 ), where A = PI ajfJ. (This is called a truncated 
Poisson.) Note that only the ratio ajfJ is important, rather than the 
actual values of a and fJ. Would this be true if we were concerned 
with a non equilibrium situation ? Why ?  

(d ) We need a formula for A in terms of the data. Show that NjG = 
Aj( l - e - A) and use this to fit the model to the five examples given 
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above. How good is the fit ? (If you are familiar with the chi-square 
test, you may wish to use it.) 

(e) Another way to fit the model is to estimate A using A = (i + l )P i + dpi ; 
for example, A = 2P2/P j .  Is this a better idea than that in (d) ?  
A worse idea ? Why ? 

(f) Suggest further tests of the model besides the simple fitting of the 
data that you have done. Criticize the model. Can you justify 
proposing a model more complicated than the one developed here 
on the basis of the data ? Why ? 

(g) Develop an alternate model by replacing " the group joined is 
chosen at random " in (b) with " the person associated with is 
chosen at random." Introduce qi = iGjN and A = qj rt./{3. Show that 
qi = q j Ai - \ qj = 1 - A, and G/N = (A - l )/A log (1 - A). Which 
model provides a better fit to the data ? 

You may wish to look at J. E. Cohen ( 197 1 ). 

5 .2 .  M O NTE CA R LO S I M U LATI O N  

When a probabilistic model cannot be analyzed analytically, Monte Carlo 
simulation is often used. The basic idea is to construct a deterministic model 
based on the probabilistic one by choosing particular values for the random 
variables according to the assumed distributions for them. Many such models 
are constructed, and statistical information is collected about the various 
dependent variables. This information is used to estimate parameters of 
the distributions of the dependent variables. If you don't have access to a 
computer, that's not reason to skip this section. 

For example, suppose a " fair " coin is tossed 1 00 times. How many 
heads can we expect ? The following is an algorithm for a Monte Carlo 
simulation of this problem. 

1 .  Input N,  the number o f  trials .  Carry out steps 2 thru 4 N times .  
2. Set HEADS to O .  Carry out step 3 100 times. 
3. Choose X such that Pr {X = O} = Pr {X = I } = t. Set HEADS to 

HEADS + X. 
4. Record the value of HEADS .  
5 .  Analyze the data collected . 

For this illustration, the analysis in step 5 will consist of determining the 
mean and variance of the number HEADS. 
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I ran the algorithm on a computer three times each for N = 10, 1 00, 
and 1000. The values of the mean and variance were : 

N Mean Variance 

1 0  5 1 .2 14.8 
100 49.7 26.2 

1 000 49.7 25 .5 

Mean Variance 

49. 1 14. 5  
49 .6 2 1 . 5  
50.0 23 .4 

Mean Variance 

49.6 38 .2 
49.0 2 1 .4 
49 .5  26.0 

Note the greater variability in the estimates for the mean and variance when 
N is small. The theoretical values of the mean and variance are exactly 50 
and 25 .  

How accurate are the estimates of the parameters of a distribution ? 
Answering this question and obtaining more accurate estimates without 
an excessive number of trials are major problems in Monte Carlo simulation, 
but we only touch on them here. Given 8 and (j greater than zero, we can 
obtain an estimate S of the parameter S such that 

Pr { I  S - S I > (j} < 8, 

provided the number of trials N is sufficiently large. Determination of N 
before simulation is usually very difficult ; however, post hoc estimates can 
be made as follows. Assume that, when several estimates of S are obtained 
by simulation, they are drawn from a normal distribution with mean S. 
(This is probably not true, but often it is not too unrealistic.) If m estimates Sj 
have been obtained, S = L SJm is a estimate of S and the variance of the 
estimate is given by 

2 L (S - sy 
(J = =----'---

m(m - 1 )  
If we apply this to the coin tossing problem we obtain the following estimates, 
the first S - (J pair referring to the mean and the latter referring to the 
variance. The value of m is 3 .  

Mean Variance 

N S (J S (J 

1 0  50.0 0.6 22. 5 7.9 
1 00 49.4 0.3 23 .0 1 .6 

1000 49 .7 0 .2 25 .0 0.8 
True 50 25 
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The estimate for the mean happens to be the most accurate when N = 10. 
This is just chance ; the best estimate we can give is 49.7. In addition to these 
ideas for measuring the accuracy of estimates, there is a theoretical result 
which can be used to obtain an idea of how many more trials we'll need : 
After N trials, the error in the estimate of a parameter is often roughly 
proportional to 1/JN. 

How can we generate the random choice required in step 3 of the coin 
tossing algorithm ? Since a computer is (hopefully) a deterministic device, 
we cannot actually generate random numbers . However, almost every 
computer center has a subroutine which can produce a number between 0 
and 1 each time it is called, and it does so in such a way that the entire sequence 
appears to have been sampled from the interval [0, 1) using a uniform 
distribution. If a computer is not available, a table of random digits can be 
used : Simply start somewhere in the table, write a decimal point, and copy 
after it the next few digits in the table. This gives a random number drawn 
from the uniform distribution on [0, 1). A brief table of random digits appears 
at the end of this chapter. Using uniformly distributed random variables, 
one can generate random variables according to any distribution. For 
example, if X is distributed uniformly on (0, 1) ,  the largest integer in kX 
is distributed uniformly on the set {O, 1 , 2, . . . , k - 1 } .  In general, if F is a 
distribution function, F- 1 (X) is a random variable with distribution function 
F. Since a table of F- 1 can be constructed ahead of time, it is a relatively easy 
matter to choose random variables with the distribution function F. These 
ideas are discussed more fully in Section A.6. Here I'll content myself with 
two simple examples. The exponential distribution is given by Pr { T  > t} = 

e - kt for t :2: O. Suppose k = 2. Then F(t) = 1 - e - 2 t, and so F- 1 (x) = 

- ! log ( 1  - x). We generate five random values of T by using three-digit 
numbers from the table at the end of this chapter, starting with the first entry 
in the table : 

X (table entry) 0 .554 0.2 1 8  0.826 0.340 0.244 

T (exponential) 0.404 0. 123 0._874 0.201 0. 140 

Let's look at the uniform distribution on {O, 1 , . . . , k - 1 } .  In this case { 0 if t < 0, 

F(t) = ( [t] + 1 )/k if O :S; t :s; k - 1 ,  
1 if t > k - 1 ,  

where [y] i s  the largest integer in y . Hence F - 1 (x) = [kx] , a s  mentioned 
earlier. (There is a slight error in the definition of F- 1 at points x for which 
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kx is an integer. Theoretically this is irrelevant, since these values occur 
with zero probability. Practically, the formula is correct because the uniform 
distribution comes from [0, 1) instead of [0, 1 ] . ) 

A D octo r's Wa it ing  Room 

You've probably experienced a long wait for a doctor. Why does this happen ? 
This problem is simple enough that a fairly realistic model can be analyzed 
theoretically using techniques of queuing theory. I plan to take advantage 
of the simplicity of the problem to work through a Monte Carlo simulation 
by hand, using the table of random numbers at the end of this chapter. On 
a normal day, Dr. Smock has his receptionist schedule one patient every 1 0  
minutes from 9 :  30 A.M. t o  1 1 :  50 A.M. an<;l from 1 :  10  P.M. t o  4 : 00  P.M. ,  except 
that two patients are scheduled for 9 :  30 A.M. and no patients are scheduled 
for 1 0 :  40 A.M. or 2 :  40 P.M. Starting at 9 :  30 A.M. he works until all the morning 
patients have been treated, takes a lunch break, and then works until all the 
afternoon patients have been treated. Subject to the limitation that his lunch 
break is always at least 45 minutes, he sees the first afternoon patient at 
1 :  10 P.M. or as soon afterward as possible. One week Dr. Smock's nurse was 
asked to time the patients' visits. She divided them into " short," " medium," 
and " long," according to the doctor's directions, and collected the data 
shown below. 

Time Range Average Length Percentage of 
Visit (minutes) (minutes) Total Visits 

Short 3-7 S 38 
Medium 7- 1 5  1 1  47 
Long 1 6-30 20 1 5  

She also noted that the doctor spent 1 minute between patients and took 1 0  
minute coffee breaks at 1 0 : 40 A.M. and 2 : 40 P.M., or as soon after these times 
as there was a break between patients. The receptionist observed that about 
1 0 % of the appointment times were not filled because of late cancellations 
and patients who failed to appear. Unfortunately, she did not notice if there 
was any bias toward certain times of day. No information is available on late 
arrivals, but the receptionist thought that patients usually arrived on time. 
That's the data we have to work with. Suppose we could have designed the 
data collection ourselves. What would you have asked for ?  

Before setting up the model it IS interesting t o  note that according to 
the table Dr. Smock spends an average of 10 minutes with each patient he 
sees. Allowing for the 1 minute between patients and the 1 0 % unfilled 
appointments, this works out to a full day for the doctor on the average. 
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Now we need to model the waiting room somehow. Various possibilities 
exist for modeling the amount of time a patient spends with the doctor. One of 
the simplest is to limit all visits to 5, 1 1 ,  or 20 minutes each. Suggest others. 
I am going to use the following simulation and repeat it several times to 
generate data for several typical days. Criticize it and suggest improvements. 

1 .  For each of the patient arrival times during the day, choose a random 
digit. If the digit equals zero, the patient doesn't arrive. 

2 .  For each patient that arrives, choose a two-digit random number. If the 
number is at most 37, Dr. Smock sees the patient for 5 minutes. If the 
number lies between 38 and 84 inclusive, he sees the patient for 1 1  
minutes. Otherwise he sees the patient for 20 minutes. 

3. Using the results of the two previous steps and information about 
Dr. Smock's behavior we can put the doctor's day together. 

I used the following method to model a day. On a sheet of paper for 
the day I had one row for each patient slot and five columns labeled " time in," 
" empty," " type," " see Dr.," and " time out ." The " time in " column was 
filled with the various times allowed for appointments, namely, 9 :  30, 
9 :  30, 9 :  40, 9 :  50, . . .  , 4 : 00. I then filled in the next column by reading a 
random digit from the table starting at the beginning of line 0 1  and using 
step 1. As a result, the 1 1 :  20, 1 :  20, 2 :  50, and 3 :  00 slots were empty. I then 
read the table two digits at a time to carry out step 2 for slots that were not 
empty. I obtained the following sequence of visits (short, medium, long, 
and-for empty) : smsmmsmlsms-sml, lunch, m-lmssmsm--msmsss. As a 
result, the first 9 :  30 patient saw the doctor from 9 :  30 to 9 :  35 ,  and the second 
saw him from 9 : 36 to 9 : 47, giving the 9 : 40 patient a brief wait . Continuing 
in this fashion to fill out the last columns, I found that the 1 0 :  50 patient 
didn't see the doctor until 1 1 : 07 because the doctor was running late and 
didn't have his coffee break until 1 0 :  56. As a result there were two patients 
in the waiting room very briefly at 1 1 :  1 0. The 1 1 :  20 cancellation allowed 
the doctor to catch up and even have a 3 minute break at 1 1  : 36 .  The afternoon 
was slightly slower, and the occurrence of two cancellations right after coffee 
break time allowed the break to run for 25 minutes. 

To obtain some idea of how typical this was, I decided to model a 
second day. I picked up in the table of random numbers at the point I had 
left off at the end of the first day : the twenty-fourth entry on line 03. Although 
there was only one morning cancellation, things were a bit slow because of 
a large number of short visits. The afternoon was busier, with two patients 
in the waiting room twice, once for a quarter of an hour when the 3 :  40 
patient arrived. 
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You may wish to model additional days and compare them with these 
two. If you think the waiting room tends to be rather empty and that the 
doctor would not like to have stretches during which he must wait for patients 
to arrive, you might like to adjust things by changing the scheduling. 
Scheduling two patients at times like 9 :  30 (already done), 9 :  40, 1 :  10, and 
1 :  20 tends to build up a queue in the waiting room so that cancellations will 
not leave Dr. Smock at loose ends. You may wish to let the doctor work 
longer hours (an average of 30 minutes) to handle three extra patients, or 
you may wish to drop some appointments to make up for the additional 
ones, for example, 1 1  : 50, 3 : 50, and 4 :  00. 

Sed i ment Vo l u me 

What happens when suspended particles settle ? Do they attract each other ! 
Slide after contact ? It turns out that these things affect the density of the 
sediment. Thus we can obtain information about settling in an indirect 
fashion by studying the sediment's density. But how can such measurements 
be interpreted ? We need a method for computing the density of the sediment 
under various assumptions. That's the purpose of this model. 

We are interested in the fraction of volume occupied in a typical portion 
of the sediment, and we avoid the surface of the sediment where the fraction 
of volume occupied is not a well-defined concept. This model is adapted from 
M. J. VoId ( 1 959, 1959a). For simplicity we assume that the particles in 
suspension are all spheres of the same size. Clearly the volume depends on 
whether the particles attract each other, cohere on contact, slide on contact, 
or repel each other. The last case can be eliminated, since we are assuming 
that the suspension settles. Which of the other cases occur ? If attraction or 
sliding takes place, to what extent does it occur ? 

We cannot simulate the behavior of the entire suspension at once, but 
we can simulate the particles sequentially. Thus we can imagine a sediment 
into which we let particles settle one at a time. This may be a reasonable 
assumption if the suspension is fairly dilute. Discuss. Another problem We 
encounter is that in the real situation there are many more particles than 
we can possibly hope to include in the model. Although the model will have 
many fewer particles than a real life situation, it must have enough to avoid 
large random fluctuations and to avoid " edge effects " due to the bottom 
and sides of the container. After we propose the model, discuss whethel 
you think there are enough particles. Can the question be answered by 
computation instead of on heuristic or philosophical grounds ? 

We treat the case of attraction and cohesion and leave sliding as a 
problem. Since the nature of the attractive force isn't specified, let's assume 
that it is zero when the distance between the centers of the particles exceeds 
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AI', I' being the radius of a particle, and that it is infinite when the distance is 
less than AI' and no other particle is closer to the settling particle. This is an 
unrealistic assumption, but it makes the modeling much easier and A should 
give some measure of the attractive force. Discuss the effects of this crude 
assumption. When A = 2, the model reduces to the case of cohesion. Why ? 

The Monte Carlo simulation proceeds as follows. 

L Choose a size and shape of cylindrical container, the radius I' of the 
particles, and the number of particles. Repeat step 2 once for each particle. 

2. Select a random point on the upper surface of the container and simulate 
a particle settling from this point until it comes to rest against another 
particle or on the bottom of the container. Record its location. 

3. Gather the desired statistics. 

The container is chosen to be cylindrical for simplicity. Since we are not 
interested in overflow, the container is chosen to be arbitrarily deep. We 
can easily set I' = 1 and simply adjust the size of the container. Steps 2 and 3 
require further explanation . The easiest way to keep track of a particle is 
probably by the location of its center, say with three coordinates (x, y, z), 
where x and y are in the horizontal plane and z increases upward. The point 
(xo , Yo) at which a particle is dropped should be chosen randomly (this is 
the Monte Carlo part) by using uniform distributions on x and y. When a new 
particle is dropped, it ends up at a position (x', y', z'), determined as follows. 
For each previous particle with (x - xof + (y - Yof .:0:; (Ar)2 , find Zo such 
that 

(x - XO)2 + (y - YO)2 + {z - ZO)2 = (Ar)2 
and choose the particle at (x, y, z) that gives a maximum Zo . Then (x', y', z') 
is the point on the line segment joining (x, y, z) and (xo , Yo , zo) that is a 
distance 21' from (x, y, z). If no particle is ever close enough, the new particle 
will settle to the bottom. You should convince yourself that this is correct . 

The statistics we gather in step 3 will be the fraction of volume occupied 
by the particles. Since the upper surface of the sediment is not level, we take 
a cross section of the sediment well below the surface. This requires some 
numerical experimentation. 

I chose particles of radius 1 in a container of such a shape that (x, y) 
for the centers of the particles would be in a square of side 14. Thus the cross­
sectional area of the container is A = 1 62 - 4 + n, and the fraction of the 
volume occupied by n spheres in a section of container of height h is 
4nn/3Ah.  

With 300 particles and A = 2, I found that the volume fraction for h = 10, 
1 5, 20, 25, 30, 40, and 50 was 0. 1 63, 0. 1 5 1 ,  0. 147, 0 . 1 52, 0. 1 50, 0. 1 23 ,  and 0.099, 
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respectively. Hence it seemed reasonable to assume that h = 20 was well 
below surface effects but still large enough so that the volume fraction would 
not be much influenced by the flat bottom. I then made three runs each for 
various values of A. Quite a while after these computations were done, 
N. P. Herzberg suggested that the possibility of difficulties with the bottom 
is indicated by the volume fraction for h = 10 and that these could be avoided 
by taking a slice between, say h = 10 and h = 25. Since the old program was 
gone, I decided to leave things as they were. 

A Volume Fraction (J 

2.00 0. 1 54530 0.0098 1 3  
2.25 0. 1 3 1 340 0.003850 
2 .50 0. 1 07535 0.01 3 1 1 7 
2 .75 0.095632 0.003937  
3 .00 0.07593 1  0.008904 

A downward trend in the volume fraction is quite visible. [VoId's 
simulations ( 1959) led to volume fractions slightly smaller than mine, but 
this may be due to the flat bottom.] She also determined the number of 
spheres contacting a given sphere and found that the average was very nearly 
2. What does this mean ? 

Experimental results give a volume fraction of about 0. 125  for glass 
spheres in nonpolar liquids and about 0.64 in polar liquids. How could this 
data be interpreted in terms of the models discussed here ? (See also Problem 
1 .) 

Strea m N etwo rks 

Is there any regularity in stream networks ? Some geomorphologists believe 
that many of the features of stream networks are random. In particular, are 
the branching patterns random ? It would be nice to know, since if we found 
that they were non-random we could look for an explanation (or at least the 
geomorphologists could). What do we mean by " random " in this context ? 
We use one idea of random adapted from A .  E. Scheidegger ( 1970, Sec. 5 .33) . 

First we need some definitions. A drainage basin consists of a stream 
(or river) network and the area it drains. A stream network is a stream together 
with all the streams that flow into it above the point at which we are 
considering the stream. A link is the portion of a stream between two junctions 
or between a junction and a source. A stream network is almost always 
made up of a set of links joined so that at each junction only two links flow 
together to form a third. (The rare occasions when more than two streams 
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�) 0)  
F i g u re 1 Two extreme examples of stream networks . 

meet simultaneously can be resolved, but we won't go into that complication 
here.) See Figure 1 .  The Strahler order of a stream link is defined as follows. 
Links that start at a source are of order 1. If two links of orders A and B 
flow into a third link of order C, then C equals A + 1 if A = B, and C equals 
the maximum of A and B otherwise. See Figure 1 .  A segment is a stretch 
of river over which the order doesn't change. Let ni be the number of segments . 
of order i. Thus nz = 1 in Figure 1 a and nz = 4 in Figure l b . Horton's law of 
stream numbers is an empirical relationship which states that ni/ni + 1 is nearly 
independent of i .  For streams in the United States, this approximate constant 
(whatever that means) is about 3 . 5 according to Scheidegger. However, 
the data of L. B. Leopold et al. ( 1 964, p. 142) for the entire United States, 
presented in Table 2, does not agree with this. If stream networks tend to be 
fairly linear as in Figure 1a or rather bushy as in Figure 1b , this law is not 
valid. (Compute ni and nJni + 1 in these cases.) It has been suggested that the 
result can be explained by assuming that stream networks are random. 
We model this idea following Liao and A. E.  Scheidegger (see A. E. 
Scheidegger, 1 970). 

The only geometric property of a stream network we have introduced 
is the pattern of connection among the links ; lengths and curvatures have 
been omitted. Given the number of sources, there is only a finite number of 
different drainage networks. Those with four sources are shown in Figure 
2. These patterns of connection are known mathematically as plane planted 
binary trees (" trees " because of shape, " plane " because they are drawn on 
a flat surface, " planted " because the link at which we have cut the network 
is distinct from all others and can be used to plant the tree, and " binary " 
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Ta b l e  2 Number of Stream Links of Various Orders in the 
United States. 

Average length 
Order Number (miles) 

1 0  1 1 800 
9 8 777 
8 4 1  338  
7 200 1 47 
6 950 64 
5 4200 28 
4 1 8000 1 2  
3 80000 5 . 3  
2 350000 2 .3  

1 570000 I 

Source : L. B. Leopold, et al .  ( 1 964) . 

0001 1 1 1  

� " , 
" 
'-' , 

001 0 1 1 1  

, , 
t 

0 1 00 1 1 1  

ndni + l  Example 

Mississippi 
8 .0  Columbia 
5 . 1 Gila 
4 .9 Allegheny 
4 .8  
4 .4 
4 .3  
4 .4 
4.4 
4.5 

00 1 1 0 1 1  

0 1 0 1 0 1 1 
F i g u re 2 The 5 seven-node plane planted binary trees and their seven digit Lucasiew­
icz sequences. 
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because of the bifurcation at each node as we move upstream). Since this is 
the only type of tree we care about here, we call them simply " trees ." It is not 
hard to show that a tree with n sources has 2n - 1 nodes and 2n - 1 links 
(including the link at which we have cut the network for study, that is, the 
link furtherest downstream). 

To study n/ni +  1 we want to average over all trees with n sources, or 
at least over a reasonable number of randomly generated n-source trees ; 
that is, each of the trees with n sources is equally likely to be chosen. Since 
Horton's law is formulated for stream networks of fair size, we want n to be 
fairly large. When n is about 1 00, there are about 1 0 5 6  trees-far to many 
to generate all of them. Thus we need a way to generate and store a random 
tree in a digital computer. Fortunately this mathematical problem has a 
fairly simple solution due to Lucasiewicz. We imagine traveling along the 
tree so that each link is traversed exactly once upstream and exactly once 
downstream. We start upstream on the link used to plant the tree, use the 
following rules, and stop when we return downstream on the cut link. 

1 .  Go upstream if possible. 
2. If a choice is possible, go upstream on the right hand branch. 
3. When a node that is not a source is encountered while going upstream on 

a right hand branch, record a zero. 
4.  When a source is encountered, record a one. 

This process is illustrated in Figure 2. It is possible to reconstruct the tree 
from the string of zeroes and ones : 

1 .  Draw the planted link. 
2.  If  the next digit is a zero, draw a bifurcating node and proceed upstream 

on the right hand branch. 
3. If the next digit is a one, draw a source and proceed downstream until 

an untraversed upstream link is found. Go up it. 

You should convince yourself that this algorithm does indeed work. 
A string of zeroes and ones corresponds to a stream network with n 

sources if and only if it possesses two properties : 

1 .  The number of ones in each initial segment never exceeds the number 
of zeroes. 

2. The total number of ones equals n, and the total number of zeroes equals 
n - 1 . 
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The second requirement just says that there are n sources and 11 - 1 internal 
nodes. The first requirement ensures that as we go downstream we never 
return to the link at which we have cut the network before the last step. 
Since properties 1 and 2 are necessary and sufficient and since all trees are 
obtained exactly once in this way, it suffices to generate sequences satisfying 
properties 1 and 2 randomly. A method for doing this is discussed in 
Problem 2. 

Given an internal representation of a tree , we need a way to find 11; . This 
can be done as follows . We list the nodes in the order first reached by traveling 
around the tree as described above . Each node refers to the link immediately 
downstream from it. Construct two sequences, LORDER and ORDER : the 
first refers to the order associated with the left hand branch and the other 
refers to the actual order . We proceed in order through the sequence L of 
zeroes and ones which represent the tree . If Lr = 0, do nothing if Lr = I :  

1 .  Record I in ORDERr and LORDERr and set ORDERNOW to 1 .  
2.  Find the nearest preceding LORDERJ which is blank (i . e . ,  J < I ,  J is a 

maximum, and LORDERJ is blank) and do the following for K = I - 1 ,  
I - 2, . . .  , J  + 1 .  

a .  Record in each blank ORDERK the maximum of LORDERK and 
ORDERNOW if LORDERK i= ORDER NOW and record 1 + LORDERK if 
LORDERK = ORDERNOW. 

b.  Set ORDERNOW equal to the value of ORDERK just recorded . 

3. Set LORDERJ equal to ORDERNOW. 

Work your way through some examples and try to see why this method 
works . 

Note that in this Monte Carlo simulation the main problem is con­
structing algorithms for handling the pictorially simple concepts of tree 
and order in a digital computer . We have one problem left : How do we 
identify segments ? This is fairly easy . When we are computing the order of 
a link, it will be a new segment if it is a source, or if the orders of both branches 
feeding in are equal ; otherwise it will belong to a segment containing either 
the left or right branch. It is useful to keep a sequence SEGMENT that notes 
which links are the furtherest upstream link of some segment. 

I generated random stream networks using the above ideas and found 
a result similar to that obtained by Liao and Scheidegger : For fixed i, 
the value of nJI1; _ 1 increases slowly with 11 to about 4.0. When 11 ;  _ 1 ;:::: 1 5 , 
the expected value of the ratio appears to exceed 3 .8 .  Do you think this is 
evidence in favor of the random stream network model or against it ? Why ? 
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Can you suggest other tests ? See A. E. Scheidegger ( 1 970, Ch. 5)"for further 
discussion. 

S .  B. Barker et al. ( 1 973) made some studies of the branching structure of 
real trees. They counted all the branches on an apple tree and on a birch tree. 
For the apple tree they found that nJni - l was about 4 .35 ,  and for the birch 
tree it was about 4.00. Does this look random ? 

It would be a good idea to try a different approach to the idea of what 
a random network is, if we can think of one. One possibility is discussed 
in the problems. M. J. Wolden berg ( 1969) discusses yet another approach to 
understanding stream networks and criticizes the claim that nJni - l is 
independent of i . His method is an adaptation of the geoeconomic marketing 
model called central place theory. See S .  Plattner ( 1975) for a discussion. 

Trees and other graphs are useful tools for some types of modeling 
problems. You may enjoy reading F. S. Roberts ( 1976, Ch. 3). 

P R O B L E M S  

1 .  Construct a Monte Carlo simulation model for sediment volume when 
the particles are allowed to slide downward in settling. Can you explain 
the volume fraction for polar solvents by this model ? 

2. We want to choose sequences of zeroes and ones satisfying properties 
1 and 2 in the stream network example. 

(a) Show that, if a sequence satisfies property 2, exactly one " rotation " 
of it will satisfy property 1 .  A rotation of d b dz , . . .  , dm is a sequence 
d1 + i , d2 + i ' . . .  ' dm + i , where dj = dk with 1 ::;; k ::;; m and j - k a 
multiple of m. 

(b) Use (a) to construct an algorithm for rotating a sequence satisfying 
property 2 to obtain one that satisfies property 1 .  

(c) We now want an algorithm for randomly choosing k positions 
from m in such a way that each of the possibilities is equally likely. 
Find one. 

(d) Combine the above to produce a complete algorithm for randomly 
generating strings of zeroes and ones that represent trees. 

3 .  A manufacturing plant is trying to decide whether to increase the 
number of loading docks for trucks .  Truck arrival at the docks is not 
uniform during the working day. 

(a) Describe how you would set up a Monte Carlo model to help 
management decide how many loading docks to have. Remember 
that it must be reasonable to collect the data. You should work 
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the model out to the point where you could carry out the simulation 
if data were supplied. 

(b) Discuss in class what factors could lead to nonuniform arrival rates. 
Choose a specific situation that leads to nonuniformity and hypoth­
esize some reasonable arrival rates. (Note that for the number of 
docks to be about right, as it presumably is, the number of arrivals 
per day should average somewhat less than the loading docks could 
handle by working steadily. Why ?) Choose a particular Monte 
Carlo simulation method from (a), hypothesize reasonable data, 
divide up the work, and do the simulation by hand. During the 
next class period pool your results so as to answer management's 
question. 

4. How many comets are there in the solar system ? What is the rate of loss 
of comets from the solar system ? The following model deals with the 
number of " long period " comets in the solar system and follows J .  M; 
Hammersley ( 1961 ). An iuteresting feature is that, although we usually 
think of the laws of planetary motion as a classic example of a deter­
ministic system, Monte Carlo simulation is useful. This is because the 
number of comets is large. We had a similar situation in the sedimentation 
problem. 

A long period comet is a comet that goes well beyond the orbit 
of Jupiter, and by " comet " we mean a long period comet. If we measure 
the energy E of an object orbiting the sun in such a way that it is zero 
when resting at an infinite distance, by one of Kepler's laws, the period T 
of the orbit equals ( - CE/m) - 3/2 , where m is the mass of the object and 
the constant C depends only on the gravitational constant and the mass 
of the sun. If E :2:: 0, the object will escape from the solar system. 

(a) What can cause E to change ? The main influence is the gravitational 
field of Jupiter. Discuss others. If we set Zi = - CE/m, where E 
is the energy after the ith pass by Jupiter's orbit, �Zi can be treated 
as a random number with a distribution depending on Jupiter 
and the sun but not on m. Approximate this by a normal distribution 
with mean zero. How could you check this approximation ? [See 
R. H. Kerr ( 1961 ).J 

(b) Show that, up to scaling, the lifetime of a "  random " comet is given by 
'[ - 1  
'\' Z ·-3/2 L., I , i = O 

where Zi > 0 for 1 � i � T - 1 ,  ZT � 0, and �Zi has a normal 
distribution with mean zero and variance one. What is the scale 
factor ? 
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(c) Describe a Monte Carlo model for obtaining information about 
the distribution of lifetimes of comets, when time and Zo are 
measured in whatever units were necessary for scaling. 

(d) If most comets wander into the solar system from outside, as is 
believed by some astronomers, what is a reasonable value for zo ? 
Should we neglect Z0 3 /2 in (b) ?  Why ? 

(e) How could we estimate the total number of comets in the solar 
system, assuming losses and gains are equal and (d ) holds ? 
Hammersley obtained an estimate of about 2 million comets. 

(I) Suppose all comets were formed within the solar system when it 
came into being. Discuss changes in (d ) and (e). 

5. We consider another way to approach randomness in stream networks. 
The idea is that the topography is random. Imagine a portion of a 
plane covered with squares. We think of the edge of each square as a 
possible stream link . Water might flow from or through any given vertex 
to an adjacent vertex. See Figure 3 .  This idea was suggested by a discus­
sion in L. B .  Leopold et al. ( 1 964, p. 4 19). 

(a) Given a vertex v, choose an adjacent vertex at random and allow 
the water to flow from v to w .  Be careful. We can't do this if we've 
previously decided to let water flow from w to v. Bifurcating sources 
and " lost " rivers must be avoided. See A and B in Figure 3. How 
could you implement this on a computer ? What about the pos­
sibility of water flowing in a closed loop such as C in Figure 3 ?  
Can you handle this by allowing lakes or by somehow stopping 
it by clever programing ? 

A 

B 

C 

(a) (b ) 
F i g u re 3 Choosing random stream networks on a grid. (a) Portion of grid . (b) 
Randomly generated links on this portion of grid. Problems have arisen at A ,  B, and C. 
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(b) Change the model in (a) so that each vertex is assigned an altitude 
and water runs down to the lowest adjacent vertex. What problems 
arise in implementatIon ? 

(c) Discuss biasing the two models just suggested to allow for a general 
overall slope to the land. 

(d ) Since four edges meet at the vertex of a square, we can expect to 
have some vertices where three streams join to form a fourth. This 
can be avoided by using a hexagonal (honeycomb) pattern instead 
of a square pattern. 

(e) Criticize the model. 
(f) Perhaps some students can actually implement a Monte Carlo 

model. If this is going to be done, discuss the practical details 
carefully beforehand. Among the things you will need to consider 
are : 

Which model(s) will be implemented ? 
How should the model be stored ? 
How big should the model be ? 
How can the order of a link be determined ? 
How can the segments be identified ? 
Exactly what data, if any, are needed ? 

Don't forget the problems mentioned in (a) and (b). 

A Ta ble  of 3000 R a n d o m  D i g its 

01 55421 88263 40244 606 1 3  1 8750 09668 67045 
02 2 166 1  65304 89606 67 1 32 56488 75977 933 1 1 
03 77254 57610 76372 92693 08 168 45645 963 3 1  
04 03803 63025 94237 33227 5 1 828 07254 96652 
05 29005 6858 1 1 8068 7 14 14  93529 03790 1 7 147 
06 90086 72725 · 85496 360 1 5  1 9475 79306 88066 
07 48786 42078 66302 79 1 8 5  479 1 7  3 1 532 59264 
08 013 12  060 1 5  96224 42768 22830 78005 1 7433 
09 90897 96649 857 1 8  42458 1 8222 68868 36204 
10  1 1433 10412  5325 1  08366 26673 89379 27952 
1 1  74500 34547 78695 9896 1 50370 12 1 1 8  80601 
1 2  0 1 7 1 0  94533  38266 42999 85821  12617  98876 
1 3  98325 93297 874 1 7  79283 1 3082 73321  08 108 
14 9 1 3 1 8  54562 90536 39274 26757 04007 76649 
1 5  65640 33035 47348 50884 7 1 729 3 1 237  96000 
1 6  33578 7 1492 89085 24821 58763 03745 50706 
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1 7  38934 90627 936 1 9  1 2976 74853  36562 52889 
1 8  63994 37 1 35  04933 28 1 9 1  7 1 590 169 1 6  89009 
1 9  56799 3 5247 7848 1 70048 75596 96 1 36 095 1 3  
20 1 2726 49439 33920 67668 253 1 3  05208 07753 
2 1  3408 1 69899 92802 8 1 1 44 52246 20404 66428 
22 83547 1 5593 24422 56988 07032 1 6541 80267 
23 62794 95699 5 5 102 57232 04292 246 19  00792 
24 95447 93642 41 265 1 1 687 85266 95769 85657 
25 26596 38328 75787 79328 64024 8 1 2 1 7  14914 
26 745 1 9  73834 73701 6 1 1 59 756 1 8 1 07 1 9  23249 
27 76702 1 2394 98323 1 1486 6559 1 66 1 69 6 1 37 1  
28 93398 25450 41 967 89708 93328 08532 1 7663 
29 0392 1  70788 45 1 39 507 1 3  83241 46227 8 1 250 
30 07876 78832 93503 46088 28554 499 1 3  56826 
3 1  1 7597 1 2602 7 1 925 63 1 1 5  5 1 767 1 3 525  65363 
32 28348 46747 05225 1 1003 99959 69238 1 3750 
33 57790 22390 75625 05258 1 426 1 270 1 3  10094 
34 1 3233 964 1 2  29753 9 5 1 8 7  60401 53309 1 6058 
35  35809 47 1 47 6663 1 8 7 1 3 5  39573 98 1 1 7  1 2344 
36 99902 47 164 6 1 1 1 3 799 1 6 656 1 1  2848 1 05621 
37 1285 1 76785 250 19  79805 01 740 68627 82308 
38 87584 1 7 122 1 5362 56795 1 8723 54025 1 3867 
39 2 1 627 33387  94307 34270 22996 79509 97534 
40 39 1 24 971 54 28543 1 5 1 67 98577 22030 373 10  
4 1  83985 65741 001 1 5  66382 02337  0 1 885 26932 
42 72642 09689 88779 68543 641 74 27344 38379 
43 863 5 1  002 1 5  97630 62359 24386 52426 87404 
44 78675 1 3948 23670 208 1 8  4 1 693  69965 45507 
45 1 3 744 07743 55507 62664 0457 1  78498 05944 
46 7 1 582 87 1 5 3  45222 95055 30583  88348 92666 
47 80380 39093 97093 68003 004 1 6  76429 04361  
48  99964 70393  24149 23608 58032 39520 1 6090 
49 05032 429 3 1  69890 80165  1 39 1 6  7 1 993 25752 
50 5899 1 7492 1 38536 6839 1  72232 85406 95680 
5 1  07667 26870 48732 42076 86542 33490 49293 
52 40078 77005 00604 5 3344 2 1 9 1 6  3 1 700 72849 
53 30787 465 12  89824 8 1 494 04148 74399 03683 
54 27095 59999 79940 23254 28226 4687 1  1 1 524 
55  47394 0 1 1 3 3  87725 45405 9 1 783  601 42 24679 
56 64478 56998 9 142 1  6 1 692 83308 23 590 73 1 62 
57  20095 8 1 826 772 1 1 429 1 9  56828 533 1 5  23430 
58 29785 41 1 30 48891 69755 06426 33279 891 80 
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59 06 122 50707 70290 74073 82 102 40049 495 14  
60 95826 83455 4 1 687 28490 3 1 1 37 55658 19873 
61 334 19  47261 1 3998 42627 70392 75443 75939 
62 1 3 127 42437 3992 1 979 12  60053 75764 042 10 
63 1 7970 44384 95 1 34 01034 5 1 693 83968 4 16 19  
64 02440 09677 25867 50480 55276 39445 86379 
65 01 902 33280 69006 57 1 37  75395 582 1 5  1 6067 
66 83708 61287 95269 639 1 8  66823 85887 47487 
67 43366 458 1 1  45506 02740 1 2387  3 5925 69605 
68 28400 8 1 384 5605 1 496 1 5  1 7959 9 1 88 1  07447 
69 10878 67992 50896 20390 28689 02029 27049 
70 35304 33948 648 1 1  09205 001 8 1  59797 53427 
7 1  74794 04070 1 3049 78 1 5 8  40274 1 8380 3 1 390 
72 506 12  1 1495 56502 37454 1 5523 1 7 100 29 1 1 1  
73 90297 95935 3 1 036 83853  9 1422 14307 66632 
74 07048 79736 76495 68263 22727 72509 52840 
75  70827 6807 1 701 23 09804 84209 649 10 73477 
76 341 6 1  49740 02489 0027 1 66229 66429 53530 
77 1 3889 95558 55047 99000 2 1 703 34104 03878 
78 90726 42834 45339 567 1 1 56299 35935 45020 
79 54383 76347 29876 1 9497 843 10  96346 5 1 867 
80 94345 29276 07885  1 446 1 64927 41423 09201 
8 1  72425 54109 47783 67259 68498 69 107 1 5027 
82 7998 1  59796 78249 05050 68335 25702 25771 
8 3  83 1 29 35323 59702 1 296 1 22452 7 1 264 86662 
84 09583  043 1 6  57908 37926 10256 73089 79661 
85 52392 87142 65066 58787 7698 1  9 1 372 72 1 3 8  
8 6  66641 47752 48858  56250 6 1 530 
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P OT P O U R R I  

The models presented here use a variety of elementary methods that didn't 
fit conveniently into the earlier chapters. 

Desert l izards a n d  R a d i a nt Energy 

Lizards in arid regions make use of radiant energy (direct sunlight, reflected 
sunlight, and infrared radiation from the ground), conduction of heat 
through contact with the ground and with rocks, and convection to adjust 
their body temperature. Because of the high reflectivity of the sand (about 
one-third of the sunlight is reflected) and the heat of the sand, one could 
suppose that reflected sunlight and infrared radiation are nearly as important 
as direct sunlight. This model, which is adapted from K. S. Norris ( 1967), 
studies the question. 

Since we wish to compare the relative amounts of energy hitting the 
lizard, its actual shape is not likely to be very important. Since symmetry 
usually simplifies computations, we assume that the lizard is a sphere of 
radius r whose center is a distance h above the sand. We assume that the sun is 
directly overhead and has an energy E per unit area per unit time. We consider 
the ratio of reflected sunlight to direct sunlight. 

The energy per unit time due to direct sunlight is nr2 E. 
To study the reflected light we take advantage of the symmetry by 

setting up a polar coordinate system on the sand with its center directly 
below the lizard. A side view is shown in Figure 1 .  The fraction of light 
reflected from the sand at point P that reaches the lizard depends on the 
distance p, the angle cp, and the angular diameter of the lizard as seen from P. 
As a first approximation, let's suppose that the intensity of the reflected light 
is independent of cp. Then the fraction of light hitting the lizard will nearly 

1 21 
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Lizard 

T R h 

� p 

p 

F i g u re 1 Side view of a spherical lizard at high noon . 

equal the fraction of the hemisphere of radius R centered at P that lies within 
the lizard. This fraction is nearly 

( 1 ) nr2 r2 2nR2 - 2(p2 + h2) " 
The total amount of sand surface between p and p + dp is 2np dp. Since the 
area directly under the lizard is shaded and since about one-third of the 
incident light is reflected, it follows from the above discussion that the amount 
of reflected light reaching the lizard from the sand up to a distance x away 
is nearly 

(2) Ix r2 E nr2E (X2 + h2) ,. 2(p 2 + h2) 3 
2np dp = �6- 10g ,.2 + h2 . 

Dividing this by the direct energy we obtain 

(3) 
Reflected 

= � log 
(X2 + h2). 

Direct 6 r2 + h2 
As x becomes large, (3) approaches infinity. What is wrong? 

One objection is that we have treated the desert as  a flat, barren plain, 
which is certainly not correct. Suppose that topography and brush begin to 
interfere seriously with the reflected light at a distance between 51' and 5001' . 
If h is at most 2r, the value of (3) will be between 30 and 200 % for x between 
51' and 5001' .  This answer appears to be quite reasonable, and there is no need 
to determine very accurately when brush and topography become important 
unless we want very accurate estimates of (3). 

A completely different objection is that the intensity of reflected sunlight 
does indeed depend significantly on the angle of reflection. " Significantly " 
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may be rather misleading here, since at a distance of about 500r we have 
rp = 0.2° and so no reflection at angles less than 0 .20 is sufficient dependence 
to limit reflected sunlight to a reasonable value. Let's consider the general 
situation. 

We can allow for dependence on the angle by introducing a function 
j(rp) multiplying the integrand in (2). This function should vanish at rp = 0 
and achieve a maximum of 1 at rp = 1 80°. I have been unable to find an 
empirical estimate of f. One possible function is the sine. It has the right 
general form and leads to an integral which can be easily evaluated : 

(4) 

Thus we have 

(5) 

nErzh 
I X  3(pZ + h2) 1 / 2 r 

as x ---+ 00 .  

Reflected h 
---- < -:-:-..-----=-=-;-'" 

Direct - 3 (r2 + h2) 1 /2 ' 

which is bounded above by t. This result is of the same order of magnitude 
as the result obtained previously. We could consider other forms for j and 
other values for x .  In the end we would probably find that for anything 
reasonable the ratio of reflected to direct sunlight was at least 20 %-a 
significant amount of energy. Infrared radiation probably behaves in a similar 
fashion, hence reflected sunlight and infrared radiation are important factors 
in a lizard's heat balance. 

Attempts have been made to use these crude results to study what 
happens as parameters vary, but this can be dangerous. To see this let's 
consider what happens when a lizard adjusts h by bending its legs. By dif­
ferentiating with respect to h it is easy to see that the right hand side of (3) 
is a decreasing function of h and the right hand side of (5) is an increasing 
function of h . Thus our model is not good enough to tell us whether the lizard 
becomes warmer or cooler when it raises itself. Actually the lizard will 
probably become cooler because of an important effect that has not been 
mentioned : A thin layer of hot air is found on the surface of the sand. If you 
wish another example of the difficulties that arise from not knowing j, 
consider the following. Will a lizard in a bowl-shaped depression in the sand 
be warmer or cooler than an identical lizard on the flat sand ? 
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A re Fa i r  E lect ion P roced u res Possi b le ? 

In a mathematical model we normally use mathematics to study approxi­
mately the behavior of a real situation. In this example we consider a different 
type of question : What can we deduce about a situation that satisfies certain 
conditions ? This is the axiomatic approach of pure mathematics : Make 
certain assumptions and see where they lead. The problem is to choose 
reasonable assumptions which lead to interesting conclusions. One of the 
earliest and most successful examples of the axiomatic method in science is 
Newtonian mechanics. This approach has also been used in sociology and 
economics. A particularly successful example is utility theory. See R. D. Luce 
and H. Raiffa ( 1 958) for a discussion. J .  F. Nash ( 1 950) applied the theory to 
show that with some additional axioms one can conclude that there is a 
unique " fair " trade in two-person bargaining. J. G. Kemeny and J. L. Snell 
(1 962, Ch. 2) showed how certain axioms lead to a unique measure of the 
distance between individual preferences. Here we study elections. Our goal 
is to prove that there is no fair way to run an election between several 
candidates . This is known as the Arrow impossibility theorem. This version 
differs slightly from that of K. J. Arrow ( 1962, Ch. 8) . I've selected this 
particular example because it is easy to present, is somewhat surprising, and 
conveys the flavor of the axiomatic method. For a discussion of these topics 
see F. S .  Roberts ( 1976, Chs .  7 and 8). 

We need to say what we mean by a fair election procedure ; but before 
we can do that, we must say what an election is .  Letters like x, y, and z denote 
candidates, and letters like i and j denote voters . A ranking (also called an 
ordering) is a relation :::J , read " is preferred to," satisfying 

1 .  For all x and y, exactly one of x :::J y, Y :::J x, and x = y (read " x and y 
are tied ") is true. 

2 .  For all x, x = x. 
3. For all x, y, and z, if x 2 y and y 2 z, then x 2 z with x = z if and only 

if x = y and y = z .  

We assume that each voter has ranked the candidates, and we use (x 2 y)i 
to denote the ranking given by voter i . An election procedure is a rule for 
deducing a ranking, denoted simply x 2 y, from all the individual rankings . 
Note that an election is not just a choice of the top candidate, but rather 
a ranking of all the candidates. If the procedure is fair, we will obtain a 
complete ranking from a procedure that gives the top candidate ; for example, 
to find the second ranking candidate we apply the procedure to find the top 
candidate we apply the procedure to find the top candidate when the winner 
is removed. This can be formally justified on the basis of axiom 3 below. 
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Rather than specify exactly what constitutes a fair election procedure, 
I'll list some conditions (axioms) an election procedure must satisfy if it is 
fair. You may wish to add others, but you are not allowed to remove any of 
the following five. After listing them, I'll discuss them. 

1 .  All conceivable rankings by the voters are actually possible. 
2. If (x � Y)i for all i, then x � Y with equality if and only if (x = Y) i for all i . 
3.  If in two different elections each voter ranks x and Y the same, then the 

election outcomes between x and y are the same ; that is, if for all i 
(x � Y) i if and only if (x ;:;; Y)i '  then x � Y if and only if x ;:;; y. Here > 
denotes the other election. 

4. If there are two elections such that (x � Y) i implies (x ;:;; Y)i for all i, 
and if also x � y, then x ;:;; y. 

5. There is no i such that invariably x � Y if and only if (x � Y)i ' 

The first condition says that the election procedure must be able to deal with 
all cases. The second axiom simply states that a unanimous desire of the 
voters is respected by the election procedure. Axiom 3 says that how two 
candidates rank relative to each other in the election depends only on how 
the voters rank them relative to each other and not on how they rank relative 
to other candidates. Thus inserting other candidates won't change the 
election ranking of x relative to y.  Axiom 4 states that, if x does at least 
as well compared to Y in a later ranking by the voters as he did in the present 
ranking, and ifhe beat Y in the present election, he'll beat Y in the later election. 
In other words, if your relative position improves in the eyes of all the voters, 
it will improve in the election results. The final assumption says that there is 
no dictator. 

We can manipulate these axioms in a variety of ways to reach con­
clusions. In fact, it can be shown that axiom 3 follows from the rest. (You 
might like to try to prove this .) The manipulations we are interested in are 
those that lead to a proof of the following impossibility theorem. 

TH EO R E M .  No election procedure for more than two candidates satisfies 
axioms 1 through 5 .  Hence a fair election procedure is impossible if there are 
at least three candidates. 

P R O O F .  We show that axioms 1 through 4 imply that there is a dictator. 
Note that, if we have an election procedure for N candidates, we can obtain 
one for N - 1 candidates by introducing a dummy Nth candidate which all 
the voters are assumed to rank lowest. It is easy to show that, if assumptions 1 
through 4 hold for the original procedure, they hold for the derived procedure. 
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A set o f  voters V will be called decisive for x against Y if when all voters 
in the set V agree on ranking x at least equal to y, then x � Y regardless of 
how the remaining voters rank x and y ;  furthermore, we require that in this 
case x = y implies that (x = Y)i for all i in V. At least one decisive set exists for 
all x and y-all the voters are decisive by axioms 1 and 2. Note that by 
axiom 4 we can check if a set is decisive just by looking at an election with 
(x � Y)i for all i in V and (x C Y)i for all i not in V. 

We show that for some x and Y there is a single voter who is decisive. 
Suppose that this is not true and let V be the smallest decisive set. Then V 
has at least two voters in it, and so we can split it into two nonempty, disjoint 
sets of voters VI and V2 . Let z be another candidate and consider an election 
in which 

(6) 
(x � Y � Z)i 

(z � x � Y)i 
(y ::> z ::> X)i 

for 
for 
for 

i in Vb 
i in V2 , i not in V. 

If x � z, then VI is decisive for x and z, contradicting the minimality of V. 
Thus z ::> x. Since V is decisive for x and y, it follows from (6) that x � y. Thus 
z ::> y. Hence V2 is decisive for z and y, contradicting the minimality of V. 
(One has to be careful to check out the cases where equality occurs. I won't 
bother because it clutters up the proof and I only want to give you the flavor 
of this type of argument.) Thus V contains a single voter, say i . 

We have shown that for the two candidates x and y, if (x � Y)i ' then 
x � y. Let z be a third candidate. Now suppose that (x � Y � Z) i . Consider 
the election when (y ::> z ::> x)j for all j i=- i. By axiom 2, y ::> z, and by 
decisiveness, x � y. Hence x ::> z.  By axiom 3 we can ignore y and note that, if 
(x � Z) i and (z ::> x)j for all j i=- i , then x � z.  Hence i is decisive for x and z. 
Let w be a candidate distinct from x and z .  By a parallel argument we can show 
that i is decisive for w and z .  This shows that i is decisive for every pair ; that is, 
i is a dictator. 

This completes the proof. • 

How does this work out in practice ? Suppose a contract administrator 
sends contract proposals (candidates) to experts (voters) for ranking and then 
determines a final ranking (election). Although he may not weigh the opinions 
of the experts equally, we hope that his ranking procedure will be fair. The 
theorem says that this is impossible, and the administrator may not actually 
be aware of this fact. What axiom is he violating? It is unlikely to be either 2 
or 5 .  Since 3 follows from the other axioms, he must be violating 1 or 4. 
In other words, either the administrator cannot produce a ranking in all 
cases (such situations could be handled by obtaining additional voters) 
or the ranking of other proposals influences how he decides to rank proposals 
x and y relative to �ach other. 
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I m pa i red C a r b o n  D i ox i d e  E l i m i n at i o n  

I t  i s  relatively easy to measure the concentrations (via partial pressures) of 
various gases in the air exhaled and inhaled by a person. Thus this could lead 
to a diagnostic test -if we know how to interpret the data. In 1 922 Haldane 
asserted that carbon dioxide (C02) elimination by the lungs is generally 
unchanged by a mismatch between blood flow and ventilation because 
increased elimination in overventilated areas compensates for decreased 
elimination in under ventilated areas. (We call this an imbalanced lung.) 
Consequently impaired CO2 elimination has been considered to be diag­
nostic of some sort of blockage in the body's gas exchange system. J. W. Evans, 
P. D. Wagner, and J. B. West ( 1974) reexamined the question and found that 
Haldane was wrong : Unequal ventilation rates cause reduced CO2 elimina­
tion. We develop a version of their model here. 

Lungs function as follows. Air is drawn into the body, humidified, and 
pulled into little sacs in the lungs called alveoli. Here capillaries exchange 
CO2 and oxygen (02) with the air, which is then exhaled and new air drawn 
in. If the blood flow around each alveolus were proportional to the volume of 
air in the alveolus, we would have a balanced lung. We want to compare CO2 
exchange in balanced and imbalanced lungs . 

How much CO2 is lost from the blood ? At equilibrium the blood can 
hold a certain amount C(P) of CO2 per unit volume when the partial pressure, 
of CO2 in the air is P. As CO2 leaves the blood, P increases and the con­
centration in the blood decreases toward C(P). For lack of better information, 
we assume that equilibrium is reached. Unfortunately P also increases as 
the blood absorbs oxygen, because P is proportional to the fraction of the air 
that is CO2 , It follows from the way carbohydrates and fats are used that 
over the long term the amount of CO2 eliminated is about 80 % of the amount 
of O2 taken in. If we assume that this is true for a single breath, we will have 
a constraint for the entire lung. This does not seem to be enough to give a 
manageable model ; therefore we assume that this 80 % ratio holds for each 
alveolus for each breath. As you can see we are making a lot of unwarranted 
assumptions which may leave our conclusions on rather shaky ground. 
However, if after all these simplifying assumptions balanced and imbalanced 
lungs behave differently, it should be safe at least to conclude that Haldane 
was wrong. 

Let's introduce some mathematical notation. We consider an individual 
alveolus first. Let the subscript i denote inspired and e denote expired. Let 
P(x) denote the partial pressure of x. If we measure partial pressure in units 
so that atmospheric pressure is 1, then 

(7) I PJx) = 1 and 
x x 
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The change in the amount of x is (with suitable units) 
(8) Vi P;(x) - Ye Pe(x), 
where V denotes the volume of air. Applying this to the gases, 

(9a) 

(9b) 

(9c) 

CO2 lost = Ye Pe(C02) - Vi Pi(C02), 

O2 gained = Vi P;(02) - Ye P.(02), 

0 =  Vi Pi (other) - Ye Pe (other), 

where the last equation is based on the fact that CO2 and O2 are the only 
gases exchanged in significant amounts. (Humidification occurs earlier. )  
We must combine (7) and (9) with the CO2/02 ratio of 0.8 to obtain informa­
tion about CO2 exhaled, but in some simple form because we eventually 
will have to apply the result to all the alveoli and we can't measure individual 
volumes. Clearly the total volume change is 20 % of the O2 uptake. The 
CO2 loss is 80 % of the O2 uptake, which is (Vi - Ye)/0.2 by the previous 
sentence. By (9a), 

4(Vi - Ye) = Ye Pe(C02) - Vi Pi(C02)· 

Dropping the CO2 in the P and rearranging, 

and so by (9a), 

( 10) 

Ye(4 + Pe) 
Vi = 

4 + Pi ' 

CO 1 _ 
4Ye(Pe - Pi) 

2 ost - 4 
. 

+ Pi 
The object of all this is to compare balanced lungs with lungs in which air 

flow and blood flow are mismatched. Hence we need to supplement ( 10) with 
an equation involving blood flow. Let C(P) be the concentration of CO2 in 
the blood when the partial pressure of CO2 in the air is P and equilibrium 
has been reached. Then for a quantity Q of blood passing by the alveolus 
and starting with a CO2 concentration Co , 

( 1 1 )  CO2 lost = Q[Co - C(Pe)] , 

if (a) the CO2 balance in the air and blood reaches equilibrium before 
expiration and (b) the blood doesn't move (so that the blood coming by the 
alveolus at the start reaches the same CO2 concentration as the blood coming 
by at the end). We've already decided to assume (a), but (b) doesn't look like 
a very good assumption. We should probably replace ( 1 1 )  by some sort of 
integral because blood is flowing by continuously. Since we can't handle this, 
we'll use ( 1 1 )  as an approximation, with Q equal to the quantity of blood 
flowing by in one breath. 
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We can now equate ( 1 0) and ( 1 1 ), the two expressions for CO2 lost. The 
resulting equation can be solved for Pe , which can be substituted in ( 1 0) 
to obtain an expression for CO2 lost which depends on v" ,  Q, Pi , and Co . 
The last two variables do not depend on the alveolus, and the first two enter 
only as a ratio except for a factor of v" multiplying the entire expression. This 
sounds like a good approach, since changes in the ratio Qlv" measure 
imbalance in the lung, and the v" for the various alveoli add to a constant, 
the total volume of air exhaled. Let's carry out the plan. Let g(x) be the solution 
to the equation 

( 1 2) 
4(g - PJ 

= x[C - C( )J 
4 + Pi 0 g , 

where we think of x as Qlv" for applications. Letting the subscript a indicate 
a particular alveolus, the total CO2 lost equals 

Ia 4VeAPea - PJ 4[La v"ag(Qalv"a) - Pi La v"aJ 
4 + Pi 4 + Pi 

How does this change when total blood flow and total expired volume are 
held fixed ? This is the question we must answer. Since Pi and L v"a are 
constants, it suffices to consider L v"ag(Qalv"a). For convenience, let's 
measure volume so that I v"a = 1 , and let's define the new variable Xa = 
Qalv"a . In a balanced lung, Xa is constant. Hence showing that a balanced lung 
is more efficient at eliminating CO2 is equivalent to showing that 

( 1 3 ) 

where the Xa are not all equal and the v"a are positive numbers summing to 1 .  
(You should convince yourself that this i s  what we need t o  do.) 

Suppose a takes on only two values. Use Figure 2 to convince yourself 
that ( 1 3) holds if gil < O. Once this is done, it is fairly easy to prove inductively 
that gil < 0 implies ( 1 3) . We turn our attention to gil . 

For the partial pressures associated with CO2 in the lungs, C(P) is 
nearly linear. Using this approximation, we can solve ( 1 2) for g(x). [If 
solving ( 1 2) were impossible, we could use implicit differentiation to study 
gil via ( 1 2).J Let K = 4/(4 + PJ and define A and B by C(g) - Co = Ag - B. 
Since C is an increasing function, A > O. Equation ( 1 2) becomes 

and so 

Kg - KPi = Bx - Agx, 

KPi + Bx 
9 

= K + Ax . 
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X 1  

F i g u re 2 A graphical proof of ( 1 3) when a takes on two values .  

Thus 

g" = - 2AK(B - APi) (K + AX) - 3 . 

By the definition of A and B, B - APi = Co - C(Pi), which is positive 
since the blood gives up CO2 , Thus g "  < O. 

We've shown that imbalanced lungs have impaired CO2 elimination, 
but this is based on some rather crude assumptions. Should we believe the 
result ? First let's ask another question : Should we continue to accept 
Haldane's statement ? Obviously not. In view of the present model it appears 
unlikely that his statement is correct, because it asserts that an equality 
holds-a very fragile prediction. However, inequalities are usually robust 
predictions. This by no means proves that our conclusion will stand up under 
improvement of the model, but it indicates that it is highly likely. I have 
looked at what I consider the two worst assumptions-the 'Validity of ( 1 1 ) 
and the 80 % ratio for each alveolus-but I don't see any reasonable way to 
improve them. Do you have any ideas ? 

P R O B L E M S  

1 .  This problem i s  based on H.  M .  Cundy ( 1971 ) and J .  Higgins ( 197 1 ). 
Suppose that you once owned a reel type tape recorder with a counter 
that counts revolutions of the take-up reel. Now you've replaced it 
with a recorder whose counter counts revolutions of the runoff reel . 
All your information concerning locations of songs on your tapes is 
now useless unless you can convert one counter value into the other. 
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Develop a method for doing this. Show how to construct a table for a 
given tape if you know the number of revolutions required to empty the 
reel and also the number of revolutions required to half empty the reel . 
(The half empty point is fairly easy to measure because the take-up 
and runoff reels will appear identical .) Do not assume that the thickness 
of the tape is known. 

2. This problem was suggested by G. Levary ( 1 956). A businessman is 
overstocked on a slow moving item. He wishes to mark down the price 
so that his overstock can be sold off to release money and space for other 
merchandise. What should he do ? For uniformity we'll introduce the 
following notation : 

L, list price of slow item. 
L *, proposed sale price. 
S, number of slow moving items sold per year. 
N, number of normal stock turnovers per year. 
p, profit margin, that is, (net profits)/(total costs). 

Consider the following questions and any others that come to mind. 
How many slow items should be retained ? How low can the sale price 
be and still leave the merchant better off ? If this problem is easy for you, 
here are some suggestions for complicating things. What if p can be 
higher on slow moving items because most people don't stock them ? 
What about the effect of random fluctuations in demand ? A Poisson 
model may provide a reasonable fit for the number of customers re­
questing a particular item during a time interval of some given length . 

3 .  This problem is based on F. Metelli ( 1974). Certain mosaics of opaque 
colors give rise to the impression of transparency. We limit ourselves 
to shades of gray. With each shade one can associate a reflectance equal 
to the fraction of incoming light that is reflected. The range from black 
paper to white paper is about 4 to 80 % . The left hand side of Figure 3 
shows a mosaic made from four pieces with reflectances (X i ' Under 
appropriate conditions it will appear to be two rectangular sheets which 
have been superimposed. The smaller sheet will appear to be semi­
transparent, transmitting a fraction f3 of the incoming light. One 
necessary condition for apparent transparency is that the edge effects 
match up-discontinuities or even angles at a supposed boundary 
destroy the illusion of transparency. (Note that the central vertical line 
in Figure 3 is unbent where it crosses the boundary of the inner rectangle.) 
What conditions must the (Xi '  i = 1 , 2, 3 , 4, satisfy ? How can we deter­
mine (xs and f3 in terms of them ? How would you test the model to see 
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0<2 0<3 

0< 1  0<4 

F i g u re 3 The mosaic on the left can be interpreted as the superposition of a semi­
transparent sheet on a bicolored opaque sheet . 

if the conditions are necessary ? Sufficient ? There are various inter­
pretations for f3 which in turn lead to various formulas for ()(2 and ()(3 '  
Consider 

()(2 = ()(S + f3rxb 

()(2 = (1 - f3)()( s  + f32()( 1 ' 
rx2 = ( 1 - f3)()(s  + f32()( 1 [ 1  + ( 1  - f3)()( 1 + ( 1  - f3f()( l + . . . J 

f32rx l 
= ( 1  - f3)rxs + 

1 _ ( 1 - f3)rx l 

and any others that seem worth looking at. Which are correct ? 
Use it (or them) to answer the earlier questions. 

4. Why do animals form herds ? One obvious suggestion is protection 
against predators. What advantages does herding give to animals 
that always flee ? Herding may reduce the chances of detection and 
capture per prey animal in the herd, and being near the middle of the 
herd may offer additional protection. Herding may also provide for 
improved detection of predators while grazing. Let's consider these 
by comparing a herd animal with a solitary animal in an open environ­
ment such as the African veldt. These ideas are adapted from 1 .  Vine 
( 197 1 ) and H.  R. Pulliam ( 1 973). V. E. Brock and R. H. Riffenburgh 
( 1959) discuss schooling of fish. 

(a) Let D be the distance at which a predator can be expected to detect 
a circular herd of n individuals and let d be the distance for a solitary 
animal. Argue that the chances of the herd being detected versus 
an isolated individual being detected are given by D2jd2 if the 
animals involved are placed at random on the veldt. Of course 
this doesn't happen ; instead, the predator roams in search of prey. 
In this case can the relevant ratio be Djd ? Explain ? 
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(b) It is crucial to have an estimate for D/d. See Problem 1 .5 .6b .  Show 
that D/d rx nr, with 0 ::; r ::; t, may be a reasonable assumption. 
What can you say about r? What if predators detect prey by smell 
instead of sight ? 

(c) Suppose that animals mill around randomly within the herd. When 
is being in a herd safer than being isolated ? 

(d) In some herds, the animals push toward the center, with the result 
that some animals always end up on the perimeter. If a predator 
captures only animals that are on the perimeter, when is it safer 
to be on the perimeter of a herd than to be isolated ? 

(e) Criticize the following model and then develop it or an alternative 
model. A predator must get within some critical distance of a prey 
animal undetected in order to win the chase and make a kill ; 
otherwise, the prey will escape. By looking up at random a grazing 
animal has some probability p of detecting the predator before it 
reaches the critical distance. Since one member of a herd can alarm 
the entire herd, a herd has a much better chance of escaping than 
an isolated individual. What is the probability that a herd will 
detect an approaching predator in time ? There are some compli­
cations : 

(i) Not every herd member acts as a sentinel at the same time. 
(In some harems only the male performs sentinel duty, in 
some mixed herds some peripheral animals act as sentinels, etc.) 

(ii) If the predator approaches a large herd from a side opposite 
a sentinel, that sentinel won't spot the predator in time to 
alarm the herd. 

(f) Taking (e) into account, return to (c) and (d). 
(g) When herding is beneficial, what limits the size of herds ? When is 

herding not beneficial ? Can you add anything else to the subject 
of this problem ? 

5 .  The following is well known in traffic flow theory ; see, for example, 
W. D. Ashton ( 1966, p .  1 8). Consider cars traveling along a roadway in 
one direction. Let k be the concentration of cars (e.g . ,  the number of cars 
per 100 feet of roadway) and let q be the rate of flow (e.g. ,  cars per minute). 

(a) Argue that q and k are related as shown in Figure 4. 
(b) Various implicit assumptions were needed in (a). State as many 

important ones as you can think of explicitly and defend and/or 
criticize them. 

(c) Figure 4 is called a fundamental diagram or a flow concentration 
curve. Translate as many of the following as you can into traffic 
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q 

L-__________________________ �L_� k 

F i g u re 4 The fundamental diagram of traffic flow. 

flow terms such as " speed on an empty roadway " :  ( 1 )  the values of 
K and Q such that (K, Q) is the highest point on the curve ; (2) the 
slope of the line tangent to the curve at (0, 0) ; (3) the slope of the line 
tangent to the curve at (k, q) ; (4) the slope of the line connecting 
(0, 0) and a point (k, q) on the curve. Hint : If you don't know what 
slopes measure, note that they have the same units as q/k . 

(d) Does the above help organize and clarify traffic flow concepts for 
you ? What questions does it raise that may lead to further investiga­
tions and deeper understanding ? In other words, what use is the 
fundamental diagram ? 

6. When you view an object using only one eye, you can detect a change in 
the brightness of the object if the change exceeds a certain threshold. 
(See Problem 2. 1 .6 . )  Normally you use both eyes. Suppose we fool 
the brain by exposing the eyes to separate but apparently identical 
scenes whose brightnesses can be varied independently. A study of the 
thresholds in this situation may give information about binocular vision. 
This is what T. E.  Cohn and D. J. Lasley ( 1976) did. They placed subjects 
in front of a device that exposed the eyes as described above. The subject 
reported pairs of left and right intensity changes (E L, E R) that resulted 
in just noticeable changes in the apparently single object. Cohn and 
Lasley plotted these points for various subjects and found that they lie 
roughly on the ellipse EI + E� + KELER = S2 , where S depends on 
the subject and K � 0.6. There is a fair amount of scatter in the data. 
You will now consider various possible explanations for the data. 

(a) Suppose that only the total intensity change matters. By " total " we 
mean either 1 E L + E R 1 or 1 EL I + 1 E R I ·  Describe the graphs Cohn 
and Lasley could expect to obtain. 



P R O B L E M S  1 35 

(b) Suppose all that matters is that the change in at least one eye exceeds 
the threshold. Describe the graphs. 

(c) Combine the ideas in (a) and (b) : It suffices to have the change in 
at least one eye ( I EL I or I ER I )  or the change in both ( I EL + ER I )  
exceed the threshold. Describe the graphs. 

(d ) Cohn and Lasley proposed the following mechanism. The brain 
notes the sum and difference of EL and ER and combines them in 
some fashion to obtain a single parameter which must exceed a 
threshold. They suggest a weighted sum of squares : (E L + E R)2 
+ T(EL - ER)2 . The value T ;::::; * gives the ellipses mentioned 
earlier. 

(e) Compare the graphs in (c) and (d). They fit the published data about 
equally well. Where do we go from here ? Can we decide between 
the models in (c) and (d) somehow, or decide that both are wrong ? 
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7 . 1. G E N E RA L  D I S C U S S I O N  

Many phenomena can b e  descr ibed in a general way b y  saying that rates 
of change of the endogenom variables depend on past and present values 
of the variables. These situations lead to models involving differential and 
difference equatiom. The population models discussed in Section 1 .4 are 
of this type : Eq uations ( 1 )  and (2) in Chapter 1 are differential equations, 
and (3) in Chapter 1 is a differential difference equation. 

Model s in the physical sciences frequently include force, which involves 
the second derivative of position with respect to time : F = d(m dx/dt)!dt, 
where F is force, m is mass, and x is position. The basic equations of electro­
magnetic theory are formulated in terms of partial differential equations. 
Thus the study of physical phenomena forces one to deal with differential 
equations. 

Economics and sociology also deal with differential equations from time 
to time. See the marriage model in Problem 8 . 1 .4. and the Keynesian model 
in Section 9.2 for examples. 

Because of the importance of differential equations, the next two chapters 
are devoted to models involving ordinary differential equations. The rest 
of this chapter discusses some of the philosophy of studying differential 
equations and describes the topics covered and omitted in the next two 
chapters. 

1 39 
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7 . 2 .  L I M ITATI O N S  OF A N A LYTI CAL S O LUTI O N S  

It is usually best t o  solve the equations of a model exactly if the exact solution 
has a reasonable form. We call this an analytical solution of the model. If we 
find an analytical solution, we can often easily obtain information about the 
model that would otherwise be difficult or impossible to acquire. 

The analytical approach has two severe limitations. The main one is 
that it may not be possible to solve the equations analytically, since the 
solutions of most equations cannot be found except numerically. Second, 
even if an analytical solution exists, it will not yield the desired information 
easily unless it is in a useful form. For example, it is not easy to see how sin x 
behaves for large values of x by considering the Taylor series expansion 

x 3 x5 
sin x = x - - + - - . . . . 

6 1 20 

Nevertheless, analytical solutions are usually quite useful when they can 
be obtained. Models in this category are discussed in Section 8 . 1 .  

7. 3 .  A LT E R N ATIVE A P P R OAC H E S 

Since the analytical approach is often impossible or impractical, approximate 
methods are employed. These are roughly of two types : quantitative and 
qualitative. We usually put borderline cases in the latter category. What do 
we mean by these categories ? Roughly speaking, " quantitative " refers to 
numbers and " qualitative " refers to shape, for example, " What is the value 
of y(5) ? "  versus " Is y(t) periodic ? "  The following discussion should help 
to clarify this. 

If you are interested in quantitative results, a computer is practically 
a necessity. The usual method for obtaining numerical information is to 
approximate the differential equations by difference equations and solve the 
latter. This sounds much easier than it is. We'd like a method that doesn't 
take a lot of computer time but gives a fairly accurate answer. We'd also 
like to know how accurate the computer's answer is. (It is important to 
remember that the computer's output is only an approximation. I know of 
one researcher who insisted on abandoning a model because the solution 
to his differential equation had small oscillations. They were present because 
of the method that was used in the computer center's differential equations 
package, but he insisted that the computer had solved his equation and that 
was that.) What we'd like and what we get may be two very different things. 
Very few computer centers provide differential equations packages that give 
error estimates, so you have to be a bit of a numerical analyst and try to 
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obtain them yourself-if it can be done. We won't be concerned with 
numerical methods per se, but Section 8 .2 contains some models for which 
numerical methods are useful. 

In preliminary studies, when the- data are very crude, or when the real 
situation is complicated, semiquantitative or qualitative statements are 
useful. Examples of such statements are 

1 .  f(t)e - 2 t approaches a limit as t --+ 00 . 
2.  For sufficiently large t, x(t) > O.  
3. (x, y, z) eventually approaches arbitrarily closely each point in D as 

t --+ 00 .  
4.  f(t) is bounded. 

What are the advantages of such lack of precision over analytical and 
quantitative results ? Because of the lack of precision, the model often need 
not be specified precisely. Thus we can often make robust statements about 
entire classes of models. This is useful in preliminary studies and in situations 
where the complexity precludes more accurate descriptions . Even if we have 
a specific model, we may wish to study the effect of certain parameters on 
the solution, for example, the effect of the amplitude and the length of the 
string on the period of a perfect pendulum : 

( 1 )  [8" = -g sin 8, 8(0) = A, 8' (0) = O .  

In  this case we can eliminate 1 and g by the change in  variable t = T(ljg) 1 /2 
and solve the resulting equation. The period turns out to be given by what is 
known as an incomplete elliptic integral of the first kind : 

(2) (21) 1 / 2 fA 2 g 0 (cos 8 - cos A)- 1 /2 d8. 

Since elliptic integrals have been studied extensively, quite a bit of informa­
tion can be extracted from (2). Suppose we incorporate frictional efffcts 
by adding a term to the right hand side of ( 1 )  which depends on 8' . The 
analytical techniques collapse. If we know the precise form of the term that 
is being added to ( 1 ), we can conduct a time consuming numerical investiga­
tion. For a qualitative approach, see Section 9.2 . 

While some applications of qualitative methods to physics and biology 
are classic, the power of qualitative methods in modeling is just beginning 
to be realized. R. Thorn's ( 1 975) discussion of catastrophe theory has stirred 
up considerable interest. 
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7 . 4 .  TO P I C S  N OT D I S C U S S E D  

Partial differential equations arise when w e  study variations o f  a function 
with regard to two or more parameters simultaneously. Except in the physical 
sciences, it is difficult to build models of this level of complexity without their 
becoming so complex that nothing can be done without a computer. Most 
exceptions seem to be based on physical analogies. Two very important 
partial differential equations are 

Wave motion : 

Heat equation : 

a (Yu a2u 
ax2 at2 a >  O. 

a >  O. 

Equations like the first arise in the study of vibrating strings and membranes, 
and of electromagnetic, sound, and water waves. Equations like the second 
arise in the study of diffusion phenomena such as heat transfer, the spread of 
epidemics, and the change in gene frequencies in a population. Because 
sophisticated methods and/or extensive computer time are usually required 
to deal with partial differential equations, we avoid them. 

Suppose we can relate the present state of a system to the state of the 
system at one or more previous times. The resulting equation is usually a 
difference equation. For example, suppose that female unicorns live for 
exactly 4 years and produce exactly one female offspring in their second 
and third years. Let Vet) be the number of female unicorns at the end of year t. 
The number just born in year t is Vet) - V(t - 1 ), and they die in year t + 4 
after bearing offspring in years t + 2 and t + 3. Thus 

Vet) = V(t - 1) - [Vet - 4) - V(t - 5)J + [Vet - 2) - V(t - 3)J 
+ [Vet - 3) - V(t - 4)J 

= V(t - 1)  + V(t - 2) - 2 V(t - 4) + V(t - 5). 

This is an example of a linear constant coefficient difference equation. 
Models containing difference equations are designed to produce this type 
of equation because it is analytically tractable. Unfortunately they are often 
unrealistic. Attempts to add realism generally result in intractable equations 
which must be studied numerically. For these reasons as well as my own 
preferences, I 've omitted difference equation models. The analytical intract­
ability of difference equations is not wholly the result of neglect by mathe­
maticians. Simple difference equations can have stranger solutions than 
simple differential equations, so that both analytical methods and qualitative 
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methods are harder to develop. Although the differential equation N' = 
rN(l - N /K), where r and K are constants, has a very simple solution, the 
corresponding difference equation 

N(t + 1) = N(t) + rN(t{l _ N%)) 
is quite complicated. See R. M. May ( 1975). This richness of behavior may 
be useful in modeling when lots of computer time is available. However, 
it could prove embarassing-a model with too many possibilities is often 
worse than a model with too few. 

In modeling populations the way we did unicorns, it is usually quite 
unrealistic to cut things up neatly into years . Attempts to avoid this often 
lead to integrals as a way of averaging over a period of time. Thus differential 
and difference equation models are closely related to integral equation 
models, another advanced topic that is not discussed here. 
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8 . 1 .  A N A LYTI CAL M ET H O D S  

In this section w e  consider models that lead to differential equations that 
have explicit solutions. With the partial exception of the ballistics model in 
Section 8.2 ,  the examples were chosen to illustrate a variety of models, not 
to illustrate methods for solving differential equations. 

Po l l  ut ion  of the G reat Lakes 

Industrialized nations are beginning to face the problems of water pollution. 
Once pollution of a river is stopped, the river will clean itself fairly rapidly 
if the pollution has not caused extreme damage. Lakes present a problem, 
because a polluted lake contains a considerable amount of water which 
must somehow be cleaned. The only presently feasible method is to rely on 
natural processes. How long does this take ? In particular, how long would 
it take to clean up the Great Lakes ? 

Pollution affects a lake in many complex ways. Some compounds such 
as DDT enter biological systems and move up the food chain. Since DDT 
is very soluble in fat, it concentrates in the fatty tissue of higher predators and 
is hard to remove from the biosphere. Some pollutants move rather freely 
in and out of the food chain. The behavior of phosphorus lies somewhere 
between these two extremes. (In one sense, phosphorus is not a pollutant, 
since it occurs naturally ;  however, excessive amounts can trigger algae 
blooms, and it is then considered a pollutant.) Still other pollutants, like oil 

1 44  
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spills, may be only slightly involved in the food chain. Extensive pollution can 
cause irreversible damage and even " kill " a lake. 

The main cleanup mechanism is the relatively straightforward natural 
process of gradually replacing the water in the lake. In addition, other pro­
cesses such as sedimentation and decay may be important. 

If we consider all these facets of the problem now, the discussion will 
go on and on and the resulting model will probably be hopelessly complex. 
Therefore we present the model first and discuss its validity later. 

Figure 1 shows the Great Lakes. The numbers will be explained shortly. 
The basic idea is to regard the flow in the Great Lakes as a standard 

perfect mixing problem. We ignore biological action, sedimentation, and 
so on, and assume that all the pollutants are simply dissolved in the water. 
This model is adapted from R. H. Rainey ( 1967). 

We make the following assumptions : 

1. Rainfall and evaporation balance each other, and so the average rates 
of inflow and outflow are equal. 

2. These average rates do not vary much seasonally. 

F i g u re 1 The Great Lakes . The figures indicate the number of years required to drain 
the lakes if outflow is unchanged and inflow stops .  
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These should be  good approximations. In  addition, we  make the following 
rather questionable assumptions : 

3.  When water enters the lake, perfect mixing occurs, so that the pollutants 
are uniformly distributed. 

4 .  Pollutants are not removed from the lake by  decay, sedimentation, or 
any other mechanism except outflow. 

5. Pollutants flow freely out of the lake-they are not retained the way 
DDT is. 

By these assumptions, the net change in total pollutants during the time 
interval l1t is 

where V is the volume of the lake, PI is the pollution concentration in the 
lake, Pi is the pollution concentration in the inflow to the lake, r is the rate of 
flow, and 0(11t) denotes a function of I1t such that 0(/1t)/ I1t goes to zero as 
I1t goes to zero. Dividing this equation by /1t and letting /1t approach zero 
we obtain the differential equation 

( 1 )  

Since this is a first order linear equation, we  easily solve i t  t o  obtain 

(2) 

where r = Vir. The numbers in Figure 1 are Rainey's values of r for the 
various lakes, measured in years. He does not give a value for-Huron. 

Using (2) and the data given in Figure 1 it is easy to determine the effect 
of various pollution abatement schemes if the model is reasonable. We do 
not include Lake Ontario in the discussion, because about 84 % of its 
inflow comes from Erie, a source of pollution which can be controlled only 
indirectly. [The modifications required in ( 1 ) and the resulting time estimates 
are considered in Problem 1 .J 

The fastest possible cleanup will occur if all pollution inflow ceases. 
This means that Pi  = O. In this case (2) leads to the simple expression 

(3) 
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From this we can read off how long it would take to reduce pollution to a 
given percentage of its present level. The following figures in years were 
obtained in this fashion. 

Lake 

Erie 
Michigan 
Superior 

50 % 

2 
2 1  

1 3 1  

20 % 

4 
50 

304 

10 % 

6 
7 1  

435 

5 % 

8 
92 

566 

Fortunately, the pollution in Superior is quite low at the present time. 
We have built a very much simplified model. How much faith can we 

put in the times we have just obtained ? To answer this question we must 
examine the validity of assumptions 3,  4, and 5 .  

We begin with the perfect mixing assumption. I f  a lake has  only one 
source and one outlet, water tends to move from the source to the outlet in a 
pipeline fashion without mixing. Hence the cleanup time is shortened for the 
main part of the lake. (However, slow moving portions have much longer 
cleanup times.) This effect cannot push the times much below Vir = T, 
because a cleanup requires the replacement of nearly all the water in the 
lake. The value of T is rather large for Michigan and Superior 

Conclusion : Our assumption of perfect mixing may be far off, but this 
error is not likely to allow cleanup times much below T and will probably 
lead to longer cleanup times for some semistagnant regions in the lake. 

We discuss assumptions 4 and 5 in connection with two important 
pollutants : DDT and phosphorus. Mercury behaves like DDT in many 
ways, so the discussion applies to it as well. 

Studies indicate that DDT and several other chlorinated hydrocarbons 
take a long time to break down into harmless compounds. Sufficient con­
centrations of DDT can have bad effects on the health of many organisms 
and even cause death. Unfortunately, DDT is almost impossible to remove 
from the biosphere. It dissolves readily in body fat, and so an organism 
retains most of the DDT in ingests .  This causes the chemical to reach greater 
concentrations in higher predators. These animals are rather large and so are 
not likely to be swept out of the lake with the outflow unless they choose to 
leave. When an organism dies, most of its body fat is consumed by other 
organisms, so most of the DDT remains in the biosphere. As a result of all 
this, we can expect DDT to stay in the biota of a lake for an extended period 
of time. The main factor removing DDT from a lake may be its very slow 
breakdown into less noxious compounds, but consumption of fish by birds 
of prey and humans may be important. 
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Mercury behaves somewhat like DDT ; however, i t  i s  an element and so 
does not decay. As a result, it is lost slowly due to sedimentation, outflow, 
and the removal of fish by birds and humans. 

Phosphorus behaves differently. Large amounts of it are present in 
human wastes and in many fertilizers and detergents. The presence of exces­
sive quantities of this element can cause algae blooms. These are sudden 
population explosions of algae as a result of which the lake may look like 
pea soup. Then the algae die and settle to the bottom. As a result, much of 
the phosphorus is removed in this fashion. Unfortunately, some of this 
removal is only temporary, since decay processes return the phosphorus 
to the lake water. The phosphate inflow to Lake Erie was about 75  tons daily 
in 1 967, but the outflow was only about 25 tons (K. Sperry, 1 967). Thus 
phosphorus was building up in the lake. The concentration may have been 
increasing, or the lake may have been losing 50 tons of phosphate per day in 
sediment. If the former is correct, cutting the inflow of phosphorus to 25 
tons would only have led to an equilibrium situation. If the latter is correct, 
the phosphates on the bottom may reenter the biosphere and aggravate 
cleanup problems in the future. 

Conclusion : For persistent pollutants like DDT the estimated cleanup 
times may well be too low. For other pollutants it is not clear how assump­
tions 4 and 5 affect the cleanup times . 

Summary : The time estimates we derived may be low for some pollutants 
and high for others. The values of T given in Figure 1 probably provide 
rough lower bounds for the cleanup times of persistent pollutants . 

The Left Tu rn Squeeze 

Have you ever found yourself in a car trapped near the curb with the rear 
end of a bus moving slowly and ominously toward you as the bus turns to 
the left ? It can be a hair raising experience. How far to the right will the 
bus move ? This model is adapted from J. Baylis ( 1 973) .  

The situation is shown in Figure 2. We assume that the wheels do not 
slide sideways in turning. Since the rear axle is fixed, F R is tangent to the 
path of R. The angle between F R and the direction of the roadway is called cp, 

- -

the length of F R is I, the length of R T is h, the width of the bus is 2w, the turn-
ing angle of the front wheels is e, and the speed of the bus is v. We must 
specify where the speed of the bus is measured. (To see this note that, if 
e = 90° and the wheels don't slide sideways, the bus will move in a circle 
around R.) Let v be the speed of F. The values of cp, e, and v are functions of 
time. Since we are interested only in the locus of U, we can take v to be any 
function of time. We set v = 1 .  
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u 

F i g u re 2 The bus turning left. Dotted line is path of R. 

How can we describe the bus's motion ? We sketch the derivation of the 
relevant equations, and you can fill in the details. By looking at the front end 
of the bus, we see that in a time interval dt the turning displaces the point F 
a distance 

sin e(u dt) = sin e dt 

perpendicular to F R and a distance cos e dt parallel to F R. Looked at 
from the path of R, the displacement of F perpendicular to FR is I dcp, and 
the displacement parallel to F R depends on the path of R. Thus we have the 
basic equation relating cp, e, and t :  

(4) I dcp = sin e dt. 
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We now turn our attention to  the motion o f  U. Let u s  first compute the 
leftward displacement of F :  

x(t) = J;sin (8 + cp) dt. 

(We have used v = 1 . ) Using (4) and cp = O at t = 0, we obtain 

(5) ( ) = I J,'P sin (8 + cp) d x cp . 8 cpo 
o sm 

The displacement of V is now easily found : the rightward displacement of T 
is (h + l) sin cp - x, and so the rightward displacement of V is 

(6) f( cp) = w cos cp - w + (h + I) sin cp - x. 
Setting f'(cp) = 0, using (5), and multiplying by sin cp, we obtain 

(7) [(h + l) cos cp - w sin cp] sin 8 - I sin (8 + cp) = 0. 

The general plan is to solve (7) for cp, use (5) to compute x, and then 
use (6) to compute the maximum displacement. To do this we need a relation­
ship between 8 and cpo Usually it is easiest if something is constant. Clearly 
cp cannot be constant, since the bus turns. Two possibilities are : 

1 .  8 i s  constant-the driver keeps the front wheels turned at a constant 
angle relative to the bus. 

2 .  8 + cp = \1., a constant-the driver keeps the front wheels aimed in a 
constant direction relative to the roadway. 

Possibility 1 is mor.e realistic than possibility 2, but neither is perfectly 
correct. We consider both, because by comparing the results we should be 
able to obtain some idea of how accurate our conclusions are. 

Suppose that 8 is constant. Solving (7) and integrating (5) we obtain 

(8a) 
w + I cot 8 

cot cp = h 

(8b) X = 
[[cos 8 - cos (8 + cp)] 

sin 8 
and the maximum displacement is 

(8c) f = [(w + [ cot W + h2] 1 /2 - (w + I cot 8). 
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[The last equation is easily obtained by substituting (8b) into (6), expanding 
cos (8 + cp), and recalling that the maximum of A cos cp + B sin cp is 
(A 2 + B2) 1 /2 ; so we don't need .(8a) for (8c).] Using (8) I obtained Table 1 , 
based on the estimates / = 1 6, h = 1 0, and w = 4. The last row will be 
explained later. 

Ta b l e  1 Maximum Displacement with II Constant. 

B 

20° 30° 40° 50° 60° 70° 

q; (degrees) 1 2° 1 8  23 30 37 46 
f (feet) 1 . 0 L5 2. 1 2 . 7  3 .4 4 .2 
iX (degrees) 26 39 52 65 79 93  

Now let's consider the case in which 8 + cp = IX, a constant. Substituting 
8 = IX - cp into (7) we have, after rearranging, 

[(h + l) sin IX - w cos IX] cos 2cp - [(h + /) cos IX + w sin IX] sin 2cp 
+ (h - l) sin IX + w cos IX = O. 

Further rearranging gives 

where 

C sin (2cp - c5) = D, 

C = [(h + 1)2 + W2] 1 /2 , 

D = (h - 1) sin IX + w cos IX, 

. � _ (h + /) sin IX + w cos IX 
Stn u - C ' 

where - 90° < c5 < 90°. Solving for cp, 

(9a) cp = � [arcsin (%) + arcsin (�)], 
where C and D are as before and 

E = (h + /) sin IX + w cos IX. 
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Integrating (5), 

(9b) 
. [ tan (X/2 1 x = I sm (X log 

( )/
. 

tan (X - rp 2 

Using (9) and (6) with I = 1 6, h = 1 0, and w = 4, as in Table 1 ,  we obtain 
Table 2. The last row will be explained shortly. 

How can we compare the two tables ? After all , different things are 
constant in the two cases. A rough average value of (X can be computed for 
Table 1 by noting that (X varies between e and e + rp as rp varies between 0 
and its optimum value. Thus we set fi = e + rp/2. Likewise for Table 2, 
e = (X - rp/2. Interpolating in Table 1 with the e of Table 2 used as e, or 

Ta b l e  2 Maximum Displacement with () + cp Constant. 

IX 

200 30° 40° 50° 60° 70° 

cp (degrees) 7 1 1  1 5  1 8  22 26 
.r (feet) 0 . 8  1 . 1  1 . 5 1 . 9 2 . 3  2 .7  
e (degrees) 1 6  24 33  4 1  49 57 

doing the similar thing with the tables interchanged and using fi instead of e, 
we see that the estimates of f are within about 20 % of each other. This 
suggests that a table of e (or fi) versus the maximum f will be about the same 
for almost any method of turning. How could you test this idea ? Thus we 
conclude that the rear end of a bus turning left moves about 11 feet to the 
right, or more if the driver makes a sharp turn. 

long C ha i n  Polymers 

Our booming synthetic fabric industry relies on chemical reactions that 
produce long chain organic polymers. Thus it is important to understand 
the nature, speed, and end products of polymerization reactions. We study 
one type of reaction here and another in Problem 3. The material is adapted 
from C. Tanford ( 1 96 1 ,  Ch. 9). 
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We need some background in chemistry. A simple reaction of the type 
we wish to study is 

o 
,f/ 

RCH-C 

I "'0 + H-(NH-RCH-CO) -R' 
/ 

" 
NH-C 

� 
o ----+ H-(NH-RCH- CO)n + l -R' + CO2 , 

where n 2 0 and the radical R' provides the mechanism for the reaction by 
breaking open the anhydride ring. We write the reaction symbolically : 

( 10) 

The compound M" is called a polymer of length n. For fixed temperature and 
pressure, the rate of a chemical reaction like ( 10) depends on the probability 
of a collision between an A molecule and an Mn molecule. This is proportional 
to the product of their concentrations, which is written [A] [Mnl Thus the 
rate of reaction ( 1 0) is k,, [ A] [Mn] , where the rate constant k" is practically the 
same for all n because the reaction mechanism is the same. We assume 
kn = k for all n. So much for background. 

A typical process starts with a concentration a(O) of A and a concentra­
tion mo(O) of Mo (which is simply R'H). How does the system evolve ? To 
begin with, since the concentration of R' does not change, we have the con­
servation equation 

00 
( 1 1 ) I m,Jt) = mo(O), 

n = O  

where mn(t) i s  [Mn] at time t. From ( 10) we have 

( 1 2a) 

( 1 2b) 

( 1 2c) 

dmo - = - ka(t)mo(t), dt 
dmn = ka(t) [m,, _ l (t) - mn(t)] , dt 
da
d
(t) = - ka(t) I: mn(t) . t n = O  

Combining ( 1 1 )  and ( l 2c), we obtain 

da(t) -at = - kmo(O)a(t), 

n 2 1 ,  
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which has the solution 

( l 3a) 

We can simplify ( 1 2a) and ( 12b) by defining a variable y such that 

( l 3b) dy = ka(t) dt, y = 0 at t = 0, 

for ( 1 2a) and ( 1 2b) can then be rewritten as 

( 1 4a) 

( l4b) 

d��(Y) = _ mo(y), 

These equations are easily solved inductively to obtain 

mn(y) e - Yyn 

mo(O) n ! ' 
a Poisson distribution with parameter y. (Do it.) Thus the mean chain length 
is y, and the variance of the length is also y. We now use ( 1 3) to determine y 
as a function of t :  

( 1 5) y(t) = 1ka(0)e - A' dt = :��6) ( 1  - e - A'). 

How can we produce polymers of some desired length I? Setting y = I 
we obtain 

( 1 6) 
- log [ 1  - mo(O)I/a(O)] t = . kmo(O) 

Since the Poisson distribution can be approximated by a normal distribution 
when y is large, about 95 % of the lengths lie between I - .jl and I + .jl. 
Note that altering reaction conditions like temperature and pressure only 
affects the time t that we let the reaction run and has no effect on the distribu­
tion of final chain lengths. 

Let's examine briefly what happens if we relax the assumption that 
kn = k. If kn is a decreasing function of n, the reaction proceeds more slowly 
than expected as time goes on, because the polymers are becoming longer. 
Also, the final distribution of chain lengths is more peaked than a Poisson 
distribution, because the shorter chains increase in length faster than the 
longer chains .  You should be able to explain what happens when kn is an 
increasing function of n. 



P R O B L E M S  1 55 

How can we use these results in chemical engineering ? We can use 
( 1 6) to determine the optimum values for mo(O) and a(O). To make the 
reaction run as fast as possible, both mo(O) and a(O)jmo(O) should be large. 
Since there is an upper limit to the possible combined concentrations of A 
and Mo-only so much will fit in a given volume-we obtain an inequality : 

( 1 7) o ::;; a(O) ::;; f(mo(O)), 
where r < O. (Why ?) As already noted, the larger r = a(O)jmo(O) is, the 
faster the reaction proceeds. Since fast reactions save time, increasing r 
increases the number of batches we can process . Unfortunately, when we 
stop the reaction the concentration of A remaining will be 

( 1 8) I/. = mo(O) (r - I). 
Thus, if we cannot reclaim the remaining A or if the reclamation expense 
increases with quantity, a larger r will increase our expenses. By studying 
the details of plant operation we can construct a cost function depending on 
t, 1/., mo(O), and r,  where t and I/. are given by ( 1 6) and ( 1 8) . We can then minimize 
this subject to ( 1 7). In this way it is possible to reduce costs considerably 
over what they might be for a naive approach to plant design. 

P R O B L E M S  

1 .  This problem relates to the pollution of Lake Ontario. 

(a) Use the subscript e to refer to Erie, the subscript 0 to refer to 
Ontario, and the subscript i to refer to non-Erie inflow to Ontario. 
Show that ( 1 )  should be replaced by 

(b) Using the fact that about five-sixths of the inflow of Ontario is the 
outflow from Erie, deduce that 

Po(t) = e - t1r{po(0) + 61, 1[5Pe(X) + P;(x)Jex/r dX} 
(c) Assuming that all pollution inflow to Erie and Ontario ceases 

except for the uncontrollable flow from Erie to Ontario, compute the 
50 and 5 % cleanup times for Ontario .  To do this, you will need to 
know how the pollution level of Erie compares with that of Ontario. 
No data are available on this, but Erie seems to' be more polluted. 
Try various values for Pe(O)jPo(O). 
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(d) In the model we discussed the effect of various types of pollutant 
behavior on cleanup times. If necessary, reconsider this for Ontario. 

2. This problem deals with simple compartment models in physiology. 
See D. S. Riggs ( 1 963) for further discussion, especially his Sec. 6-14 
which treats problems of fitting curves to such models. 

(a) Treat the blood as a compartment containing a substance being 
removed by a physiological mechanism. What sort of equations 
could describe the concentration of the substance as a function of 
time ? We need simple models. How can they be tested ? 

(b) Let's be specific and assume that the removal is being done by the 
kidneys. In this case the rate of removal is usually proportional 
to the amount of the substance passing through a kidney per unit 
time. Construct a simple model based on concentrations. 

(c) The substance in (b) is a drug whose concentration should lie 
between 2 and 5 milligrams per 100 cubic centimeters. If the drug 
is taken internally, about 60 % is quickly absorbed and most of 
the remainder is lost. In about 8 hours the body of an average 
person eliminates about 50 % of the drug. A normal adult has 
about 5 liters of blood. Design a dosage program for the drug. 

(d) Most drugs are taken orally and require time to be absorbed by 
the blood. At the same time the drug is being removed by the kidneys. 
Model the situation. Here is some data on drugs taken from J. V. 
Swintosky (1956). The first drug is sulfapyridine, and the second is 
sodium salicylate. An 0 indicates oral administration, and an I 
indicates intravenous administration [to which (a) should apply J .  
The column headed " grams " gives the initial dosage, and the 
other columns indicate the concentration in the blood at various 
times after administration. How well does your model fit ? Could 
you explain any discrepancies ? 

Concentration (milligrams/cubic centimeters) 

2 4 6 8 10 12 24 

Administration Grams hour hours hours hours hours hours hours hours 

o 
o 

o 

4.0 

4.0 

1.8 

1 .8 

10 

1 0  

20 

2 ,3  � . .  7 

1 . 8  2.8 

3.8 3. 4 

3 .7  3 . 3  

5. 0 

39.4 

56. 7 

3.6 3. 0 2.0 

3.9 3. 5 2 . 6  2.2 

2. 6 2.1 

2.7 2. 3 

14.4 15. 7 12. 5  

31.4 24.2 1 6. 2  

43.0 35. 2 26.6 
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For a further discussion of drug kinetics see R. E. Notari ( 197 1) .  
(e) General anesthetics are usually administered through the lungs. 

What factors do you think are important in modeling anesthetic 
concentration in the blood ? Outline a model. The rate of absorption 
through the lungs may vary considerably from one substance to 
another. An anesthetist monitors an anesthetized patient to decide 
how to adjust the flow of anesthetic. Do you think the absorption 
rate should be taken into account ? Explain. 

3. Another sort of polymerization reaction is called condensation. A 
simple reaction of this sort is 

Study [Mn(t)J . Warning : Counting reactions is a bit tricky ; don't count 
Mk + Mn and Mn + Mk . Also, beware of Mn + Mn , because [Mn] 2 
counts each collision twice. 

4. At what age are your friends going to be marrying most rapidly ? I S ?  20 ? 
25 ? 30?  What factors cause people to marry ? Sociologists and psycholo­
gists generally believe that peer group behavior plays a major role. 
Can we model this ? The following attempt is adapted from G. Hernes 
( 1972). 

(a) It is assumed that a person's chances of marrying in some small 
time interval /).t are proportional to f..t and to the fraction of people 
in the person's age group that are already married met) . This is 
based on the idea that there is overt and covert peer group pressure 
to marry . Show that this leads to the differential equation 

m' = cm( l - m) . 
Solve the equation. 

(b) The model may be criticized for a variety of reasons ; for example, 
it assumes that all people feel the same pressure to marry regardless 
of individual and age as long as the fraction of the peer group that 
is married is the same. Discuss the model critically. 

(c) Suppose c = c(t). How can this help the model ? What is the solu­
tion to the differential equation ? In terms of properties of c(t), 
determine what fraction of people in your age class will eventually 
marry. 

(d) Hernes finds that 

log [c(t)] = abt log k, b < 1 ,  



1 58 Q U A N TITATIVE D I F F E R E NT I A L  E Q U AT I O N S  

gives a rather good fit, but a variety o f  other forms for e(t) may do 
just as well . Can you suggest properties a good e(t) i s  likely to have ? 

(e) We have ignored the problem caused by the fact that, since met) 
was zero when your peer group was younger, the differential 
equation predicts that it will remain zero. How can we get around 
this ? Remember that we are trying to provide a model that will 
roughly fit the situation. 

(f) Discuss how to handle the fact that people are not identical. Can 
this be incorporated in e(t) somehow ? (We could expect the average 
value of c to decrease with time as those who are more likely to 
marry do so,) 

(g) A. J. Coale ( 1971 )  found that, by making a linear transformation 
of the age axis, x = at - b, and a scale transformation of the 
proportion married axis, y = mlm( (0), a curve was obtained that 
was closely fitted by 

How does this fit in with the previous discussion ? (Coale used data 
from a variety of countries ; Hernes used data from a U.S .  census.) 
K. C. Land ( 1971 )  discusses a Poisson model for divorce. 

5 . How long does i t  take an object to  fall from a great height ? You may 
need some or all of the following facts : 

1. The drag force on similarly shaped objects depends on the density 
of the air p, the velocity of the object v, the speed of sound e, and a 
characteristic dimension of the object d. 

2. The velocity of sound e depends on the pressure p and density p 
of the air. 

3 .  If h is the height above the ground, dp = -gp dh, where g is ac­
celeration due to gravity. 

4.  Pressure satisfies p oc p T, where T is temperature in degrees Kelvin. 
5 .  The force of  gravity i s  mg, where g oc r - 2 and r is the distance from 

the object to the center of the earth. The radius of the earth is about 
4000 miles. 

Before plunging in blindly and trying to build a model that uses all 
these facts, you had better consider just what it is you want to know. 
The problem is rather vague : How great a height ? How accurate an 
answer ? Of course you may decide you need all these facts and some 
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additional ones besides. Whatever you decide, come up with a reasonable 
method for obtaining an answer of some sort. 

6. What is the best way for our company to run its advertising campaign ? 
A variety of models has been developed to study the effects of advertising 
on consumer behavior by people who do marketing research. The more 
elaborate models often allow for more than one type of consumer 
behavior, each type having at least two and sometimes several constants 
to estimate. Obviously one can fit data better with complicated models, 
but frequently one such complicated model is about as good as another. 
This is a delicate, data-hungry approach. Here you should develop the 
simplest model you can. 

lt has been observed that in our company's markets consumer 
purchases drop off roughly like exponential decay when advertising 
stops. (This is often a fairly good approximation in real life.) It seems 
reasonable to assume that new customers are attracted by advertising 
at a rate that depends on the fraction of the potential market that does 
not buy our product and on the level of our advertising. 

(a) Construct a simple differential equation model based on these ideas. 
Criticize it. 

(b) Make some predictions that could be used as tests for your model. 
(Remember the expense that may be involved.) 

(c) How should our company spend its advertising budget for the next 
6 months-on an intensive 2 week campaign with little additional 
advertising, or on a uniform advertising plan for the entire 6 months ? 
You have to make and defend a recommendation as a part of your 
job. Do you need additional data which the company can provide 
for you ? How much faith do you have in your suggestions ? 

(d) What should our total advertising budget be ? How much should 
we spend on market research ? Why ? (Remember, it's your job 
you're discussing.) 

M. L. Vidale and H. B. Wolfe ( 1 957) discuss some of these problems. 

7. J. S. Coleman ( 1 964, Sec. 8 .4) discusses a model of the effect of an 
insecticide on . the death rate of insects. He makes the simplifying as­
sumptions : 

1. Above a certain threshold an increase L1C in insecticide concentration 
causes a fraction (J. L1C of those insects that would have survived the 
old concentration to die. 

2. Below the threshold the insecticide has no effect. 
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3 .  For most insecticides we can expect an additive effect ; that i s ,  i f  the 
parameters for two insecticides are IX) and IXz and if their fractions 
in a mixture are p and 1 - p, the combination has the parameter 
IX = plXl + (1 - p)lXz ; and the thresholds combine similarly. 

He presented the following data (due to Finney) on the fraction of 
houseflies killed using rotenone and pyrethrins in various proportions. 
Here c is the concentration in milligrams per cubic centimeter and 
d is the fraction dying. Two series were run on the unmixed pesticides. 

Rotenone Pyrethrins 1 : 5  Mixture 1 : 1 5  Mixture 

c d d c d d c d 

0. 10 0.24 0.28 0.50 0.20 0.23 0.30 0.27 
0. 1 5  0.44 0.5 1  0.75 0 .35 0.44 0.45 0.53 
0.20 0�63 0.72 1 .00 0.53 0. 55 0.60 0.64 
0.25 0. 8 1  0.82 1 . 50 0.80 0.72 0.875 0.82 
0.35 0.90 0.89 2.00 0.88 0.90 1 . 1 75 0.93 

(a) Develop Coleman's model and test it against the data. 

c d 

0.40 0.23 
0.60 0.48 
0.80 0.6 1 
1 .20 0.76 
1 . 60 0.93 

(b) Assuming rotenone and pyrethrins act independently (which 
Coleman's model translates as " additively "), can you develop 
other simple models with some reasonable notion of independence 
that fit the data as well as Coleman's model ? 

8.2 . N U M E R I CAL M ET H O D S  

I n  this section we are not concerned with how the actual numerical solution 
of a problem is carried out, but rather with models that lead to a need for 
numerical solutions. A variety of numerical methods exists in the literature, 
and most computing centers have at least one package for solving differential 
equations numerically. If you wish or need to write your own package, a 
simple numerical technique is given at the end of this chapter. 

Tow i n g  a Water Sk ier  

You may have noticed that a water skier tends to  slow down when the boat 
towing him turns. Two factors influence this : ( 1 ) For the same amount of 
power, a turning boat travels slower than a boat moving on a straight course, 
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and (2) the skier tends to follow a shorter path than the boat. Can we model 
the situation ? 

Let's look at the skier first. If he drops the tow rope, he will lose speed 
very rapidly because of the drag of the water. Thus the skier always moves 
practically along the line of the tow rope unless he can do something to 
affect his direction of motion. He can exert some control through the position 
in which he holds his skis in the water. To avoid this rather grave complica­
tion, we assume that the skier does the eaSIest thing and keeps his SkIS 
pointed toward the boat. Thus we have created a skier whose rope is always 
taut (because of the drag of the water) and who always moves in the direction 
of the rope. Let the tow rope length be I, the coordinates of the rear of the 
boat be [x(t), y(t)] , and the coordinates of the skier be [r(t), s(t)] . By con­
sidering the length of the rope and the direction of motion of the skier we 
obtain two separate equations : 

( 1 9a) [2 = (r _ X)2 + (s _ y)2 , 

s'(t) S - Y 

r'(t) r - x ( 1 9b) 

We manipulate these two equations to obtain a set of two first order 
equations for r(t) and s(t). By differentiating ( 1 9a) with respect to t, clearing 
fractions in ( 1 9b), and rearranging each of them, we obtain two equations in 
r' and s' : 

(20) 2(r - x)r' + 2(s - y)s' = 2(r - x)x' + 2(s - y)y' , 
(s - y)r' + (r - x)s' = O. 

Solving for r' and s' and using ( 1 9a), we obtain 

(2 1 )  

r' x'(r - X)2 + y'(r - x) (s - y) 
F 

, y'(s - y)2 + x'(r - x) (s - y) s = [2 

Before we can solve (2 1 )  we must model the motion of the boat. Knowing 
the boat's course is enough to let us determine the skier's course : If we know 
y as a function of x, multiplying (2 1 )  by dt/dx gives a set of two differential 
equations which can be solved numerically for r and s as functions of x. 
This gives us the path of the skier parametrically in terms of x. We now 
determine his speed in terms of the boat's speed v. The x component of the 
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boat's velocity i s  vj[ 1 + y'(X)2J 1 / 2 by basic calculus and geometry. Thus 
the skier's speed is 

Jr'(x? + S'(X)2 x'(t) = Jr'(x)2 + S'(X)2 x'(t) = vJr'(x)2 + s'(x)2j[1 + y'(x?} 
Hence the skier's speed at any time equals the boat's speed at that time 
multiplied by some function of the paths of the skier and the boat. Alterna­
tively, we can solve (2 1 )  under the assumption that the boat's speed always 
equals 1 .  We will obtain the path of the skier and, by the argument just 
given, a " speed " for the skier which is equal to the skier's true speed divided 
by the boat's true speed. This enables us to treat the problem of the boat's 
speed as a completely separate issue. Since it is a complicated hydrodynamic 
problem, we do not attempt to solve it. Consequently we obtain only a 
partial solution to the problem we started out with ; however, the full solution 
will be easy to find if and when we obtain information on the speed of a 
speedboat making a turn. 

We could try all sorts of paths for a turn. The simplest to program is a 
circular are, and this is a reasonable path. By defining 

(22) x(t) = Bl cos (�l) and y(t) = Bl cos (�l), 
I obtained a circular course with radius equal to B rope lengths and a speed 
of 1. I decided it would be interesting to note how far the angle of the rope 
deviated from a 'line straight back from the boat. By substituting (22) into 
(2 1 )  and integrating numerically I found that with B = 1, a very sharp turn, 
the speed of the skier dropped markedly : After a 90° turn by the boat his 
speed was 67 % of the boat's and his angle with the line of the boat was 4 r. 
After a full 1 80° turn the figures were 45 % and 63° . By the time the radius 
of the turn was twice the tow rope length the situation had improved con­
siderably : The skier's speed was still 86 % of the boat's speed after a 1 800 
turn, and his angle was only 30°. The changes were fastest at the start of the 
turn ; in fact, after 45° the skier's speed had already dropped to 92 %, and his 
angle was 23° . With a turn of radius four times the tow rope length the speed 
change was negligible�still 96 % of the boat's speed after 1 80° . The tow 
rope's angle with the line of the boat was only 14° . The lesson is quite clear : 
To keep up a water skier's speed be sure the radius of your turn is at least 
twice the tow rope length. A radius four or more times the tow rope length 
results in almost no loss in the speed of the skier except for a possible loss due 
to the boat slowing in the turn. Alternatively, the skier can maintain his speed 
by pointing his skis somewhat outward from the direction of the turn so that 
he does not move in the direction of the rope. The analysis of this situation 
appears complicated. 
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We seem to have completed the problem. This was my reaction until I 
examined the data a bit more closely. 

B = 1  B = 2  B = 4  

e cp w cp w cp w 

0° 0° 1 .00 0°· 1 .00 0° 1 .00 
1 5° 1 3 ° 0.97 12° 0.97 9° 0.98 
30° 23° 0.9 1  19° 0.94 1 3 ° 0.97 
45° 3 1 ° 0. 85 23° 0.92 14° 0.97 
60° 38 ° 0.78 26° 0.90 14° 0.96 
75° 43 ° 0.72 27° 0 .88 1 4° 0.96 
90° 47° 0.67 28° 0 .88 14° 0.96 

105° 5 1  ° 0.62 29° 0 .87 1 4° 0.96 
1 20° 54° 0 .58 29° 0 .87 1 4° 0.96 
1 3 5° 57° 0.54 30° 0 .87 14° 0.96 
1 50° 59° 0. 5 1  30° 0 .86 14° 0.96 
165° 6 1  ° 0.48 30° 0 .86 1 4° 0.96 
1 80° 63° 0.45 30° 0 .86 14° 0.96 

It is reproduced here. The angle the boat has turned through is e, the water 
skier's angle with the boat is cp, and his speed divided by the boat's is w. 
(Incidentally, finding the formula for cp is a nontrivial problem. You should 
do it.) Note that w appears to depend only on cpo Let's prove this for any 
motion and compute the· function w(cp). For simplicity we move the co­
ordinate system so that at t = 0 the boat is at the origin and its direction of 
motion is along the x axis. Hence we have at t = 0, 

x = y = 0, x' = 1 ,  y' = 0, 

w2 = (�;y + (�;)
2 . 

By (2 1 )  r' = r2/ [2 and s' = rs/12 . Hence 

r4 + r2s2 r2 w2 = ----,---[4 [2'  

- r  
cos cp = -1- ' 

and so w = cos cpo Such a simple formula is unlikely to depend on more 
than a simple geometric argument. Can you find one ? 
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A B a l l ist i cs P roblem 

During World War I I ,  mathematicians were asked to  construct tables for 
gunners relating angle to range. Bombadiers required similar information. 
How was this done ? In this case the model is fairly straightforward, and 
the emphasis is on the mathematics, in contrast to most other models we 
have studied. 

We wish to construct a model of the' motion of an object under the 
influence of gravity and air resistance. This material is adapted from 
T. v. Karman and M. A. Biot ( 1 940, pp. 1 39-143). We ignore the complica­
tions due to lifting forces and possible rotation of the object. Hence the 
only forces involved are a downward force of mg and a drag force opposite 
the direction of motion of m[(v), where m is the mass of the object, v = I v l  
is the magnitude of its velocity, and g is the acceleration due to gravity. In an 
x - y coordinate system with the positive y axis directed downward, we 
can write this as a vector equation : Vi = (0, g) - [f(v)jv]v. Over a fairly 
large practical range, f (v) is nearly proportional to v2 . 

We let e be the angle between v and the x axis and resolve the acceleration 
into components parallel and perpendicular to v. To do this we need to 
know the value of Vi in the two directions. Since 

v = (v cos e, v sin e), 

Vi = (cos e, sin e)v' + ( - v sin e, v cos e)8', 

the parallel component is simply Vi and the perpendicular component is 
ve' . Resolving the acceleration due to gravity into components parallel and 
perpendicular to v and using the fact that drag acts parallel to v, we obtain 

(23a) 

(23b) 

Vi = g sin e - f(v), 

ve' = g cos e. 

Multiplying (23a) by vg cos e, dividing by (23b), and rearranging, we obtain 

g d(v cos e) = _ ,!' ( ) 
de 

VJ v ,  

an equation we cannot solve analytically unless f has some special form. 
If we assume that f(v) = kv2 , we obtain 

3 k de g dvx/vx = - �e ' cos 

where Vx = v cos e, the component of v in the x rlirection. Hence 

V; 2 = �k J cos - 3 e de. 
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Suppose that v = (vo , 0) when 8 = O. Carrying out the integration and 
rearrangmg, 

r(8) 
(24a) Vx = r(8), Vy = r(8) tan 8, V = -­

cos 8 ' 
where 

(24b) r(8) = vo[ l + kV6 ( sin
2
8
8 
+ log 

1 + Si� 8)] - 1 / 2
. g cos cos 

We now integrate these velocity equations to obtain the path of the object. 
Let the origin be at 8 = O. Using in succession the chain rule, Vx = v cos 8, 
and (23b), we have 

dx Vx v cos 8 v2 
(25) de e' g cos 8/v g 
Similarly, 

(26) 
dy Vy v sin e v2 tan 8 
d8 8' g cos 8/v g 

Combining (24a) with (25) and (26) we obtain the coordinates parametrically 
in terms of 8 :  

(27) [x(8), y(8)] = [J r(8)2 d8
, J r(8)2 sin 8 d8]

. o g cos2 8 0 g cos3 8 

Since r(8) is given by (24b), the integrations in (27) can be carried out numeri­
cally. And alternative approach is to solve the original differential equations 
directly by numerical methods. This is more sensitive to numerical errors, 
because the original equations are linked second order equations while 
(27) simply involves two disjoint integrals. 

We can supplement (27) by obtaining time information. Using (24a) to 
eliminate v in (23b), r(8)8' = g cos2 8. Thus 

(28) t 
= J r(8)d8 

. o g cos2 8 

Since our time origin is at 8 = 0, we must integrate back from 0 in (27) and 
(28) to obtain the intial position for a projectile fired upward. 

P R O B LE M S  

1 .  Consider the left turn squeeze model in Section 8 . 1 .  
(a) Discuss in class how you could take steps toward answering the 

question raised at the end of the model by using a computer : 
How can we show that the results are not very sensitive to the form 
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of  (J(t) for reasonable methods o f  turning? (Or perhaps, discover 
that they are.) Be specific. 

(b) If the class has access to a computer, implement the plan formulated 
in (a). 

2. In this problem the question is : How can we formulate a model that 
does not require an excessive amount of computer time ? Most galaxies 
appear to be fairly flat disks with the stars moving about a common 
center like a huge swarm of planets or asteroids. Nearly all the mass of 
the galaxy is in the central region, because the stars there are much closer 
together. Some astronomical photographs (A. Toomre and J. Toomre, 
1 973) show pairs of galaxies which appear to have collided, or at least 
passed close to one another and caused large streamers of stars to be 
pulled out. How could you test this idea using a mathematical model ? 
Recall Newton's law of gravity is F = Gmlm2/r2 , directed along the line 
between two bodies, and Newton's basic law is F = rna. See A. Toomre 
and J. Toomre ( 1972, 1 973) afterward if you want to see how they did it. 

3. This problem is adapted from M. S. Bartlett ( 1972). Can we construct a 
simple model of the spread of epidemics ? We take as our example 
measles, a prevalent childhood disease before vaccinations became 
available. The incubation time is ! week. During this time a child seems 
normal but is able to infect others. After this time the child is isolated 
until recovery, at which point he or she is immune. Roughly speaking, 
measles outbreaks have been more severe during alternate years. 

(a) Construct a sImple differential equation model allowing for three 
categories : susceptible, infective, and isolated/recovered. Allow for 
an influx of new susceptibles due to births. Assume an · infective 
makes contact with members of the population at random and 
infects a contacted susceptible with probability p. 

(b) Construct a simple difference equation model. 

In what follows use the differential equation model, the difference 
equation model, or both. 

(c) Show that your model has some sort of cyclic behavior. H it doesn't, 
fix it, because measles outbreaks definitely tend to occur in a cyclic 
pattern. 

(d) Estimate the parameters in your model to fit the ! week incubation 
and 2 year cycle observations. Do the parameter values appear 
realistic ? 

. 

(e) Measles outbreaks are seasonal (60 % below average in summer and 
60 % above average in winter), but if you've constructed a model 



P R O B LE M S  1 67 

of the sort I expected, a slight change in the parameters in (d) will 
cause the period to differ slightly from 2 years and so the peak will 
drift from season to season. What can be done ? Most children 
make contact with more children during the school year than during 
vacation. Use this to fix up the model by introducing a seasonal 
,variation in p. How much variation is required ? Does this amount 
seem reasonable ? 

(f) Can you allow for contact between school districts ? 
(g) How much faith do you have in the model ? What are its faults ? 

Can you suggest improvements ? The following data from Bartlett's 
article may be useful. 

Annual measles deaths in London ( 1 647- 1 660) 

1 647 1 648 1 649 1 650 1 6 5 1  1 652 1 653 

5 92 3 33  33  62 8 

1 654 1 755 1 656 1 657 1658 1 6 59 1 660 

52 11 1 5 3  1 5  80 6 74 

Mean time between epidemics for some towns 
in England and Wales ( 1940-1 956) 

Population 
(thousands) 

1 046 
658 
4 1 5  
269 
1 80 
1 1 3 
66 
22 
1 8  
1 2  
1 1  
7 
4 

Time between outbreaks 
(weeks) 

73 
1 06 
92 
93 
94 
80 
74 
86 
92 
79 
98 

1 99 
105  
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4. Organisms have internal oscillations, like circadian rhythm, which have 
natural periods, like 24 hours, and are sustained by the organism itself. 
What mechanisms make such cycles possible ? It seems natural to look 
for an explanation in terms of chemical reactions. This model is adapted 
from J. Maynard Smith ( 1 968, pp. 1 08-1 1 5). One of the simplest bio­
chemical reactions that seems likely to offer an explanation is 

1 .  A gene catalyzes messenger RNA (mRNA) production. 
2 .  The mRNA leaves the nucleus and catalyzes the production of a 

protein. 
3 .  A portion of  the protein enters the nucleus and combines reversibly 

with the gene to form a product which does not produce mRNA. 

Let M be the concentration of mRNA and P the concentration of protein. 
For simplicity we assume that there are many cells in the organism, 
that produce this protein, and so many copies of the relevant gene are 
present. Let G be the fraction of genes that are active, that is, not com­
bined with the protein. 

(a) The rate of the reaction 

Gene + protein ----+ inactive 

is proportional to the product GP, and the rate of the reaction 

Inactive ----+ gene + protein 

is proportional to 1 - G. Show that the value of G at equilibrium is 

G = 1 

1 + aP 
for some a > O. (You may wish to look at Problem 9.2 .8 . )  

(b) Proteins and mRNA both decay. Defend the equations 

dM b 
_ eM dt 1 + aP , 

dP Tt = eM - JP, 

for some positive a, b, e, e, and f. Show that by suitably rescaling 
M, P, and t we can rewrite them as 

I 1 
m = -- - am 

1 + p , 
(29) pi = m - {3p, 
for some positive a and {3. 
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(c) It can be shown that (29) does not lead to sustained oscillations. 
In fact, no simple chemical reactions do, see Problem 9.2.8 and 
also J .  S. Griffith ( 1968). One possible solution is to take into 
account the fact that it takes time for molecules to travel between 
the nuclei (where the genes are) and the sites where the protein is 
synthesized. Incorporate this into (29). 

(d) Do the equations developed in (c) have sustained oscillations ?  

5 .  Walt Disney studios once filmed a simulated chain reaction which took 
place as follows. A large number of cocked mousetraps was placed on the 
floor of a bare room. Each trap was specially built so that when it 
was sprung it would throw two ping pong balls into the air. Flying 
ping pong balls that landed on unsprung traps would spring the traps 
and thereby set more balls flying. The reaction was started by tossing a 
single ping pong ball into the room. How should the simulation be 
designed so that the duration of the chain reaction will be reasonable­
the audience must be able to see it, but it shouldn't last too long. The 
following treatment is adapted from G. F. Carrier ( 1966, pp. 2-6). 

There are three obvious ways to influence the duration of the simula­
tion : Change ( 1 )  the flight time of the balls, (2) the number of traps per 
square foot, or (3) the size of the room (keeping the number of traps per 
square foot the same by simultaneously changing the total number of 
traps). We consider each of these separately. 

It can be observed that the flight times of the balls for a given brand 
of trap are nearly the same. We assume for simplicity that they're 
identical. After hitting a trap, very few balls are able to rebound enough 
to hit another trap with enough force to spring it. Thus a ball that hits 
a sprung trap or an unsprung trap becomes dead in most cases. We 
assume that this always happens. A ball that hits the bare floor may or 
may not rebound enough to be able to set off a trap ; it depends on the 
flooring material. At any rate, there is a probability p that a random ball 
will land on a trap with enough force to spring it (if it is still cocked). The 
value of p depends only on how far apart the traps are and on the nature 
of the floor. (The latter is a fourth variable which we can adjust. You 
should convince yourself that this would have the same effect as changing 
the spacing of the traps.) 

(a) Criticize the various assumptions we have made. What sorts of 
errors do they introduce into our predictions ?  

(b) Argue that the duration of the simulation is nearly proportional 
to the flight time of a ball. What advantages and disadvantages do 
you see in trying to adjust the duration by adjusting the flight time ? 
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From now on, we  use the flight time o f  a ball a s  the unit o f  time 
measurement. 

(c) Let t be the length of time from the start of the simulation until b 
balls are in the air together, where b is much less than the total 
number of balls . Show that approximately (2py = b, and so 
t = log b/log 2p. Consider two rooms in which the number of 
traps per square foot is the same, but one room is b times as large 
as the other. Show that the difference in the length of the simula­
tions is about log b/log 2p. What advantages and disadvantages are 
there to adjusting the length of the simulation in this way ? To what 
extent can you change the duration of the " middle " range-say 
the time to go from 5 % sprung traps to 90 % sprung traps ? Discuss 
adjusting mousetrap density. 

So far our discussion has dealt primarily with small t .  Large t is 
harder. Intermediate t can be handled fairly easily. The rest of this 
problem is devoted to it. 

(d) If there are N balls in flight at time n and U unsprung traps out of 
a total of M, show that the probability of having exactly 2B balls 
in flight at time n + 1, given that T of the traps are hit, is 

(U) ( T)B( T )U- B P(B) = 
B M 

1 - M ' 

where (�) is the binomial coefficient " U choose B "  - the number of 
ways to choose B objects from a set of U. Using the approximation 
that, if N is small compared to M, no trap is hit by more than one 
of the N balls, show that the probability that T traps will be hit is 
approximately 

H(T) = (�)pT{l _ p)N - T. 

(e) Describe a Monte Carlo simulation for the mousetrap demonstra­
tion. What inaccuracies have been introduced by our approxima­
tions ? 

(f) Both P and H can be approximated quite accurately by normal 
distributions for large values of U and N. The means and variances 
are 

For H 
For P 

Mean 

pN 
UT/M 

Variance 

Np(l - p) 
U T(M - T)/M2 
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Let's consider the middle range of the experiment when U and N 
are both large. Show that, if Nn is the average number of balls in 
the air at time n, approximately, 

(30) 

Since Un + 1 = Un - Nn+ d2, this can be solved recursively for 
Nn and Un , but we can't see what's going on very well just by 
looking at (30). 

(g) Write f(n) for the fraction of unsprung traps at time n and show 
that (30) becomes 

(3 1 )  f(n) - f(n + 1 )  = 2p[j(n - 1 )  - f(n)]f(n). 

We approximate (3 1 )  by a differential equation in hopes of obtaining 
an easier problem. Replace f(n + 1) and f(n - 1) by their first 
degree Taylor polynomials about n. Show that this leads to 
1'(n) = 2p1'(n)f(n), and so 1'(n) = 0, a poor approximation. This 
means we need higher degree Taylor polynomials. 

(h) Use quadratic Taylor polynomials to obtain the approximation 

1 '(n) + 1'�n) 
= p[21'(n) - f" (n)]f(n), 

and so 

(32) [pf(n) + !]f" (n) = [2pf(n) - 1 ]1 '(n). 

(i) Can you describe the solution to (32) ? You cannot obtain an 
analytical solution, but (32) can be integrated once to obtain 

l' = 2f - � log (2pf + 1) + c. 
p 

U) Using (3 1 ), (32), or some other device, find a way to answer the 
following questions. About how long does it take the simulation 
to go from f(n) = 0.95 to f(n) = 0. 1 ? How large would you make 
p ?  Why ? 

T H E HEUN M ET H O D  

In case you have access t o  a computer but not to a library routine for solving 
differential equations, here is the Heun method for solving a system of first 
order equations of the form 

Y; = fi(x, Y l > . . .  , Yn) = fi(x, y). 
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To take a single step of size h , set 

and 

y* = hf(x, y(x)) + y(x), 
y = hf(x + h, y*) + Y*, 

y(x + h) = Hy(x) + y] .  
A check o n  the accuracy i s  provided b y  y* - y(x + h), which can b e  expected 
to be greater than the actual error. A better check is provided by using two 
values of h, since the error in integrating from x = a to x = b is roughly 
proportional to h2 . Thus, by using values of h differing by a factor of 2, 
we obtain two estimates for y, and their difference should be about three 
times the error obtained by using the estimate based on the smaller step size. 



C H A P T E R  9 

LO CA L  

STA BILITY T H EO R Y 

If you wish a fuller discussion of the theoretical background than that 
presented here, consult a textbook. Some introductory differential equations 
textbooks contain a chapter or two on qualitative methods. F. Brauer and 
J. A. Nohel ( 1969) treat the general theory and discuss some specific problems. 

9 . 1 . AUTO N O M O U S  S Y STE M S 

Suppose we are dealing with a system in which time is the independent 
variable. Absolute time may or may not appear. If absolute time appears, we 
are dealing with a historical system. If absolute time is irrelevant, the system 
is autonomous. Another way of looking at this is that the dependent variables 
are functions only of differences in time. 

Suppose someone gives you money each day starting with $ 1  today, $2 
tomorrow, $3 the following day, and so on. Let the amount for day n be M(n). 
Since you receive n dollars on the nth day, M(n) = n-a historical system. 
However, M(n) = M(n - 1) + i-an autonomous system. Thus the dis­
tinction between historical and autonomous systems is sometimes artificial. 

Here we are concerned only with the stability of autonomous systems 
and limit most of our discussion to systems with two first order equations 
involving two endogenous variables. This makes our discussion simpler, 
allows for two-dimensional diagrams, and still permits us to consider a 
variety of interesting models. Most of the mathematical ideas can be general­
ized to systems of higher order equations with several endogenous variables. 

1 73 
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Suppose there is no time delay. Let the endogenous variables be x = x(t) 
and y = y(t). Since the equations are first order, we assume that they have 
been solved for x' and y' in terms of x and y, giving 

( 1 ) x ' = f(x, y), y' = g(x, y), 

where for the moment we do not say much about the functions f and g. 
Time can be completely eliminated from ( 1 ) by dividing one equation by the 
other to give 

(2) 
dy g(x, y) 
dx f(x, y) " 

We can plot the solutions of the first order differential equation (2) in the xy 
plane. This is called the phase plane. Furthermore, an arrow can be attached 
to each curve indicating the direction of motion along the curve with time. 
This picture contains all the information in ( 1 ), except the rate of motion 
along the curves. (For n equations in n endogenous variables you can 
imagine the curves as Iyinlin n-dimensional phase space.) The division of ( 1 ) 
to  give (2) cannot be  carried out i f  f(x, y ) = 0 for some values o f  x and y . If 
g(x, y) 1= U, the curve is vertical. If g(x, y) is also zero (x, y) is called an 
equilibrium point. A solution that starts at an equilibrium point can uever 
move, since x', = y' = 0 by ( 1 ) . Such solutions are plotted simply as points. 

By going from ( 1 ) to (2) we obtain a convenient way of representing 
solutions graphically. Also, (2) is usually more analytically tractable than ( 1 ). 
However, the loss of the time variable presents difficulties when we study 
stability questions. 

There are two types of qualitative questIOns we can ask about the paths 
of solutions in the phase plane. If a solution starts near an equilibrium point, 
will it move toward the equilibrium point or away from it and in what 
manner ? Questions of this type are dealt with in the subject area known 
as stability in the small or local stability. The second type of question does not 
assume that we start near an equilibrium point. It concerns what is known 
as stability in the large or global stability, a more difficult mathematical 
topic than local stability theory. I discuss this area briefly in Section 9.4. 
Global behavior is more varied than local behavior. For two first order 
equations the possibilities include divergence, convergence to an equilibrium 
point, periodicity, and convergence to a limit cycle. A limit cycle is a periodic 
solution such that a solution which starts nearby will approach it. (In the 
phase plane, a periodic solution appears as a simple closed curve.) In higher 
dimensions (i.e. , three or more first order equations), global behavior is 
much more varied and much less understood. 
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9 . 2 .  D I F f E R E N TI A L  EQUATI O N S  

Theo ret ica l Backg rou nd 

The basic idea in local stability theory of differential equations is to approxi­
mate the system ( 1 )  by two linear first order differential equations near an 
equilibrium point. Suppose that (xo , Yo) is an equilibrium point ; that is ,  

(3) 

We want to approximate f and 9 near the point (xo , Yo). Recall that for a 
function of a single variable, say h(x), we can obtain a fairly good approxi­
mation near Xo by using h(xo) + h'(xO) (x - xo) instead of h(x). The same idea 
can be used with functions of two variables : We can approximate f(x, y) 
near (xo ,  Yo) by 

f( ) + af(xo ,  Yo) ( _ ) "+ af(xo ,  Yo) ( _ ) xo , Yo ax x Xo ay y Yo · 
Here af(xo , yo)/ax denotes the partial derivative of f evaluated at the point 
(xo , Yo), that is, 

To avoid cumbersome notation we denote this partial derivative by j� . 
The meanings of fl' , gx , and gy should be obvious. Thus we have 

(4) 
u' � fxu + fy v, 
Vi � gx u + gy V, 

where u = x - Xo , v = y - Yo ,  and fx , fy , gx , and gy denote the partial 
derivatives of f and 9 evaluated at (xo ,  Yo). If we assume that the approximate 
equalities in (4) are exact, the equations can easily be solved. The solution of 
this homogeneous, linear system gives information about the local stability 
of the solutions of ( 1 ) . Since our object is not to derive mathematical results, 
we merely state the following theorem which can be found in almost any 
differential equations textbook that discusses local stability theory. 

TH EO R E M. If (xo , Yo) is an equilibrium point for the system ( 1 ), define 
the real numbers b, c, and d by 

where i = J=1. 

b = fx 
+ gy 
2 ' 
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If c < 0, the equilibrium point is stable ; that is, solutions starting nearby 
move closer. If c > 0, the equilibrium point is unstable ; that is, solutions 
starting nearby move further away. Furthermore, the distance from the 
equilibrium point behaves roughly like Keer. If c = 0, additional tests will be 
needed to determine the nature of the equilibrium point. Necessary and 
sufficient conditions for c < 0 are b < ° and ix9y > 9x 1;, . 

If d # 0, the solutions near the equilibrium point spiral about it in a 
roughly elliptical fashion with a period approximately equal to 2n/d. The 
amplitude of the oscillation increases or decreases, depending on the sign of 
c. If d = 0, there is no oscillation. 

Typical phase plane diagrams are illustrated in Figure 1 where it is 
assumed that (xo , Yo) lies in the first quadrant. 

c < 0, d = ° c >  0, d = ° 

c > 0, d * ° c < 0, d * ° 

F i g u re 1 Phase plane diagrams near equilibrium points .  
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For those familiar with linear algebra, we note that c is the maximum 
of the real parts of the eigenvalues of the matrix 1 1 8};/8xj l l , where X l = X, 
X2 = y, f1 = f, and f2 = go Stated in this way, the stability result is valid for 
a system of n first order equations in n endogenous variables, but the nature 
of the oscillations is more complicatedo 

When we made the assumption that (4) is exact, we constructed a model 
of (1 )0 Since the condition c = 0 is fragile, it is reasonable to suppose that 
we could not easily decide between stability and instability if c = 00 This is 
indeed the caseo We do not study this situation hereo 

The condition d = 0 is equivalent to b2 - (fxgy - gx fy) 2: 0 which 
can be put into the form 

(5) d = O  if and only if 

by a little algebrao In particular, no oscillation occurs if fygx 2: 00 Since 
d = 0 actually corresponds to an inequality, the case of oscillation versus 
non oscillation is not fragileo 

F r ict i o n a l  D a m p i n g  of a Pend u l u m  

Friction slows a pendulum downo It also changes its periodo Will you need 
to allow for this change in designing a pendulum clock ? If so, how ? 

We want to study the motion of a pendulum in an attempt to understand 
mathematically how frictional forces slow it downo These forces arise from 
the motion of the pendulum in the air, water, or whatever medium it is 
suspended ino In contrast to this, the motion of a frictionless pendulum is 
periodico Using different methods, we studied the period of a frictionless 
pendulum in Section 220 

Consider a pendulum as shown in Figure L Since our primary interest 
is in damping due to friction, we make several simplifying assumptions 
whose removal is discussed briefly after the model is analyzedo 

1 .  All the weight i s  concentrated as a point of mass m at the end of a piece 
of wire of length L (If I is replaced by the distance from the pivot to the 
center of mass, the following results will remain valido) 

2. The wire does not stretch or wrap around its pivot, and so the length I 
is independent of the angle of the pendulum 

3. There is no wind, shaking, and so on, that can disturb the motion of 
the pendulum 

Let the angle of the pendulum be e = e(t), where e = 0 is the rest 
position of the pendulum The gravitational force acting on the pendulum 
is mgo It is partially balanced by tension in the wireo The resultant is the force 
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I 
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I 

mg s i n  e 

mg F i g u re 2 A pendulum. 

-mg sin () acting on the pendulum along its direction of motion. The only 
other force affecting the motion of the pendulum is the frictional force we 
are examining. Empirical studies show that a function that depends only on 
the velocity gives a good approximation to such forces. Since the velocity 
of the pendulum depends on its angular velocity w, we assume that the 
frictional force is of the form - r(w), where r is a differentiable function. 
This is a retarding force, and so r(w) has the same sign as w. In particular, 
reO) is both nonnegative and nonpositive, and therefore is zero. We postpone 
further assumptions concerning the nature of r until they are needed. 
Newton's laws give 

(6) ml()" = -mg sin () - r(w). 
We now show that our model predicts that friction causes the pendulum 

to slow down. Since w = ()' , we can rewrite (6) as 

(7a) 

(7b) 

()' = w 
, g . r(w) w = - - SIll () - -- . I 1m 

These equations are in the form ( 1 ), with x = () and y = w. We set (7) equal 
to zero to find the equilibrium points. From (7a) we have w = O. Since 
reO) = 0, we deduce from (7b) that () is a multiple of n. Because of the period­
icity of the sine function, we need only consider () = 0 and () = n. The latter 
case corresponds to the pendulum being straight up. It is left as an exercise 
to show that this equilibrium point is unstable. 
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We have (wo , 80) = (0, 0). The partial derivatives are 

(8')8 = 0, 

I -g 
(W )8 = -1- ' 

(8)w = I, 

( ) = 
- r '(O) 

W w 1m ' 

Since r(w) is an increasing function near w = 0, it is reasonable to assume 
that r'(O) > 0 (This really is an assumption ; consider r(w) = w3 .) In the 
theorem we have 

b = - r'(O) 
21m ' 

. r:;-g  c + di = b + -J b2 - / .  

Since .jb2 - gil < 1 b I ,  c < O. It follows that the motion of a pendulum 
is locally stable ; that is, it dies out. We see that d is nonzero if b2 < gil, 
which can be rewritten as r'(O) < 2m.jgi. Hence the pendulum oscillates 

if r'(O) < 2m.jgi and does not oscillate if r'(O) > 2m.jgi. In the latter case 
the frictional forces are very large, and it is as if the pendulum were moving 
in molasses. 

How does the change in the period of the pendulum compare with the 
damping? From the theorem, the pendulum will oscillate at about half its 
initial amplitude after a time t, where eet = l Hence t = loge (2)/ 1 b J .  This 
requires about tl(2nld) oscillations of the pendulum. Hence the pendulum 
loses half its amplitude after about 

(9) 
log (2) d 0. 1 1032 d ;-g-----; 

2n 1 b 1 = 
1 b 1 = 0 . 1 1032 -J Yi? - 1 

oscillations. Call this number n. Squaring and rearranging, we obtain 
gllb2 � 82n2 + 1 � 82n2 . The ratio of the period of the pendulum to the 
period of a frictionless pendulum is 

( 10) 1 - - � 1 + - � 1 + -- . ( IbZ) - 1 /2 Ib2 1 
9 2g 1 64n2 

Thus the period increases by about 0.61n2 percent, a very small change. This 
prediction can be tested experimentally. 

Since a pendulum takes quite a long time to slow down in air, n is large 
in this case. It follows that the effect of friction on the period is quite small. 
If this were not so, the period of a pendulum would depend on barometric 
pressure and pendulum clocks would not keep accurate time. 
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I t  i s  possible to  replace (6) by  the more general equation ml8n = 1(8, w), 
where we assume only that lro and Ie are both negative near zero as they are 
in (8). Since Ie = -mg is a good approximation, our conclusions are un­
changed. 

Species I nteract ion  and Popu lat ion  S ize 

Interaction between species lies at the heart of ecology. Some claim that these 
interactions cause the nearly cyclic fluctuations observed in some popula­
tions. Others claim that other factors are responsible. What can a simple 
mathematical model contribute to the debate ? 

Since our theorem allows only two endogenous variables, we assume 
only two species are interacting. Let x be the number of organisms in the first 
species and y the number of the second. There are three basic types of 
interaction between species : 

1 .  The first species preys on the second (either direct predation or as a 
parasite). 

2. Both species compete for more or less the same limited resources (e.g. , 
plants competing for sunlight). 

3 .  The two species live in a symbiotic relationship with each other (e.g. , 
nitrogen fixing bacteria on the roots of peas and beans). 

Predation is discussed below. Competition and symbiosis are treated 
sketchily, and the details left as exercises. 

The assumption of autonomy implies that the environment of the species 
is constant except for factors whose change depends only on the number of 
organisms of the two types. Because of the form of ( 1 ), no time lag can be used. 
Since species require time to reproduce, the absence of a time lag may be a 
serious deficiency. Furthermore, the past history of the population determines 
the age mix and general physical condition of the present population. It is 
an open question how serious a restriction avoiding the past is. If it is serious, 
difference equations or mixed differential difference equations will be needed. 
See R. M. May ( 1973) for a relevant discussion. 

Let x be the number of predators and y the number of prey. It is 
intuitively clearer to think in terms of the net growth rates of the two species : 

( 1 1 ) 
x' 

Predator : - = r(x, y), 
x 

y' 
Prey : - = s(x, y). y 
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The equilibrium condition is then r = s = O. A historically important special 
case is the Volterra-Lotka equations : 

( 1 2) rex, y) = a + by, sex, y) = c + dx. 
1. G. Kemeny and 1. L. Snell ( 1962, Ch. 3) discuss this special model. 

We deal with a more general model in which r and s are only vaguely 
specified. To be able to say something about the stability of the system, we 
must make some assumptions about r and s. 

If the population size of species 1 does not affect the population growth 
of species 2, then ry == O. Similarly, if species 1 does not affect its own popula­
tion growth through crowding, resource exhaustion, and so on, we will have 
r x == O. Because the absence of an effect leads to zero for the partial derivative, 
an indication of how the species affect one another gives us information about 
the signs of the various partial derivatives. We may be able to make educated 
guesses about their relative magnitudes as well. Actual data collection is very 
difficult at best. 

What effect does a change in predator population have on the net 
growth rate of the prey ? Since predators consume prey, Sx < O. If the predator 
population increases, there will be less food per predator, and so r x < O. 
Another way to decrease the number of prey per predator is to reduce the 
the prey population, so we expect ry > O. The sign of Sy is harder to determine. 
as the prey population increases in the absence of predation, the net growth 
rate should decrease, because the species is now moving into less favorable 
parts of the environment. However, if the prey increase while the predators 
do not, there will be less predator pressure per individual of prey population, 
which would lead to an increasing net growth rate. These two effects tend 
to cancel out. Note that, if the predators are prey at a higher level in the food 
chain, the argument just given for Sj' also applies to rx . We have reached the 
following conclusions : 

( 1 3) 
rx < 0 or ::::::; 0, 

Sx < 0, 
ry > 0, 

Sy ::::::; O. 
We interpret Sy ::::::; 0 to mean that we can neglect Sy compared to the other 
partial derivatives. 

Suppose there is an equilibrium point (xo , Yo) at which neither species 
has vanished. From ( 1 1 )  we have r = S = O. The question of the existence of 
solutions to this equation is discussed later. It is easily seen that fx = xr x , 
fy = xry , and so on. From the theorem and (5) we have 

b = 
xrx + YSy 

2 ( 14) 
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From ( 1 3) we  see that b is negative and rx sy > ry sx ' Thus we have local 
stability. If the environment is rather homogeneous, the self-limiting effect 
of species 2 will not come into play until the environment is nearly saturated. 
In this case we have Sy > 0, and instability is possible. Hence heterogeneity 
of the environment increases stability. See R. M. May ( 1972) and M. L. 
Rosenzweig ( 197 1) .  

Do we have oscillation ? From (5) we see that the answer is yes if  and 
only if 

( 1 5) (xrx - ysy + 4xyry sx < O. 
This holds if r x � O. Roughly speaking, ( 1 5) says that the interspecies effects 
on net birth rates are greater than the intraspecies effects. This certainly 
appears to be true in some situations. 

Unless we are willing to make a statement stronger than ( 1 3 )  we can't 
really say much more ; however, this is quite a lot considering the vagueness 
of ( 1 3) . 

We now turn our attention to the existence of equilibrium points (xo , Yo). 
The arguments used to derive ( 1 3) did not use the assumption that we were 
at equilibrium, so we drop the assumptIOn that the partial derivatives in ( 1 3) 
are evaluated at equilibrium. Another point is that, in deriving Sy � 0, we 
used the fact that the predator was severely limiting the prey ; let's relax this 
by allowing Sy < 0 at low predator densities. The following discussion is 
entirely nongraphical . In simple cases such as this one, a graphical discussion 
may be preferable. You are asked to provide this in Problem 2. 

To begin with, there are the trivial equilibrium points associated with 
x = 0 (no predators). We put them aside and look for equilibrium points 
with predators. Hence x > 0 and y > O. 

Suppose that x predators can survive if there are enough prey and if the 
number of predators does not exceed some critical value xm . Since r y < 0, 
we can solve rex, y) = 0 for a unique y(x). By implicit differentiation dy/dx = 
- r x/r)" which is positive by ( 1 3). If predators cannot live in the absence of 
prey, we have y(x) > 0 for 0 < x ::::; xm . Substituting y(x) in sex, y) we find 

ds dy 
dx = Sx + Sy dx ' 

which is negative because of ( 1 3) . 
Now we can show that a unique equilibrium exists under certain 

conditions. We have just shown that sex, y(x)) is a strictly decreasing function 
of x. Therefore an equilibrium point will exist if and only if sex, y(x)) is 
positive for small x and negative for large x. If such a point exists, it will be 
unique because sex, y(x)) is strictly decreasing. To say that sex, y(x)) > 0 
means that we must remove prey to keep the prey population from increasing 
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beyond y(x}. This is likely to be true for small x and false for large x, which 
is just what we want. If the predator population is kept rather low (small 
xm) by exogenous forces such as hunting by humans, the prey may be able to 
provide food for the predator and still increase. In that case we cannot 
reach the portion of the curve y(x) where sex, y(x)) ::;; O. Discuss this situation. 

Let's relate our conclusions to the real world. 
The main result of our study is a model which proposes a mechanism 

for maintaining stability in a world that is changing. If the environment 
varies a lot in a time period comparable to that in which x and y move 
significantly toward equilibrium, our results will be useless. However, 
infrequent changes can be viewed as occasional displacements from 
equilibrium ; for example, a change in the environment actually shifts the 
location of the equilibrium point by changing the functions r and s ; an 
infrequent epidemic changes the value of x or y but leaves the equilibrium 
point unchanged. If these displacements are not too large, our use of local 
stability theory shows that the system will tend to return to equilibrium. If 
the system possesses global stability, even large displacements will be damped 
out. See R. M. May ( 1973) . 

Most natural systems involve many predator and prey species. If we 
introduce one variable for each species, much more than the vague conditions 
in ( 1 3) will be needed to study stability. What can be done about this ? If the 
prey species are sufficiently alike, we can lump them together as if they were 
one species .  Likewise for the predators. In this way it may be possible to 
apply our conclusions to a system involving more than two species. Since 
the model would only make predictions about the size of the lumped species 
population, the individual populations may fluctuate wildly. 

How can we gather data to test the model ? Except in the physical 
sciences or in carefully controlled experiments, it is usually difficult to 
estimate first derivatives and nearly impossible to estimate higher derivatives . 
Therefore we should not try to verify ( 1 1 )  and ( 1 3 )  directly. To check the model 
we need some predictions that can feasibly be tested. The model predicts 
that the population sizes will exhibit damped oscillations with nearly constant 
periods if they are disturbed from equilibrium. If (4) is treated as an equality 
and solved, it can be shown that the relative maxima of u and v differ by a 
constant phase. As a result, we predict that the predator and prey cycles will 
be out of phase with one another by about the same amount from cycle to 
cycle. Of course, random disturbances cause variations, so neither of these 
predictions is perfect. We now have two predictions which it may be feasible 
to check : nearly constant period and nearly constant phase shift. 

In the last section of their article N. S. Goel et al. ( 197 1 )  briefly discuss 
some experiments that have been done to check the model. The predictions 
are usually correct. 
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I t  i s  difficult to  test the model on natural populations. The most well­
known candidate is the system consisting of the Canadian lynx and the snow­
shoe hare. Since it undergoes wild fluctuations, a global result is needed. 
However, the hare populatibn fluctuates in the absence of lynx predators, so a 
simple lynx-hare model is wrong. Furthermore, the relative phases of the 
lynx and hare fluctuations seem wrong (Gilpin, 1973). A more promising 
model may be some sort of three-way system involving hares, vegetation, 
and (exogenously) the weather. For further discussion of this problem see 
L. B. Keith ( 1963) . 

We consider competition and symbiosis briefly. An important factor in 
the competition situation is the existence of an equilibrium point. This is 
discussed in Problem 3 .3 .3 .  For competition all the partial derivatives are 
negative. There will be stability if and only if r x Sy > sx ry . Roughly speaking, 
this says that each species inhibits its own expansion more than the competing 
species does. 

We now turn our attention to symbiosis. Assume that, if one species 
somehow increases, it will help the other to increase too. This means that 
ry and Sx are positive. It follows from (5) that d = 0, and so there is no 
oscillation. Suppose we increase species 1 by a small percentage. Ignoring 
self-limitation, this is essentially the same as decreasing species 2 by the same 
percentage. Thus we expect xr x � -yry , unless species 1 tends to limit itself. 
Self-limitation makes r x an even larger negative number, and so I xr x I > yry 
in this case. If a similar result holds for the second species, the equilibrium 
will be stable, because stability is equivalent to r x Sy > sy r x . 

Keynes ia n  Economics 

J. M. Keynes's revolutionary work, The General Theory of Employment, 
Interest and Money, has had a profound effect on economic theory and 
practice, the latter beginning with Roosevelt's New Deal politics during the 
U.S. Depression of the 1930s. Here we study a crude bare bones model 
adapted from G. Gandolfo ( 197 1 ). 

Let's begin with a list of variables that relate to the national economy : 

C, desired level of consumption. 
I, desired level of capital investment. 
D, total demand for goods. 
Y, national income. 
L, desired amount of money to be held as cash on hand. 
M, amount of money available. 
R, cost of money (interest rate). 
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I'm sure you can add to the list, but we have enough for the time being. You 
may wish to come back later and add more. 

Before discussing these variables, a word about measurement is worth­
while. Some of these quantities may be hard to measure, partly because they 
are imprecisely defined and partly because it is not clear what units we should 
use. Although lack of precision is a serious problem, we ignore it here 
because we can construct a model without it and because attempting to 
eliminate it would involve us in deep economic considerations. We want to 
measure our variables in real terms, whatever this slippery phrase means. 
Economists use constant dollars, that is, dollars deflated to some standard 
year such as 1 950. We avoid problems by assuming that our variables are 
somehow measured in constant dollars (except for R which is a ratio of 
constant dollars). Note that R is negative if the rate charged by moneylenders 
is less than the rate of inflation. All this lack of precision is really a serious 
problem. If it is not resolved, two people may mean different things by the 
same terms and so the discussion of models will become hopelessly muddled. 
This may be part of the problem at the present time. People are arguing over 
whether or not the current ( 1974) combination of high unemployment and 
inflation (called stagflation) shows that Keynesian models cannot be used. 

Back to our model. 
Capital investment over a period of time increases the efficiency of labor. 

To avoid this thorny problem, we deal with a short term model, that is, 
one in which the change in total capital investment is not significant. 
Technological development creates a similar problem which we also avoid 
by using a short term model. 

Having said what we won't try to do, let's see what we can do. Our list 
of variables is too long to handle easily, so we need to know which are 
exogenous (independent), which are endogenous (dependent), and which 
we can ignore. Unfortunately, to do this sort of thing directly can be very 
difficult ; it is often easier to sneak up on it through discussion. 

At equilibrium we will have D = Y and L = M, that is, what we want is 
what we have. Since we are concerned with disequilibrium, the quantities 
D - Y and L - M are important. Since excessive demand for money drives 
up the interest rate and excessive demand for goods causes production to 
increase, we assume that 

( 1 6) 
R' = r(L - M), 
Y' = y(D - Y), 

r'(O) > 0, 
y'(0) > 0, 

r(O) = 0, 
y(O) = O. 

This suggests that it would be nice if we could take R and Y as the basic 
variables, influencing their own growth through ( 1 6). Can we relate L, M, D, 
and Y to R and Y ?  Of course, Y presents no problem : Y = Y 
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Since M is determined by the government, it is an exogenous variable. 
We assume that it is constant for the purposes of studying stability ; however, 
it is interesting to ask how changes in M influence the equilibrium value of Y ;  
that is, what i s  the sign o f  YM = ay  laM a t  equilibrium ? Back to  this later. 

What about L ?  It seems reasonable to assume that LR < 0 and Ly > 0, 
since people want to hold less cash as interest rates rise and the country needs 
more cash for transactions as national income rises . This is far from an 
explicit functional relationship, but we'll see how far we can go with it. This 
approach worked fairly well in the previous model. 

To study the partial derivatives of D, it is convenient to break it into 
two parts : D = C + I . The value of C R should be zero or negative, since 
higher interest rates should, if anything, be an inducement to save. Can you 
defend the assumption Cy > O? What about IR < 0 and Iy � O ? It follows 
that Dy > 0 and DR < 0. 

( 1 7) 

In summary, 

LR < 0, 
Ly > 0, 

DR < 0, 
Dy > 0, 

CR < 0, 
Cy > 0. 

We now compute the partial derivatives of r and y at equilibrium : 

( 1 8 )  
rR = r' (O)LR < 0, ry = r' (O)Ly > 0, 
YR = y'(O)DR < 0, yY = y' (O ) (Dy - 1 ). 

The sign of yy cannot be determined from ( 1 7). The stability conditions in 
the theorem are 

and 

A sufficient, but not necessary, condition for this to hold is yY ::; 0. In words, 

If the sensitivity of total demand to changes in the national income is 
less than unity, our Keynesian model is locally stable. 

(In economics " sensitivity " is a term for a partial derivative ; the sensitivity 
of A to B is the amount A changes when B changes one unit.) When does the 
proposition stated above apply ? We must have Cy < 1 to ensure Dy < l .  
What does C y > 1 mean ? I t  says that, as income increases, desired consump­
tion increases even faster ; an unlikely possibility except in underdeveloped 
countries where it can cause severe problems. (See Problem 3 . 3 . 5 . )  We 
can't use this argument on C + I, because consumers and investors do not 
consult each other. However, I may not be at all sensitive to Y -it's Y' that 
we can expect I to depend upon, since changes in Y stimulate additional 
investment (if Y increases) or liquidation (if Y decreases). As a first approxima­
tion, I y = 0, and so the hypothesis of the proposition is satisfied. 
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Now suppose that we have stability. How will the equilibrium move in 
response to government adjustment of the money supply ? At equilibrium, 
L = M and D - Y = O. Using the chain rule to differentiate these with 
respect to M we obtain 

and 

Thus 

( 19) and 

where 

L1 = (Dy - l )LR - DRLy . 
Comparing ( 1 8) and ( 19), we see that the stability condition rR YY > rYYR 
is equivalent to L1 > O. Since we are assuming stability, L1 > O. By ( 17) and 
( 19), YM > O. If the hypothesis in the proposition is true, RM < O. Govern­
ment often tries to influence national income by adjusting M, for example, by 
making more money available when unemployment is high. (Making money 
available is not simply a matter of running the printing presses-this only 
leads to inflation with little change in the money supply as measured in real 
dollars. In the United States the Federal Reserve Board changes the per­
centage of cash reserves that member banks must hold.) What effect does 
this have ? Since YM > 0, this should increase national income. Because of our 
assumption that we are dealing with the short term, national income can 
increase only by an increase in labor. Hence unemployment should decrease. 
The size of the change depends on the change in M and the size of YM • 
If DR is small, we see from ( 19) that changing M may not be a very effective 
way to fight large scale unemployment. 

Governments try other methods of influencing the economy, which may 
be more effective than controlling M. Can you change the model to allow 
for government control of R ?  What about direct attempts to influence D 
through deficit spending? Can you extend the model to allow for effects of 
taxation ? Taxation can influence C and I by redistributing Y and by 
providing tax incentives for investment. 

M o re C o m p l i cated S ituat ions 

B. Noble ( 197 1 ,  Ch .  6 )  presents two engineering applications : one in hydro­
dynamics and the other in chemical engineering. I have limited the material 
in this section to two first order equations. T. V. Karman and M. A. Biot 
( 1 940, pp. 249�255) use two second order equations to discuss the stability 
of an airplane. L. S .  Pontryagin ( 1 962, pp. 2 1 3�220) uses three equations to 
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discuss the stability of  a stream engine governor. N .  Rashevsky ( 1964, 
Part IV) uses various numbers of equations to discuss endocrine systems. 
He assumes the equations are linear. Instead, one can apply local stability 
theory to equations of a fairly general form. 

P R O B LE M S  

Problems 1 and 2 deal with the predator-prey model, but d o  not use local 
stability theory. 

1 .  Study the existence o f  equilibria i n  the predator-prey model graphically 
by plotting the two curves x' = 0 and y' = O. Limit yourself to x > 0 
and y > 0, and use ( 1 3) to help determine slopes. 

2. The gypsy moth caterpillar causes considerable damage to trees. 
Consider a predator-prey model in which the prey is the gypsy moth 
and the predator is one of several parasitic wasps that attack gypsy moth 
caterpillars. Since the wasp larvae feed on gypsy moth caterpillars, 
killing the caterpillar also kills the wasp larvae. A spray program is 
instituted for gypsy moth caterpillars, using a general purpose 
insecticide. Suppose that the result is an increase in the death rate of 
gypsy moths and wasps by an amount p independent of the number 
present. 

(a) Is this a reasonable approximation ? Why ? 
(b) Using the results of the previous problem, predict the effect of the 

moth control program on the equilibrium size of the wasp popula­
tion. Show that more data are needed to predict the effect on the 
moth population. 

(c) Let Xo and Yo be the solutions of the equations rex, y) - p = 0 
and sex, y) - p = O. Compute dxo/dp and dYo/dp and show that 
they have the same signs as Sy - ry and rx - sx , respectively, 
without using (b). 

(d) Use (c) and ( 1 3) to verify the graphical conclusions derived in (b). 
(e) Suppose that the wasps have little effect on the size of the gypsy 

moth population. This is probably the case when the gypsy moth 
population suddenly explodes. (Why?) Show that in this case 
spraying will cause the gypsy moth population to decrease. 

(j) Suppose that the gypsy moth is limited by the parasite rather than 
by intraspecies competition. This is probably the case when the 
gypsy moth population is fairly stable. (Why ?) Show that in this 
case spraying will cause the gypsy moth population to increase. 
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This model has rather interesting implications for insecticide 
usage policies. The following experience agrees with the prediction 
in (f). In 1 868 the cottony cushion scale insect was introduced into the 
United States from Australia and began to attack citrus groves. The 
ladybird beetle was introduced afterward as a predator to control the 
pest. When the citrus industry later tried to use DDT to reduce the scale 
population further, the number of pests actually increased (N. S .  Goel 
et aI. , 1 97 1 ). 

Because the gypsy moth population undergoes wild swings, I have 
doubts about the accuracy of the above predictions. However, the 
model does indicate some problems that must be considered in planning 
a control program. 

(g) The following data refer to percentages of true fish in catches 
brought into the port of Fiume, Italy. The remainder of the catch 
(sharks, rays, etc.) were primarily predators which feed on true 
fish. Can you explain the data ? Note that during World War I, 
which ended in 1 9 1 7, the amount of fishing was below peacetime 
levels . The data come from M. Braun ( 1 975) who obtained them 
from the work of U. d'Ancona. 

1 9 14  1 9 1 5  1 9 1 6  1 9 1 7  1 9 1 8  1 9 1 9  1 920 1921  1 922 1923 

88 % 79 % 78 % 79 % 64 % 73 % 84 % 84 % 85  % 89 % 

3 .  Develop the symbiosis model for species interaction. 

4. The Keynesian model involves a variety of functions. Can you describe 
some of the graphs associated with them ? In particular, what does the 
Y-R phase plane look like ? You need to graph D = Y and L = M in 
the Y-R plane. 

5 .  (a) Suppose we replace ( 1 6) in the Keynesian economics model by the 
more general equations Y' = y(D, Y) and R' = r(L, M). What can 
you say about the form of y and r ?  Do our conclusions remain 
valid ? 

(b) In the Keynesian model we could include sensitivity of investors 
to changes in Y and R, that is, J(Y, R, Y', R'). Can you say anything 
useful about such a model ? 

6. In this problem we consider the armaments of two antagonistic 
countries or blocs. Suppose that ( 1 )  provides an adequate description 
of the amount of armaments x and y of the two antagonists. Allow for 
maintenance costs and the pressure for higher or lower armament levels 
provided by the opponent's arms level. Discuss the behavior of the 
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model. Can you interpret negative values for x and y ? You may have 
to introduce a new definition for x and y in place of armament level. 
Perhaps something like the level of aggressiveness would work. How 
much faith do you have in the predictions you have made? 

The linear form of this model was introduced by Richardson. He 
showed that it provided a good fit to European data from 1 909 to the 
outbreak of World War I .  See L. F. Richardson ( 1960) or T. L. Saaty 
( 1968, pp. 46-48) for further discussion. 

7. Apply the methods of this section to the group dynamics model of 
Section 3 .3 .  

8 .  If various chemicals are reacting in a closed system (i.e . ,  nothing can 
be removed or added), reactions often stop before any of the chemicals 
are completely exhausted. Can this stable equilibrium be explained 
simply in terms of the basic model for chemical reactions ? [By " basic 
model " I mean the mass action model developed below in (b).] Let the 
various chemicals present be denoted by Xi ' Suppose that ml molecules 
of Xl plus ml molecules of Xl , and so on, can react to produce n l 
molecules of Xl plus nl molecules of Xl , and so on. We assume that 
the reaction is reversible. This is written in the form 

I miXi � I niXi · i 
In (a) through (c), we assume that ·this is the only reaction that is 
occurrIng. 

(a) Let Ci(t) be the concentration of chemical Xi at time t . Show that 

Cm = Ci(O) + (n i - mJx(t), 
where x(t) is some function independent of i . How can x(t) be 
interpreted ? 

(b) Suppose that a reaction can occur only if mi molecules of Xi all 
collide with one another simultaneously. Conclude that the 
forward reaction ( ---+ ) proceeds at the rate 

where k f is a constant called the rate constant for the forward 
reaction. Let kb be the rate constant for the backward reaction. 
Show that the equation for the reaction is 

x'(t) = kf TI CJtti - kb TI Cm"i . i i 
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(c) Conclude that the chemicals are in equilibrium if and only if 

(20) kJ TI C;(t)m i = kb TI C;(tti . ; 
Often several reactions occur at once. We want to show that the 

equilibrium points determined by (20) are locally stable. Only two 
simultaneous reactions are considered because of the limitations im­
posed in this section ; however, the approach and results hold for any 
number of reactions. 
(d) Repeat the analysis in (a) through (c ) assuming that the two 

reactions are 

with rate constants k J ,  kb , r J ,  and rb ; introduce x(t) and yet) 
associated with these reactions so that 

C;(t) = C;(O) + (n; - m;)x(t) + (q; - p;)y(t), 
x'(t) = kJ TI C;(tti - kb TI C;(tt', 

i i ,' i 
y'(t) = r J TI C;(t)P' - rb TI C;(t)q, . 

i i 

(e) Denote the four products, inc luding the rate constants, appearing 
in the above formulas by n(m), n(n), n(p), and n(q), respectively. 
Show that equilibrium occurs if and only if n(m) = n(n) and 
n(p) = n(q). 

(f) Write x' = f(x, y) and y' = g(x, y). Show that at equilibrium 

f = _ ( ) " (m; - ni x n m f C;(t) , 

{' 
= _ ( ) " (m; - n;) (p; - q;) Jr n m f C;(t) , 

_ _ ( ) " (m; - n;) (p; - q;) gx - n p 'i C;(t) , 

(p; - qi g) = - n(p) � C;(t) 
(g) Show that fx + gy is negative. Use the Cauchy-Schwartz inequality 

(I Wf) (I Zf) � (I VlIizi 
to show that fxgy � J;.gx � O. 
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(h) Discuss the behavior of the reactions near equilibrium. 

D. Shear ( 1967) establishes global stability under fairly general 
conditions. 

9 .  Apply the methods of this section to the graduate student model in 
Problem 3 .3 .2 .  

10 .  In this problem you will study models for gonorrhea epidemics. For 
more material on epidemics see N. T. 1. Bailey ( 1976). Gonorrhea is 
spread by sexual intercourse, takes 3 to 7 days to incubate, and can be 
cured by the use of antibiotics. Furthermore, there is no evidence that 
a person ever develops immunity. 

(a) Let x be the fraction of men who are infected and let f be the 
fraction of men who are promiscuous. Let X and F be the cor­
responding quantities for women. Discuss the model 

x' = - ax + b(f - x)X, 
X' = - AX + B(F - X)x, 

where a, b, A, and B are constants. Interpret the constants. 
(b) What are the equilibrium points of this model ? Which ones are 

stable ? Provide phase plane sketches. You should find that the 
number (a/bf) (A/BF) is critical. When will there be a continual 
epidemic ? 

(c) Interpret and discuss the effects of changes in the frequency of 
promiscuous intercourse, the fraction of the population (of either 
sex) that is promiscuous, and the speed of curing infections. 

(d ) What advice would you give to public health officials who wished 
to stem a gonorrhea epidemic in an affluent country like the United 
States ? In a place like Hong Kong ? 

(e) Develop a model like the above for a population of male homo­
sexuals. Such a model may be applicable to diseases not linked 
to sex, for examples, measles and typhoid. See Problem 8 . 1 .3 .  

(f) Develop a less specific model ; for example, 

x' = g(x , X) and X' = G(x , X), 

with minimal assumptions about 9 and G. 
(g) Can you apply any of the above ideas to diseases that require 

two hosts ? An example is malaria which is transmitted by 
mosquitoes. 
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9 .3 .  D I F F E R E N TI A L  D I F F E R E N C E  EQUATI O N S  

We now briefly consider equations involving both derivatives and time lags. 
As in the previous section, we expand the equation(s) around an equilibrium 
point to obtain a homogeneous linear approximation. These approximations 
can be studied with Laplace transforms. We describe an alternative approach 
which is equivalent to this but does not require a knowledge of Laplace 
transforms. 

For simplicity assume that there is only one equation in one endogenous 
variable. Write Taylor's theorem in the form 

00 (TDt J(t + T) = L -, J(t) = etDJ(t), 
n = O  n .  (2 1 )  

where D stands for d/dt. We could use this, for example, to  rewrite !'(t) = 
bJ(t - 1 )  - mJ(t) as (D - be -D + m)J(t) = O. In this way any homogeneous 
linear differential difference equation can be replaced by an infinite order 
differential equation L(D)J(t) = 0, where the function L is a polynomial in D 
and etD for various values of T. If the equation was of finite order, the general 
solution would be a linear combination of solutions of the form tnert, where r 
is a root of L(r) = 0 of multiplicity greater than n. The stability of the 
equation could then be determined by looking at the roots of L(r) = O. 
(Section 9.2 dealt with quadratic L, because eliminating v and Vi from (4) 
leads to one second order differential equation.) This method also works 
for the infinite order equation. 

Since L(r) = 0 is a transcendental equation, studying its roots is often 
very difficult. A computer may be essential. There are usually an infinite 
number of roots, so it is fairly likely that at least one will have a positive real 
part. Hence local instability is common. 

I can't resist the side remark that (2 1 )  can also be used to derive numerical 
integration and differentiation formulas. For examples see L. P.  Ford ( 1955 ,  
Ch. 8). 

The Dyn a m i cs of Car Fo l low i ng 

Traffic flow has become the subject of mathematical modeling in recent 
years. Three authors who discuss it are W. D. Ashton ( 1966), F. A. Haight 
( 1 963), and L. J. Pignataro (1 973). Sometimes cars are considered individ­
ually, and systems of equations or probabilistic models are developed. At 
other times traffic is treated as a fluid, and hydrodynamic techniques are 
used. Among the topics considered in traffic flow are the motion of traffic 
on the open road, bottlenecks, and effects of intersections. 
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How do drivers in  a line of  cars behave ? There is a limit to  how fast 
a driver can react, but too much delay in reacting causes collisions. Are the 
delays in drivers' reactions near the danger level ? The model is adapted 
from R. Herman et al. ( 1959) and R. E. Chandler et al. ( 1958), which use 
the Laplace transform method. That approach is adapted for use as a student 
project by E. A. Bender and L. P. Neuwirth ( 1973). Related material appears 
in the first part of J. Almond ( 1965). 

The driver of a car cannot directly control the speed of the vehicle. 
Instead, he or she controls its acceleration. Thus we expect to derive a 
formula for the acceleration as a function of the driver's sensitivity and the 
stimulus of the environment. Historically the model has been taken to be of 
the form 

(22) Acceleration = Sensitivity x Stimulus. 

Since we have not defined what we mean by either " sensitivity " or " stimulus," 
the above formula has no content. Rather than attempt to give meaning to 
the terms " sensitivity " and " stimulus," we consider directly the physical 
factors that enter into the driver's reaction. 

The driver's reaction (acceleration) depends on what he or she senses 
in the environment. The things that can be perceived most easily are the 
car's speed, its speed relative to other cars in the line, and the space between 
the car and adjacent cars. As an approximation, we suppose that the only 
relevant car is the one directly ahead of the driver. If Xn denotes the position 
of the nth car, we can write 

(23) Acceleration = f(x� , X� - l - x� , Xn - 1 - xn). 
In order to proceed it is necessary to say something about the nature of 

f. Experimentation seems to indicate that the most important factor is the 
relative velocity. To begin with we construct the simplest possible model 
using this : AcceleratIOn IS dIrectly proportional to the relative velocity. 

There is a delay, called the reaction time, between a change in the environ­
ment and the driver's response. It has been observed to be of the same order 
of magnitude as the time it takes the vehicle to cover the distance between 
it and the car ahead. Hence we expect the reaction time to be an important 
variable. To check this we compare the resulting model with one lacking a 
reaction time. 

Let Tn be the reaction time of the nth driver. The above discussion leads 
to the basic equation 

(24) 

when� An is a constant measuring the strength of the nth driver's response. 
Chandler et al. ( 1958) conducted an experiment on the General Motors 
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test track in which one driver followed another at what was considered to be a 
minimum safe distance. Equation 24 gave a good fit for most of the drivers 
when statistical methods were used to estimate Ii and T .  These parameter 
estimates are given in Table 1 . 

Ta b l e  1 Driver Reaction Parameters . 

Driver T A 
Number (seconds) (sec - I )  rA-

1 .4 0 .74 l .04 
2 l .0 0 .44 0 .44 
3 1 . 5  0 . 34 0 . 5 1  
4 1 . 5  0 . 32 0 .48 
5 1 .7 0 . 38  0 .65  
6 1 . 1  0 . 1 7  0 . 1 9  
7 2 .2 0 .32 0 .70 
8 2 .0  0 .23  0 .46  

Source : Chandler et a l .  ( 1 958) .  

We can rewrite (24) in operator notation as 

(
1 + D�:nD}n = Vn - I > 

where v = x' is the velocity of the car. Using the subscript 0 to denote the 
lead car, we have 

(25) [01 (1 + D�:kD)]vn = Vo · 

We get our stability information from this equation. 
To apply local stability theory we assume that vo(t) is given and that a 

stable particular solution vnp(t) exists and has been determined. The existence 
of such a solution is a global problem. Local stability theory can only tell us 
whether a driver's behavior stabilizes or becomes wilder when he deviates 
slightly from vnit). The general solution of the linear equation (25) is the 
particular solution plus the general solution of the homogeneous equation. 

(26) 

To study the homogeneous equation, we must find the roots r of 

fI (
1 + r�rkr) = o. 

k = 
1 ILk 



1 96 L O C A L  STA B I LITY T H E O R Y  

The following fact is proved by Herman et  al. ( 1959). 

The roots of zez + C = 0 all have negative real parts if and only if 
o < C < n12. If in addition 0 < C :s;; lie, the root with the largest real 
part is real. 

Setting z = Tk r and C = Tk Ak transforms each factor of (26) to the form 
zez + c. This proves that the motion of the nth car is stable if and only if 
Tk Ak < nl2 = 1 . 57 for 1 :s;; k :s;; n. For a long time interval, the root with the 
largest real part contributes the dominant exponential term to the solution 
of (24). Hence the oscillatory part is highly damped if Tk Ak :s;; l ie = 0.368 
for 1 :s;; k :s;; n. All the drivers in Table 1 satisfy the stability criterion, but 
only one of them satisfies Tk Ak :s;; 0.368 .  

From the preceding discussion, we see that a slight change in speed 
propagates down the line of cars, traveling from one car to the next after 
Tk seconds. This can be viewed as a wave moving down the line of cars. From 
this point of view we can ask another question related to stability : What 
happens to the amplitude of this wave as it propagates down the line of 
cars ? Each car individually may be stable, but the wave may increase in 
amplitude as it moves, thus leading to instability. A fluid dynamics model 
predicts the formation of a shock wave of acceleration or deceleration which 
either dies out or builds up to a maximum amplitude as it moves along the 
line of cars. We do not deal with this here. For a discussion see any of the 
books mentioned above. See also Problem 1 for a discussion of this stability 
question. 

Let us compare the results involving time delay with a model in which 
reactions are instantaneous ; that is, Tk == O. Equation 26 reduces to 

fI (1 + ; ) = O. k = 1 Ak 

The roots of this are r = - Ak . Thus the model without time lags is always 
stable and nonoscillatory. As the minimum Ak increases, the roots become 
more negative. This increases stability, because the general solution is a 
linear combination of terms like rme - h. The situation in the time delay model 
is just the reverse of this : Stability tends to decrease as Ak increases. Time 
delays are obviously important. 

Equation (24) is a rather severe specialization of (23). Let us consider (23) 
and see how much we have to specialize it to obtain reasonable results. We 
assume there are only two cars and that the lead car has a constant velocity Vo ' 

For simplicity we drop the subscript 1 . 



D I F F E R E N T I A L  D I F F E R E N C E  E Q U ATI O N S  1 91 

Because we have considered only stability of autonomous systems, we 
must eliminate the explicit time dependence of the positions. Let us adopt 
the convention that distance is measured from xo(O). Instead of the absolute 
position x of the second car, we consider the separation between the two cars. 
It is given by s = tvo - x.  Equation (23) becomes 

s"(t + i) = I[ - s'(t) + vo , s'(t), set)]. 
At the equilibrium separation Se we have s" = 0. Hence I(vo , 0, se) = 0. 
Suppose that this equation has a unique root. Expanding I about this point 
and neglecting terms beyond the linear ones, we have 

D2erDu � (/2 - Il )Du + 13 u, 
where u = s - Se and the partial derivatives 11 > 12 , and 13 evaluated at 
(Vo , 0, sJ Hence we must look at the roots of 

This can be rewritten as 

(27) 

where 

z rxz + f3  e = --2-' z 

and z = ir. 
Since experiments indicate that the dominant effect is due to relative 

velocity, it is reasonable to suppose that rx is negative (not positive, since s 
measures separation). If the velocities are held fixed and the separation is 
increased, we can expect the driver to accelerate to close the gap. Hence, 
f3 will be negative. 

The study of this model cannot be completed, because we do not know 
what the roots of (27) are. If we want to proceed further, we should first 
try to study (27) analytically. If this fails, we can turn to numerical study 
using a computer. In view of the data in Table 1 ,  it is reasonable to carry out 
such calculations with rx near - !- Since the effect of f3 is probably less than 
the effect of rx, it is reasonable to take f3 to be nearer to zero than rx. 

Although (27) seems to be a general study of the problem, it has a severe 
limitation : We assumed that I is differentiable. If a model builder is not 
careful, he can easily let this sort of assumption Slip by, since most functions 
are in some sense " well behaved." Our assumption that I is differentiable 
near equilibrium implies that, except for sign, a driver responds in the same 
manner to a small negative relative velocity as he does to a small positive 
relative velocity. Actually, the acceleration and deceleration responses may 
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be quite different because of  the driver's psychology, the design of the vehicle, 
or both. This has been studied by G. F. Newell ( 1 962). 

If the main difference is in reaction time, the waves of acceleration and 
deceleration will move down the line at different speeds. It seems reasonable 
that deceleration will move faster. If the lead car first accelerates and then 
decelerates to its original speed, the two waves will eventually cancel each 
other out. However, if the deceleration occurs first, the acceleration wave will 
lag further and further behind the deceleration wave. This may provide an 
explanation for some of the mysterious slowdowns that occur on freeways. 

PROBLEMS 

1 .  We want to study the amplitude of a disturbance as it moves along a 
line of cars. For simplicity we assume that the acceleration of the first 
car is proportional to sin (wt). This is a mathematically convenient 
assumption which pr"ovides nonzero acceleration with no net change in 
velocity. It is not as restrictive as it appears at first, because we can expand 
uo(t) in a Fourier series and, by linearity, add the solutions obtained for 
each term separately. 

(a) Use (25) and the fact that uo(t) - vo(O) is the real part of Aeiwt 
to show that vn(t) - uo(O) is the real part of 

Hint : Induct on n. 
Aeiwt fI (1 + iwe

1WTk) - 1 
k � 1 A

k 

(b) Suppose that all drivers are the same, so that Ak = A and 'k = dor 
all k. Deduce that the amplitude of the disturbance decreases as n 
increases if and only if 

I 
iweiwT 

I 1 + -A- > 1 .  

(c) Show that the above holds for all w if and only if it holds as w ---+ 0, 
and that this yields the condition A, > 1-

(d) Discuss this result in connection with Table 1 .  
2 . Experiments indicate that, when the separation of the vehicles varies 

greatly, a more accurate model is provided by replacing An in (24) by 
fln/[Xn(t) - xn - 1 (t)] , where fln is a constant. Discuss the local stability 
of this model. 

3. The following problems are phrased rather generally. Be as specific 
as you must to obtain results about stability, but try to avoid unnecessary 
assumptions. 
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(a) Model the growth of a single population. Allow a time delay due 
to the need to mature before being able to reproduce. 

(b) Same as in (a), but this time allow a time delay due to identical life 
spans for all members of the population. What about accidental 
death ? 

(c) Combine (a) and (b) if possible. 
(d) Consider a herbivore model with a time delay built in to allow for 

plant recovery and perhaps delay(s) associated with the herbivore 
life cycle, as in (a) and (b). 

4. Discuss the problem of controlling the temperature in a room as a 
function of how long it takes the heating unit to respond to the thermo­
stat. For example, forced air heaters respond quickly, while steam 
radiators take a fairly long time. 

9 .4 .  C O M M E NTS O N  G LO BA L  M ET H O D S  

A s  already remarked, I consider this topic very briefly. I hope that you will 
get the flavor of the subject from this short discussion so that you will have 
some idea of the sort of problems these tools can attack. 

In the physical sciences, conservation laws play an important role. 
A conservation law can be associated with some systems of differential 
equations by introducing a quantity whose time derivative is zero. For 
example, if x" = f(x), define 

(28) 
(X')2 

IX E(t) = -
2
- - 0 feu) duo 

Then dE/dt = [x" - f(x)Jx' = 0, and so E(t) is constant. In other words, 
if the force acting on an object depends only on the position of the object, 
we can define an energy E which is conserved. 

Let f be a restoring force ; that is, f(x) and x have opposite signs. Since 

X,2  
- > 0 
2 - and -ff(U) du Z 0, 

it follows from (28) that both of these are bounded by E and that E Z 0. 
Thus the speed I x' I is bounded. If the integrals 

L
+ oo

f(U) dU and f
w
f(U) dU 

are infinite, the position x is also bounded. 
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The pendulum equation (6) has  the form 8ft = f(8) - hew), where h 
is a frictional force and f is a restoring force provided - n  < 8 < n. The sign 
of hew) is the same as the sign of w. Consider E(t) defined by (28) with x = 8. 
By the previous paragraph, we have E(t) ;;::: 0. However, E(t) is not constant, 
since 

E'(t) = [8" - f(8)Jw = - h(w)w ::; 0, 

with equality if and only if w = 0. Thus E(t) decreases toward ° as t -+ 00 .  
Mathematically we  say that there i s  global stability. Physically we  say that 
energy loss due to friction causes the pendulum to slow down. F.  Brauer 
( 1972) discusses the motion of a pendulum when time is allowed to enter the 
differential equation explicitly. 

The van der Pol equation, 

(29) uft + (u2 - l )f1u' + u = 0, f1 > 0, 

is one of the classic limit cycle problems. It arises in the study of sustained 
nonlinear oscillations in vacuum tubes. You should verify that the only 
equilibrium point is u = ° and that it is unstable and oscillatory. If we 
approximate sin 8 by 8 in the damped pendulum model in Section 9.2, it 
will look very much like the van der Pol equation, but r(8') will be replaced 
by the term f1(u2 - 1 )u'. Intuitively, if u2 > 1, this term will act like a frictional 
force and cause damping, while if u2 < 1, it will act to increase I u' l .  Con­
sequently u(t) approaches a limit cycle. Diagrams of the limit cycle for various 
values of f1 are given by W. E. Boyce and R. C. DiPrima ( 1 969, p. 41 8) . 

The Poincare-Bendixson theorem can be used to prove the intuitive 
result of the last paragraph. It can be stated as follows. 

TH E O R E M .  If there is a bounded region D in the x-y plane such that any 
solution to the system 

x' = f(x, y) and y' = g(x, y) 
that starts in the region remains in it, the region contains either a stable 
equilibrium point or a limit cycle. 

Warning : This theorem does not generalize to three dimensions. 
To apply the theorem to (29), set x = u, y = u', f(x, y) = y, and g(x, y) = 

-x - f1(x2 - 1 )y . Determining a region D that satisfies the theorem is not 
easy. You may wish to try it. 

The study of global stability and limit cycles is more relevant in the 
life and social sciences than the study of conserved quantities. Although limit 
cycles are fairly common in models having nonlinear equations, they 
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cannot occur if all the equations are linear. Hence, extreme caution should be 
used in modeling an essentially nonlinear phenomenon by means of a linear 
approximation. This is fine for studying local behavior, but it is a dangerous 
practice if global results are desired. 

For some biological applications of global methods see J .  Cronin 
( 1977), R. H. May ( 1973) and T. Pavlidis ( 1 973) . For some economic applica­
tions see G. Gandolfo ( 1971 ,  pp. 375-385, 421 -465). Although mathematical 
psychology seems to be a fertile field for such methods, I am not aware of 
any such applications. 

P R O B L E M  

1 .  We return t o  the predator-prey model in Section 9.2 . See the discussion 
there. We do not wish to assume all of ( 1 3) . Which do you think are the 
weakest assumptions ? Set up some reasonable conditions to ensure 
that for some point (x* , y*) on r(x, y) = 0 the region 

D = {(x, y) I O ::;; x ::;; x* and o ::;; y ::;; y* } 
satisfies the Poincare-Bendixson theorem. Draw conclusions from this. 
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STOC HAST I C M O D E LS 

You may wish to refer to the Appendix since it contains a summary of the 
probabilistic concepts used in this chapter. Unlike most of the earlier 
material, this discussion definitely requires a bit more background than 2 
years of college mathematics . However, I couldn't resist the temptation to 
add these models, and I think they can be read with profit even if you don't 
fully understand the mathematics. 

Rad i oactive Decay 

The basic premise of the elementary theory of radioactive decay is that atoms 
have no " memory " ;  that is, the probability that an atom will decay during 
a given time interval depends only on the length of the interval and the 
number of neutrons and protons in the atom. In some situations, such as a 
chain reaction, an atom changes by absorbing a particle given off by another 
atom. When this doesn't happen, the decay of one atom does not affect the 
surrounding atoms. We consider only this case. It follows that the average 
rate of decay at time t is proportional to N(t), the total number of undecayed 
atoms remaining. When N(t) is large, it is reasonable to expect that most 
radioactive samples behave pretty much like the average. This leads to the 
deterministic model N'(t) = - rN(t), where r is the rate of decay. The solution 
to this equation is 

( 1 )  

This i s  fine a s  an approximation when the number of  atoms i s  large, but 
when No is small, the predictions of ( 1 )  are nonsense. For example, if No = 5 , 
when t = 2/r we have N(t) = 5/e2 � l Two-thirds of  an atom is nonsense. 
Can we construct a model that doesn't yield such nonsense ? 

Consider a single atom. Let T be a random variable equal to the length 
of time we must wait for the atom to decay. The basic assumption that an 

202 
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atom has no memory means that, if we have waited x minutes and the atom 
has not decayed, our estimate of how much longer we must wait is the same 
as if we had just started to observe. In mathematical language this can be 
written 

Pr { T 2: t + x l  T 2: x} = Pr { T  2: t} . 
If G = 1 - F, where F is the distribution function for T, we can rewrite this 
as G(t + x)/G(x) = G(t). In other words, G(t + x) = G(x)G(t). It is well 
known that this implies that G(t) is e - At for some A > O. We prove this under 
the assumption that F is differentiable at O. The derivative of G(t) is 

G'(t) = lim 
G(t + x) - G(t) 

= G(t)G'(O), 
x --+ O  x 

since G(t + x) = G(x)G(t) and G(O) = 1 - F(O) = 1 .  With A = - G'(O), we 
obtain the desired result. The distribution function F(t) = 1 - e - At is called 
the exponential distribution and is associated with " memory less " situations. 

The probability that an atom has not decayed by time t is just 1 - F(t) = 

G(t), which is ( 1 ) with No = 1 .  This is not surprising. Since G(t) is the prob­
ability that any given atom has not decayed by time t, No G(t) is the expected 
number of undecayed atoms at time t. Thus A is the decay rate, and ( 1 ) is just 
the average path of the decay process . 

How closely is the average path followed ? Associate with the ith atom 
a random variable Yi = Yi(t) which is 1 if the atom is undecayed at time t 
and 0 otherwise. Then Pr { Yi  = I }  = G(t). The Yi are independent by our 
assumption that the decay rate of an atom is independent of its surroundings . 
Hence the random variable 

Y = Y1 + Y2 + . . .  + YNo 
has mean f.1. and variance a2 , where 

f.1. = f.1. 1 + f.1.2 + . . .  = No G(t) = No e - At, 
(2) a2 = af + a� + . . .  = No G(t) [ l - G(t)] . 

Since a provides a measure of typical deviation from the mean, a/f.1. gives 
a measure of the typical percentage error involved in ·using ( 1 ). It is known as 
the coefficient of variation. By (2), 

a 1 - G(t) 
f.1. No G(t) , 

which is small provided No G(t), the expected number of undecayed atoms 
at time t, is large. A gram of matter contains more than 1 02 1 atoms, so ( 1 ) 
i s  usually a very good approximation. 
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There are some cases in which the coefficient of variation a//l may be 
significant. When a new radioactive isotope is produced in a particle 
accelerator, the number of atoms may be relatively small. This causes 
problems in estimating A. In population biology, growth models like ( 1 )  
are used. The population size No may sometimes be  sufficiently small for 
random fluctuations to be important. 

Is it possible to obtain an exponential decay curve when we have a 
mixture of atoms with different decay rates ? The answer to this question is no. 
Suppose we start out with a mixture of things that are decaying exponentially 
at various rates A. If F(/) is the fraction of the original mixture with .1 ::;; I, 
the expected amount of the mixture undecayed at time t is 

/let) = f e - 2t dF(A), 

which can be shown to have the form e - kt if and only if F(l) equals 0 for I < k 
and 1 for I ;:::: k. You may wish to try it. 

O pt i m a l  Faci l i ty Locat ion  

Suppose you are faced with the problem of  finding the best locations for 
certain facilities. To be specific and simple, consider fire stations in a large, 
uniform city with rectangular blocks. How can you measure the relative 
merit of a siting plan ? How can you find the one that is best or close to best ? 
This model is adapted from R. C. Larson and K. A. Stevenson ( 1972). 

Suppose t is the travel time between a station and a fire. We assume that, 
as t increases, the situation deteriorates. Thus if siting plan A locates stations 
so that every point can be reached at least as quickly as in siting plan B, then 
A is at least as good as B. What happens if some points take longer to reach 
under A and others take longer under B ?  Various possibilities exist ; for 
example, we could compare the average travel times or the average of the 
square of the travel times. We assume there exists some function u(t) called 
the utility, and that we want to maximize the average of u(t) over all points 
in the city. [Utility theory is discussed in many books. I recommend R. D. 
Luce and H. Raiffa (1 958). For the two cases just mentioned we could take 
u(t) = - t and u(t) = - t2 .] What do you think of this assumption ? If you 
don't like it, can you suggest a useful alternative ? Since we're going to assume 
u(t), think about the question of what u(t) should be. 

By the assumption of uniformity of the city, t is roughly a linear function 
of travel distance s. (It is only roughly a function, because turning corners 
may slow the trucks down. )  Let's write f (s) = - u (t) . Then we wish to 
minimize the average value of f. 
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Let's assume that the city streets form a rectangular grid and set up 
coordinate axes parallel to the streets . The travel distance between (X l ' yd 
and (X2 , Yl) is 

Prove this. 
Suppose that there are n stations and that the city area is nA . The optimal 

solution is to divide the city into n equal diamonds with a station at the center 
of each. Of course, the geometry of the city may prevent this, in which case 
the best siting won't be as good as the estimate we're working out. If the 
area of each of the diamonds is A, the region of such a diamond is given by 

D = {(X, y) :  I x i + I y l :s; ft} 
and Jhe average value of f is given by 

(3) If rJA72 A - I f( l x l + I y l ) dx dy = A - I J o f(s)4s ds. 
D 

Now suppose that the stations are distributed at random. Since we 
should easily be able to do better than random, this gives us an upper bound 
on what the average value of f is. If this is close to (3), we can conclude that 
laborious attempts at optimization will be practically useless ; but if it differs · 
considerably from (3), _we can conclude that care needs to be taken in siting 
the stations. We must compute the expected value of the average value of 
f. 

What is the probability that the distance between a random point in the 
city and the nearest station is at most s ?  This is the same as the probability 
that a station will lie in the diamond-shaped region of area rx = 2S2 sur­
rounding the point. If a station is placed at random, it will lie outside a 
region of area rx with probability 1 - rx/nA, since the total area of the city is 
nA. Thus the probability that no station will lie in the region is 

(1 -
n
�r � e - a/A . 

It follows that the probability that the closest station will lie at a distance 
between s and s + ds is 

d[l - (1 - rx/nA)"] 
� 

d(1 - e - a/A) 
_ 

_ 2s2/A 4s 

ds 
� 

ds 
ds - e 

A
ds, 

since rx = 2S2 . We should average f(s) times the probability over the entire 
area of the city. This leads to an integral. Unfortunately, the approximation 
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we have just given is poor when ex is a significant fraction of the total area of the 
city. If f(s) does not grow exponentially with s, it will not matter because the 
integrand will be small. The analog to (3) is approximately 

(4) A - 1  1''' f(s)e - 2s2/A4s ds, 
provided the integrand becomes insignificant when 2S2 approaches the total 
area of the city. This condition is satisfied for the f we consider, provided n 

is greater than about 5. (You should check this out when we are studying 
a particular f) 

A partial check on our mathematics to date is provided by the fact that 
(3) and (4) both have the value c when f(s) = c. 

Suppose we wish to minimize the average travel time. We set f(s) = vs, 
where v is velocity. Actually, travel time grows slower than linearly with s 
over  much of the range of s for fire engines in New York City (P. Kolesar, 
1 9 7 5 ; P. Kolesar et aI. ,  1 975) .  Since the travel distances for random siting 
tend to be longer than for the best siting, it follows that the ratio between 
random siting and best siting travel averages will be less than what we 
obtain. 

From (3) we have 

(5) 

and from (4), 

A - 1  4vs2 ds = _Y_ �_n 
f../Ai2 v I2A 

0 3 ' 

(6) A - 1 {Xl e - 2s2/A4vs2 ds = v Looe- 2S2/A ds = vJ¥ , 

where the first equality is due to integration by parts and the second to the 
formula 

foo e - rx2 dx = /no 
o \I �  

The ratio of (5) to (6) is 3 Jn/4 = 1 .329 ; that is, a random siting is about 
one-third worse than the best possible siting. 

We can try other functions for f(s). By the discussion of the forest fire 
model in Section 4. 1 , it seems reasonable to assume that f is a quadratic 
function of time with nonnegative coefficients. Hence f(s) = as2 + bs + c, 
with a, b, c � 0, gives an upper bound. We obtain from (3)  and (4), re­
spectively, 

aA bJ2A - + -- + c 4 3 
and 

aA b-/iUi 
T + -g- + c. 
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You should be able to fill in the details . The largest value of the ratio occurs 
when b = c = O. The ratio then equals 2 .  Thus careful siting is more significant 
for a quadratic f than for a linear f. 

The above results suggest
· 
that the siting of fire stations cannot be 

improved very much over a quick commonsense siting. Since (3) provides 
a lower bound on what can be achieved, any given siting can always be 
checked against the ideal fairly easily. 

Perhaps you have already raised the objection that for something like 
fire fighting any improvement in siting is important. I agree, but remember 
that we are using a model based on an idealized city, so our results are only 
approximate. Hence the best siting for an idealized city is probably not the 
best siting for a real city. We can expect the two to be close but, if two site 
plans I and II are such that I is a bit better than II in the ideal city. It may 
well be that II is a bit better than I in the real city. You may wish to think about 
this a bit more : How can the model be made more realistic ? What data should 
you collect to help decide where fire stations should be located in a real city ? 
How would you go about determining sites ? How is this affected by the fact 
that many fire stations already exist ? 

D istr ibut ion  of P a rt ic le  S i zes 

If you observe the size distribution of particles in clay, material ground in a 
mill, or pebbles on a beach, you will probably notice that the distributions 
tend to have a similar shape. This suggests the existence of a common under­
lying principle. I would like to know what it is, so I'll make a proposal, 
model it, and test. the model against the data. A successful model won't 
prove my proposal, but at least it will make it seem more likely. 

It seems reasonable to suppose that particle size has been determined 
by a large number of small random events. Because of the central limit 
theorem, it is natural to look for a normal distribution. Unfortunately, the 
distribution or particle sizes tends to be skewed and so cannot be normal . 
Two main distribution laws have been proposed : 

(7) 

f !Og X 
Log normal law : F(x) ex - <Xc  e - (t - ll ) 2/2u2 d t  

Rosin's law : 1 - F(x) ex e - rxn. 
We discuss the log normal law here. The log normal distribution is 

discussed by J. Aitchison and J. 'A. C. Brown ( 1 963) and applied by them to a 
variety of economic problems. The derivation given below is similar to 
B. Epstein's ( 1947). A more recent discussion of the particle size problem, 
with references to the literature, is given by G. V. Middleton ( 1970). 
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People have tried to fit other curves to a variety of size data, for example, 
the relative biomass of various species in a region, relative sizes of cities, 
and sizes of words. (The Biomass is the weight of the organisms.) Since these 
data are discrete, they are usually rearranged so that the items are in order of 
size. We then seek a model that predicts the (relative) size of the nth item in 
the list. See J. E. Cohen (1 966), B. Mandelbrot ( 1965), and H. Simon ( 1955)  
for examples. 

The size distribution of particles is assumed to be the result of many 
small changes which we will call (breakage) events . An example of an event is a 
wave hitting the shore . Nothing may happen during the event, or several 
particles may be broken and abraded. This is such a general framework that 
we can say very little about it. 

In probability theory the basic tools for handling a long sequence of 
random events are limit theorems. We would like to use a limit theorem here 
if possible. To apply such theorems it is necessary to know ( 1 )  that no single 
event has a big effect, (2) that the events are more or less independent, and (3) 
that the events combine in a simple fashion. 

The first condition certainly seems reasonable when averaged over all 
particles. 

What about the second condition ? Independence is closely related to 
the idea that knowing the past history of a particle is of no help in predicting 
what will happen to it. If the particles are made of two very different materials 
like wood and glass, this is not likely to be true. If the material is all fairly 
similar, this seems to be a fairly reasonable assumption. We assume that the 
material is all fairly similar. 

The third condition is rather vague. I don't see any way to sharpen it 
without saying more than should be stated. What we do now is try to describe 
the erosion procedure and see where it leads us. Let Nk(x) be the number 
of particles of size at most x after the kth random breakage event. We haven't 
yet said what we mean by " size." It could be volume, weight, a characteristic 
linear dimension, and so on. Let's postpone making a choice until it is 
useful to do so. 

In the example on page 202 , we saw that, when we dealt with a large 
number of particles, the number of undecayed particles was close to the aver­
age number. Although this sort of behavior is quite common, it is often hard 
to prove that it is occurring in some particular case. It seems reasonable to 
suppose that it holds in the present situation, but it does not seem easy to 
prove ; therefore we simply assume that it is true. Let the average number of 
particles of size at most x be Mk(x) = E(Nk(x)). We study this as if it were 
an exact distribution. 

Let Bk(y i x) be the average number of particles of size at most Y that 
we expect to obtain from a particle of size x during the kth breakage event. It 
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follows from our independence assumption that Bk does not depend on any 
property of an individual particle except its present state. We assume that the 
size of the particle contains all the information about the state of a random 
particle relevant to breakage. Of course, this is not correct, since a long, thin 
particle is more likely to break than a round particle of the same size. Hence 
this is really an assumption that we can just look at the average behavior 
of particles of a given size. It is easy to show that 

(8) Mk(y) = LWBk(Y ' X)M� _ ' (X) dx. 

As it stands, (8) is too general for us to try to apply a limit theorem. The 
following is the key assumption : The breakage event is independent of scale. 
This means that Bk(y I x) depends only on the ratio y/x. This is not always a 
reasonable assumption. Many breakage events tend to favor the breakage of 
larger particles. In crushing, smaller particles are protected because their 
larger neighbors bear the brunt of the crushing. If particles are broken by 
some sort of throwing action, a scale argument shows that the smaller 
particles are less likely to break : The strength of a rock tends to vary with its 
cross section. The energy expended on a rock varies either with the cross 
section or with the weight, depending on the situation. If it varies with weight, 
energy or strength increases with size, and so larger rocks are more likely 
to break. These arguments indicate that our model may tend to overestimate 
the number of large particles . 

Setting Bk(Y l x) = Ck(y/x), we can rewrite (8) in the form 

(9) Mk(y) = LW C{�)M� _ ' (X) dx. 

Let X k and � be random variables with distribution functions proportional 
to Mk and Ck > respectively. If (9) is normalized by dividing both sides by 
M k( (0), the result is the formula for the distribution function of the product 
of two independent random variables . Hence Xk = �Xk- ' which leads to 

Xk = � �- , . . .  Y2 Y,Xo · 
Since the Y are independent and no single event has a large effect, it follows 
from the central limit theorem that log X k tends to be normally distributed 
for large k. Thus 

(1 0) 

Pr {Xk � x} = Pr {log Xk � log x} 
1 f 'Og X 

� __ - (t - ll) 2/2a2 d � 

Fe: e t. 
(J'I' 2n - CD  

The parameters f.1 and (J2 are the mean and variance of log Xk , not Xk . 
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Now let's return to the problem of what we mean by " size." It doesn't 
matter whether we mean weight, a linear dimension, or a similar measure, 
because all powers of a log normally distributed random variable are also 
log normally distributed. Let's prove this .  Suppose that X is log normally 
distributed with distribution function (7). Then 

Pr {xr ::;; y} = Pr {X ::;; y l /r} 

S
IOg y/r - (X - /l )2/2a2 d IX e x 

- 00  

where t = rx. We have shown that replacing X by xr changes (fl, 0") to 
(rfl, I r 1 0-). 

Statistics are often collected by passing particles through a sieve and 
tabulating the percentage by weight that passes through sieves with various 
mesh sizes. Our model describes particles of different sizes by number, 
not be weight. We must find out how to connect these results. We show that 
the distribution by weight is log normal if and only if the distribution by 
number is. 

To study this, we need a formula for the moments of the log normal 
distribution A(x ; fl, 0") which is defined by ( 10). We have 

r r J 
0 
xr N(x ; fl, 0") dx = J 

0 
er log (x) N(x ; fl, 0") dx 

r = er/1 + (ra) 2/ 2 Jo N(x ; fl + r0"2 , 0") dx, 

sInce 

where t = log x. We can state the above result more compactly in the form 

(1 1 )  r Jo xrN(x ; fl, 0") dx = er/1 + (ra)2/2A(y ; fl + r0"2 , 0"). 

With y = 00 and r = 1 ,  2 the mean and variance of the log normal 
distribution can be obtained from ( 1 1 ) : 

Mean = ex = e/1 + a2/2 , 
Variance = f3 = ex2(ea2 - 1 ) .  

file:///r/o/
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We are now in a position to compare distribution by weight and distri­
bution by number . Suppose J\(y ; fl, a) describes the distribution by number. 
If the particles are all roughly the same shape, setting r = 3 in ( 1 1 ), we obtain 
a function proportional to the distribution by weight. Hence, distribution 
by weight is log normal with the distribution function A{x ; fl + 3a2 , a) . 
Let IXw and f3w be the mean and the variance of this distribution. We can easily 
express the mean IXn of the distribution by number using iXw and f3w : 

IXn = e'L + a2/2  

= e(IL + 3 a2 l + a2/ 2 e - 3a2  

( fJw) - 3 = IXw 1 + IX� 
How does the model fit the real world ? It fits some data remarkably 

well and fails at other times . The data in Table 1 is taken from G. Herdan 
(1953 ,  p. 1 30) who in turn took it from an article by S. Berg in a Danish journal. 
The percentage by weight of clay particles not exceeding a certain size 
(measured in micrometers) was tabulated. The plot on log probability paper 
should be a straight line. Using a least squares fit we obtain fl = - 0.377 
and a = 1 .47 when the logarithms in (7) are taken to the base e . The third 
column in Table 1 shows that the fit is very good. 

Ta b l e  1 Distribution of Clay Par­
ticle Sizes by Weight 

Percent 
Size ::;; 

(micrometers) True Fitted 

0 . 1 06 1 0 .0  1 0 . 2  
0 . 1 47 14 . 9  1 4. 7  
0 .25 24. 6  24. 6  
0 . 38  36 .4  34 .4  
0 .65  48 . 3  48 . 5  
0 .96 57 .5 59 .0  
1 .4 1  67 .6 68 . 8  
2. 1 5  77 .5  78 . 1  
3 .25 87 .3  8 5 . 5  

Source : G. Herdan ( 1 953 ,  p.  1 30) . 
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Ta b l e  2 Distribution of Sand Grain 
Sizes by Weight 

Percent 
Size :s; 

(millimeters) True Fitted 

0. 074 3 . 1  1 .0 
0 . 1 04 5 . 8  4 . 5  
0 . 1 47 1 2 . 9  1 4.2  
0 .208 28 . 5  32 .9  
0 .295 56 . 1 57 .6  
0 .4 1 7  79 . 6  79 .4  
0. 589 94. 1 92 . 6  

0 . 833  99 . 5  98 . 1  

1 . 1 7 99 .93 99 .6  

Source : G.  H .  Otto ( 1 939) .  

The material in  Table 2 was taken from G .  H. Otto (1 939), who obtained 
it by studying a sand dune in Palm Springs, California. In this case f.1 = - 1 .3 3  
and (J = 0. 55 1 .  The fit i s  not quite a s  good 

If you are interested in more data, you might try the article by G. M. 
Friedman ( 1958) . I have not checked to see how well his data can be described 
by a log normal distribution. 

P R O B LE M S  

1 .  When steel tapes are used to measure distance, alignment can be a 
problem. For example, suppose we use a 100 foot long steel tape to 
measure the distance between two points about a i mile apart. Ii. is 
unlikely that we will be able to measure along a straight line connecting 
the points ; instead we will probably zigzag slightly. As a result, the 
measured distance will exceed the actual distance. The following model 
of the situation was adapted from B. Noble ( 197 1 ,  Sec. 1 3 .6). 

(a) Suppose that the error in aligning the kth usage of a tape of length 
L is ek (Figure 1 ). Show that, if the distance between the two points 
in question is about nL, the distance is overestimated by approxi­
mately 

1 n 

(j 
= 2L 

I e� . k = l 
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- - - - - - - - - - - - - - - � 
e 2  

t 
F i g u re 1 Errors in aligning a measuring tape. 

(b) What reasonable assumptions can you make about the distribution 
of ek to obtain information about the distribution of (j ?  Can you 
apply the central limit theorem ? 

2. The following problem was adapted from B. Noble ( 197 1 ,  Sec. 15 . 3 ). 
Suppose you are asked to decide whether or not to install a traffic 
signal at a pedestrian crosswalk . To arrive at an answer you need to 
know how long a person can expect to wait before a gap in the traffic 
provides enough time to cross. The only data you can expect to obtain 
are physical information about the street and the rate of traffic flow 
in cars per hour. How can this be used ? For simplicity, we assume 
that for most of the problem the traffic all moves in the same direction. 

(a) It has been found experimentally that the process of car arrival 
at a given point on a road can be approximated fairly well by a 
memoryless (Poisson) process .  Show that, if the average number of 
cars passing the point per unit time is A., the probability that no cars 
will pass during a given interval of length t is p = e - M. 

(b) Show that the expected waiting time for a gap of size at least t 
is roughly tip. Is this estimate high or low ? How accurate is it ? 

(c) Children walk at a rate of about 3 . 5  feet per second. If we wish the 
expected waiting time for a child to be at most 1 minute, obtain 
an estimate for the maximum permissible flow rate A.max in cars 
per hour as a function of street width D. Noble gives 

29,000(2.322 - log l o D) 
A.max = D 

which has been adopted by the Joint Committee of the Institute 
of Traffic Engineers and the International Association of Chiefs 
of Police. 

(d ) How accurate is the estimate in (c) ? What if the assumption in (a) is 
incorrect because of saturation of the roadway or because of the 
presence of traffic signals up the road ? 

(e) Discuss the situation in which traffic is moving in both directions. 
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3 .  How far apart can we expect the ends of  a randomly thrown string to  fall ? 
1. L. Synge ( 1 970) presents an interesting discussion of unsuccessful 
attempts to model this situation. The following is adapted from L. E. 
Clarke ( 1971 ) who wrote an article in response to Synge's. 

We assume that the string is made of n small stiff pieces of length /, 
where the angle between adjacent pieces is a random variable depending 
on / . Then we allow I --> O. Let the location of one end of the string be 
the origin and let the farther end of the kth segment be at the point 

Let Pi = (Xi , Ii) and give it a physical interpretation. 

(a) Show that the expected value of the square of the distance between 
the ends of the' string equals 

E(S2) = nl2 + 2 I E(XiXj + Ii lj). i < j 
(b) Argue that we can assume 

and also that 

E(Pi + 1 1 P; , Pi - b . . .  ) = E(Pi + 1 1 PJ, 

E(Pi + 1 1 Pi = (1, 0)) = (ql, 0), 
for some q = q(l) < 1. Show that it is reasonable to suppose that 
q(O) = 1 and that m = - q'(O) > 0 is a measure of flexibility. (You 
should picture what is happening : We are considering shorter and 
shorter lengths of string of some fixed thickness . ) Is it reasonable 
to assume that q '(O) exists as we have just tacitly done ? 

(c) Show that 

(d) Show that, for i < j, 

and that 

E(XiXj + Ii lj) = E(qj- iX? + qj- 1 ¥?) = qj- iI2 . 
Combine this with (a) to obtain 

E(S2) = [2n + 
2/2q(q" - nq + n - 1 )  

( 1 - q)2 



Hint : 

I qi - i 
= I (n - i)qi 

i < j i 5: n  
and 
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(e) Fix the value of r = nl, the length of the string, and let 1 � o. Show 
that E(S2/r2 ) = g(mr), where 

2(e "7 t  + t - 1 )  g(t) = . 2 • t 
(f) Does the result appear reasonable ? I recommend that the class 

design and carry out an experiment to test the model. How difficult 
is it to throw a string at random ? Do you have problems with the 
string tending to stick to itself ? With centrifugal force when the 
string is thrown ? 

These sorts of models are closely related to random walks. The 
result in (d) is applicable to the problem of determining the lengths of 
long chain polymers. See C. Tanford ( 1961 ,  Sec. 9). 

4. (a) You are the manager of a delicatessen. Certain items that you stock 
are highly perishable. The pastries you buy from the wholesale 
bakery must be ordered 1 day ahead and can be kept only 1 day. 
How should you determine the size of your order ? 

(b ) Your competitor has less stringent standards than you, so he keeps 
pastries for 2 days. What is his optimal ordering policy ? If you both 
have the same costs and wish to make the same profit, how will 
your prices compare ? Will they differ substantially ? How is your 
answer affected by the volume of business you and your competitor 
do ? 

Note : you must make a variety of assumptions to do this problem. 
Discuss them. 

5 . This problem is adapted from H. M. Finucan ( 1976). Sometimes we 
must choose a variable x which is stochastically related to another 
variable y. Penalties for y > Yo and y < Yo may be substantially different. 
For example, suppose you wish to jump across a stream. Let x be the 
amount of effort used, y the distance of your jump, and Yo the width 
of the stream. In a plant with automatic packaging, x may be the length 
of time a chute filling a container is open, y the weight of the product 
entering the container, and Yo the minimum acceptable weight. Here we 
model a situation that is different from these two. When steel beams are 
made by continuous hot-rolling, they are cut twice. The first cut is a 
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rough cut as the beam emerges from the rollers . The second is a precise 
cut of the cool beam. The length y of the cooled rough cut beam is 
approximately normally distributed with mean x and variance S2 . 
The machinery is calibrated in terms of x. S2 is measurable and cannot 
be changed except by changing the mill machinery and/or operating 
procedures ; therefore we consider it fixed and known. If the length of the 
cool beam exceeds Yo ,  it is cut to the length Yo ; if the length is less than 
Yo ,  it is rejected. 

(a) Define 

and E(z) = 1''' e(t) dt. 
Show that 

(Yo - x) p (x) = Pr {y ;:::: Yo } = E -S- , 

and that the average length of cold steel needed to produce one 
beam is W(x) = x/P(x). 

(b) Conclude that the extreme values of W are given by the solutions to 

Yo E(z) 
S - z = e(z) ' 

where x = Yo - Sz. Describe a procedure for computing the value 
of x that minimizes W(x). Finucan cites Yo = 30 feet and S = 2 feet 
as a typical example. Show that the optimal value for x is 33  feet 
1 1  inches. (Use a table of e(z) and E(z), or a table of E(z)!e(z) if 
you have one.) 

(c) Suppose undersized beams can be cut to length Uo and used. 
Assume that Yo - Uo is much larger than S. Discuss a model. 

(d ) Can you suggest improvements in the model ? Other applications ? 
Develop a model for the packaging example cited at the beginning 
of the problem. 



S O M E  
A P P E N D I X 

P R O BA B I L I ST i e 
BAC KG R O U N D  

This appendix contains a hasty survey of the probability theory needed 
in the text. It can be used as a review for those who have had some probability 
theory. For those who have not had any, it can be used as an adjunct to 
lectures on the subject. 

A . 1 . TH E N OTI O N  O F  P R O BA B I LITY 

If I toss a fair coin, what are the chances that it will come up heads ? We 
expect to see 50 % heads in the long run and so write 

Pr {heads} = l 
This is read, " The probability of the event ' the coin lands heads up after 
this toss ' equals ! " ;  however, we shorten it to, " The probability of heads 
equals l" 

What happens when we don't know the probability from a priori 
considerations ?  For example, what is the probability that a newborn baby 
will be a boy ? We need to say very carefully what we mean. The fraction of 
newborn children who have been males in recent years has been 0. 5 14  in 
the United States. Therefore we could say that the probability of a male 
child is 0. 5 1 4  if the expectant mother is American. However, if you told me 
that she is a black American, I would recommend changing the probability 
to 0.506, since this is the observed fraction when the mother is a black 

21 7 
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American. What's going on ? The population I'm looking at has changed 
from all babies recently born to American women to all babies recently born 
to black American women. Note that both these populations are drawn 
from the past ; as in all of science I'm assuming that the future will resemble the 
past. Although these considerations are essential for applications, they should 
not enter into the theoretical framework of probability theory to which we 
now turn our attention. The problem of estimating probabilities, to which 
I've alluded above, comes up again in the last paragraph of Section A.5 .  

D E FI N ITI O N. Let Iff be a finite set and let Pr be a function from Iff to the 
nonnegative real numbers such that 

I Pr {e} = 1 .  

(Note the braces instead of parentheses for the function.) We call Iff the 
event set, the elements of Iff the simple events, and Pr {e} the probability 
of the simple event e. 

As an illustration, consider tossing a fair coin twice. The outcomes can be 
denoted by the obvious notation HH, HT, TH, and TT. We can think of 
these as simple events and write 

Iff = {HH, HT, TH, TT} .  

Also, P r  {e} = i for each e E Iff. A s  another illustration, suppose that we 
toss the coin until a head occurs or until we have completed two tosses. Then 
the simple events can be denoted by 1 , 2, and F -meaning a head at the first 
toss, a head at the second toss, and a failure to obtain a head. These cor­
respond, respectively, to H, TH, and TT in the previous notation. We have · 

Iff = { 1 ,  2, F},  Pr { 1 } = 1, Pr {2} = Pr {F} = t. 
Note that the simple events in both examples are mutually exclusive and 
exhaustive ; that is, exactly one occurs. This is the case in all interpretations 
of simple events .  

If we had tossed a coin twice in the last example, we could think of 
event 1 as being the occurrence of either of the two simple events, HH and HT. 
We would write this as 1 = {HH, TT} .  Thus we would write 

Pr (HH, HT} = Pr { I }  = t 

and read the left side as the probability of either HH or HT occurring. More 
generally, 

D E FI N ITIO N .  For any subset S of Iff we define Pr {S} to be the sum of 
Pr {e} over all e E S and refer to it as the probability that a simple event in 
S will occur or, briefly, the probability that S will occur. 
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We can estimate Pr {S} by sampling from <ff in such a way that each 
elementary event e is chosen with probability Pr {e} . (For the examples 
given above, our sampling can be accomplished by repeatedly tossing the 
coin.) If N s of the elementary events in such a sample of size N lie in S, then 
N siN is an estimate for Pr {S} . This is the Idea behind Monte Carlo simula­
tion. We'll find it convenient to use the abbreviation Pr {statement} for 
Pr {S} ,  where S is the set of all e such that the statement is true if e E S occurs 
and false if e r/= S occurs. For example, in the two tosses of a fair coin, 
Pr { ?:  1 head} stands for the probability of the set {HT, ill, HH} .  

We need two other concepts. After defining them, I'll discuss them briefly. 

D E F I N IT I O N .  The conditional probability of A given B is defined to be 
Pr {A n B}/Pr {B} and is denoted by Pr {A I B} .  The sets of events A and B 
are called independent if 

Pr {A n B} = Pr {A}  Pr {B} .  

Conditional probability is interpreted as the probability that e E A given 
that e E B. We can think of this as restricting our attention to B :  If we estimate 
probability by counting, as described earlier, we will estimate the probability 
that an event in B lies in A by N AnBIN B ' Since this equals (N AnBIN)/(N BIN), 
we see that the definition of conditional probability agrees with the notion 
of restricting our attention to the events in B. 

We can think of independence as follows. Knowing that e E B gives no 
information about whether or not e E A, since 

( 1 )  Pr {A n B} 
Pr {A l B} = 

Pr {B} 
= Pr {A} ,  

by  the definitions of  conditional probability and independence. By  symmetry, 
the roles of A and B can be interchanged. 

P R O B L E M S  

1 .  Prove that Pr { A  u B }  = Pr {A}  + Pr {B} - Pr {A n B} .  

2. Two dice are thrown. All that matters is the sum of the two values . 
Formulate this in a probabilistic framework. 

3. We are looking at U.S. coins minted in the 1960s. Our interest is in 
denomination, date, and mint. Discuss some things we could consider 
and cast them all in the appropriate terminology, assuming that a simple 
event corresponds to observing a single coin. To begin with, what is iff ? 
Does it help to know the number of each type of coin that was minted ? 
Why ? 
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A . 2 .  R A N D O M  VA R IA B LES 

We're frequently not interested in  simple events but only some real-valued 
function of them ; for example, the number of heads in 1 00 tosses of a coin. 
A natural choice for the set of simple events is the 2 1 0 0  possible sequences 
of heads and tails, but the function we wish to study takes on only 10 1  
values-a  considerable reduction from 2 1 00 . The value of such a function 
depends on which simple event occurs, so it is a variable. Since it depends on 
something that is random, it is a random variable. Thus we have 

D E F I N IT IO N .  A random variable is a real-valued function defined on tt. 

It is conventional to use capital letters for random variables. Instead of the 
functional notation X(e), one frequently writes simply X and talks about the 
value x of X. The function Pr {X s x} is called the (cumulative) distribution 
function for X and is important in discussing continuous probabilities. 
(See Section A.4. ) By our convention regarding Pr {statement} ,  it equals the 
sum of Pr {e} over all elementary events e with X(e) s x. 

We are often interested in what values X is likely to take on ; for example, 
if we toss our coin 100 times and count the number of heads, how many do 
we expect ? How close to this estimate can we expect to be ? We now introduce 
two important concepts relating to these questions. 

D E F I N IT IO N .  The expectation or expected value of X is given by 

E(X) = I X(e) Pr {e} , 
e E {/  

and the variance of X is given by 

a2(X) = I [X(e) - E(X)y Pr {e} . 
e E {/  

[Note that in the definition functional notation is used correctly ; i . e . ,  X 
should not be replaced by X(e) at any of its occurrences.] 

The expectation is the average value of X. If we make lots of observations 
and compute the average value of X, it will approximate E(X). The average 
value of X over a series of observations is denoted by X. Since X is easily 
determined, we have a good way to estimate E(X). Thus, if E(X) completely 
determined Pr {X = e} , we'd have a method for estimating whatever we 
wanted about X. We see examples of this later. 

The variance is a measure of how much we can expect values of X to 
deviate from E(X)-the average value of [X(e) - E(X)y ; that is, 

a2(X) = E([ X - E(X)y). 
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(This suggests that we can approximate a2 by (X - X)2 . This is true, but a 
better estimate is given by this number times n/(n - 1 ). We won't go into the 
reason here. )  The larger the value of a2(X), the more spread out the values 
of X tend to be. Stated another way, if the variance is small, then X is not 
likely to deviate far from E(X). The following theorem makes this precise. The 
proof is left as a problem. 

THEOREM. Chebyshev's inequality. Whenever c > 0, 

a2(X) 
Pr { I X  - E(X) I > c} ::; -2- ' c 

In words, the probability that X differs from its expected value by more than 
c does not exceed its variance divided by c2 . Note that the theorem is useless 
if c2 < a2(X). 

Some basic properties of expectation and variance are 

(2) 

E(X) = I x Pr {X = x} , 
x 

E(aX + bY) = aE(X) + bE(Y), 
a2(X) = E(X2) - E(Xf, 

E(a) = a, 

a2(aX + b) = a2a2(X), a2(a) = 0, 

a2(X) � O. 

We prove the second and third. You do the others. We have 

E(aX + b Y) = I [aX(e) + b Y(e)] Pr {e} 

and 

for the third 

e 

= a I X(e) Pr {e} + b I Y(e) Pr {e} 
e e 

= aE(X) + bE(Y) 

E(a) = I a Pr {e} = a. 

a2(X) = E([ X - E(XW) 
= E(X2 - 2E(X)X + E(X)2) 
= E(X2) - 2E(X)E(X) + E(Xf 
= E(X2) - E(X)2 . 
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The notions of independence and conditionality can of course be carried 
over to random variables. Thus we say that X and Yare independent if 

Pr {X = x and Y = y} = Pr {X = x} Pr { Y  = y} , 
for al l  x and y. In other words, the events X = x and Y = y must be inde­
pendent for all x and y. Hence knowing the value of X gives no information 
about the value of Y, and vice versa. The conditional expectation is defined by 

(3) E(X I Y = y) = I x Pr {X = x l  Y = y} . 
x 

In other words, it is the average value of X on the set of events for which 
Y(e) = y. Although this is a function of y, it is often abbreviated E(X I Y). 
Note that E(E(X I Y» is simply E(X), because E(E(X I Y» is obtained by 
multiplying (3) by Pr { Y  = y} and summing over y, which by simple manipu­
lation reduces to E(X). 

The importance of independence is reflected in the following theorem. 

TH EO R E M .  If X and Y are independent random variables, 

E(X Y) = E(X)E( Y), 
(4) a2(X + Y) = a2 (X) + a2( y), 

E(X I Y) = E(X). 

We prove these. We have 

E(X Y) = I X(e)Y(e) Pr {e} 
e 

= I xy Pr {X = x and Y = y} 
x. )' 

= I xy Pr {X = x} Pr { Y  = y} 
x . )' 

= E(X)E(Y), 

a2(X + Y) = E((X + y)2) _ (E(X + y» 2 

and, by ( 1 ), 

= E(X2 + 2X Y + y2) - [E(X) + E( Y)J 2 

= a2(X) + a2( y) + 2E(X Y) - 2E(X)E( Y) 
= a2(X) + a2( y), 

E(X I Y) = I x Pr {X = x l  Y = y} 
x 

= I x Pr {X = x} 
x 

= E(X). 
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1 . Complete the proof of (2). 

2. Prove Chebyshev's inequality by showing that 
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u2(X) Z c2 Pr { I X - E(X) I z c } . 
3 .  The notion of independence is extended to several sets by requiring 

that for any subcollection A, B, . . . , C of the sets 

Pr {A n B n . . .  n C} = Pr {A } Pr {B} . . . Pr {C} .  
Describe independence for several random variables and show that, if 
Xl ' . . .  , X n are independent, 

E( r; Xi) = r; E(X;), 
u2( � Xi) = � u2(XJ 

What else can you say about the situation ?  

4. If X and Y are independent random variables with Pr {X = x} = f(x) 
and Pr ( Y  = y} = g(y), show that 

Pr {X + Y = z} = I f(x)g(z - x), 

the sum ranging over all x for which f(x) =1= o. 

5 . (a) Establish Bayes' formula : 

{ I } _ Pr {A } Pr {B I A } 
Pr A B - Pr {B} . 

(b) Suppose that a diagnostic test has been developed that detects 
a particular disease 98 % of the time when it is actually present and 
incorrectly " detects " in 5 % of the time when it is not present. If 
1 % of the population has the disease, show that the probability 
an individual has the disease when the test says that he does is 

(0.0 1 ) (0.98) 
(0.0 1 ) (0.98) + (0.99) (0.05) = 0. 14 . 

In other words, 86 % of the detections are incorrect. 
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A . 3 .  B E R N O U LLI  TR IALS 

Consider an experiment made up of a repeated number of independent 
identical trials each having two outcomes ; for example, coin tossing. These 
are called Bernoulli trials . Since Bernoulli trials are important, I'll discuss 
some of their basic properties. 

We designate the outcomes of the trials by S and F for success and failure 
and let p be the probability that trial i ends in success. A typical simple event 
is a sequence containing some number s of successes and some number f of 
failures in some order. Since the trials are independent, probabilities multiply, 
and so pS( 1 - p)f is the probability of the simple event, given that exactly 
s + f trials are performed. 

Let Sn be a random variable equal to the number of successes in the 
first n trials. We want to study Pr {Sn = k} . Let (�), read " n  choose k," denote 
the number of ways to choose k locations in an n long sequence. Then 

(5) Pr {Sn = k} = G)pk( 1 - p)n - k. 

The numbers m are the well-studied binomial coefficients. Their values turn 
out to be. 

(n) = 
n(n - 1 ) · ·  . (n - k + 1 ) 

k 1 · 2 · · ·  k . 

To study Sn it is convenient to introduce random variables that reflect the 
independence of the trials . Define random variables Xi by Xi = 1 if the ith 
trial succeeds, and Xi = 0 otherwise. Then, S n = Xl + . . .  + X n '  and the Xi 
are independent. One easily computes E(X;) = p, and 

(j2(X;) = p(l - p? + ( 1 - p) (O - p)2 = p(1 - p). 
By Problem A.2 .3 , E(Sn) = np and (j2(Sn) = np(l - p). 

How long must we wait for our first success ? We have a problem here 
because there may be no success in the first n trials. To overcome this, we 
do computations with n fixed and then let n -> 00. The answer is the expected 
value of a random variable that equals k if and only if the first success occurs 
on trial k. Hence we obtain 

I k Pr {Sk - l = 0 and Xk = 1 }  = I k Pr {Sk - l  = O} Pr (Xk = O} 

= I k(1 - p)kp 
d � k = P dq L. q , 
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where the sums range from k = 1 to k = n. Evaluating the last sum and letting 
n --+ 00, we find that the expected waiting time for the first success equals 
lip. Since the trials after the first success are independent of the trials leading 
up to the first success, we see that the expected waiting time for the jth success 
is j/p. 

P R O B LE M S 

1 .  Let Wj b e  a random variable equal t o  the number o f  Bernoulli trials until 
the first success. 

(a) Show that Pr { Wj = n} = qn - lp. 
(b) What is a2(WI ) ?  

2. Let Jil'k be a random variable equal to the number of Bernoulli trials 
until the kth success. 

(a) Show that 

Pr { Jil'k  = n} = C = � )qn - kpk . 

(b) What is a2(Jil'k) ?  Hint : Look at Xl + X2 + . . . + Xk > where the 
Xi are independent and have the same distribution as Wj ' 

3. The circuitry in my hand calculator has a probability of failure equal to 
p per hour of use, independent of how long I have used it. How long can 
I expect the calculator to work before it fails ? 

4. In situations like that in the previous problem, circuits can be duplicated. 
Then failure does not occur until both copies of the circuit have failed. 
Let T be the time to failure. 

(a) Show that 
Pr { T = n} = Pr {max (X, Y) = n} , 

where X and Y are independent and identically distributed with 
the same distribution as Wj ' 

(b) Show that Pr {T = n} = q2n - 2 ( 1  - q2), first by using (a) and second 
by expressing T as Wj for some Bernoulli trials. 

A. 4.  I NFINITE EVENT SETS 

Very often we want to allow an infinite event space. In this case it may be 
difficult to start out with elementary events. For example. consider the 
situation in which all the real numbers in the interval between 0 and 1 are 
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equally likely to be chosen. We cannot assign a nonzero probability to any 
number, for we should then be obliged to assign the same probability to all 
numbers in the interval, and then the sum of the probabilities would be 
infinite. However, if each number has zero probability of being chosen, the 
sum of the probabilities will be zero. The way out of this difficulty is to 
ignore individual numbers and simply assign a probabiky to the event that 
the number chosen lies between x and y. 

Thus we could start out with a definition of Pr as a function on the 
subsets of Iff having certain properties like Pr { 4 }  ;::: 0, Pr {lff } = 1 ,  and 
Pr {A u B} = Pr {A} + Pr {B} - Pr {A n B} . This :nproach leads to 
complications. A simpler but limited approach is to work with random 
variables and use Pr {X � x } as the basic concept. This will satisfy our needs. 

D E F IN IT I ON .  I f  F(x) i s  a real-valued monotonic function satisfying 

lim F(x) = 0 and lim F(x) = 1 ,  
X ---+ - oo  x -+  + ':L' 

we call F(x) the distribution function for the random variable X and write 
Pr {X � x} = F(x). If f(x) = F'(x) exists, we call it the density function 
for X. 

Roughly speaking, j(x) dx is the probability that X lies between x and x + dx. 
By a suggestive abuse of terminology f(x) dx is called the probability that 
X = x. 

Consider the example 

° for x � 0, 
F(x) = 1 for x ;::: 1 ,  

x for O � x � 1 . 

It follows that X lies in the interval between ° and 1 ,  since 

Pr {X � O} = F(O) = 0, 

and 

Pr {X > I }  = 1 - Pr {X � I }  = 1 - F(1 )  = 0. 

Furthermore, if 0 � x � y � 1 ,  

P r  { x < X � y} = F(y) - F(x) = y - x. 

Thus the probability that X l ies in the interval (x, yJ equals the length of the 
interval. We also have f(x) = 1 .  This is the uniform distribution on the 
interval [0, 1] mentioned in the first paragraph of this section. 
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Consider the example F(x) = bi for ai :s; x < ai + l and i = 1 , 2, . . . , n, 
where ao = - 00 , an + l = + 00, bi = Pl + . . . + Pi ' and bn = 1 .  If 
ai :s; x :s; y < ai + 1 >  then Pr {x < X :::;; y} = O. If b > 0 is small, 

Pr {a i - b < X :s; aJ = bi - bi - l = Pi ' 
Letting b -)0 0, we see that, in some sense, Pr {X = aJ = Pi '  Thus the step 
function F corresponds to a discrete distribution like those discussed in 
Section A.2. 

Thus the present framework provides a generalization of the ideas 
introduced in Section A.2 ; however, to carry out the generalization we shall 
need some additional concepts, and the whole thing will appear rather 
theoretical. The main idea to keep in mind is that L is replaced by J and 
Pr {X = x} is replaced by f(x) dx. 

The analogy between sums and integrals suggests that we define 

I
+
co E(X) = 

- co 
xf(x) dx. 

This has two drawbacks : First, we want to replace X by a function of X 
to obtain a more general definition (thi3 is easy), and second, f(x) may not 
exist (this is more serious). To begin with, we write 

(6) I
+
co E(g(X)) = 

- co 
g(x)f(x) dx. 

Integrating by parts with u = g and dv = f dx we have 

(7) I
+
co J

+ oo  
E(g(X)) = g(x)F(x) - 00 -

�
co 
g'(x)F(x) dx. 

This looks like a good definition for expectation, since f does not appear. 
Unfortunately the two terms in (7) may both be infinite. To avoid this problem 
we have 

D E F I N IT I O N .  The expectation of g(X) is given by 

E(g(X)) = 
t
�i�

oo 
[g(t)F(t) - f 00 g'(x)F(x) dx J 

If f(x) exists, this reduces to (6). 
Now there is a question of consistency that we should consider. Let 

the random variable Y be defined by Y = g(X). We ought to have E(Y) = 
E(g(X)). Is this the case ? Suppose that g is monotonic increasing. We have 

Pr { Y :S; y} = Pr {X :s; g - l (y)} = F(g - l (y)). 
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Hence 

E(Y) = "��CX) [UF(g - l (U)) - f ",F(g - l (Y)) dyJ 
by the definition. Setting t = g - l (U) and x = g - l (y), we have 

E(Y) = t��cc [g(t)F(t) - f
oo
g'(X)F(X) dx l = E(g(X)), 

which is what we had hoped for. 
The variance of X is defined to be E([ X - E(XW). 
We need to be able to handle more than one random variable simul­

taneously. Thus we introduce a function F(X l ' . . .  , xn) which is identified 
with 

(8) 
Then f = OnF/OX l . . . oxn . We require that F --+ 1 as the Xi --+ + 00, F --+ 0 
as the Xi --+ - 00,  and f 2:: o. The last condition can be phrased purely in 
terms of F to allow for the case in which f does not exist. For example, 
when n = 1, we require that F(x) - F(x*) 2:: 0 whenever X 2:: x* , and, when 
n = 2, we require that 

F(x, y) - F(x* , y) - F(x, y*) + F(x*, y*) 2:: 0 

whenever x 2:: x* and y 2:: y* . The n = 1 case corresponds to the statement 
that the integral of f(t) from x* to x is nonnegative, and the n = 2 case cor­
responds to the statement that the integral of f(t, u) over the rectangle 
[x* , x] x ·  [y* , y] is nonnegative. This can be generalized. 

From the joint distribution function F(Xb . . . , xn) we can compute 
various marginal distribution functions, that is, probabilities like (8) in which 
one or more of the Xi have been deleted. For example, given F(x, y) as the 
joint distribution function for X and Y, the distribution functions for X 
and Y are limJ"� + 00 F(x, y) and limx� + 00 F(x, y), respectively. You should 
be able to show that the density function for X is given by J:': � f(x, y) dy. 

Of course, expectation is given by 

which can be rephrased in terms of F by using n-fold integration by parts . 
Conditional expectation and independence also parallel Section A.2. For 
example, 

f+ OO E(X I Y) = _ CD xf (x, y) dx, 
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and we say that X and Y are independent if f(x, y) = g(x)h(y) for some 
functions 9 and h. In this case we can choose 9 and h to be the density functions 
for X and Y. There is the old problem of replacing density functions by 
distribution functions. You may like to try doing this. (The idea for inde­
pendence is to compute the probability that (X, Y) lies within a rectangle.) 

We prove the linearity property of expectation given by (2) and leave 
it to you to show that (4) and the rest of (2) also generalize. For simplicity 
assume f(x, y) exists .  Then 

E(aX + b Y) = J J (ax + by)f(x, y) dx dy 

= a Jx[Jf(x, y) dY] dX + b J{Jf(X, y) dX] dY 

= aE(X) + bE( Y) . 

P R O B L E M S  

1 .  Give the proofs asked for i n  the text. 

2. If X and Y are independent random variables with density functions 
f and g, show that Z = X + Y has density function 

J+
OO 

h(z) = _ 00 f (x)g(z - x) dx. 

3 .  Suppose that you are running a business in a service industry where 
demand fluctuates. (Examples include freight hauling and telephone 
repair.) Suppose that the wage rate is r dollars per hour and the overtime 
rate is s. You contract with employees for a total of N hours at the wage 
rate and fill any unsatisfied demand by paying overtime wages. Let X 
be a random variable equal to the number of service hours demanded. 

(a) If X has a density function f(x), show that your expected wage costs 
are 

rN + s IX) (x - N)f(x) dx. 

(b) Show that this is a minimum when N is chosen so that 
Pr {X > N} = rls. 

(c) Deduce the result in (b) without assuming that X has a density 
function. 
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A . 5 .  T H E N O R M A L  D I ST R I B U T I O N  

D E F I N ITI O N . The normal distribution with mean )1 and variance (J2 
is given by 

where exp (z) = eZ • 

1 (- (X - )1)2) f(x) = M.::::i exp 
2 2 ' V 2n(J2 (J 

You should verify the claims implicit in this definition ; that is, 

ff(x) dx = 1, f xf(x) dx = )1, 

You may need a table of integrals. For a normally distributed random 
variable X, the standard deviation (J provides a measure of deviation for )1 
that is more precise than Chebyshev's inequality, namely, 

(9) Pr { I X - II I :s; c(J} = A J:e - X2/2 dx. 

You should prove this. 
The importance of the normal distribution stems from the fact that 

sums of random variables tend to be normally distributed. Consequently 
experimental errors are often roughly normally distributed, because they 
are the sum of many small effects. For biological traits such as size, the effects 
of genes seem often to be roughly multiplicative, and so the logarithm of 
size tends to be normally distributed within the adult population of a species. 

These vague statements can bt:: made mathematically precise. The result 
is known as the central limit theorem or, more accurately, central limit 
theorems, since there is more than one. We consider a simple one. 

T H E O R E M .  Suppose Xl ' X2 , • . •  are independent random variables. 
Let Sn = Xl + . . .  + Xn . Suppose that 

( 10) maxI < i < n  (J2(XJ -+ 0 
(J2(Sn) 

as n -+ 00. Define Zn = [Sn - E(Sn)]/(J(Sn) and let Fn be the distribution 
function for Zn . Then for every z, 

( 1 1 ) lim Fn(z) = 
_1_ fZ e - t2/2 dt. 

n-+ oo  fo - oc' 
I 
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Since 0"2(SII) = L 0"2(XJ by (4), assumption ( 10) ensures that as n ---+ 00 
no single Xi makes a significant contribution to the variance of ZII '  Con­
clusion ( 1 1 )  essentially says that Zn tends to be normally distributed when n is 
large. 

The Bernoulli trials of Section A.3 provide a simple illustration of the 
theorem. In this case the Xi are independent, identically distributed random 
variables. Thus 0"2(SII) = nrr2 (XJ, and so ( 10) holds. We have 

A refinement of this result can be used to obtain asymptotic information 
about the binomial coefficients, because of (5) . 

Another important property of the normal distribution is that, if 
Xl , . . .  , XII are independent and normally distributed with means f.1i and 
variances �f, then X l  + . . .  + X II is also normally distributed [with mean 
f.1 1 + . . .  + f.111 and variance O"i + . . . + O"� by (2) and (4)] .  It suffices to prove 
this for n = 2, since the rest follows easily by induction. By Problem AA.2 
the density function for n = 2 is 

Using the identity 

(A B)2 (C D)2 = (A 2 C2) ( AB + CD)2 (BC - AD)2 t + + t + + t + AZ + CZ + AZ + CZ 

with A = 1/0" 1 > B = - f.1dO" l , C = l/O"z , and D = (f.1z - x)/O"z , we have 

which turns out to be the density function for a normal distribution with 
the correct mean and variance. 

To change the subject, suppose that we wish to estimate some number 
m. It may be the expected value of some random variable, and our estimation 
procedure may be Monte Carlo simulation. I t  may be a physical constant 
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and our estimation procedure may be experimental measurement. At any 
rate, after n trials we obtain n estimates X i of m. It seems reasonable to take 
x = I x/n as an estimate for m. How accurate can we expect it to be ? 
Suppose that the Xi are obtained from independent observations where the 
distribution function is F and the mean and variance are m and S2 , re­
spectively. Let X, be independent random variables with distribution function 
F. Then by (2) and (4), 

(52(I Xi) = S2 . n n 

By the central limit theorem, I X/n is approximately normally distributed 
with mean m and variance s2/n, and so by (9) 

Thus we expect our error to decrease as the square root of the number of 
trials . See the introductory part of Section 5.2 for further discussion. 

P R O B L E M S 

1 .  Show that X i s  normally distributed with mean 0 variance 1 if and 
only if (X + f.1)(5 is normally distributed with mean f.1 and variance (52 . 

2. Suppose that X is normally distributed with mean f.1 aud variance (52 . 
Sketch the density function for X. 

A.S .  G E N E RATI N G  R A N D O M  N U M B E R S  

In Section 5 .2 I briefly discussed the generation of random numbers and 
provided a table of 3000 random digits .  I'll treat the subject further here. 
There are two distinct approaches to automatically generating random 
numbers. The first is physical : A device is used to produce " noise " which is 
then translated into numbers. Examples include a noise tube and a pointer 
which is spun. The second method, which is the topic of this section, is to 
use a mathematical procedure to generate numbers which appear to be 
random. Numbers created in this way are not truly random, because they 
are produced in a repeatable manner. In fact, the numbers produced by such 
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methods cycle-but the period of any decent method is so large as to present 
no problem. The idea is to devise a function f that maps the integers 
between 0 and M onto themselves and then, starting with xo , compute 
f(xo) = X l >  f(x j ) = X2 ' . . . .  Hopefully this will go through most of the 
integers between 0 and M in some seemingly random fashion. One can then 
use a function 9 to obtain random numbers of any desired sort. One objection 
to-this procedure is that, if I tell you a random number Xn , then you can tell 
me its successors. This can be avoided by using certain digits of Xn to produce 
the random number and using other digits of Xn to compute Xn + l ' 

Here is a method for producing random numbers between 0 and 999 
on a hand calculator. [For a discussion of this and many other methods for 
generating and testing random numbers, see D. Knuth ( 1 969).] Choose any 
eight-digit number ending in 1 ,  3 ,  7, or 9. (Leading digits may be zeroes. )  
Define f(x) to be the rightmost five digits of x times 963 and use the leftmost 
three digits of x (considering x to be an eight-digit number) as the random 
number. This can be simplified by replacing x by x/lOs : 

1. Choose an eight-digit number Xo of the form d l d2 d3 . d4 ds d6 d7 dg , 
where dg is 1 ,  3, 7, or 9 .  

2.  Define r n to be the integer part of Xn and define Xn + 1 to be the fractional 
part of Xn multiplied by the number 963. 

To illustrate, Xo = 0. 1 2347 leads to the sequence X l = 1 1 8.90 16 1 ,  X2 = 

868 .25043, X 3 = 241.1 6409, and so on. The first four random numbers are 
000 1 1 8 868 241 .  

In Section 5 .2 it was pointed out that, if X is uniformly distributed on 
[0, 1 ] ,  then Y = F - 1 (X) has the distribution function F. To see this note that, 
since F is monotonic, 

Pr { Y :::;; y} = Pr {F(y) :::;; F(y)} = Pr {X :::;; F(y)} , 

which equals F(y), since X is uniformly distributed on [0, 1 ] .  
Since F- I  i s  not easily computed for the normal distribution, a table 

or the central limit theorem should be used. To use the latter, simply generate 
a sequence of random numbers and apply the theorem to them. For example, 
if X I , . . .  , X n are generated to be uniformly distributed on [0, 1 ] ,  

(XI + . . . + X n  - �)f3 
is approximately normally distributed with mean 0 and variance 1 .  A 
convenient and almost certainly large enough value for n is 12 .  Here is a 
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simple table based on F - I for the normal distribution. I recommend using it 
when doing calculations by hand or on a hand calculator. It is used as follows. 

0 2 3 4 5 6 7 8 9 

0, 1 0.00 0.02 0.05 0.08 0. 10  0. 1 3  0. 1 5  0. 1 8  0.20 0.23 

2, 3 0.25 0.28 0.3 1  0 .33 0.36 0.39 0.41 0.44 0.47 0.50 

4, 5 0. 52 0. 55  0. 58 0.6 1  0.64 0.67 0. 70 0.74 0.77 0. 8 1  

6 ,  7 0. 84 0.88  0.92 0.95 0.99 1 .04 1 .08 1 . 1 3  1 . 1 8  1 .23 

8 , 9 1 .28 1 . 34 1 .4 1  1 .48 1 . 56 1 .64 1 . 8  1 .9 2. 1 2 .3 

Generate two random digits Y1 and Y2 • If Y1 = Y2 = 0, reject the pair and 
try again. Find Y1 in the leftmost column and Y2 in the top row. Read off 
the number X, changing its sign if Y1 is odd. This is normally distributed 
with mean 0 and variance 1. Hence (X + fl)(1 is normally distributed with 
mean fl and variance (12 . 

A . 7 . L EAST S Q UA R ES 

The racing shell model in Section 2 . 1  predicts a relationship of the form 
hex) = CX- 1 /9 where x is the number of oarsmen and hex) is the best possible 
time in a race. Of course this is only approximate, since shell designs do not 
quite fit the model we proposed. Furthermore, we can only estimate the 
best possible times by using data which may be biased by such things 
as nonideal team performance, currents, and winds. Thus we obtain for 
various values of x (namely 1 , 2, 4, and 8) estimates y for hex). What value of C 
gives the best fitting curve ? How good is the exponent - !-what is the best 
fitting curve of the form Cxm ? 

In general, we have a function hex) depending on certain parameters 
and we have estimates Yi of h(x;). We wish to determine the best values for the 
parameters. What should we do ? To make any progress, we need to make 
some additional assumptions. Let's start with a simple situation and then 
return to the racing shell problem. 

In Section 2.2 we predicted that for a perfect pendulum in a fixed 
gravitational field, the period is r = qO) Ji where 0 is angle of swing, 1 is 
length, and C is an unknown function. Let's test this by constructing pendu­
lums of various lengths, starting them swinging at some fixed angle 00 , and 
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measuring the period. We can then plot r versus ji and see if we obtain a 
straight line. Of course, there will be errors in measuring t and 1, and in 
setting the angle of swing equal to 80 . (The fact that the pendulum is not 
perfect can probably be neglected. See Section 9.2.) From another point of 
view, we are making errors in estimating r(l) = C(80)ji, both by measuring 
at the wrong point (80 and 1 in error) and by measuring r incorrectly. This 
suggests that after many repetitions with a given 1 we might obtaip. estimates 
r(l) which are normally distributed about the predicted value C(80)ji. In 
other words, r is normally distributed with mean C(80)ji and unknown 
variance (J2 (l) . We make measurements for various 1 and thereby obtain pairs 
(li ' rJ where ri is sampled from a normal distribution with mean C(80).jl; and 
variance (JT = (J2 (l ;) . 

What is the best estimate for C(80) ? We can interpret " best " to mean 
" estimate which maximizes the probability of being close to the observed 
values." Let Ci > 0 be very small. The probability that a sampled value r 
would be within Bi of r i is 

� 2Bi ( (ri - C(80).jl;)2) 
� --- exp - 2 • 

fo(Ji 2(Ji 

If the observations are independent, we may multiply this probability for 
various values of i to obtain the joint probability. If the (Ji are independent 
of the parameter C(80), this joint probability will be a maximum when 

L 
(ri - C(80) Jly 

2(JT 

is a minimum. We can find C(80) to minimize this by setting a L/aC(80) 
equal to zero and solving for C(80). This approach is stated in general form 
in the following theorem. 

TH EO R E M .  Least squares. If r; are independent, normally distributed 
random variables with means h(X i) and variances (JT independent of h, then 
the probability of each r; simultaheously being within Bi of Yi is maximized by 
selecting the function h for which 

( 1 2) L 
(yj - h(X;))2 

(JT 
is a minimum. 
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Usually the assumptions of the theorem cannot be verified (in fact, 
they are usually incorrect), and the variances cannot be estimated. The 
usual procedure is to apply the theorem anyway and assume that all the 
variances are equal. Thus we minimize 

( 1 3 )  

in most cases. This is what would be done in the pendulum problem discussed 
before the theorem. 

. 

Let's apply the theorem to the racing shell problem. Let Y; be the best 
observed time for a shell with Xi men. Of course, we cannot hope to verify 
the hypotheses of the theorem or estimate (Ji ' We make the usual assumption 
that the theorem holds and the (Ji are equal : We assume that the Y; are 
independent normally distributed random variables with means CXi- 1 / 9  
and equal variances. We wish to minimize ( 1 3) where h(xJ = CXi- 1 / 9  and Yi 
is an observed best time. By setting the partial derivative with respect to C 
equal to zero we obtain 

( 14) 

This is a linear equation in C, so it is easily solved when the values of Xi 
and Yi are known. Instead of looking at X versus Y as in ( 14), we can consider 
log X versus log Y as suggested in Section 2. 1 .  Then Yi in the theorem is the 
logarithm of the time, Xi is the logarithm of the number of men, and h(xJ 
is log C - x/9. However, we have already set Yi equal to the time and Xi 
equal to the number of men. We will keep this notation rather than the 
notation of the theorem. Thus we wish to minimize 

[ log Xi

J
2 

I log Yi - K + -9- , 

where K = log C. In this case we've assumed that log Y; is normally distri­
buted with mean log C - (log xJ/9 and variance independent of i . This is 
inconsistent with our assumptions about Y; leading to (1 4). Setting the partial 
derivative with respect to K equal to zero we obtain 

(1 5) 
log Xi I log Yi - K + -9- = O. 

Equations ( 14) and (15 ) give different values for C (see the accompanying 
table). Which is correct ? Probably neither one, since our assumptions about 
Y; and log Y; are assuredly wrong ; however, both give fairly good fits to the 
data and the fits are about the same. Now suppose that we want to fit the 
exponent as well, that is, find the best hex) having the form Cx - Y• In this case, 
the second method is preferable. This is not for any theoretical reason, but 
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simply because it is much easier to find the values of C and r that minimize 
( 1 3 )  in this case. The equations for K = log C and r are 

I log Yi - K + r log Xi = 0, 
( 1 6) I log Yi log Xi - K log Xi + r (log xi = O. 

The following table compares values obtained by the various methods. The 
data comes from Table 1 in Chapter 2. Since different races may be run under 
different conditions, it was not clear how I should interpret " best time." 
Should I do separate fits for each of the four races ? A fit to the average of the 
best times of the four races ? A fit to the overall best time ? I fit the average 
best time and the overall best time. Once C and r have been determined 
using ( 1 4), ( 1 5), or ( 1 6), it is possible to compute h(x;). This I have also done. 
Note that the fit is fairly good, and the estimates for r via ( 1 6) support the 
model's prediction that r = �. 

Average Best Time Overall Best Time 

( 14) ( 1 5) (1 6) ( 1 4) ( 1 5) ( 1 6) 

C 7.44 7 .35 7.29 7 .3 1 7.2 1 7 .2 1 
r 1 1 0. 1 04 1 1 0. 1 1 1  9" 9" 9" 9" 

1 7 .22 7.44 7 .35  7 .29 7 . 1 6  7 .3 1 7 .2 1  7 .21  
2 6 .88 6 .89 6 .8 1 6 .78 6 .77 6 .77 6 .68 6 .68 
4 6 .34 6 .38 6 .30 6.3 1 6. 1 3  6.27 6. 1 8  6. 1 8  
8 5 .84 5 .9 1 5 . 83  5 . 88  5 . 73  5 . 80 5 . 72 5 .72 

A.S .  TH E P O I S S O N A N D EX P O N E NTIAL D I ST R I B UTI O N S  

Two closely related distributions are the Poisson, a discrete distribution 
given by Pr {X = k} = e - AAk/k ! and the exponential, a continuous distri­
bution given by Pr { T  S t} = 1 - e - vt. They both have mean and variance 
A = 1 /v . Prove it. The exponential is associated with waiting times between 
rare events, and the Poisson with the number of rare events in a given time 
interval. The following examples illustrate this . 

1 .  Suppose we distribute N A items into N boxes. Let X be the number of 
items in the ith box. If the items are distributed independently and each 
box is equally likely to be chosen, Pr {X = k} -4 e - AAk/k ! as N -4 00 . 
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2 .  Suppose that in  a small time interval I1t an event has probability v I1t 
of occurring, independent of what has happened in the past. The waiting 
time T between two successive occurrences is exponentially distributed. 

3 .  Closely related to  this i s  failure o f  a product. I f  the probability o f  failure 
in the time interval l1t is v I1t given that the product hasn't failed up to 
that time, the waiting time to failure is exponentially distributed. 

4 .  Let's return to example 2. Let X be the number of occurrences of  the 
event between t and t + T. Then X is Poisson distributed with A = TV, 
where V is the parameter of the exponential distribution in example 2. 

These examples merit more discussion. 
We can think of example 1 as a Bernoulli trial situation. If an item is 

placed in the ith box, this is a success. We then have 

Pr {X = k} = 
(�A)qNA - kp\ 

where p = liN. The claim in example 1 follows from 

(NA) - k -+ Ak 
k 

N 
k !  

and 

as N -+ 00. Hence the Poisson is a limiting case of Bernoulli trials. 
The exponential is obtained similarly as a limit. In example 2, T is 

simply the waiting time to the first success. Consider a situation in which the 
time between Bernoulli trials is I1t and the probability of success is v I1t = p. 
The probability of a first success at time I1t[T I I1tJ is q[T/Mlp. (The square 
brackets here denote " largest integer not exceeding.") For small v I1t this 
is approximately ve - , TI1t. Hence f(T) = ve- ,' T . 

The relationship between the exponential and Poisson distributions 
asserted in example 4 is easily proved : In each time interval l1t, the probability 
of success is p = v 11t, so after N time intervals the probability of k successes 
is (�)qn - kl. Setting I1t = TIN and letting N -+ 00, we obtain the desired 
result. 
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TO P I C S 

Models are grouped into major categories which are capitalized and grouped 
by affinity . Italicized numbers refer to chapters and sections that discuss a 
subject. Other numbers refer to problems dealing with the subject. 

AST R O N O MY 

colliding galaxies 8 . 1 . 2 
number of comets 5 .2 .4  

C H E M I STRY 

chemical engineering 4 .2 . 5  
polymer formation 8. 1 , 8 . 1 . 3 
reaction stability 9 . 2 . 8  
sediment volume 5.2, 5 .2 . 1 

EARTH S C I E N C ES 

particle sizes 10 
reflected energy in the desert 6 
sediment volume 5.2, 5 .2 . 1 
stream networks 5 .2, 5 . 2 . 5  
waves 2 . 2 . 4  
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P HY S I C S  
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falling from a height 2 . 1 . 7, 8 . 1 . 5  
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motion of a pendulum 2.2, 2 .2 . 1 , 9 .2 
radioactive decay 10 
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throwing strings 10 . 3  
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E N G I N E E R I N G  
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T R A F F I C  

car following 9.3, 9 . 3 . 1 , 9 . 3 . 2  
elevators 1 . 5 . 1 
flow 6 . 5  
left turn squeezes 8 . 1 ,  8 . 1 . 1  
signals 4 .2 .4, 1 0.2  
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H U M A N  P HYSI O LO G Y  A N D  M E D I C I N E  

drug excretion 8 . 1 .2 
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impaired CO2 elimination 6 



sex ratios 5 . 1 , 5 . 1 . 1  
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speed of racing shells 2. 1 , 2 . 1 .2 , 2 . 1 . 3 

B I O LO G Y  O F  O R G A N I S M S  
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E CO N O M I C S  O F  A F I R M  
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U N IV E R S IT I E S  

lecture hall design 1 . 5 . 6  
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tenure 5 . 1 .4 

M I S C E LLAN EO U S  

a doctor's waiting room 5.2 
fighting forest fires 4 . 1  
measuring lengths 10 . 1 
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roasting turkeys 2 .2 . 3  
running in  the rain 4. 1 .2 
speed of racing shells 2. 1 , 2 . 1 .2 , 2 . 1 . 3 
stringed instrument design 2 .2 .2 
throwing strings 10 . 3  



Advertising, 80,  1 5 9  
Airplane, stability of, 1 8 7  
Anatomy and physiology, biological 

rhythms, 1 6 8  
blood vessel optimization, 7 1  
capillaries, number of, 7 3 
comparative, bloo d  flow, 3 1  

body proportions, 26 
falling, 34 
foo d  needed by Gulliver, 33 

jumping, 27 ,  28 
optimal phenotype, 84 

drug excretion, 1 5 6  
endocrine systems, 1 8 8  
lung efficiency, 1 2 7  
trees, random branching of, 1 1 5  
see also Psychophysics 

Arms race, 1 89 
ICBMs and, 4 5 ,  5 6 ,  1 00, 1 0 1  

Astronomy, 1 1 6 ,  1 6 6  

Ballistics, 1 6 4  
Bartering, 8 1  
Bayes' formula, 223  
Beam, cutting of hot  rolled, 2 1 5 

deflection of, 2 7 
Bernoulli trials, 224,  2 3 8  
Binomial coefficients, 224 
Bioecono mics, 77 
Birds, migration of, 1 2  
Blood, see Anatomy and physiologY 
Box, Edgeworth, 8 3  
Breakage of particles, 208 
Business, see Firms 

Capillaries, number of, 7 3  
Cartography, waves and water depth, 4 3  
Castes, insect, 85  
Central Limit Theorem, 209, 230,  2 3 3  
Central Place Theory, 1 1 5 

I N D E X 

Chain reaction, 1 6 9  
Chebyshev's inequality, 2 2 1  
Chemical engineering, 8 9 , 1 5 2, 1 5 7 , 1 8 7  
Chemical reactions, stability of, 1 6 9 ,  1 9 0  
Choices, simple, 94,  9 8  
Circadian rhythms, 1 6 8  
Clocks, pendulum, 1 7 7  
Cobweb model o f  supply and demand, 5 7  
Colleges, see Universities 
Comets, 1 1 6 
Committee behavior, 6 0  
Compartment model of drug excretion, 1 5 6  
Competition, interspecific, 64,  1 84 
Conservation of fish, 7 7  
Conservation laws, 1 9 9  
Cooking times, 42 
Cost, marginal, 5 3  
Countries, underdeveloped, 6 4  
Curve fitting, 2 1 ,  26 , 44, 2 1 1 ,  234 
Curves, indifference, 83 

supply and demand, 5 5  
Cycles, biological, 1 6 8 ,  1 80,  1 84 ,  1 88 ,  2 0 1  

limit, 1 74 ,  200 

Decision making, simple, 94,  98 
Demand curves, 5 5  
Demography, 9 ,  1 4 ,  9 1 
Density function, 226 
Deserts, reflected sunlight in, 1 2 1 ,  12 2 
Difference equations, richness of, 1 4 2  
Differential equations, numerical method 

for, 1 7 1  
Direction field, 6 0  
Distribution function, 220, 226 

exponential, 203, 2 1 3 ,  237 
log normal, 207 
normal, 1 7 0 , 209,  230, 2 3 3  
Po�son, 9 5 ,  102, 1 5 4 ,  1 5 8 ,  2 3 7  
Rosin's law, 207 

Doctor's waiting room, 1 06 
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Dosage, drug, 1 5 6  
insecticide, 1 5 9  

Drag force, 2 3 ,  34, 1 64 
Drugs, 1 5 6  
Dunes, sand, 2 1 1 

Ecology, Great Lakes pollution, 1 44 
species diversity and habitat size, 49 
see also Population growth 

Economics, Keynesian, 1 84,  1 89 
Economy, national, 1 84,  1 89 
Edgeworth box, 8 3  
Elections, fair, 1 24 
Elevators, 1 2  
Employees, see Firms 
Employers, see Firms 
Engineering, chemical, 89,  1 5 2, 1 5 7, 1 8 7  
Epidemics, 1 6 6 ,  1 9 2  
Equilibrium point, 1 74 
Equipment turnover, 8 1  
Events, independent, 2 1 9  

simple, 2 1 8  
Expectation, 220, 227 
Exponential distribution, 203,  2 1 3 ,  237 

Facility location, optimum, 79,  204 
Falling, 34, 1 5 8  
Fire, forest, 7 3  
Fire station location, 204 
Firms, advertising, 80, 1 59 

equipment turnover, 8 1  
general theory, 5 2 
inventory maintenance, 6 6 ,  1 3 1 ,  2 1 5  
loading docks, 1 1 5  
optimum location of, 79,  204 
overstock sales, 1 3 1 
package rilling, 2 1 6  
packaging costs, 1 9  
production run length, 66 
sales force size, 10  
salesperson effectiveness, 1 1  
wages, 5 7 ,  88  

Fish, optimum swimming of, 79 
schooling of, 1 3 2 

Fishing, regulation of, 77  
type of catch, 1 89 

Fission, nuclear, 1 6 9  
Fitness o f  organisms, 8 4  
Fitness sets, 8 4  
Flow, blood, 3 1 ,  7 1  

resistance to, 7 2  

Forest fire, 7 3  

Galaxies, colliding, 1 6 6  
Gonorrhea epidemics, 1 9 2  
Governor, steam engine, 1 88 
Graphs, uses of, 44 
Gravitation, 3 5 ,  3 9 ,  1 5 8  
Great Lakes, pollution of, 1 4 4  
Groups, dynamics of, 6 0  

peer pressure and marriage, 1 5 7  
size distribution of, 1 0 1  

Growth rate, net, 8 
Gunnery tables, 1 64 
Gypsy moth control, 1 8 8  

Herd formation, 1 3 2  
Heun method, 1 7 1  

Income, marginal, 5 3  
Independent events, 2 1 9  
Indifference curves and surfaces, 8 1 ,  8 3  
Insecticide, dosage of, 1 5 9  

host-parasite systems and, 1 88 
Insects, castes of, 85  

social, 8 7  
Inventory maintenance, 6 6 ,  1 3 1 ,  2 1 5  

Keynesian economics, 1 84 ,  1 8 9  

Lakes, pollution of, 144 
Laplace transforms, 1 9 3  
Least squares, see Curve fitting 
Lecture hall design, 1 3  
Limit cycles, 1 74 ,  200 
Linear algebra, 9 ,  37, 1 7 7  
Linear approximation, bad effect of, 201  
Linear programming, 8 7  
Lizards, body temperature of, 1 2 1  
Loading docks, 1 1 5  
Location, optimum, 79,  204 
Log normal distribution, 207 
Lotka-Volterra equations, 1 8 1  
Lungs, 1 27 
Lynx-hare cycles, 1 84 

Macroeconomics, 6 4 ,  1 84,  1 8 9  
Malaria, 1 9 2  
Marriage, 1 5 7  
Measles, 1 5 7 , 1 9 2  
Medicine, diagnosis, 1 27 , 223  

drug excretion ,  156  



epidemics, 1 6 6 ,  1 9 2  
lung efficiency, 1 27 

Missles, see Arms race; Ballistics; and 
Rockets 

Model, best does not exist, 3 
compartment, 1 5 6  
mathematical, definition, 2 

usefulness of, 1 
need for, 1 4  
predictions, fragile and robust, 4, 1 23 ,  

1 30, 1 5 2, 1 77 
see also Sensitivity analysis 

scale, 3 8 ,  4 3  
variables, careful choice of, 3 

types of, 2, 3 
Modeling process, changing problem, 1 0  

example, 8,  1 0  
implicit assumptions, 1 ,  1 9 7  
references, 1 2  
theory of, 6 

Money, government control of, 1 87 
Monte Carlo simulation, 1 0 3  

accuracy o f  estimates, 1 04, 2 3 1  
Music, stringed instruments, 40 

Normal approximation, 1 70, 209,  230 
Normal distribution, 2 3 0  

random generation of, 2 3 3  
Nuclear reaction, 1 6 9  
Numbers, random, 1 0 5 ,  1 1 8, 232 

Packaging costs, 19 
Particle size distribution, 207 j 
Pedestrian crosswalks, 2 1 3  
Pendulum, damping of, 4 0 ,  1 717 

peripd of damped, 1 7 9  
period of perfect, 3 7  

Phase plane, 6 0, 1 74 
Phenotype, optimal, 84 
Physiology, see Anatomy an Jphysiology 
Place theory, central, 1 1 5 I 
Poincare-Bendixson theorer,l, 200 
Poisson distribution, 9 5 , 1 5 $, 1 5 8 , 237 

truncated, 1 02 
Poisson's ratio, 3 9 ,  4 1  
Politics, buck passing, 1 0 ,  1 i. 

candidates and platforms, '90 
disarmament, 5 6  
fair elections, 1 24 
preventative war, 5 6  

Pollution o f  the Great Lake� .• 144 
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Polymerization, 1 5 2, 1 5 7, 2 1 5  
Population growth, competition between 

species, 64, 1 84 
demography, 9, 1 4, 9 1  
host-parasite, 1 80 ,  1 8 8  
one species, 8 ,  1 4 ,  1 9 8  
predator-prey, 1 80,  1 8 8,  2 0 1  
symbiosis, 1 84 ,  1 89 

Predation, 1 80 ,  1 8 8 ,  2 0 1  
Probability, conditional, 2 1 9  
Psychology, 9 4 ,  9 8  

see also Psychophysics 
Psychophysics, perception of intensity, 3 3  

vision, 1 3 1 ,  1 34 

Queues, 1 06 

Racing shells, 22,  2 3 6  
Radioactive decay, 2 0 2  
Random numbers, generation, 1 05 ,  2 3 2  

table, 1 1 8  
Reaction, chain, 1 6 9  
Rhythms, biological, 1 6 8  
Rocket, 7 8  
Rosin's law, 2 0 7  
Running i n  rain, 76 

Salesperson effectiveness, 1 1  
Sand dunes, 2 1 1 
Scale models, 3 8 , 4 3  
Schools, see Universities 
S ediment volume, 1 0 8  
Sensitivity analysis, 1 1 , 6 8 , 7 5 , 8 0  
Sex ratio, human, 9 1 ,  2 1 7  
Signals, traffic, 8 9 ,  2 1 3  
Simple events in probability, 2 1 8 
Sociobiology, herd formation, 1 3 2  

insect castes, 8 5  
Sociology, group size distribution, 1 0 1  

marriage rate, 1 5 7  
sex preference, 91  

Species diversity and habitat size, 4 9  
Species interaction. see Ecology ; Population 

growth 
Stability, global, 174. 1 99 

graphs ,used in study of, 45 
loc , 1 75 

to o��er models, 1 8 7  
iation,· 2 3 0  
ara,tilfe, 45 

• CUt�g hot rolled. 2 1 5  
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Dosage, drug, 1 5 6  
insecticide, 1 5 9  

Drag force, 2 3 ,  34, 164 
Drugs, 156 
Dunes, sand, 21 1 

Ecology, Great Lakes pollution, 1 44 
species diversity and habitat size, 49 
see also Population growth 

Economics, Keynesian, 1 84,  1 8 9  
Economy, national, 1 84,  1 89 
Edgeworth box, 8 3  
Elections, fair, 1 24 
Elevators, 1 2  
Employees, see Firms 
Employers, see Firms 
Engineering, chemical, 89, 1 5 2, 1 5 7, 1 8 7  
Epidemics, 1 6 6 ,  1 92 
Equilibrium point, 1 74 
Equipment turnover, 8 1  
Events, independent, 2 1 9 

simple, 2 1 8  
Expectation, 220, 227 
Exponential distribution, 203,  21 3 , 2 3 7  

Facility location, optimum, 79,  204 
Falling, 34,  1 5 8  
Fire, forest, 7 3  
Fire station location, 204 
Firms, advertising, 80, 1 5 9  

equipment turnover, 8 1 
general theory, 5 2  
inventory maintenance, 6 6 ,  1 3 1 ,  2 1 5  
loading docks, l 1 5  
optimum location of, 7 9 ,  204 
overstock sales, 1 3 1 
package filling, 2 1 6  
packaging costs, 1 9  
production run length, 66 
sales force size, 10 
salesperson effectiveness, 1 1  
wages, 5 7 , 88 

Fish, optimum swimming of, 79 
schooling of, 1 3 2  

Fishing, regulation of, 7 7  
type o f  catch, 1 8 9  

Fission, nuclear, 1 6 9  
Fitness o f  organisms, 84 
Fitness sets, 84 
Flow, blood, 3 1 ,  7 1 

resistance to, 72 

Forest fire, 7 3  

Galaxies, colliding, 1 6 6  
Gonorrhea epidemics, 1 9 2  
Governor, steam engine, 1 8 8  
Graphs, uses of, 44 
Gravitation, 35, 39, 1 5 8  
Great Lakes, pollution of, 1 44 
Groups, dynamics of, 6 0  

peer pressure and marriage, 1 5 7  
size distribution of, 1 0  1 

Growth rate, net, 8 
Gunnery tables, 1 64 
Gypsy moth control, 1 8 8  

Herd formation, 1 3 2 
Heun method, 1 7 1  

Income, marginal, 5 3  
Independent events, 2 1 9  
Indifference curves and surfaces, 8 1 ,  8 3  
Insecticide, dosage of, 1 5 9  

host-parasite systems and, 1 88 
Insects, castes of, 8 5  

social, 8 7  
Inventory maintenance, 6 6 , 1 3 1 , 2 1 5  

Keynesian economics, 1 84 ,  1 8 9  

Lakes, pollution of, 144 
Laplace transforms, 1 9 3  
Least squares, see Curve fitting 
Lecture hall design, 1 3  
Limit cycles, 1 74 ,  200 
Linear algebra, 9 ,  3 7 , 1 7 7  
Linear approximation, bad effect of, 201 
Linear programming, 87 
Lizards, body temperature of, 1 2 1  
Loading docks, 1 1 5  
Location, optimum, 7 9 ,  204 
Log normal distribution, 207 
Lotka-Volterra equations, 1 8 1  
Lungs, 1 27 
Lynx-hare cycles, 1 84 

Macroeconomics, 64,  1 84,  1 8 9 
Malaria, 1 9 2  
Marriage, 1 5 7  
Measles, 1 5 7 ,  1 9 2  
Medicine, diagnosis, 1 27 , 223 

drug excretion, 1 5 6  



epidemics, 1 6 6 , 1 9 2  
lung efficiency, 1 27 

Missles, see Arms race ; Ballistics; and 
Rockets 

Model, best does not exist, 3 
compartment, 1 5 6  
mathematical, definition, 2 

usefulness of, 1 
need for, 1 4  
predictions, fragile and robust, 4,  1 23 ,  

1 30,  1 5 2, 1 77 
see also Sensitivity analysis 

scale, 3 8 ,  4 3  
variables, careful choice of, 3 

types of, 2, 3 
Modeling process, changing problem, 1 0  

example, 8,  1 0  
implicit assumptions, 1 ,  1 9 7  
references, 1 2  
theory of, 6 

Money, government control of, 1 87 
Monte Carlo simulation, 1 0 3  

accuracy o f  estimates, 1 04, 2 3 1  
Music, stringed instruments, 4 0  

Normal approximation, 1 70, 2 0 9 ,  2 3 0  
Normal distribution, 2 3 0  

random generation of, 2 3 3  
Nuclear reaction, 1 6 9  
Numbers, random, 1 0 5 ,  1 1 8 , 2 3 2  

Packaging costs, 1 9  
Particle size distribution, 2 0 7  
Pedestrian crosswalks, 2 1 3  
Pendulum, damping of, 4 0 ,  1 7 7  

peripd of damped, 1 79 
period of perfect, 3 7  

Phase plane, 60,  1 74 
Phenotype, optimal, 84 
Physiology, see Anatomy an " physiology 
Place theory, central, 1 1 5 
Poincare-Bendixson theorerd, 200 
Poisson distribution, 95, 15 i, 1 5 8 ,  2 3 7  

truncated, 1 0 2  
Poisson's ratio, 3 9 ,  4 1  
Politics, buck passing, 1 0 ,  1 3 

candidates and platforms 9 0  
disarmament, 5 6  
fair elections, 1 24 
preventative war, 5 6  

Pollution o f  the Great Lake�, 144 

I N D E X  255 

Polymerization, 1 5 2, 1 5 7 , 2 1 5  
Population growth, competition between 

species, 64, 1 84 
demography, 9, 1 4 ,  9 1  
host-parasite, 1 80 ,  1 8 8  
one species, 8 ,  1 4 ,  1 98 
predator-prey, 1 80,  1 8 8,  201  
symbiosis, 1 84 ,  1 89 

Predation, 1 80, 1 8 8 ,  2 0 1  
Probability, conditional, 2 1 9  
Psychology, 94, 9 8  

see also Psychophysics 
Psychophysics, perception of intensity, 3 3  

vision, 1 3 1 , 1 34 

Queues, 1 06 

Racing shells, 2 2 ,  2 3 6  
Radioactive decay, 2 0 2  
Random numbers, generation, 1 05 ,  2 3 2  

table, 1 1 8  
Reaction, chain, 1 6 9  
Rhythms, biological, 1 6 8  
Rocket, 7 8  
Rosin's law, 207 
Running in rain, 76 

Salesperson effectiveness, 1 1  
Sand dunes, 2 1 1  
Scale models, 3 8 , 4 3  
Schools, see Universities 
S ediment volume, 1 0 8  
Sensitivity analysis, 1 1 , 6 8 , 7 5 , 8 0  
Sex ratio, human, 9 1 ,  2 1 7  
Signals, traffic, 8 9 ,  2 1 3  
Simple events in probability, 2 1 8  
Sociobiology, herd formation, 1 3 2  

insect castes, 8 5  
Sociology, group size distribution, 1 0 1  

marriage rate, 1 5 7  
sex preference, 9 1  

Species diversity and habitat size, 4 9  
Species interaction, see Ecology ; Population 

growth 
Stability, global, 1 74 ,  1 99 

graphs used in study of, 45 
local, 1 7 4 ,  1 75 
references to other models, 1 8 7  

Standard deviation, 2 3 0  
Statics, comparative, 4 5  
Steel beams, cutting h o t  rolled, 2 1 5  
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Stream networks, 1 1  0, 1 1  7 
String, randomly thrown, 2 1 4  
Structures, strength of, 3 8  
Students, admission of, 6 4 ,  68 

demand for graduating, 64 
Sunlight, reflected in deserts, 1 2 1 ,  1 22 
Supply and demand, 5 5 ,  5 7, 64 
Symbiosis, 1 84, 1 8 9 
Systems, autonomous, 1 7 3  

Tape recorder reel revolution counters, 1 30 
Taylor polynomials, 1 7 1 ,  1 9 3  
Thermostats, 1 99 
Time lags, 9, 5 7 
Traffic flow,. car following, 1 9 3  

flow-concentration curve, 1 3 3 
fundamental diagram, 1 3 3  
left turn squeeze, 1 48 
pedestrain crosswalks, 2 1 3  
signals, 8 9  
urban, 1 2  

Trees, plane planted binary, 1 1 1  
random branching of, 1 1 5  

Unemployment, 1 8 7  
Universities, admissions policy, 6 4 ,  8 8  

demand for graduates, 64 
faculty tenure, 99 
lecture hall design, 1 3  

Utility, mathematical theory of, 204 

Van der Pol equation, 200 
Variable, random, 220 
Variables in models, 2, 3 , 6 
Variance, 220 
Variation, coefficient of,  203 
Vision, 1 3 1 ,  1 34 
Volterra-Lotka equations, 1 8 1  

Wages, 5 7 , 88 
Waiting room, 106 
Water skiing, 1 6 0  
Waves, water, 4 2  

Young's modulus, 3 9 , 4 1  
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