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Abstract 

 
The application of the Bootstrap-Metropolis-Hastings algorithm is limited to fixed dimension 

models. In various fields, data often has a variable dimension model. The Laplacian 

autoregressive (AR) model includes a variable dimension model so that the                              

Bootstrap-Metropolis-Hasting algorithm cannot be applied. This article aims to develop a 

Bootstrap reversible jump Markov Chain Monte Carlo (MCMC) algorithm to estimate the 

Laplacian AR model. The parameters of the Laplacian AR model were estimated using a 

Bayesian approach. The posterior distribution has a complex structure so that the Bayesian 

estimator cannot be calculated analytically. The Bootstrap-reversible jump MCMC algorithm 

was applied to calculate the Bayes estimator. This study provides a procedure for estimating 

the parameters of the Laplacian AR model. Algorithm performance was tested using simulation 
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studies. Furthermore, the algorithm is applied to the finance sector to predict stock price on the 

stock market. In general, this study can be useful for decision makers in predicting future events. 

The novelty of this study is the triangulation between the bootstrap algorithm and the reversible 

jump MCMC algorithm. The Bootstrap-reversible jump MCMC algorithm is useful especially 

when the data is large and the data has a variable dimension model. The study can be extended 

to the Laplacian Autoregressive Moving Average (ARMA) model. 

 

Keywords 

 
Autoregressive, Bootstrap, Laplace Noise, Reversible Jump MCMC. 

 

Introduction 

 

Forecasting is an activity to make predictions of future events. Forecasting methods can be 

grouped into 2 categories, namely: qualitative methods and quantitative methods 

(Makridakis et al., 1983). In qualitative method, forecasting is based on expert judgment. 

While in quantitative methods, forecasting is based on the relationship between variables. 

Forecasting is applied in various fields. Forecasting applications can be found in various 

literatures, for example (Guizzardi et al., 2021) and (Kwas, 2021). From time to time, the 

need for forecasting is increasing along with the increasing fields that require forecasting. 

Therefore, the development of accurate forecasting methods is an important topic for 

research. 

 

Time series is one of the quantitative forecasting methods. One of the stochastic models in 

the time series is the autoregressive (AR) model (Box et al., 2015). Several authors have 

conducted research on the topic of AR models, for example (Brouste et al., 2014) and 

(Suparman & Rusiman, 2018). In these studies, noise is assumed to be normally distributed. 

In some applications, the data is often found to be not normally distributed. To solve this 

problem, several studies assume that noise is not normally distributed, for example (Larbi 

& Fellag, 2016) and (Suparman & Diponegoro, 2020). In (Larbi & Fellag, 2016), the AR 

model assumes that noise has an exponential distribution. While in (Suparman & 

Diponegoro, 2020), Laplace noise is used in the AR Model. Research related to AR with 

Laplace noise has not been done much. Therefore, an estimation method for the Laplace 

AR noise model needs to be developed. 

 

In (Suparman & Diponegoro, 2020), the parameters of the AR model with Laplace noise 

are estimated using a Bayesian approach. The order of the AR model is assumed to be 

unknown and the order of the AR model is estimated based on the data. Thus, the posterior 

distribution has a complex structure so that the Bayesian estimator cannot be calculated 



Webology, Volume 18, Special Issue on Computing Technology and Information 

Management, September, 2021 

1047                                                      http://www.webology.org 

analytically. In (Suparman & Diponegoro, 2020), the Bayes estimator is estimated using 

the reversible jump Markov chain Monte Carlo (MCMC) method. 

 

The reversible jump MCMC method is a very powerful tool for analyzing data of complex 

structures. The Markov Monte Carlo chain method requires a large number of iterations 

when applied to big data (Liang et al., 2016). In (Liang et al., 2016), the                              

Metropolis-Hastings method is combined with the Bootstrap method to analyze big data. 

Bootstrap is a data-based simulation method for statistical inference, which can be used to 

generate inferences (Efron & Tibshirani, 1993). However, the Bootstrap-Metropolis-

Hastings method assumes that the dimensions of the model parameters are constants. For 

model parameters with variable dimensions, the Bootstrap-Metropolis-Hastings method 

cannot be used. 

 

This article aims to develop a forecasting method on an AR model with Laplace noise based 

on Bootstrap-reversible jump MCMC. The focus of this research is on quantitative 

forecasting method using AR model with Laplacian noise. As an application example, 

forecasting methods are applied to the finance sector to predict stock prices on the 

Indonesian stock exchange. 

 

Literature Review 

 

This section briefly describes the basic ideas about the topic, Bootstrap, reversible jump 

MCMC, and the Laplacian AR model. 

 

Bootstrap 

 

The basic idea in bootstrap is resampling using the actual sample to simulate the distribution 

of the relevant test statistic. Let 𝑥1, … , 𝑥𝑛 be 𝑛 actual data. Let �̂� be an empirical 

distribution, assigning a probability of 
1

𝑛
 to each observed value 𝑥𝑖  (𝑖 = 1, … , 𝑛). A 

bootstrap sample is defined as a random sample of size 𝑛 taken from �̂�, say 𝑥1
∗, … , 𝑥𝑛

∗ . This 

Bootstrap sample 𝑥1
∗, … , 𝑥𝑛

∗  is a sample of size n taken with replacement from the population 

of n objects (𝑥1, … , 𝑥𝑛) (Efron & Tibshirani, 1993). 

 

Reversible Jump MCMC 

 

Reversible jump MCMC (Green, 1995) is an extension of the standard MCMC. In 

reversible jump MCMC, the Markov chain can jump between parameter subspaces of 

different dimensions. Therefore, the reversible jump MCMC can be applied in the model 
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determination problem. In this article, reversible jump MCMC is applied to estimate the 

parameters of the Laplacian AR model. 

 

Laplacian AR Model 

 

Let 𝑥1, … , 𝑥𝑛 be time series data where 𝑛 is the number of observations. The time series 

𝑥1, … , 𝑥𝑛 has an AR model if this time series satisfies (Box et al., 2015): 

 

𝑥𝑡 = ∑ 𝜓𝑡𝑥𝑡−𝑖
𝑝
𝑖= + 𝜖𝑡                                         (1) 

 

where 𝑝 is the order of the model, 𝜓1, … , 𝜓𝑝 is the model coefficient, and 𝜖1, … , 𝜖𝑛 is the 

noise. In this article, time series data 𝑥1, … , 𝑥𝑛 are modeled as Laplacian AR. The Laplacian 

AR model means that the autoregressive model contains noise that has a Laplace 

distribution. Research related to Laplace noise can be found in various literatures, for 

example (Miertoiu & Dumitrescu, 2019), (Minchole et al., 2014) and (Suparman & 

Diponegoro, 2020). 

 

The random variable 𝜖 is said to have a Laplace distribution with parameters 𝜇 and 𝛽, 

written as 𝜖~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜇, 𝛽), if the probability density function of 𝜖 has the following form: 

 

𝑓(𝜖|𝜇, 𝛽) =
1

2𝛽
𝑒𝑥𝑝 −

|𝜖−𝜇|

𝛽
. 

 

In this article,  𝜖~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝛽). 

 

Methodology 

 

This study uses data that has an AR model with Laplace noise. Let 𝑥1, … , 𝑥𝑛 be the data 

that satisfies the AR model with Laplace noise where 𝑛 is the number of data. Next, this 

data is resampled with replacement to get Bootstrap samples. Let 𝐵 be the number of 

resamplings. Then, the j-th bootstrap sample 𝑗 = 1, 2, … , 𝐵) was used to estimate the AR 

model parameters with Laplace noise. Parameter estimation using Bayesian method. The 

steps in the Bayesian method include determining the likelihood function, selecting the 

prior distribution, determining the posterior distribution, and calculating the Bayesian 

estimator using the reversible jump MCMC algorithm. After that, the j-th Bayesian 

estimator 𝑗 = 1, 2, … , 𝐵) is used to calculate the Bootstrap estimator of the parameters. 

Finally, the AR model with Laplace noise is used to predict the value of 𝑥𝑛+1. The 

procedure for calculating the Bootstrap-reversible jump MCMC estimator is presented in 

Figure 1. 
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Figure 1 Flowchart 

 

Results and Discussion 

 

Likelihood Function of Bootstrap Samples 

 

Let 𝑥1, … , 𝑥𝑛 be the data of size 𝑛 and 𝑥1
∗𝑗

, … , 𝑥𝑛
∗𝑗

 is the j-th Bootstrap sample                                 

(𝑗 = 1, … . . , 𝐵). Bootstrap sample 𝑥1
∗𝑗

, … , 𝑥𝑛
∗𝑗

 is obtained by taking n points with 

replacement from {𝑥1, … , 𝑥𝑛} (Efron & Tibshirani, 1993). 

 

In this article, the AR model is assumed to have a Laplace noise with a mean of 0 and a 

variance of 2𝛽2. Thus, the likelihood function of the jth Bootstrap sample can be written as 

 

𝑓(𝑥∗𝑗|𝑝, 𝜓(𝑝), 𝛽)  = (
1

2β
)

𝑛−𝑝

𝑒𝑥𝑝 −
1

𝛽
∑ |∑ 𝜓𝑖𝑥𝑡−𝑖

∗𝑗
𝑝

𝑖=1
+ 𝑥𝑡

∗𝑗
|

𝑛

𝑡=𝑝+1
 

 

where 𝑥∗𝑗 = (𝑥1
∗𝑗

, … , 𝑥𝑛
∗𝑗

) and 𝜓(𝑝) = (𝜓1, … , 𝜓𝑝). The stationary AR model is very useful 

in forecasting. For small model orders, the stationary region of the AR model is easy to 

identify. However, for a large order model, the stationarity region of the AR model is very 

difficult to identify. To solve this problem, the coefficients of the AR model are transformed 

into a partial autocorrelation function (Barndorff-Nielsen & Schou, 1973). Let Ω𝑝 be the 

stationary region of the AR model and 𝐹 is a transformation from 𝜓(𝑝) = (𝜓1, … , 𝜓𝑝) ∈



Webology, Volume 18, Special Issue on Computing Technology and Information 

Management, September, 2021 

1050                                                      http://www.webology.org 

Ω𝑝 to 𝑟(𝑝) = (𝑟1, … , 𝑟𝑝) ∈ (−1, 1)𝑝 where 𝑟1, … , 𝑟𝑝 are the partial autocorrection functions 

of the AR model. Through this transformation 𝐹, an AR model with order 𝑝 is said to be 

stationary if |𝑟𝑖| < 0 for 𝑖 = 1, … , 𝑝. With the new parameters, the likelihood function of the 

j-th Bootstrap sample becomes 

 

𝑓(𝑥∗𝑗|𝑝, 𝑟(𝑝), 𝛽)  = (
1

2β
)

𝑛−𝑝

𝑒𝑥𝑝 −
1

𝛽
∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖

∗𝑗
𝑝

𝑖=1
+ 𝑥𝑡

∗𝑗
|

𝑛

𝑡=𝑝+1
 

 

where 𝐹−1 is the inverse transformation of 𝐹. 

 

Prior Dan Posterior Distributions 

 

AR model parameters include 𝑝, 𝑟(𝑝), 𝜆, 𝛽, and 𝑣. As in (Suparman & Diponegoro, 2020), 

the prior distribution of (𝑝, 𝑟(𝑝), 𝜆, 𝛽, 𝑣) is 

 

𝜋(𝑝, 𝑟(𝑝), 𝜆, 𝛽, 𝑣) = 𝐶𝑝
𝑝𝑚𝑎𝑥𝜆𝑝(1 − 𝜆)𝑝𝑚𝑎𝑥−𝑝 1

2𝑝  
𝜈𝑢

Γ(𝑢)
𝛽−(𝑢+1)𝑒𝑥𝑝 −

𝑣

𝛽

1

𝜈
. 

 

According to Bayes' Theorem, the posterior distribution of (𝑝, 𝑟(𝑝), 𝜆, 𝛽, 𝑣) is 

 

𝜋(𝑝, 𝑟(𝑝), 𝜆, 𝛽, 𝑣|𝑥∗𝑗) 

=   (
1

2
)

𝑛−𝑝

(
1

β
)

𝑛−𝑝−1

𝑒𝑥𝑝 −
1

𝛽
∑ ∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖

∗𝑗
𝑝

𝑖=1
+ 𝑥𝑡

∗𝑗
|

𝑛

𝑡=𝑝+1

𝑛

𝑡=𝑝+1
 

𝐶𝑝
𝑝𝑚𝑎𝑥𝜆𝑝(1 − 𝜆)𝑝𝑚𝑎𝑥−𝑝 1

2𝑝  
𝜈𝑢−1

Γ(𝑢)
𝛽−(𝑢+1)𝑒𝑥𝑝 −

𝑣

𝛽
. 

 

The posterior distribution has a complex structure so that the Bayesian estimator is not 

calculated analytically. Therefore, the parameters (𝑝, 𝑟(𝑝), 𝜆, 𝛽, 𝑣) are estimated using the 

reversible jump MCMC algorithm. 

 

Bootstrap-Reversible Jump MCMC 

 

The posterior distribution is simulated in 2 stages, namely: simulation of conditional 

distribution of (𝜆, 𝛽, 𝑣) if given (𝑝, 𝑟(𝑝)) and simulation of conditional distribution of 

(𝑝, 𝑟(𝑝)) if given (𝜆, 𝛽, 𝑣). Furthermore, the conditional distribution of (𝜆, 𝛽, 𝑣) given 

(𝑝, 𝑟(𝑝)) is simulated in 3 stages, namely: 𝛽 ∼  𝐼𝐺(𝑛 − 𝑝, 𝑣 + ∑ |∑ 𝐹−1(𝑟𝑖)𝑥𝑡−𝑖
∗𝑗𝑝

𝑖=1 +𝑛
𝑡=𝑝+1

𝑥𝑡
∗𝑗

|), 𝜆 ∼ 𝐵(𝑝 + 1, 𝑝𝑚𝑎𝑥 − 𝑝 + 1),  and 𝜐 ∼ 𝐺(𝑢,
1

𝛽
). 
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However, the conditional distribution of (𝑝, 𝑟(𝑝)) given (𝜆, 𝛽, 𝑣) has a complex structure. 

Therefore, the conditional distribution of (𝑝, 𝑟(𝑝)) if given (𝜆, 𝛽, 𝑣) is simulated using the 

reversible jump MCMC algorithm. Furthermore, the reversible jump MCMC algorithm 

uses 3 types of transformations, namely: change in coefficient, birth of order, and death of 

order (Suparman & Diponegoro, 2020). 

 

Let (𝑝∗𝑗, 𝑟∗𝑗(𝑝∗𝑗), 𝜆∗𝑗, 𝛽∗𝑗, 𝜈∗𝑗) be the Bayesian estimator obtained by the MCMC reversible 

jump algorithm based on the j-th Bootstrap sample for 𝑗 = 1, … , 𝐵. The                                 

Bootstrap-reversible jump MCMC estimator of the parameters (𝑝, 𝜓(𝑝), 𝜆, 𝛽, 𝑣) is 

calculated using the following formulas: �̂� =
1

〰
∑ 𝑝∗𝑗𝐵

𝑗=1 ,  �̂�(𝑝)̂ =
1

𝐵
∑ 𝐹−1(𝑟∗𝑗(𝑝∗𝑗))𝐵

𝑗=1 , 

�̂� =
1

𝐵
∑ 𝜆∗𝑗𝐵

𝑗=1 ,  �̂� =
1

𝐵
∑ 𝛽∗𝑗𝐵

𝑗=1 , and �̂� =
1

𝐵
∑ 𝜈∗𝑗𝐵

𝑗=1 . 

 

Simulated Data 

 

The accuracy of the Bootstrap-reversible jump MCMC method was demonstrated through 

a simulation study. Simulated data is made according to equation (1). The number of 

simulated data is 250. The order model is 𝑝 = 2 and the coefficient of the AR model is 

𝜓(2) = (−0.44, 0.43). The noise is assumed to have a Laplace distribution with 𝜇 = 0 and 

𝛽 = 2. Simulated data is given in Figure 2. 

 

 
Figure 2 Simulated data 

 

Furthermore, this simulated data is resampled as much as 𝐵 = 11. The reversible jump 

algorithm is implemented on the j-th Bootstrap sample (𝑗 = 1, … . ,11). The estimates of the 

order and coefficients of the Laplacian AR model for each Bootstrap sample are presented 

in Table 1. 
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Table 1 Order and coefficient of Laplacian AR model for each Bootstrap sample using 

simulated data 

j-th Bootstrap Sample 𝑝∗𝑗 𝜓1
∗𝑗

 𝜓2
∗𝑗

 

1 2 -0.3609 0.4551 

2 2 -0.3898 0.4996 

3 2 -0.3866 0.5182 

4 2 -0.4039 0.4254 

5 2 -0.4836 0.3799 

6 2 -0.3900 0.4756 

7 2 -0.4653 0.3966 

8 2 -0.4652 0.4503 

9 2 -0.3819 0.4742 

10 2 -0.4066 0.4772 

11 2 -0.3883 0.4743 

 

Based on Table 1, the Bootstrap-reversible jump MCMC estimator of the order is �̂� = 2. 

While the Bootstrap-reversible jump MCMC estimator of the coefficients is �̂�(2) =

(−0.4411, 0.4337). 

 

Application on Stock Price Data 

 

The Bootstrap-reversible jump MCMC algorithm is implemented in the finance sector, 

especially in forecasting stock prices on the stock market.  One of the stock price data on 

the Indonesia Stock Exchange (IDX), say stock C, is presented in Figure 3. The stock price 

data is observed from January 4, 2021 to April 20, 2021. The number of stock price data is 

82. This stock price data has also been used in (Suparman et al., 2021). 

 

 
Figure 3 Stock C 
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As for the simulated data, the price data for stock C is also resampled as much as 𝐵 = 11. 

The reversible jump algorithm is run on the j-th Bootstrap sample (𝑗 = 1, … . ,11). Table 2 

presents the estimators of the order and coefficients of the Laplacian AR model for each 

Bootstrap sample. 

 

Table 2 Order and coefficient of Laplacian AR model for each Bootstrap sample using the 

price data for stock C 

j-th Bootstrap Sample 𝑝∗𝑗 𝜓1
∗𝑗

 

1 1 0.9522 

2 1 0.9517 

3 1 0.9518 

4 1 0.9517 

5 1 0.9525 

6 1 0.9525 

7 1 0.9516 

8 1 0.9525 

9 1 0.9514 

10 1 0.9516 

11 1 0.9526 

 

Based on Table 2, the Bootstrap-reversible jump MCMC estimator of the order is �̂� = 1. 

While the Bootstrap-reversible jump MCMC estimator of the coefficients is �̂�(1) =

(0.9520). 

 

Discussion 

 

In the simulation study, the values of the Bootstrap-reversible jump MCMC estimator of 

the order and coefficients of the Laplacian AR model are �̂� = 2  and �̂�(2) =

(−0.4411, 0.4337). This estimator value is close to the parameter values used in the 

Laplacian AR model to create simulated data, namely: 𝑝 = 2  and 𝜓(2) = (−0.44, 0.43). 

The results of this simulation show that the Bootstrap-reversible jump MCMC algorithm 

can estimate the order and coefficients of the Laplacian AR model very accurately. 

 

In an application to forecast prices for stock C, the Bootstrap-reversible jump MCMC 

estimator of the order is �̂� = 1. While the Bootstrap-reversible jump MCMC estimator of 

the coefficients is �̂�(1) = (0.9520). Suppose �̂�83 is a stock price forecast one day ahead. 

Then, �̂�83 = 0.9520 (4610) =  4389. The price of Stock C is predicted to decline in the 

next one day. The estimation results are not much different from the results in (Suparman 

et al., 2021). Estimator for order and coefficient in (Suparman et al., 2021) is �̂�(1) = (0.95). 
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This study can be applied to forecasting in various fields in order to make decisions, for 

example in the field of finance. To expand the application, further research can be carried 

out on the development of the Bootstrap-reversible jump MCMC algorithm for the 

Laplacian Autoregressive Moving Average (ARMA) model. The AR model is a special 

form of the ARMA model when the order 𝑞 is equal to zero. 

 

Conclusion 

 

This article has studied the parameter estimation procedure of the Laplacian AR model 

using Bootstrap-reversible jump MCMC. Bootstrap-reversible jump MCMC algorithm is 

used to overcome the Laplacian AR model where the order of the model is assumed to be 

unknown. The focus of this research is on the Laplacian AR model. The AR model is a 

special form of the ARMA model so that research can be extended to the development of 

the parameter estimation procedure of the Laplacian ARMA model. 

 

The performance of the Bootstrap-reversible jump MCMC algorithm was evaluated using 

simulated data. The simulation study results show that this algorithm can estimate the 

parameters of the Laplacian AR model accurately. 

 

The advantage of this research is that both the order model and the model coefficients are 

estimated simultaneously using the data. Research has been well applied to the field of 

finance, especially to forecast stock prices. The method proposed in this study is 

recommended to be used for forecasting in other fields. 
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