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Abstract - This article discusses SEIRS-SEI epidemic models on malaria with regard to human recovery rate. SEIRS-
SEI in this model is an abbreviation of the population class used in the model, i.e Susceptible, Exposed, Infected, and 
Recovered populations in humans and Susceptible, Exposed, and Infected populations in mosquito. These epidemic 
models belong to mathematical models which clarify a phenomenon of epidemic transmission of malaria by observing 
the human recovery rate after being infected and susceptible. Human population falls into four classes, namely 
susceptible humans, exposed humans, infected humans, and recovered humans. Meanwhile, mosquito population 
serving as vectors of the disease is divided into three classes, including susceptible mosquitoes, exposed mosquitoes, 
and infected mosquitoes. Such models are termed SEIRS-SEI epidemic models. Analytical discussion covers model 
formation, existence and stability of equilibrium points, as well as numerical simulation to find out the influence of 
human recovery rate on population dynamics of both species. The results show that the fixed point without disease 

(𝑥𝑑𝑓𝑒) is stable in condition ℛ0 < 1and unstable in condition ℛ0 > 1. The simulation results show that the given 

treatment has an influence on the dynamics of the human population and mosquitoes. If the human recovery rate from 
the infected state becomes susceptible to increased, then the number of infected populations of both species will 
decrease. As a result, the disease will not spread and within a certain time will disappear from the population. 

 
Keywords: Epidemic models, SEIRS-SEI, Malaria, Human recovery 

 
Introduction 

Malaria is a disease caused by infection with parasites belonging to genus Plasmodium. In epidemiology, 
malaria affects both men and women in all age groups. Plasmodium parasites are transmitted through the 
bite of a female Anopheles mosquito (Anopheles spp.), the primary vector causing malaria. 

Some efforts have been made to encounter the impacts of malaria transmission. One of them includes 
the application of Mathematics in the mathematical branch of epidemiology. It is a branch of mathematics 
that studies about disease spread and control (Capazzo, 2008). Mathematical modeling in epidemiology has 
produced a wide variety of mathematical models to explore infectious disease problems. Mathematical 
modeling for malaria was first performed by Ross in 1911 and was known as the Ross Model. This basic 
model was then extended by MacDonald in 1957 and was called the Ross-MacDonald model (Ngwa and 
Shu, 2000). Several similar studies regarding a change in population size are(Ngwa and Shu, 2000) and 
(Chitnis, 2005). 

This article will examine SEIRS-SEI epidemic models on malaria developed from previous models. The 
study of the models was carried out by specifically taking human recovery rate into account. The term 
‘human’ here refers to an infected person subsequently recovered without immunity and finally susceptible 
to disease. Analytical discussion includes model formation, existence and stability of equilibrium points, as 
well as numerical simulation to find out the influence of human recovery rate on population dynamics of 
both species. 
 
Materials and Methods 
Mathematical model 

The pattern of malaria transmission is schematically illustrated in the following compartment diagram: 

http://jurnal.unsyiah.ac.id/aijst
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Figure 1. The scheme of malaria transmission based on SEIRS-SEI modification model 
Therefore, the system dynamics can be formulated in the following equations: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝒅𝑺𝒉
𝒅𝒕

= Λ𝒉 + 𝜓𝒉𝑵𝒉 +𝝎𝒉𝑰𝒉 + 𝝆𝒉𝑹𝒉 − (𝝀𝒉 + 𝒇𝒉(𝑵𝒉))𝑺𝒉

𝒅𝑬𝒉
𝒅𝒕

= 𝝀𝒉𝑺𝒉 − (𝒗𝒉 + 𝒇𝒉(𝑵𝒉))𝑬𝒉

𝒅𝑰𝒉
𝒅𝒕

= 𝒗𝒉𝑬𝒉 − (𝛾ℎ + 𝒇𝒉(𝑵𝒉) + 𝜹𝒉 +𝝎𝒉)𝑰𝒉

𝒅𝑹𝒉
𝒅𝒕

= 𝛾ℎ𝑰𝒉 − (𝝆𝒉 + 𝒇𝒉(𝑵𝒉))𝑹𝒉                                                                           (𝟏)

𝒅𝑺𝒎
𝒅𝒕

= 𝜓𝒎𝑵𝒎 − (𝝀𝒎 + 𝒇𝒎(𝑵𝒎))𝑺𝒎

𝒅𝑬𝒎
𝒅𝒕

= 𝝀𝒎𝑺𝒎 − (𝒗𝒎 + 𝒇𝒎(𝑵𝒎))𝑬𝒎

𝒅𝑰𝒎
𝒅𝒕

= 𝒗𝒎𝑬𝒎 − 𝒇𝒎(𝑵𝒎)𝑰𝒎

 

 
where natural death rate follows the function 

𝑓ℎ(𝑁ℎ) = 𝜇1ℎ + 𝜇2ℎ𝑁ℎand𝑓𝑚(𝑁𝑚) = 𝜇1𝑚 + 𝜇2𝑚𝑁𝑚 

and infection rate follows the equation 
 

𝜆ℎ = 𝑏ℎ(𝑁ℎ, 𝑁𝑚)𝛽ℎ𝑚
𝐼𝑚
𝑁𝑚

and𝜆𝑚 = 𝑏𝑚(𝑁ℎ, 𝑁𝑚) (𝛽𝑚ℎ
𝐼ℎ
𝑁ℎ

+ 𝛽𝑚ℎ
𝑅ℎ
𝑁ℎ
). 

The rate of human and mosquito population change follows the equation obtained from the system (1), 
expressed as 

{

𝑑𝑁ℎ
𝑑𝑡

= Λℎ + 𝜓ℎ𝑁ℎ − 𝑓ℎ(𝑁ℎ)𝑁ℎ − 𝛿ℎ𝐼ℎ

𝑑𝑁𝑚
𝑑𝑡

= 𝜓𝑚𝑁𝑚 − 𝑓𝑚(𝑁𝑚)𝑁𝑚.                   

                                                            (2) 

Description of parameters is presented in Table 1. 
Table 1. Parameters of SEIRS-SEI Models 

Variable Description Units 

Λ𝒉 

𝜓𝒉 

Human migration rate 
Per capita human birth rate. 

human × unit of time−1 

unit of time−1 

Λℎ 

𝜓𝑚 

𝛿ℎ 

𝑓ℎ(𝑁ℎ) 𝑓ℎ(𝑁ℎ) 

𝑓𝑚(𝑁𝑚) 
 

𝛾ℎ 

𝑓𝑚(𝑁𝑚) 
 

𝑓ℎ(𝑁ℎ) 

Sh Eh Ih 

Sm Em 

𝑓ℎ(𝑁ℎ) 

𝑣𝑚 

𝑓𝑚(𝑁𝑚) 
 

𝑣ℎ 

𝜌ℎ 

Rh 

Im 

𝜆ℎ 

𝜆𝑚 
 

𝜓ℎ 

𝜔ℎ 
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𝜓𝒎 

𝝈𝒉 
 

𝝈𝒎 
 

𝜷𝒉𝒎 
 

𝜷𝒎𝒉 
 

𝜷̃𝒎𝒉 
 

𝒗𝒉 
 

𝒗𝒎 
 

𝛾ℎ 
 

𝜔ℎ 
 

𝛿ℎ 

𝜌ℎ 
 

𝜇1ℎ 
 

𝜇2ℎ 
 

𝜇1𝑚 
 

𝜇2𝑚 

Per capita mosquito birth rate.  
The average number of  mosquito bites on humans per 
unit of  time  
The maximum proportion of   bites made by a single 
mosquito on humans per unit of   time  
The probability of  infected mosquito-to-susceptible 
human-transmission 
The probability of  infected human-to-susceptible 
mosquito-transmission 
The probability of  recovered human-to-susceptible 
mosquito-transmission 
Per capita exposed-to-infected human transmission rate 
Per capita exposed-to-infected mosquito transmission 
rate 
Per capita infected-to-recovered human effective 
immunity formation rate  
Per capita infected-to-susceptible human recovery rate  
Human mortality rate due to malaria infection 

Constant rate of  loss of  immunity after humans get 
recovered. 
Human mortality rate which does  not depend on 
population density 
Human mortality rate which depends on population 
density 
Mosquito mortality rate which does not depend on 
population density 
Mosquito mortality rate which depends on population 
density 

unit of time−1 

unit of time−1 
 

unit of time−1 
 

without unit 
 

without unit 
 

without unit 
 

unit of time−1 
 

unit of time−1 
 

unit of time−1 
 

unit of time−1 
 

unit of time−1 

unit of time−1 
 

unit of time−1 
 

human−1 × unit of time−1 
 

unit of time−1 
 

mosquito−1 × unit of time−1 

Source: Chitnis, 2005 and Chitnis et al., 2006 

In addition, the proportion of mosquito bites causing infection is termed infection rate with the following 
formulation: 

𝜆ℎ =
𝜎𝑚𝜎ℎ𝛽ℎ𝑚𝐼𝑚
𝜎𝑚𝑁𝑚 + 𝜎ℎ𝑁ℎ

and𝜆𝑚 =
𝜎𝑚𝜎ℎ𝑁ℎ

𝜎𝑚𝑁𝑚 + 𝜎ℎ𝑁ℎ
(𝛽𝑚ℎ

𝐼ℎ
𝑁ℎ

+ 𝛽𝑚ℎ
𝑅ℎ
𝑁ℎ
). 

 
For ease of the analysis in the model (1) – (2), nondimensionalizationwas applied by involving the 

comparison of the number of each classes and the total number of the species population. 
For instance:  

𝑒ℎ =
𝐸ℎ
𝑁ℎ
, 𝑖ℎ =

𝐼ℎ
𝑁ℎ
, 𝑟ℎ =

𝑅ℎ
𝑁ℎ
, 𝑒𝑚 =

𝐸𝑚
𝑁𝑚

, 𝑖𝑚 =
𝐼𝑚
𝑁𝑚

 , 𝑠ℎ =
𝑆ℎ
𝑁ℎ
, 𝑠𝑚 =

𝑆𝑚
𝑁𝑚

(3) 

With  

𝑠ℎ + 𝑒ℎ + 𝑖ℎ + 𝑟ℎ = 1  and𝑠𝑚 + 𝑒𝑚 + 𝑖𝑚 = 1 

By bringing down the equation (3), we obtain: 

𝑑𝑒ℎ
𝑑𝑡

=
1

𝑁ℎ
[
𝑑𝐸ℎ
𝑑𝑡

− 𝑒ℎ
𝑑𝑁ℎ
𝑑𝑡

] and
𝑑𝑒𝑚
𝑑𝑡

=
1

𝑁𝑚
[
𝑑𝐸𝑚
𝑑𝑡

− 𝑒𝑚
𝑑𝑁𝑚
𝑑𝑡

]. 

The variable description is demonstrated in Table 2. 
Table 2. Variables of SEIRS-SEI Models 

Variable Description 

𝑒ℎ The proportion of  exposed humans in t time 

𝑖ℎ The proportion of  infected humans in t time 

𝑟ℎ The proportion of  recovered humans in t time 

𝑁ℎ Total human population in t time 

𝑒𝑚 The proportion of  exposed mosquitoes in t time 
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𝑖𝑚 The proportion of  infected mosquitoes in t time 

𝑁𝑚 Total mosquito population in t time 

Source: Chitnis, 2005 

Under the similar method to other variables, a new seven-dimensional system of equations consisting of 
two dimensions for the variable of the number of population and five dimensions for each classes of the 

population with disease, including 𝑒ℎ, 𝑖ℎ, 𝑟ℎ,𝑁ℎ , 𝑒𝑚, 𝑖𝑚, and 𝑁𝑚 is obtained. 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑑𝑒ℎ
𝑑𝑡

= (
𝜎𝑚𝜎ℎ𝑁𝑚𝛽ℎ𝑚𝑖𝑚
𝜎𝑚𝑁𝑚 + 𝜎ℎ𝑁ℎ

) (1 − 𝑒ℎ − 𝑖ℎ − 𝑟ℎ) − (𝑣ℎ +𝜓ℎ +
Λℎ
𝑁ℎ
) 𝑒ℎ + 𝛿ℎ𝑖ℎ𝑒ℎ

𝑑𝑖ℎ
𝑑𝑡

= 𝑣ℎ𝑒ℎ − (𝛾ℎ + 𝛿ℎ +𝝎𝒉 + 𝜓ℎ +
Λℎ
𝑁ℎ
) 𝑖ℎ + 𝛿ℎ𝑖ℎ

2

𝑑𝑟ℎ
𝑑𝑡

= 𝛾ℎ𝑖ℎ − (𝜌ℎ + 𝜓ℎ +
Λℎ
𝑁ℎ
) 𝑟ℎ + 𝛿ℎ𝑖ℎ𝑟ℎ

𝑑𝑁ℎ
𝑑𝑡

= Λℎ + 𝜓ℎ𝑁ℎ − (𝜇1ℎ + 𝜇2ℎ𝑁ℎ)𝑁ℎ − 𝛿ℎ𝑖ℎ𝑁ℎ                                           (4)

𝑑𝑒𝑚
𝑑𝑡

= (
𝜎𝑚𝜎ℎ𝑁ℎ

𝜎𝑚𝑁𝑚 + 𝜎ℎ𝑁ℎ
) (𝛽𝑚ℎ𝑖ℎ + 𝛽̃𝑚ℎ𝑟ℎ)(1 − 𝑒𝑚 − 𝑖𝑚) − (𝑣𝑚 + 𝜓𝑚)𝑒𝑚

𝑑𝑖𝑚
𝑑𝑡

= 𝑣𝑚𝑒𝑚 − 𝜓𝑚𝑖𝑚

𝑑𝑁𝑚
𝑑𝑡

= 𝜓𝑚𝑁𝑚 − (𝜇1𝑚 + 𝜇2𝑚𝑁𝑚)𝑁𝑚

 

 
Results and discussion 
Stability analysis 

Equilibrium points 

Equilibrium points can be obtained from a solution to the system (4) that is a condition which satisfies:  

𝑑𝑒ℎ
𝑑𝑡

=
𝑑𝑖ℎ
𝑑𝑡

=
𝑑𝑟ℎ
𝑑𝑡

=
𝑑𝑁ℎ
𝑑𝑡

=
𝑑𝑒𝑚
𝑑𝑡

=
𝑑𝑖𝑚
𝑑𝑡

=
𝑑𝑁𝑚
𝑑𝑡

= 0. 

The aforementioned system has two kinds of equilibrium, including disease-free equilibrium, 𝑥𝑑𝑓𝑒, and 

endemic equilibrium, 𝑥𝑒𝑒 . By using functional-based software, disease-free equilibrium is obtained as follows: 

𝒙𝑑𝑓𝑒(𝑒ℎ, 𝑖ℎ , 𝑟ℎ , 𝑁ℎ , 𝑒𝑚, 𝑖𝑚, 𝑁𝑚) = (0, 0, 0, 𝑁ℎ
∗, 0, 0, 𝑁𝑚

∗ ) 

with 

𝑁ℎ
∗ =

(𝜓ℎ − 𝜇1ℎ) + √(𝜓ℎ − 𝜇1ℎ)
2 + 4𝜇2ℎΛℎ

2𝜇2ℎ
and 𝑁𝑚

∗ =
(𝜓𝑚 − 𝜇1𝑚)

𝜇2𝑚
 

and the endemic equilibrium: 

𝑥𝑒𝑒(𝑒ℎ , 𝑖ℎ , 𝑟ℎ, 𝑁ℎ , 𝑒𝑚, 𝑖𝑚, 𝑁𝑚) = (𝑒ℎ
∗∗, 𝑖ℎ

∗∗, 𝑟ℎ
∗∗, 𝑁ℎ

∗∗, 𝑒𝑚
∗∗, 𝑖𝑚

∗∗, 𝑁𝑚
∗∗) 

with 

𝑒ℎ
∗∗

= −
𝜎ℎ𝜎𝑚𝛽ℎ𝑚𝑖𝑚

∗∗𝑁ℎ
∗∗𝑁𝑚

∗∗(𝑖ℎ
∗∗ + 𝑟ℎ

∗∗ − 1)

𝑁ℎ
∗∗ (𝜎ℎ𝑁ℎ

∗∗(𝜓ℎ + 𝑣ℎ − 𝛿ℎ𝑖ℎ
∗∗) + 𝜎𝑚𝑁𝑚

∗∗(𝜓ℎ + 𝑣ℎ − 𝛿ℎ𝑖ℎ
∗∗ + 𝜎ℎ𝛽ℎ𝑚𝑖𝑚

∗∗)) + (𝜎ℎ𝑁ℎ
∗∗ + 𝜎𝑚𝑁𝑚

∗∗)Λℎ
 

𝑖ℎ
∗∗(1) =

Λℎ + (𝜓ℎ + 𝛾ℎ + 𝛿ℎ +𝜔ℎ)𝑁ℎ
∗∗

2𝛿ℎ𝑁ℎ
∗∗  

               −
√(Λℎ + (𝜓ℎ + 𝛾ℎ + 𝛿ℎ +𝜔ℎ)𝑁ℎ

∗∗)2 − 4𝑣ℎ𝛿ℎ𝑒ℎ
∗∗𝑁ℎ

∗∗2

2𝛿ℎ𝑁ℎ
∗∗  
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𝑖ℎ
∗∗(2) =

Λℎ + (𝜓ℎ + 𝛾ℎ + 𝛿ℎ +𝜔ℎ)𝑁ℎ
∗∗

2𝛿ℎ𝑁ℎ
∗∗  

      +
√(Λℎ + (𝜓ℎ + 𝛾ℎ + 𝛿ℎ +𝜔ℎ)𝑁ℎ

∗∗)2 − 4𝑣ℎ𝛿ℎ𝑒ℎ
∗∗𝑁ℎ

∗∗2

2𝛿ℎ𝑁ℎ
∗∗  

𝑟ℎ
∗∗ =

𝛾ℎ𝑖ℎ
∗∗𝑁ℎ

∗∗

(𝜓ℎ + 𝜌ℎ − 𝑖ℎ
∗∗𝛿ℎ)𝑁ℎ

∗∗ + Λℎ
 

 

𝑁ℎ
∗∗(1) =

𝜓ℎ − 𝜇1ℎ − 𝛿ℎ𝑖ℎ
∗∗ +√(𝜇1ℎ − 𝜓ℎ + 𝛿ℎ𝑖ℎ

∗∗)2 + 4𝜇2ℎΛℎ
2𝜇2ℎ

 

𝑁ℎ
∗∗(2) = −

𝜇1ℎ − 𝜓ℎ + 𝛿ℎ𝑖ℎ
∗∗ +√(𝜇1ℎ − 𝜓ℎ + 𝛿ℎ𝑖ℎ

∗∗)2 + 4𝜇2ℎΛℎ
2𝜇2ℎ

 

𝑒𝑚
∗∗ = −

𝜎ℎ𝜎𝑚𝑁ℎ
∗∗(𝐵𝑚ℎ𝑟ℎ

∗∗ + 𝛽𝑚ℎ𝑖ℎ
∗∗)(𝑖𝑚

∗∗ − 1)

𝜎𝑚𝑁𝑚
∗∗(𝜓𝑚 + 𝑣𝑚) + 𝜎ℎ𝑁ℎ

∗∗(𝜓𝑚 + 𝑣𝑚 + 𝜎𝑚𝐵𝑚ℎ𝑟ℎ
∗∗ + 𝜎𝑚𝛽𝑚ℎ𝑖ℎ

∗∗)
 

𝑖𝑚
∗∗ =

𝑣𝑚𝑒𝑚
∗∗

𝜓𝑚
 

𝑁𝑚
∗∗ =

(𝜓𝑚 − 𝜇1𝑚)

𝜇2𝑚
.                                                                                                       

 

Basic reproduction number 

Basic reproduction number which is notated as ℛ0 is the expected number of infections per unit of time. 
The infections occur in a susceptible population resulted from an infected individual.  

The basic reproduction number is obtained from the largest real positive eigenvalue of a matrix through 
the next-generation matrix approach (Diekmann et al., 1990; van den Driessche and Wathmough, 2008; 
Resmawan, 2017). The fact results in the formulation of basic reproduction number: 

ℛ0 = √𝐾𝑚ℎ𝐾ℎ𝑚.                                                         (5) 

where 

𝐾ℎ𝑚 = 𝛼ℎ𝑚. 𝑏𝑚
∗ . 𝛽ℎ𝑚. 𝜃ℎ𝑚and𝐾𝑚ℎ = 𝛼𝑚ℎ. 𝑏ℎ

∗(𝛽𝑚ℎ. 𝜃𝑚ℎ + 𝛽̃𝑚ℎ. 𝜃̃𝑚ℎ. 𝜁𝑚ℎ) 

with 

𝛼ℎ𝑚 =
𝑣𝑚

𝑣𝑚 + 𝜇1𝑚 + 𝜇2𝑚𝑁𝑚
∗ 𝛼𝑚ℎ =

𝑣ℎ
𝑣ℎ + 𝜇1ℎ + 𝜇2ℎ𝑁ℎ

∗ 

𝜃ℎ𝑚 =
1

𝜇1𝑚 + 𝜇2𝑚𝑁𝑚
∗ 𝜃𝑚ℎ =

1

𝛾ℎ + 𝛿ℎ +𝜔ℎ + 𝜇1ℎ + 𝜇2ℎ𝑁ℎ
∗ 

𝜃̃𝑚ℎ =
1

𝜌ℎ + 𝜇1ℎ + 𝜇2ℎ𝑁ℎ
∗ 𝜁𝑚ℎ =

𝛾ℎ
𝛾ℎ + 𝛿ℎ +𝜔ℎ + 𝜇1ℎ + 𝜇2ℎ𝑁ℎ

∗ 

The description is written in table 3. 

Table 3  Parameters of basic reproduction number 

Formula Description 

𝛼ℎ𝑚 The probability that mosquitoes survive from exposed to infected state 

𝛼𝑚ℎ The probability that humans will survive from exposed to infected state. 

𝑏𝑚
∗ = 𝑏𝑚(𝑁ℎ

∗, 𝑁𝑚
∗ ) The number of  contacts between a mosquito and a person per unit of  

time 

𝑏ℎ
∗ = 𝑏ℎ(𝑁ℎ

∗, 𝑁𝑚
∗ ) The number of  contacts between a person and a mosquito per unit of  

time 
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𝛽ℎ𝑚 The probability of  infected mosquito-to-susceptible human-transmission  

𝛽𝑚ℎ The probability of  infected human-to-susceptible mosquito-transmission  

𝛽̃𝑚ℎ The probability of  recovered human-to-susceptible mosquito 
transmission  

𝜃ℎ𝑚 The average lifespans of  infected mosquitoes 

𝜃𝑚ℎ The average period of  infection on humans 

𝜃̃𝑚ℎ The average period of  recovery on humans 

𝜁𝑚ℎ The probability that humans will survive from infected to recovered state 

In reference to the formulation of the basic reproduction number (5), the following statements are 
concluded: 

1. If ℛ0< 1, the number of infected individuals will decline in every generation, and therefore the disease 
will not spread.  

2. If ℛ0> 1, the number of infected individuals will increase in every generation, and therefore the 
disease will spread.  

 
The jacobian matrix 

System (4), for instance, is defined as the following function: 

𝒙̇ = 𝑓(𝒙), 𝒙 ∈ ℝ7                                                (6) 

where𝒙 ∈ ℝ7 includes variables existing in system (4). By performing linearity in system (6) 

surrounding𝒙𝑑𝑓𝑒, the Jacobian matrix for a disease-free equilibrium is obtained.  

𝑱𝒙𝑑𝑓𝑒 =

(

 
 
 
 

𝐽11 0 0   0   0  𝐽16  0
𝐽21 𝐽22 0   0  0    0   0
0
0
0
0
0

𝐽32
𝐽42
𝐽52
0
0

𝐽33
0
𝐽53
0
0

0
𝐽44
0
0
0

0
0
𝐽55
𝐽65
0

0
0
0
𝐽66
0

0
0
0
0
𝐽77)

 
 
 
 

 

 
where 

𝐽11 = −𝑣ℎ − 𝜓ℎ −
2𝛬ℎ𝜇2ℎ

−𝜇1ℎ +√4𝛬ℎ𝜇2ℎ + (𝜇1ℎ − 𝜓ℎ)
2 + 𝜓ℎ

 

𝐽16 = −
2𝛽ℎ𝑚𝜇2ℎ𝜎ℎ𝜎𝑚(𝜇1𝑚 − 𝜓𝑚)

−𝜇2ℎ𝜎𝑚 (𝜇1ℎ + 𝜓ℎ +√𝜇1ℎ
2 + 4𝛬ℎ𝜇2ℎ − 2𝜇1ℎ𝜓ℎ + 𝜓ℎ

2) + 𝜇2ℎ𝜎𝑚(2𝜓𝑚 − 2𝜇1𝑚)

 

𝐽21 = 𝑣ℎ 

𝐽22 = −𝛾ℎ − 𝛿ℎ − 𝜓ℎ −
2𝛬ℎ𝜇2ℎ

−𝜇1ℎ +√4𝛬ℎ𝜇2ℎ + (𝜇1ℎ − 𝜓ℎ)
2 + 𝜓ℎ

−𝜔ℎ 

𝐽32 = 𝛾ℎ 

𝐽33 = −𝜌ℎ − 𝜓ℎ −
2𝛬ℎ𝜇2ℎ

−𝜇1ℎ +√4𝛬ℎ𝜇2ℎ + (𝜇1ℎ − 𝜓ℎ)
2 + 𝜓ℎ

 

𝐽42 = −
𝛿ℎ(−𝜇1ℎ + 𝜓ℎ +√(𝜇1ℎ − 𝜓ℎ)

2 + 4𝜇2ℎΛℎ)

2𝜇2ℎ
 

𝐽44 = −√(𝜇1ℎ − 𝜓ℎ)
2 + 4𝜇2ℎΛℎ 

𝐽52 =
𝜎ℎ𝜎𝑚𝛽𝑚ℎ𝜇2𝑚(𝜓ℎ − 𝜇1ℎ +√(𝜇1ℎ − 𝜓ℎ)

2 + 4𝜇2ℎΛℎ)

2(𝜓𝑚 − 𝜇1𝑚)𝜇2ℎ𝜎𝑚 + 𝜇2𝑚𝜎ℎ(𝜓ℎ − 𝜇1ℎ +√(𝜇1ℎ − 𝜓ℎ)
2 + 4𝜇2ℎΛℎ)

 



Aceh Int. J. Sci. Technol., 6(3): 132-140 
December 2017 

doi: 10.13170/aijst.6.3. 9303 

 

138 

 

𝐽53 =
𝜎ℎ𝜎𝑚𝐵𝑚ℎ𝜇2𝑚(𝜓ℎ − 𝜇1ℎ +√(𝜇1ℎ − 𝜓ℎ)

2 + 4𝜇2ℎΛℎ)

2(𝜓𝑚 − 𝜇1𝑚)𝜇2ℎ𝜎𝑚 + 𝜇2𝑚𝜎ℎ(𝜓ℎ − 𝜇1ℎ +√(𝜇1ℎ − 𝜓ℎ)
2 + 4𝜇2ℎΛℎ)

 

𝐽55 = −(𝑣𝑚 + 𝜓𝑚) 

𝐽65 = 𝑣𝑚;   𝐽66 = −𝜓𝑚;   𝐽77 = 𝜇1𝑚 − 𝜓𝑚 

 
Eigenvalues 

Equilibrium 𝒙𝑑𝑓𝑒 is stable if and only if each eigenvalue of matrix 𝑱𝒙𝑑𝑓𝑒 has negative value, and is unstable 

if and only if there exists at least one eigenvalue of matrix 𝑱𝒙𝑑𝑓𝑒 with non-negative values (Tu, 1994). 

From the above matrix 𝑱𝒙𝑑𝑓𝑒 , seven eigenvalues are obtained. Two of them are indicated below: 

𝜂1 = −√(𝜇1ℎ −𝜓ℎ)
2 + 4𝜇2ℎΛℎ 

𝜂2 = 𝜇1𝑚 − 𝜓𝑚 

Meanwhile, the other five are obtained from roots of the characteristic equation: 

𝐴5𝜂
5 + 𝐴4𝜂

4 + 𝐴3𝜂
3 + 𝐴2𝜂

2 + 𝐴1𝜂 + 𝐴0 = 0.                               (7) 

In order to evaluate signs of the five eigenvalues in equation (7), Routh-Horwitz stability criteria and 
Descartes’ rule of signs were applied (Chitnis, 2005). 

1. Routh-Horwitz stability criteria were used to show that all of the eigenvalues have negative real part 

if ℛ0 < 1 and all 𝐴𝑖are positive. 

2. Descartes’ rule of signs was applied to demonstrate that there is a non-negative eigenvalue when ℛ0 >
1 and a sign change of 𝐴𝑖 appears. 

Based on system (4) and the formulation of the basic reproduction number (5), it is clear that if ℛ0 < 1, 
all of the eigenvalues have negative real part, and therefore the disease-free equilibrium (𝒙𝑑𝑓𝑒) is considered 

stable, while if ℛ0 > 1, there exists a non-negative eigenvalue, and accordingly the disease-free equilibrium 
is regarded unstable. 

 
Simulation 

A simulation was performed to signify the effectiveness of parameters of human recovery rate 

(𝜔ℎ)towards disease transmission rate. In this case, the increase or decrease in the value of parameter 𝜔ℎ 

which can alter the value of basic reproduction number (ℛ0) will be demonstrated. There are five observed 

values of 𝜔ℎ taken from [1.0 × 10−3, 2.6 × 10−3] with step 0.4 × 10−3. The values of other parameters 
can be seen in Table 4. 

Table 4. Values of parameters for the simulation 

Parameter Value Parameter Value 

Λℎ 0.041 𝑣𝑚 0.083 

𝜓ℎ 5.5 × 10−5 𝛾ℎ 0.0035 

𝜓𝑚 0.13 𝛿ℎ 1.8 × 10−5 

𝛽𝑚ℎ 0.24 𝜌ℎ 2.7 × 10−3 

𝛽ℎ𝑚 0.022 𝜇1ℎ 8.8 × 10−6 

𝛽̃𝑚ℎ 0.024 𝜇2ℎ 2 × 10−7 

𝜎ℎ 4.3 𝜇1𝑚 0.033 

𝜎𝑚 0.33 𝜇2𝑚 4 × 10−5 

𝑣ℎ 0.1   

 
Figure 2 and Figure 3 illustrate the change in the number of each classes of mosquito and human 

population after the increase in  𝜔ℎ value by using such prior values as 𝑆ℎ = 500,𝐸ℎ = 50, 𝐼ℎ = 10, 𝑅ℎ =
0, 𝑆𝑚 = 4850, 𝐸𝑚 = 100, 𝐼𝑚 = 50 with total population 𝑁ℎ = 560 and  𝑁𝑚 = 5000. 
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Figure 2.Human population dynamics after the increase in human recovery rate (𝜔ℎ) parameter value 

Figure 2 shows the dynamics of the human population after being treated. The figure of top-left, top-
right, bottom-left, and bottom-right illustrate thepopulation dynamics in susceptible human, exposed human, 
infected human, and recovered human classes.If human recovery rate is increased and the values of the other 
parameters appear to remain constant, the number of susceptible human classes will show an increase (figure 
of top-left), while the number of the other human classes will decline. This happens since an increase in the 
human recovery rate leads to a decrease in the number of theinfected human classes, and therefore indirectly 
causes infected mosquito classes to decrease. The proportion of susceptible human-to-exposed human 
transformation is, therefore, declining and the number of susceptible humans is increasing. 

 
Figure 3.Mosquito population dynamics after the increase in human recovery rate  

(𝜔ℎ) parameter value 

Figure 3 shows the dynamics of the mosquito population after being treated. The figure of top-left, top-
right, bottom-left illustrate the population dynamics of susceptible mosquito, exposed mosquito, and 
infected mosquito classes. If human recovery rate from infected to susceptible classes is increased and the 
values of the other parameters remain constant, the number of susceptible mosquito classes is increasing, 
while the number of other mosquito classes is decreasing. The increase in human recovery rate from infected 
to susceptible classes contributes to the decrease in the number of infected mosquitoes, and accordingly the 
number of infected humans shows a decrease. As a result, the proportion of susceptible to exposed state-
transformation is decreasing and the number of susceptible mosquitoes is increasing. 
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Either the increase or the decrease in the number of each classes tends to be dissimilar for every increase 
in human recovery rate in both human and mosquito population. The maximum number of infected human 
classes and of infected mosquito classes on the 50th day was 55 or approximately 9.8% of the total human 
population, and 43, or approximately 0.8% of the total mosquito population, respectively, with human 

recovery rate of 1.0 × 10−3 
 
Conclusion 

By employing the model, two equilibrium points are obtained; disease-free equilibrium and endemic 
equilibrium. A simulation was carried out to observe the behavior of systems around the equilibrium points. 
It demonstrates that the given treatment exerts an influence on both mosquito and human population 
dynamics indicated by the basic reproduction number. Generally, if human recovery rate from infected to 
susceptible state is increased, the number of infected population of both species will decline. As a result, the 
disease will not spread and rapidly disappear from the population. 
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